
transactions of the
american mathematical society
Volume 337, Number 2, June 1993

THE STRUCTURE OF RANDOM PARTITIONS OF LARGE INTEGERS

BERT FRISTEDT

Abstract. Random partitions of integers are treated in the case where all par-

titions of an integer are assumed to have the same probability. The focus is

on limit theorems as the number being partitioned approaches oo . The lim-

iting probability distribution of the appropriately normalized number of parts

of some small size is exponential. The large parts are described by a particular

Markov chain. A central limit theorem and a law of large numbers holds for

the numbers of intermediate parts of certain sizes. The major tool is a simple

construction of random partitions that treats the number being partitioned as a

random variable. The same technique is useful when some restriction is placed

on partitions, such as the requirement that all parts must be distinct.

1. Introduction

A partition of a positive integer is a way of writing it as the sum of positive

integers without regard to order; the summands are called parts. Thus, there

are five partitions of the number 4: 1 + 1 + 1-1-1,2-1-1-1-1,2-1-2,3-1-1, and
4. The number of partitions of the nonnegative integer n will be denoted by

p(n) ; by definition p(0) = 1 and the one partition of 0 is the empty partition.

A formula for the generating function of the sequences (p(0), p(l), p(2), ...)

is well known:

oo oo

(l.i) $>(«)<?"=no-<?*)-'•
7i=0 k=l

Were one asked how many partitions of 4 have no part equal to 1, one would

answer "two"—namely, 2 + 2 and 4. The same information could be given

in probabilistic language: "The probability is 2/5 that a random partition of

4 has no part equal to 1." Alternatively, one could say that the probability

distribution of the number of parts of size 1 assigns measure (or probability)

2/5 to the value 0. When making such a direct translation between counting and

probabilistic statements, one is tacitly assuming, for the probabilistic setting,

that the partitions are equiprobable. The equiprobable probabilistic approach

is used in this paper. P„ will denote the probability measure which assigns

probability l/p(n) to each of the partitions of « . Our goal is to study some

aspects of P„ as n -» oo. Any asymptotic relation we obtain for P„ can be
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704 BERT FRISTEDT

easily transformed into an asymptotic relation about the number of partitions

satisfying some conditions; multiplication at the appropriate place by p(n) is

all that is required.
The probabilistic structure of a random partition of an integer is quite com-

plicated: the value of the largest part influences, in a somewhat complicated

manner, the value of the second largest part and the number of parts equal to,

say, 16 influences the number of parts equal to 13. In view of these intricacies

a simpler one-parameter probabilistic model based on generating functions is

introduced, one in which the number being partitioned is itself random. The

results that we obtain for the simpler model are limit theorems for the gen-

erating function parameter approaching 1 ; they convert, with some work, into

theorems for « approaching oo. The tools for this conversion are described in

§4.
Major results are given in §2. In §3 some consequences are developed and

connections with some of the results of Szalay and Turan [7, 8] are explained.

I thank the referee for indicating that such an explanation is appropriate. The

companion paper [9] by the same authors is not directly related to this paper,
but is included for completeness in the reference list.

The proofs of the results stated in §2 are given in §§5, 6, 7, and 8. One

result says that the number of parts of different small sizes are asymptotically

independent and exponentially distributed; it is proved in §5. There is also a

theorem for the large parts—they behave, in the limit, like a particular Markov

chain; the proof is in §6. Thus, the limiting probability distributions of the large
parts are obtained—in particular, duplicating the result of Erdös and Lehner [3]

giving the limiting probability distribution of the largest part. Also treated is

a variation where each part is multiplied by its multiplicity and the larger of

the products thus obtained are studied. The limiting probability distribution

of the largest such product was previously obtained by Erdös and Szalay [4].
The relevant proof, generalizing the result of Erdös and Szalay, is in §7. The

last two results in §2 concern the number of parts satisfying an inequality. One

of these two theorems is about the number of parts greater than k„ , assumed

to approach oo faster than nx/2. The other is about the number of parts less

than kn when it is assumed that kn/nxl2 —► 0. Section 8 contains the proofs.

Each of §§5, 6, 7, and 8 begins with the appropriate proof without a formal

announcement. An end of the proof symbol ■ is used, however. Besides the

theorems given in §2, there are other results in the paper either inside or outside

the proofs of the major theorems. The proofs of these other results are given

immediately after the statements and their ends are denoted by D.

The methods that work for random partitions also work for random distinct-

part partitions. The results are given in §9 and comments on their proofs are

made in §10. Requiring partitions to have distinct parts places a particular

restriction on the partitions. Section 11 describes how the methodology of this
paper can be extended to treat partitions satisfying some other restrictions.

Theorems will be stated in terms of certain functions on the space A con-
sisting of all partitions of nonnegative integers (including the empty partition

of 0). For A G A and k a positive integer, Xk(X) will denote the number of

parts equal to k in the partition A. For / a positive integer and A £ A, Yt(X)

will denote the ith largest part in A ; if the number of parts of A is less than

/, then Yt(X) = 0. For each A, YX(X) > Y2(k) > ■■ ■ , where equality is possible
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Figure 1.1. Ferrers diagram for the partition 4 + 3 +

3 + 1 + 1 + 1 of 13.

since it is possible for some parts to be equal. Figure 1.1 uses what is called a

Ferrers diagram to illustrate the partition 4 + 3 + 3+1 + 1 + 1 of 13 and to

identify the values of the functions Xk and Yt for this partition. The symbols

|A| and N(X), where A is a partition, are alternative notations for the integer

of which A is a partition. Thus, if A denotes the partition just described, then
/V(A) = |A| = 13.

We call the functions Xk, Yt, and N random variables since they are func-

tions on a space to which a probability measure has been attached. Actually,
infinitely many probability measures have been described for A so when we

speak, say, of the probability distribution of X3 we must make clear which

P„ is intended. Also, we use phrases such as governed by Pn and when the

underlying measure is Pn in conjunction with probabilistic concepts such as

variance and independence to indicate the relevant probability measure. When

governed by Pn , the random variable N equals the constant « with probabil-
ity 1. We will typically want to consider the sequence (P„ : « = 1,2,...) of

probability measures and with it, say, the corresponding sequence of probability

distributions of X^, and then analyze the limiting behavior as « —> oo .

If we reflect the Ferrers diagram of a partition A in a ray beginning at the

upper left corner and slanting down and to the right at 45°, we obtain a Fer-

rers diagram of a partition A', called the dual of A. It is worth noting that

IiW = J2k=i Xk(&') ■ Since P„ is invariant under the bijection A <-> A', we

conclude that the random variables Yx and YlT=i %k bave the same probabil-

ity distribution. Similarly, Yt - Yt+X has the same probability distribution as

Xt. More generally, results of the kind we will obtain have immediate corollar-

ies that are consequences of duality. It will be left to the reader to formulate

such corollaries.
Notice that the preceding paragraph does not apply to distinct-part parti-

tions since the dual of a distinct-part partition is not necessarily a distinct-part

partition.
The usual conventions that empty sums equal to 0 and empty products equal

to 1 are in force. The symbol 0(a„) or 0(bq) will be used for a quantity that

when divided by a„ or bq , respectively, gives a quotient whose absolute value

x4=i

X3 = 2

X2 = Q

X, = 3
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remains bounded as « —► oo or q ] 1. The symbol o(a„) or o(bq) will be

used to indicate that the quotient approaches 0. We write a„ ~ bn to indicate

that a„/bn —> 1 as « —► oo. The symbols [x\ and \x~\ denote, respectively,

the floor and ceiling of the real number x, that is the largest integer no larger

than x and the smallest integer no smaller than x. The ceiling of x equals

the floor or is one larger than the floor according as x is or is not an integer.

2. The major results. Unrestricted partitions

Proofs for the results described here will be given in later sections.

As defined in §1, Xk(X) equals the number of parts of the partition A that

equal k, k = 1,2,3,.... For each A, Xk(X) = 0 for all but finitely many
k. The probability distribution of the sequence (Xx, X2, X$, ...) of random

variables depends on which of the underlying probability measures Pn is used.

So, for example, when « = 4, the random variable X2 equals 0,1, or 2

with probabilities 3/5, 1/5 , and 1/5 , respectively, and the random sequence

(XX,X2,X3,...) equals one of (4, 0, 0, 0, ...), (2, 1, 0, 0, ...), (0, 2, 0,
0, ...), (1, 0, 1, 0, 0, ...),and (0, 0, 0, 1, 0, 0, ...), each with probability
1/5. The fact that, when governed by P4, X2 equals 0 with probability 3/5
can be expressed precisely as

P4({X:X2(X) = 0}) = 3/5,

but we would typically write P*(X2 = 0) = 3/5 .

Our first result says that when kXk is multiplied by n/(6n)x/2, the resulting

random variable has a probability distribution close to the exponential distri-

bution having expectation 1. Although the most interesting case is when k is

a constant, the result also holds when k depends on « provided that k grows

slowly compared to nxl2 .

Theorem 2.1. Ifkn/nxl2 —► 0 as n —► oo, then, for each nonnegative real number

lim Pn {^=knXK < v) = 1 - e~v .
71-OO W6« /

Thus, the distribution function of the limiting probability distribution of

Xkn, appropriately normalized, is 1 -e~v . In preparation for the next theorem

we examine a concept that gives another view of Theorem 2.1 and which gen-

eralizes in a natural manner. For a Borel set B let Be denote the set of points

whose distance from B is less than e. Consider two probability measures Ç

and n on R. The Prohorov distance between £ and n is defined as

inf{2 > 0 : ¿;(B) < n(B£) + e for all Borel B}.

It can be shown that the collection of probability measures on M is a metric

space with metric given by the Prohorov distance; thus, we speak of a Prohorov

metric. In order to reformulate the conclusion of Theorem 2.1 we introduce

Borel probability measures c¡„ and n on R :

(2.1)

MB) = Pn  {~^k"Xkn G B)   i

,D,       f fe~v    if u >01   ,
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The conclusion of Theorem 2.1 is that the Prohorov distance between £„ and r\

approaches 0 as « —» oo . The probability measure £„ is called the probability

distribution of the random variable (n/\f6n)knXkn, when governed by P„, or,

alternatively, the probability measure induced by P„ via the random variable

(n/y/6n)knXkn. Thus, the conclusion of Theorem 2.1 is that the Prohorov

distance between n and the probability distribution of (n/\/6ñ)knXkrt, when

governed by P„ , approaches 0 as « -» oo .

The theory described above carries over from R to general metric spaces. For
our purposes the relevant metric spaces are Rd for various finite dimensions

d with the lx -metric—the distance between two members u and v of Rd

equals J2i=i \v¡ - u¡\. Suppose that (d„ : « = 1, 2, ...) is a sequence of

positive integers and that (&, : « = 1,2,...) and (vn : « = 1, 2, ... ) are

two sequences of probability measures such that, for each «, ¿¡n , and v„ are

probability measures on Rdn. Since we have already established a metric for

each Rd, it is meaningful to ask whether the Prohorov distance between £„

and vn approaches 0 as « -» oo. We will be giving affirmative answers to such

questions for interesting measures £„ induced by P„ and measures v„ that can

be described quite explicitly.
One can ask about the joint probability distribution of, say, the number of

2's and the number of 5's in a random partition of a large integer. One feels

that these two random variables should be more or less unrelated. In fact, as a

consequence of the forthcoming Theorem 2.2, they are asymptotically indepen-
dent:

lim Pn (~^2X2 < v2, -^=5X5 < v5) = (l-e-v>)(l-e-v>).
«-co     Vv6« V6« /

The restriction on part size in Theorem 2.2 is more stringent than that in The-
orem 2.1.

Theorem 2.2. Suppose that k„/nxl4 -+ 0 as « -» oo. For each n, let ¿¡n be the

probability measure on Rkn induced by Pn via the random vector

(n/V6Ü)(lXx,2X2,...,knXkn)

and let n„ denote the product measure on Rkn of kn copies of r¡ defined by (2.1).

Then, the Prohorov distance between t\n and nn approaches 0 as n -* oo.

The restrictions on the growth of k„ in the preceding two theorems indicate

that these results only give information about the small parts of a random parti-

tion. We now turn to the large parts. As defined in §1, Yt equals the rth largest

part. The sequence ( Yt : t = 1,2, ...) is a sequence of random variables

whose probability distribution depends on the underlying probability measure

P„ . It is not difficult to show that, for each y, P„ (Yx > y) —> 1 as « -> oo.

Erdös and Lehner [3] did better by finding an appropriate normalization for

Yx in order that there be a nontrivial limiting probability distribution. They
showed that

(2.2) lim Pn I -^= Yx - log ̂  < v ) = e-e~v
«—oo     I ^6« n }

for all real numbers v . According to the following generalization of their re-
sult, the same normalization works for Yt. Of course, the limiting probability

distribution depends on t.
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Theorem 2.3. As n oo,

H-jC
n   v    ,     V6n       \       fy   exp(-e~v - tv)

To obtain the expectation of the limiting probability distribution in the pre-

ceding theorem we integrate the product of the variable v with the density (that

is, the integrand) from -oo to oo . For the second moment we use the product

of v2 with the density. The variance is obtained from the second moment by

subtracting the square of the expectation. The result is that the expectation and

variance equal

and

Vit)
-Y¡jj = -logt + o(rx'2)     (/-oo),

r(/)r"(/)-[P(í)]2    i     ,,      .
[HOP /

respectively, where T denotes the gamma function. (Notice that the variance

goes to 0 as t -* oo.) By subtracting the expectation from

n V6«
Y, - log ——

V6n

and then dividing by the standard deviation (that is, the square root of the

variance) and also making the corresponding changes in the limiting probability

distribution we could rewrite the conclusion of Theorem 2.3 so that the limiting

probability distribution would have expectation 0 and variance 1. There is no

particular reason to do so for fixed /, but there is a reason to do so if the

fixed / is replaced by /„ . The reason is that a probability distribution with a

small variance like l//„ (for /„ —> oo) is close to the probability distribution

of a constant random variable. In such a situation we would like to spread out

the probability distribution and identify a nontrivial probability distribution

to which it is close. In the next theorem we do that and at the same time

use the fact that when the limiting probability distribution in Theorem 2.3

is normalized to have expectation 0 and variance 1 it is, for large /, close

to the normal distribution, that is, the probability distribution with density
(2n)-xl2exp(-v2/2).

Theorem 2.4. Let tn —► oo as « —> oo sufficiently slowly that t„/nxl4 —► 0 as

n -» oo. Then

M'-f <-y -ts/L'-"2*"
ntnv /ru. v6«"6T

as « —► oo,

Theorems 2.3 and 2.4 give information about individual large parts, but not

about relations among different large parts. The next result gives such a relation

in terms of a limiting Markov chain (the definition of which is not essential for
reading this paper, as is also the case for the associated terms initial probability

distribution and transition density) obtained when the normalization of Theo-

rem 2.3 is used. The probability distribution in (2.2) is the appropriate initial

probability distribution of the Markov chain; its density fx is given by

(2.3) fx(v) = exp(-e-v-v).
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It develops that the appropriate transition density / is given by

/ exp(e-u - e~v - v)   ifv<u,

The density of the limiting probability distribution in the next result is a product

of fx and / - 1 factors of / evaluated at different points.

Theorem 2.5. Let fx and f be defined by (2.3) and (2.4). Then

lim/U-^-log—<«,,  l<J<i]
7¡-oo        ^x/6« & J

/V,       ?V2 i-v, t

/     ■••/    /i(«i)ll/(Wi-i » us)dUf- du2dux.
-oo J—oo        J—oo __2

For understanding the limiting Markov chain the form

t

(2.5) /i («011/(^-1.^).

used for the density in the preceding theorem is good, but, for calculational

purposes, one can simplify the product (2.5) by combining the exponentials to

obtain

exp j -e~v' - Y, vs I     for vx > v2 > ■ ■ ■ > v,.

By integrating each of the variables vx,v2, ... ,vt-X over all possible values,

one obtains Theorem 2.3.

We would like to let /, of the preceding theorem, depend on n . It develops

that we can do that provided that / does not grow too quickly compared to « .

For the same reason that we had a normalization in Theorem 2.4 different from
that in Theorem 2.3, we will use normalizations in Theorem 2.6 different from

that used in Theorem 2.5.

Theorem 2.6. Let /„ —► oo as n —» oo sufficiently slowly that tn/nxl4 —> 0 as

« —» oo and let fx and f be defined by (2.3) and (2.4). Then, as « —» oo, the
Prohorov distance between the probability measure having density

v^!exp (-e-»n/VÛ _ ¿ J*\    for ^ _ ,og ,>...> ^ _ log,n,

and the probability measure induced by P„ via the random vector

7r2s,,      ,-,    V6n   ,
— n-v^log-: 1 <s<tn
6« ns

approaches 0.

An immediate consequence is the following corollary which says that, with

high probability, the /„ largest parts are distinct.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



710 BERT FRISTEDT

Corollary. For t„ as in the preceding theorem,

limP„(Yx>Y2>->Ytn)=l.
71—»OO

It may not be that Yx constitutes the largest contribution to « by a single part

size; because some smaller part may occur with sufficient multiplicity that its

product with its multiplicity is larger than Yx. We will see that this possibility

is typical. Let Zx denote the largest value of kXk as k ranges over the positive

integers. Erdös and Szalay [4, Theorem 1] found an appropriate normalization
for Zx in order that there be a nontrivial limiting probability distribution. They

showed that

(2.6) lim P„ I —==ZX - log-log log log« < v    = e~e '.
71-00 yV6« It J

The following theorem is a generalization.

Theorem 2.7. Let Z, denote the tth largest member of the sequence (kXk :

k = 1, 2, ...). Then

i j=zf-iog^-iogiogiog«<, =/_^exp((7_;-?M)^.
77—»OO

The next theorem treats the largest / values of Zs •

Theorem 2.8. Let Zs be as in the preceding theorem. Let fx and f be defined

by (2.3) and (2.4). For fixed t,

lim Pn [ —==ZS - log-logloglog« <vs,  1 < s < 11
7I-0O     \^V6« it J

/V¡       rVi rV, t

/     •••/     /i(mi)]]/(«s-i, us)duf- du2dux.
-oo J — oo        J — oo 2

Just as Theorem 2.3 is a corollary of Theorem 2.5, so is Theorem 2.7 a

corollary of Theorem 2.8.
In §3 we will see how to use Theorem 2.5 to study the number of-parts larger

than some very large kn . The next theorem here focuses on the number of

parts larger than some moderately large k„ . It gives the asymptotic probability
distribution of the number of parts, appropriately normalized, that are larger

than a k„ that grows slightly faster than nxl2 .

Theorem 2.9. Suppose that kn/nxl2 —> oo and

nkn      log«
-=-► —oo

<x) --4= /    e-"2'2du

V6«

Then

*>k^k - n-l(6n)1'2log(l -g-«fcft/fr)-'

as « —» oo.

jr-i/2(6n)i/*e-*V2>/5ï -    /      Jfff j —t

From the preceding limit theorem one can easily obtain a law of large num-

bers. For it one can replace log(l - e~nk»™")~x by e~nk"l^" .
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Corollary. Let k„ be as in Theorem 2.9. Then, for every e > 0,

£fc>fc„ Xk
Pn

n-iyf%ñe-nk"l^"
> £ 0

as « —► oo.

Theorem 2.2 implies that if k„/nx/4 -+ 0, then, for « large, the prob-

ability distribution of n(Xx + X2 + ■■■ + Xkn)/\/lm is close to that of the
sum of independent exponentially distributed random variables having means

1, 1/2, ... , l/kn . It is straightforward to calculate the convolution of these

exponential distributions (a calculation which also happens to be relevant for

the study of the Yule stochastic process) in order to obtain the probability dis-

tribution of the sum. The result is that

PH(*(Xl+X2 + - + Xkm)<x>)-{l-e-x)k'^0

uniformly in x as « -> oo . By replacing x by x + log k„ , we conclude that

^(^n(Xi+X2 + ... + XkJ-logkn<x)-{l-e^-f^O.

Thus, for fixed k„ , (1 - e~x/k„)kn is the limiting distribution function of the

number of parts no larger than kn , normalized by multiplication by n/\/6ñ

and subtraction of logk„ .
If, in addition to our assumption that kn/nxl4 -» 0, we also assume that

kn —> oo, we conclude that

Pn (--j=(*l +Xl + • • • + *kn) - logkn < x) 0

uniformly in  x.    Thus, the limiting distribution function in this case is

e~e '. The next theorem says that this conclusion is valid for somewhat larger

Kn •

Theorem 2.10. Suppose that k„/nxl2 —> 0 and k„ —» oo as n —» oo. Then

Pn (-/=(*! +X2 + --- + Xkn)-lOgk„<X

as « ->• oo.

From this limit theorem we get the following law of large numbers.

Corollary. Let k„ be as Theorem 2.10. Then, for every e > 0,

Y<k<k„ Xk

< (6n)xß(logkn)/7t
-1 > e 0

as « oo.

As mentioned earlier, the special case of Theorem 2.3 obtained by setting

/ = 1 was treated by Erdös and Lehner [3], but in their paper they actually

state the dual result by describing the probability distribution of the number
of parts in a random partition of a large integer. Their result (alternatively
Theorem 2.3) tells us that the number of parts is, with high probability, close to

\/6«log«/27t. In case k„ = «T/2 for some t ê (0, 1), the preceding corollary
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says that, with high probability, ¿~^k<k Xk is cl°se to r\/6«log«/27r. Hence,

we see that the proportion of the total number of parts that are smaller than

nTl2 is approximately x.

Neither Theorem 2.9 nor Theorem 2.10 treats the number of parts larger or

smaller than a fixed multiple of «1/2. The methods of this paper do not work

in a straightforward manner for this situation.

The theorems described above all have a similar form. For each theorem there

is, for each « , a function Wn from A, the set of all partitions, to some Rdn.

Then Pn , which we regard as a probability measure on A, induces, via W„ , a

probability measure t\n on Rdn ; £„ is the probability distribution of the random

vector Wn . Also, a probability measure u„ on Rdn is explicitly described. The

conclusion of each theorem is the assertion that the Prohorov distance between

¿i„ and v„ goes to 0 as « —> oo. The scheme for obtaining such conclusions

will be described in §4. The specific details for particular theorems are given in

later sections. But first we examine, in §3, some consequences of the theorems

in this section.

3. Consequences of some theorems

Since exp(-e~x) > 1 - e~x , we conclude from Theorem 2.10 that

lim Pn f-log^< -^=y"^-logA:„ <^| > 1 -2e~A
6nkTx

for A > log2, whenever kn —* oo sufficiently slowly that k„/nxl2 -* 0. This

assertion is very similar to that obtained by Szalay and Turan in [6, Theorem

III]. Here are the differences. They do not use a limit, but rather assert the

truth of an inequality for all sufficiently large « . They have A(n) in place of

A and let, with some restriction, A(n) —> oo ; whereas our argument depends on
A being fixed. They require that kn approach oo no faster than 13 log « and

have 1 - 8e~A , rather than 1 - 2e~A , on the right-hand side of their inequality.

Since the probability distribution of the largest part equals that of the total

number of parts, Theorem 2.3 tells us that the distribution function exp(-e~x),

obtained in Theorem 2.10 as the limiting distribution function of the appropri-

ately normalized number of parts no larger than k„ , also arises as the limiting

distribution function of the total number of parts appropriately normalized.

Moreover, the two normalizations differ in an additive manner only. Thus, we

conclude that the limiting variance of the total number of parts appropriately

normalized is essentially due to the variance of the number of small parts. (7t2/6

equals the variance of the probability distribution whose distribution function is

exp(-e~x), and Euler's constant (approximately 0.577) equals the expectation.)

From the corollary of Theorem 2.10 and the fact that the total number of

parts can be approximated by (6n)x/2(logn)/(2n) with probability approaching

1, we conclude that

¿~Lk>n"*Xk
Pn >e   -*0

(6«)'/2(log«)/27r

as « —► oo. From Theorem 2.9 we get the same conclusion if e is replaced

by e„ with e„ —> 0 sufficiently slowly that e„ log « —> oo. But this improved

conclusion is not as sharp as that obtained at the beginning of §6 of [7] by
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Szalay and Turan. The preceding paragraph describes why Theorem 2.9 cannot

be expected to give a sharp result in this situation.

From Theorem 2.5 we conclude, for each v , that, as « —► oo,

ü. (y, > ^
V6«

log-h v >.^tÇLe-,

with the convention that Y0 = oo. That is, the number of parts greater than

\/6« i,    \/6«      \
-   log-+ v

has a limiting Poisson distribution with expectation e~v .

Letting

V6n (.     V6ñ      \
k» = — [l0,i^r+v)>

we see that nkn/V6ñ - log«/2 -» constant as n -» oo . Thus the Poisson limit

result mentioned in the preceding paragraph complements Theorem 2.9 where

a limiting normal distribution is obtained in case nkn/V6ñ- log«/2 — -co.

In Theorems I and II of [6], Szalay and Turan treat the issues similar to

those addressed by Theorems 2.9 and 2.10 of this paper. Here is a comparison

of their conclusions for a specific example to which Theorem 2.9 also applies.

They prove that, with probability approaching one as fast as 1 - c/«7/4 for

some constant c, the number of parts greater than V6n[logn - 61oglog«]/27r.
equals

(3.1) — log3« + 0(log2«).
n

In this paper I have not obtained an estimate on the speed of convergence

of probabilities. On the other hand, Theorem 2.9 gives a sharper conclu-

sion than the bound in (3.1). It identifies the probability distribution as ap-

proximately normal with expectation (\f6/7i)log3n and standard deviation

[(V6/n)log3 «I1/2.
The papers [7, 8] of Szalay and Turan also apply for the number of parts

greater than a multiple of «'/2, whereas none of the theorems in §2 do. On the

other hand, the hypotheses in Theorems 2.9 and 2.10 are less stringent at the
extremes than are theirs.

4. Unrestricted partitions of a random integer

Let q £ (0, 1 ). For any partition A let

oo

(4.1) Q9W = qW]\(l-<lk),
k=l

where, as mentioned earlier, |A| denotes the nonnegative integer of which A

is a partition. If we sum Qq(X) over all A for which \X\ = « we obtain

p(n)qn TTf=l(l - qk). Then, if we sum over « we obtain 1, since, as men-

tioned at (1.1), riO-1^)-1 is the generating function of the sequence (p(n):
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« = 0,1,...). Thus, we can view Qq as the probability measure for an ex-

periment in which a partition is chosen at random and in which the integer

N = Ylk=i kXk being partitioned is itself random. It will develop that, for the
study of Pn there is a particularly useful Qq—the one given by q = qn, where

(4.2) q„ = exp(-n / s/6n).

Fix a sequence ( W„ : « = 1,2,...) of random vectors as described in the

last paragraph of the preceding section. The probability measure Qqn induces,

via W„ , a probability measure Ç„ on R'1". Our method of achieving the goal,

mentioned at the end of §2, of proving that the Prohorov distance between ¿¡n

and vn approaches 0 will be to prove that both the Prohorov distance between

Ct, and u„ and the Prohorov distance between t¡n and Ct¡ approach 0 as « —>

oo.

One reason this program can be successful is that the probability measures

Qq are easily understood. When Qq is the underlying probability measure, the

numbers of parts of various sizes are independent random variables. Here is

the precise statement.

Proposition 4.1. When governed by Qq, the random variables Xk are indepen-

dent and the probability distribution of Xk is geometric with mean qk/(l-qk).

That is, for any sequence of nonnegative integers (xk: k = 1, 2, ...),

OO

(4.3) Qq(Xk = xkfork=l,2,...) = Yl(l- qk)(qk)x*.
k=l

Proof. Insertion of A = Y¿kxk into (4.1) gives the result.   D

Remarks. The infinite product in the preceding proposition is 0 if and only if

infinitely many of the xk are positive. Probability distributions for a random
vector composed of a finite number of the Xk can be obtained by summing
(4.3). If, for instance, one sums over all values of x2, x4, x¡, x6, x-¡, ... one

obtains the probability distribution of the random vector (Xx, Xf¡

Qq(Xx = x, and X3 = x3) = (1 - q)qx'(l - q3)q3x>.

In subsequent sections, Proposition 4.1 will be used to prove that the Pro-

horov distance between Ç„ and v„ approaches 0 for an appropriate choice of

the sequence (vn : « = 1, 2,...), a choice depending on which sequence ( W„ :

« = 1,2,...) of random variables is being studied. Now we turn to the second

issue raised earlier in this section. Roughly speaking, we ask: Why should there

be a close connection between the probability measures Pn and Qqn ? More

precisely, we look for a condition under which the Prohorov distance between

£„ and Cn approaches 0. Such a condition will be given in Lemma 4.6. Skip-

ping from here to the statement of that lemma and then to the last paragraph

of this section is a reasonable plan for a first reading of this paper.
When governed by Qq , the random variable N, which equals the number

being partitioned, is not a constant. Its probability distribution can be obtained
either from (4.1) by summing over all partitions A for which \X\ equals an

arbitrary constant, say «, or from (4.3) by summing over all sequences (xk :

k = 1, 2, ...) for which ^kxn = «

(4.4) Qq(N = n)=p(n)qnX[(l-qk).
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For any two partitions Xx and A2 for which N(XX) = « = N(X2), we have

pn(Xx) = P„(X2) and Qq(Xx) = Qq(X2). This fact and the equality P„(N =
n) = 1 imply that for each n and q, the probability measure P„ is equal to

the conditional probability measure obtained by conditioning Qq by the event

{A : N(X) = «} . That is, for any set A of partitions

Thus, the Prohorov distance between ¿¡„ and Cti is bounded above by

<4Sup{e,.w-'(i») - m^w:»w..)) :, Bordi, s „A

This quantity is well defined even if d„ = oo and Wn is R°°-valued.

The next result encompasses this generalization.

Lemma 4.2. For each n, let q„ be defined by (4.2), let d„ be a positive integer

or oo, let W„ be an Rdn -valued function on the space A of all partitions, and

let Bn be a Borel subset of Rdn. Suppose that, as « —> oo, ß?„(W„-1 (•£«)) ~* 1

and

(¿M Qcn(N = n\Wn=Wn)

[     ' Q«ÀN = n)

uniformly for wn £ Bn.  Then the sequence defined at (4.5) converges to 0 as

n —► oo.

Proof. For any Borel subset B of Rd" the quantity in (4.5) is bounded above
by   '

Qq„(W-x(B-B„))

<C7,(R<i"-ß7,)+ X! w™»)

w„€BnB„

Qq„(N = n\Wn = wn)
1

which does not depend on B and approaches 0 as « —> oo .   D

With a view to applying the preceding lemma we give attention to the de-

nominator in (4.6). As a function of r, the generating function of TV, when

governed by Qq , equals

OO
l-q k

71=0 k=l 71=0 k=l W     '

where we have both used the formula (4.4) for Qq(N = n) and replaced q by

qr in the formula (1.1) for the generating function of the sequence (p(n): n =

0, 1, ... ). The expected value of ./V, when governed by Qq , can be obtained

either as the value of the derivative of the generating function at r = 1 or as the

sum over k of the expectations of the random variables kXk . The variance
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of N is the sum of the variances of the random variables kXk ; alternatively,

we can evaluate the second derivative at 1 and then add the expected value and

subtract the square of the expected value. Here is a summary of the results.

Proposition 4.3. Governed by Qq, the random variable N has generating func-

tion given by the function of r, n¡t=i(l _ Qk)li} ~ {Qr)k) • expectation equal to

EfcLi kqk/(l - qk), and variance equal to ££°=1 k2qk/[l - qk]2.

Corollary 4.4. Let qn be defined by (4.2). As n ^ oo, the variance of N, when

governed by Qqn, is asymptotic to (24x/2/n)n:s/2 and the difference between «

and the expected value of N equals o(«3/4).

Proof. We first consider general Qq and let q Î 1. Then, as a last step, we

convert to a result for n —> oo by using (4.2). The variance given in Proposition

4.3 is an approximating sum for the integral

/•oo     u2e~u

log-3(l/«)yo    {x_e-uydu,

which, by [5, Formula 3.423-3], equals 7t2/[31og3(l/i7)]. A similar argument
for the expected value introduces an error of order lflo%(l/q) when the sum

is replaced by the integral

to   (i/i)/o   T^mdu>

which, by [5, Formula 3.411-7], equals 7t2/[61og2(l/r?)]. An appeal to (4.2)
completes the proof.   D

As the reader has probably guessed, a portion of the preceding proof was

constructed before the choice for q„ , given at (4.2), was made. The choice was

then made so that the expected value of TV, when governed by QQn, would be

asymptotic to « as « —» oo .
Let pn and an , respectively, denote the expectation and standard deviation

of the random variable N when governed by Qqn. In the proof of the following

proposition we will show that the probability distribution of (N'— p„)/'o„ , when
governed by Qqn, approaches the normal distribution as « —» oo , that is, that,

for each real v ,

as B-too. We want more—an asymptotic formula for

Qqn(N = n) = Qq„((N - pn)/o„ = (n- pn)/on).

Notice that, as a consequence of Corollary 4.4, (« - pn)/on -> 0 ; so, we might

reasonably hope that an asymptotic formula for Qq„(N = n) can be obtained

by multiplying the value 1/\Í2tl of the normal density at 0 by l/a„, the dis-
tance between possible values of (N - p„)/on . In view of Corollary 4.4, this

multiplication would give (96«3)-1'4 . Here is the desired result.

Lemma 4.5. Let q„ be given by (4.2). Then, as « -» oo,
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Proof. The proof has two parts. In the first we use characteristic functions

(that is, Fourier-Stieltjes transforms of probability distributions) to prove (4.7).
Then, in the second part we verify conditions that enable us to go, as described
in the paragraph preceding the statement of the lemma, from the global result

(4.7) to a local result. This local result at 0 is our goal. Let <p„ denote the

characteristic function of the random variable (N - p„)/a„ , when governed by

ß«„-
Part 1. The characteristic function of the normal distribution is

/: 2/T

Thus, we want to show that log^ö) converges pointwise to -d2/2 as « —> oo .

From proposition 4.3 and a change of variables we see that

m       l0g^_^_¿l08(1 + *l^V
" k=l ^ l ~ "n /

We approximate log(l + z) by z - z2/2. The error we make in doing so is

bounded by a constant multiple of

|gi3^ tfw _.    lop    r ^3""3 .¿u_0m
an Ùi^-tW     ^„log4(l/qn)Jo^)3     o^nlog4(l/qn)Jo    (l-e-»)i

In each of the terms z and -z2/2 the factor 1 - exp(i6k/o„) appears to
either the first or second power. We also plan to use a power series for it.

An argument similar to the one just made for the logarithm shows that only
the terms involving 6 and 62 need be considered. Thus, in lieu of (4.8) we

consider

(49) 'fr*   ,  V      1ni6k V      <&** V      ̂ ^2
{   '   ' °* ¿Í (1 - Q£)°n       ¿J (1 - Qkn)2a2      ¿J (1 - ^)22rJ2 '

By Proposition 4.3 the sum of the first two terms equals 0. The sum of the last
two terms is asymptotic to

j2 / r°°  o-u,,i r°°    a-2u,,202 /   /-oo   e-uu2 roo     £-2uu2

-=-       /        ■;-du+   I        —-^ du
%\l/Qn)\h    l-e~« Jo    (1-e-")22ff2logJ(

3Ö2   r°°    e~"u2
/'00_i

Jo    (1
du,

2n2 J0    (1-e-")2

which, by [5, Formula 3.423-3], equals -62/2.
Part 2. Chaganty and Sethuraman [2, Theorem 4.2] have shown that we can

obtain the desired local limit assertion from the convergence in distribution

established in Part 1 provided that we establish the existence of a function p

and an integrable function q>* such that /?(«)—► oo,

(4.10) sup      \<pn(6)\ = o(l/o„),
p(n)<\6\<Jio„

and

(4.11) sup\<pn(d)\I[\e\<p(n)]<<p*(9),
71
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where / denotes an indicator function. We take p(n) = 7io„/3 and plan to

choose q>* as the proof develops. A straightforward calculation based on Propo-

sition 4.3 gives

(4.12)       fc.ia.wi —ÍÍ> (» + ̂ "(;.y) ■

Since all terms in (4.12) have the same sign we may throw away any subset of

them as we look for upper bounds. Also, we may replace the denominators

(l-^)2 byl.
In order to prove (4.11) we consider 6 satisfying |0| < p(n) and restrict k

in (4.12) to those k for which rr2''3/2 < k < a„ ■ By using the first nonzero

terms in the power series for 1 -cos and log we conclude that there are absolute

constants b and c such that

,     K2/3J

log|?>„(0)|<--     Y    log(l+bof2/3d2)<-c92;

fc=rô/3/2i

so we take (p*(6) = exp(-c02) to satisfy (4.11).

To prove (4.10) we restrict k in (4.12) to k < o^3, and, further, to those

k's that make the cosine negative so that we may replace it by 0 when obtaining

an upper bound for (4.12). For |0| > p(n), the number of such /c's is greater

than (l/3)rrf2,/3 so we get, using the relationships among n, qn, and an ,

iog\(pn(6)\ < -i<72/3log(l +2e-(*2/3>'/3)

for sufficiently large « . The inequality (4.10) follows.   D

The preceding lemma gives an asymptotic formula for the denominator in

Lemma 4.2. In the proof of the following lemma we obtain, under an appropri-

ate condition, the same asymptotic formula for the numerator in Lemma 4.2.

This forthcoming lemma is the tool we will use in subsequent sections to prove

that the Prohorov distance between £„ and Ç„ approaches 0 as « —> oo .

Lemma 4.6. For each n let d„ be a positive integer, W„ be a function from the
space A of all partitions into Rdn, and Kn be a set of positive integers having

the property that the values of the functions Xk, k £ K„, determine the value of

Wn . Let tin and C„ denote the probability distributions of W„ when governed

by P„ and Qqn, respectively. Suppose that

(4.13) EÄ = ̂ 2)
fee*/      q">

as « -» oo. Then the Prohorov distance between Ç„ and („ converges to 0 as

n —> oo.

Proof. Suppose that (4.13) holds. The goal is to show that the sequence de-

fined at (4.5) converges to 0; for then it will follow that the Prohorov distance

between ¿;„ and C« approaches 0, since (4.5) is an upper bound for this Pro-

horov distance. It suffices to prove (4.5) in the particular case that Wn = (Xk :

k£Kn).
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The plan is to apply Lemma 4.2 to W„ = (Xk : k £ Kn). Lemma 4.5 gives an

asymptotic formula for the denominator of (4.6) (in Lemma 4.2). It remains for

us to obtain the same asymptotic relation for the numerator of (4.6), uniformly

for w„ belonging to appropriate Borel sets B„ for which Qq„(Wfx(B„)) -* 1.

By (4.13) there exists a sequence (bn : «=1,2,...) such that

(4.14)

and bn = o(«3/4). Let

kex„

k2Qkn

(l-dkn)2
= 0(b2n),

Bn = Wn (xkt„ :k£Kn)
kqk

EÍ
kexn

dkn
Ykx,

ketcn

k,n <bn

Using the fact that sums of expectations equal expectations of sums, as de-

scribed in the discussion preceding Proposition 4.3, we see that the expectation

of Ylk£K„ kXk , when governed by Qqn, equals

kinE
k€K„

1 i!

Therefore, by Chebyshev's Inequality, the probability, under Qqn, that Wn be-

longs to the complement of B„ is bounded above by the variance of Y,keK kXk

divided by the square of bn . The argument leading to Proposition 4.3 shows

that the left side of (4.13) is the variance of ^k€K kXk , when governed by

Ô?„ ■ Thus,
'2Qkn

Qqn(Wfx(R^d^-Bn))<b-2Y
k£K„ [1-tf]*12

which, by (4.14), approaches 0 as « -> oo .
Consider an arbitrary sequence (wn : n = 1,2,...) where wn = (xkt„:

k € K„) 6 B„ for each n . We can finish the proof by showing that (4.6) holds
for this sequence. Because the random variables Xk are independent, we can

remove the conditioning in the numerator in (4.6) by making a simple algebraic

adjustment:

(4.15)

Qqn(N = n\W„ = (xk,n:k£Kn)) = Qq„ = «-   E  kxk,n
k€K„

To find an asymptotic formula for the right side of (4.15) we will mimic Corol-

lary 4.4 and the proof of Lemma 4.5. The left side of (4.13) is the difference
between the variance of ¿^k kXk and the variance of J2k <t k„ kXk ■ Hence,

by (4.13) and Corollary 4.4, the variances of these two random variables are

asymptotic to each other. The difference between « - YlkeK kxk,n and the

mean of J^k <t k kXk equals

(4.16) El
k=l

kqk

~Qkn
+ E

\k€K„

kqk
EkXk-»

kEK„
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As in Corollary 4.4 we are interested in whether this sequence is o(ni/4). By

Corollary 4.4 the sequence of first terms has this property. In view of the

definition of Bn and the fact that b„ = o(«3/4), the sequence of second terms

also has this property. Thus, if we can mimic the proof of Lemma 4.5, then we

will be able to conclude that (4.6) holds, as desired.
When we try to mimic the proof of Lemma 4.5 we obtain a relation similar

to that at (4.8), with some terms missing from the sum in (4.8) and q>n and pn

having modified meanings. When we get to a modified (4.9) the first two terms

cancel each other as before and (4.13) shows that the missing summands in the

last two summations do not contribute to a change in the asymptotic formulas.

In Part 2 of the proof of Lemma 4.5, bounds, valid for certain k < al13, were

obtained, and then these bounds were multiplied by the number of terms, a

multiple of rj^3. For the current setting the number of such terms is somewhat

smaller, but, as a consequence of (4.13), still a multiple of ol1 .   D

In the following four sections we prove the theorems stated in §2. Proposition

4.1 will be used to obtain the appropriate result for Qqn and then Lemma 4.6

will be used to convert that result into the desired result for P„ .

5. The small parts. Proofs of 2.1 and 2.2

Only Theorem 2.2 will be proved here and the slightly easier argument for

Theorem 2.1 will be left for the reader.
Consider a family (vk<„: 1 < k < k„, 1 < n) of nonnegative numbers

satisfying the additional condition that vk<„ is an integral multiple of kn/\f6n

for each k and « . From Proposition 4.1 we see that

Qq„ (-^(l^i, ... ,k„Xkn) = (vx,n, ... ,vkat„)J

-(ft^-)(ft(l-rf))-

Using the definition (4.2) of q„ , we bound the second factor on the right above
by

f[(klog(l/q„)) = kn\(^=y .

It is bounded below by

kn

^\[(klog(l/qn))-(klog(l/qn))2l2}
k=l

= \J\(klog(l/qn))\ n\[l-klog(l/qn)/2}\

k„

wfás)"'(,-,*i/tíiH~wG^
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Therefore,

O«,

(5.1)

í-7=(l*i, ••• ,KXkn) = (vx>n,... >vkn>n)\

uniformly in ((vx >n , ... , vkn ;„) : « = 1,2,...). Let Ç„ denote the probability

distribution of (n/y/6n)(lXx, 2X2, ... , knXkf) when governed by QQn. We
omit the straightforward details, based on the preceding uniform asymptotic

relation, of showing that the Prohorov distance between £„ and r\n approaches

0 as « -> oo .

Let £,n denote the probability distribution of n(lXx, ... , knXkf)/\fffn~, when
governed by Pn . We want to show that the Prohorov distance between £„ and

n„ approaches 0. We have already shown that the Prohorov distance between

Ct¡ and r\n converges to 0. We will finish the proof by using Lemma 4.6 to

conclude that the Prohorov distance between £„ and Ç„ approaches 0. Let

K„ = {1,2, ... ,k„} . Lemma 4.6 applies since the left side of (4.13) is asymp-

totic tO /Vl0g2(l/tf7i) = o(«5/4).      ■

The local limit relation (5.1) is actually stronger than the assertion that the

Prohorov distance between Ç„ and n„ converges to 0. It is natural to ask

whether there is such an improvement of the assertion that the Prohorov dis-

tance between Ç„ and r\n converges to 0. There is such an improvement when

certain, not very stringent, assumptions are made on (vk n '■   1 < k < kn,

1 < «). Such improvements can be made using the methods of this paper. The

major change involves adding a hypothesis to Lemma 4.6 so that conclusions

about ratios of probabilities can be drawn. The reader who wants to see the

nature of such a local limit type improvement of a convergence in Prohorov

distance (that is, convergence in distribution) type result can consult the local

limit version of (2.2) by Auluck, Chowla, and Gupta [1].

6. The large parts. Proofs of 2.3, 2.4, 2.5, and 2.6

Since Theorem 2.3 follows from Theorem 2.5 by a straightforward calcula-

tion, we only consider Theorems 2.4-2.6. We begin with a proof of Theorem

2.5, replacing / by /„ in anticipation of an eventual modification to handle
Theorem 2.6.

Let u„ he the probability measure on R'n having the density

(6.1) /, (vl)f[f(v,-l,vs),
s=2

where

(6.2) fx(v) = exp(-e~v-v)

as in (2.3) and

( exp(e~u - e~v - v)   ifv<u,

(6J) f{U>V) = JO ifv>u
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as in (2.4). Let £„ and Ç„ denote the probability distributions of the random

vector

(Yx,Y2,...,Ytn)-
. 6«

log- ;i, i,..., i;

when governed by P„ and Qqn, respectively. As indicated earlier, our plan

is to use Proposition 4.1 to prove that the Prohorov distance between £„ and

vn approaches 0 and to use Lemma 4.6 to prove that the Prohorov distance

between £„ and £„ approaches 0. We begin by identifying £„ .

Lemma 6.1. Let vx,„ > v2t„ > ••• > vtn,n and suppose that the sum of each

vSt„ and log((6n)x/2/n) is a nonnegative integral multiple of n/(6n)x/2. Then,

the ^„-measure of the point (v\t„, v2t „,..., vtHiH) is given by

v /6w,
k=l+(V6n/n)(v,„ ,„+log{V6n/n))

Proof. The proof consists of two parts. The first is to identify as a Markov chain

the sequence (Yx, Y2,...) when governed by Qq . The second is to insert qn

for q , make the appropriate change of variables to accommodate ((6n)xl2/n)

and its logarithm, and then simplify.

Part 1. We define Xq = oo in order to avoid the necessity for special treat-

ment of trivial cases. Let yi bea nonnegative integer. The event that Yx=yx
is the event that Xyi > 0 an Xk = 0 for k > yx . By Proposition 4.1 the
Qq -probability of this event equals

oo

(6.5) qy>   ¡I   (l-qk).

k=l+y¡

Next, we turn to the conditional probability, under Qq , that Ys = ys given

the nonnegative integral values yx > y2 > ■ ■ ■ > ys-X of Yx, Y2, ... , Ys_x . Of

course, this conditional probability equals 0 unless ys is a nonnegative integer

satisfying ys <ys-\.

If y s = y s-1, then this conditional probability is the conditional probability

that Xys_, > x given that Xy¡_[ > x for some particular x > 0. We can

calculate this conditional probability explicitly since (cf. Proposition 4.1) Xy¡i

is geometrically distributed. Upon replacing y5-i by ys, the result is

jyAx+i)

qy>qy,x

Consider the other case—ys < ys-X . In this case we are also given that

Xys_x > x for some x > 0. Now, conditioned by this information, we want the

ß^-probability that Xyt_, = x , Xys > 0, and Xk = 0 for k strictly between ys
and ys- x. By Proposition 4.1 this conditional probability equals

ys-\

(6.6) qy>   J]   (\-qk).
/c=l+ys

With the convention that an empty product equals 1, this expression is also the

correct formula, obtained above, in case ys = ys-X . In either case it does not

depend on yu for u < s - 1 .  Therefore, the sequence (Yx, Y2, ...), when
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governed by Qq , is a Markov chain. Its initial probability distribution is given

by (6.5) and its transition probabilities are given by (6.6).

Multiplication of the appropriate conditional probabilities gives
oo

(6.7) Qq(Ys=ys,   l<s<t) = «?£,.,"   J-J (1-/).
k=l+y,

Part 2. We replace q by qn = exp(-n/(6n)x/2), t by /„ , and ys by

((6«)1/2/7T)(^,n+l0g((6«)1/2/7T)).

The result is formula (6.4).   D

For vXi„ > v2t„>..., we rewrite (6.1) in order to compare it to (6.4):

(6.8) e-^tiv'--exp(-e-v"--).

The leading exponential is common to both (6.4) and (6.8). The power of

(n/(6n)xl2) in (6.4) is to be expected in a situation where one is hoping to

prove that a discrete probability distribution is close to one with a density; it

is the product over s of distances between possible values of vSi„ in (6.4).

Were we able to prove that the infinite product in (6.4) is uniformly asymptotic

to the double exponential in (6.8), it would follow that the Prohorov distance

between Ç„ and u„ converges to 0 as « —► oo . We will not be able to do quite

this much, but we now proceed to show this uniform asymptotic relation for

vt„,n > -g(n), where g is any function for which

(6.9) g(n) - -|- -» -co

as n —> oo. That is, we will show that

(6.10) I] (l-qkn)~e-e~v

k>(y/6ñ/n){v+log{\/6ñ/K))

uniformly for v > -g(n), provided that (6.9) holds.
To prove (6.10) we multiply by exp(e~v) and take logarithms.   Our task

becomes that of showing

(6.11) E log(l-qkn) + e-»^0

k>{V6ñ/n){v+los(V6ñ/n))

uniformly for v > -g(n). We use the power series for the logarithms. A

straightforward estimation using (6.9) shows that the total contribution from

all terms after the first in the series for the various logarithms goes to 0 uni-

formly. The first terms themselves in the various power series for the logarithms

constitute a geometric series the sum of which is between

_e_v(nlVTn)e-^   ^    _ g_,    n/V6n
I _ g-n/V6n 1 _ g—n/V6n

each of whose sums with e~v goes to 0 uniformly for v > —g(n), again because

of (6.9).
To complete the proof that the Prohorov distance between £„ and vn ap-

proaches 0, we only need show that

(6.12) vn({(ux, u2, ... , u,n) : u,„ < -g(n)}) -► 0
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as n -»oo. When /„ is fixed, as it is in Theorem 2.5, we can satisfy (6.12)

(and simultaneously (6.9)) by taking g(n) —► oo sufficiently slowly, say, g(n) =

(log«)/8.
Before completing the proof of Theorem 2.5 by showing that the Prohorov

distance between £„ and („ approaches 0, let us turn our attention to /„ de-

pending on « and Theorem 2.6. To show that the Prohorov distance between

Cn and v„ goes to 0 for the setting of Theorem 2.6 we must concern ourselves

with two things: (i) showing that the linear changes of variable involved in going

from Theorem 2.5 to Theorem 2.6 do not create any problems for the argument

given above and (ii) showing that g may be chosen to satisfy both (6.9) and

(6.12).
For the first of these tasks we note that for the setting of Theorem 2.5 we

showed an infinite product to be asymptotic to a double exponential, a relation

that is preserved under linear changes of variables in both expressions. Also, for

the setting of Theorem 2.5 we went from a discrete situation to a continuous

situation, moving no more than n/VoH in each coordinate direction. For the

setting of Theorem 2.6, these movements are different. They are of order y/s/n

in the direction of the coordinate axis corresponding to Ys. The sum over 5

from 1 to /„ is of order /„' /« which approaches 0 since a hypothesis of

Theorem 2.6 is that tn/nx/4 —► 0.

In order to bring ourselves to the same place with respect to Theorem 2.6

as we are with respect to Theorem 2.5 we must show that g can be chosen to

satisfy both (6.9) and (6.12). With no loss of generality we may assume that

/„ —» oo and choose g(n) = log(2/„). That (6.9) holds is a consequence of the

hypothesis tn/nxl4 -» 0. That (6.12) holds is a consequence of the calculation:

vn{(ux, u2, ... , u,n) : utn < - log(2/„)}

1 ,-log(2f„)

=-— / exp(-iT" - t„u) du
\ln       U- J-oc

= ,     l „,  fVv«-1 dr < ,    2 „,  fVv"-1 (l - tjL^l) dr
(tn-iyJit, -(tn-l)\J2tn v r    )

which, with the use of Stirling's Formula, is seen to approach 0.

To finish the proofs of Theorems 2.5 and 2.6 we must show, for each of the

two settings, that the Prohorov distance between £„ and Ít¡ approaches 0. The

preceding paragraph shows that when studying the limiting behavior of the /„

largest parts governed by Qqn we need only consider parts belonging to the set

>^ilog^-log(2/„)ÏJ.:„ = U:

A straightforward calculation using tn/nx/4 -> 0 shows that (4.13) is satisfied

and, hence, that Lemma 4.6 applies. Thus, when studying the limiting behavior

of the /„ largest parts governed by Pn we need only consider parts belonging

to K„ , and the limiting behavior is the same as when QQn is the governing

measure.      ■
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To obtain Theorem 2.4 from Theorem 2.6 we integrate the variables wx, w2,

..., wtn-X over all possible values to conclude that the Prohorov distance be-

tween the probability distribution of

n2tnv       /—,    V6n
irsF* - ̂ los

ntn

and the probability distribution having density

(6.13) t^lle-te-^-vSt
Y(t)

approaches 0, where we have replaced /„ by / in the formula for the density, a

function of w . It remains for us to show that, as / -» oo, the distribution with

density (6.13) converges to the normal distribution. Converting to characteristic

functions we see that our problem is to prove that the Fourier transform of

(6.13), expressed in terms of a variable 6, converges to exp(-62/2). The

Fourier transform of (6.13) is easily calculated by substituting a new variable

for / exp(-w/fft) ■ The result is

ieVir(t - ieVt)
T(t)      ■

Stirling's asymptotic formula for the gamma function gives -d2/2 as the limit

of the logarithm of this transform.     ■

7. Large values of kXk . Proofs of 2.7 and 2.8

We focus on Theorem 2.8 since Theorem 2.7 is an immediate consequence

of it. It suffices to prove that

lim P [ ws < —¡=ZS - log-logloglog« < vs,  1 < s < 11
71-00    y ^/é« n )

rv\    rV2 rv, t

= 1     /    •••/   fi(u\)[[f(us-x, us)dur-- du2dux,
Jw¡   Jwi Jw, s=2

whenever vx > wx > v2 > w2 > ■ ■ ■ > v, > -oo = w,. The integration can be

performed [by using the formulas for fx and / given at (6.2) and (6.3)]: the

result is
i-i

exp(-e-v')Y[(e-w* - e~v*).

5=1

Thus, by proving each of the following statements we will have completed the

proof of Theorem 2.8:

(7.1)        f[Qqn ( -^kXk-log^-- logloglog« <v) ->exp(-0;
ti       \^ n )

(7.2)        E<2í„ [ux-^fc^-log—-- logloglog« <v
ti       \        ^" n J
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Qqn ( ws < —==ZS - log-logloglog « < Vs ,   1 < S < t ]
y       v6« t J

(7.3) ~ fl Qin ( fJfffkXk - log ̂ - logloglog« < v, )

x IT E O«»    Wi < -7z=kXk - log —^ - logloglog « < Î7S
5=1 A:=l

P„ ( ws < —==ZS - log-logloglog« <vs,  1 < s < t ]
V V6« 7T /

(7-4) V ^ 7

~ ß<?„     ^5 < -7==25 - log —-logloglog « < Vs ,    1 < S < t ]  .
y       v6« 7t y

The proofs of (7.1) and (7.2) will rely on the following lemma.

Lemma 7.1. As « —► oo,

(7-5) ¿Ó«. í^fc**-log^-logloglog«>üj->e-V

Proo/. Recall that \x] denotes the least integer that is no smaller than x. Also,

the notations

(7.6) an --

(7.7) bn = log-+ logloglog«,
n

c„ = b„ + v

will be used. By (4.2) and Proposition 4.1 the left side of (7.5) equals

oo {ß„/a„)-l oo

(7.8) y^ e-ka„[c„/ka„~\ _      V^      e~ka„\c„/ka„'\ _j_     V^    e-ka„\c„/ka„'\

k=l k=l k=ß„la„

where ß„ is chosen so that it is an integral multiple of an and that it goes to

oo as « —> oo slowly enough so that /?„/loglog« -* 0. In the first summation

on the right side of (7.8), there are less than (ß„/an) terms each of which is

bounded by exp(-c„). This summation must approach 0 as « -» oo since

(ßn/an)exp(-c„)-+0.

Breaking the last summation in (7.8) according to the value of m = \c„/kan],

we get

\cn/ßn\ rc/(77i-l)a„l-l
V^ V^ e-kma„

(1 91 m=1       k=\cn/ma„']

\cnl ßnl    -ma„\cnlman}
=    Y"*    -_M - (>>na„(\c„/ma„]-¡c„/(m-l)a„~l)\

Z^        1 -e-ma„    \l >'
771=1
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The exponent in the second exponential is bounded above by

(7.10) ma„ + mc„(--).
\m     m-l )

The first term in (7.10) goes to 0 uniformly for m < \cn/ßn] since c„a„ —> 0.

That the second term in (7.10) goes uniformly to -oo follows from the fact

that ßn -> oo. So, in evaluating the limit of (7.9) we may replace the second

factor by 1. Also, since c„an —> 0, we may replace the denominator in the first

factor by man . The numerator in the first factor in (7.9) is bounded above by

exp(-c„) and below by

exp(-c„)exp(-ma„) > exp(-c„)exp(-c„a„) ~ exp(-c„).

Therefore, the limit of (7.9) as « —► oo is the same as the limit of

e-* lc^c] i e-b„
^T    E    ñ = e   "-T—(logon +0(l0g log log «)),
a„    m=i   m an

the limit of which is e~v .   D

Notice that the summands in (7.8), being bounded above by exp(-c„) ap-

proach 0 as « —► oo, uniformly in k. Let us label this fact for future reference:

_7T_. „      .     V6«
I    r?—

"-*00 KJfc<oo Vv6«
(7.11) lim   sup  Qqn [ —¡=kXk - log —-logloglog« > v ) = 0.

To prove (7.1) we, using the notation in (7.6) and (7.7), write the left side in

that assertion as

exp ( E10^1 - QqSankXk -b„>v))\ ,

which is asymptotic to

exp I - E QiAankXk -b„>v)\ -► exp(-e~v)

because of (7.11), the fact that all terms in the summation have the same sign,

and Lemma 7.1.
To prove (7.2) we apply Lemma 7.1 twice, once as it stands and once with

w in lieu of v , and then subtract.

The right side of (7.3) is the sum over all sequences (kx, k2, ... , kt-X) of

T Qq„ ( -7=kXk - log —- - logloglog« < v, )
k=i       \V°" n )

t-l / IT- \

x IIo?" [Ws < "5=ksXks -log-fr -logloglog« < vs\ .

In view of (7.11) we see that we can do two things without changing the asymp-

totic behavior of the right side of (7.3): (i) only sum over those (kx ,k2, ... ,
kt-X) consisting of / - 1 different values and (ii) in the first product eliminate

the / - 1 factors corresponding to k being equal to some ks, 1 < s < t — 1.
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When this has been done all the products are products of probabilities of inde-

pendent events, and thus the products represent probabilities of intersections.

The sum over (kx, k2, ... , kt_x) is the sum of probabilities of disjoint events.

The upshot is that when the right side of (7.3) is adjusted as described above,

it becomes equal to the left side of (7.3). Therefore, (7.3) is true.
Lemma 4.6 is the natural tool for a proof of (7.4). The issue is what we

should use for the set Kn that plays a role in that lemma, because for the

problem under discussion the random variables Xk for all k apparently play

a role. We let

Kn = {k:k> nx/2ßn} U {k : k < nx'2/ßn},

where ß„ -» oo sufficiently slowly that ß2/ log log« —> 0. A straightforward

estimation shows that ¿^,keK k2e~ka" = o(«3/2). So, Lemma 4.6 applies for

Kn as chosen. We turn to investigating the changes in the rest of our argument

when we consider only k £ Kn as opposed to considering all k .

The fact that only the second term on the right side of (7.8) has played a

contributing role in the analysis of the limiting behavior of (7.8) means that,

as « —► oo, the QQn probability approaches 1 that the largest / values of kXk

come from among those k that are greater than or equal to nx/2ßn . Thus, when

QQn is the governing probability measure, it is correct to restrict consideration

to k £ K„ when considering the largest / values of kXk .
In so far as Pn is concerned when « — oo, we will show the values of

k £ K„ can be ignored when looking for the / largest values of kXk, thus

completing the proof. We have already shown that, when governed by QQn, the

/ largest values of kXk for k £ K„ are, with probability approaching 1, greater

than

^(log«'/2 + loga„) = ^ log(nx'2af),
n n

provided that a„ is chosen so that a„/ log log« —> 0. By Lemma 4.6, the same

is true when the probability measures Pn are used. We choose such a sequence

an that also satisfies ß2/an —> 0, which we can do since ß2/ log log« —> 0.

It remains for us to show that the probability approaches 0 that for some

k £ Kn, kXk is greater than \/6ñlog(nx/2an)/n. If a particular kXk is greater

than this quantity, then by removing from the partition of « all the parts of size

k we obtain a partition of some integer j < n - y/6nlog(nxl2an)/n for which

k divides « - j . To obtain an asymptotic formula for the total number such

partitions we can use the Hardy-Ramanujan asymptotic formula e2nyJ/6/4j^/3

and sum over those j that are less than

V^i     i   1/2      x«-log(«1/¿a„)
n

and for which n — j is a multiple of k . Replacing the sum by an integral

and using an approximate antiderivative gives a bound on the sum; for some
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positive finite constant c, the sum is no larger than

k^fn
exp « -

1/2'

log(nx'2an)

Cßn
< —exp

« ^(■-¿vN""2t"> Cßn _e2nyfn~ß
n3l2an

We divide by p(n), the number of partitions of « , to obtain an upper bound

on the Pn -probability that a particular kXk is among the largest / of such

products and then multiply by nxl2ß„, an upper bound for the number of

k £ K„ . The result of doing these operations, using the Hardy-Ramanujan

asymptotic formula for p(n), is 0(ß2/an), which goes to 0 as n -> oo, as

desired.     ■

8. Parts > or < kn . Proofs of 2.9 and 2.10

For Theorem 2.9 there are four steps: (i) the use of Lemma 4.6 to con-

clude that Qqn can be replaced by Pn in the conclusions we reach for Qq„ via

the forthcoming steps (ii), (iii), and (iv), (ii) the calculation of the variance

of Y^k>kn Xk when governed by Qqn, (iii) the calculation of its expectation,

and (iv) the verification that the sequence (Qq„: « = 1,2,...) satisfies suffi-

cient conditions for a standard central theorem to apply. For Theorem 2.10 we

replace Ek>k„xk by

E    Xk
k!,l2<k<kn

and, for it, engage in steps (i), (ii), and (iii) together with an alternative step
(iv).

For step (i) we need only check (4.13) for K„

kn/nx/2 —► oo and Kn = {k:k < k„} when kn/nx/2

estimates.

For step (ii) we use Proposition 4.1 and the known formula for the variance of

a geometrically distributed random variable to conclude that, when kn/nx/2 —>

oo, the variance of Y¿k>k Xk , when governed by QQn, equals

^p       qk e-nk/Vën- y^  r°° e~y

{k:   k > k„}  when
0. We omit the easy

k>_kAl-0W     tkV-e-«k^\2

V6ñ ,-jtk„/V6ñ

n    \l - e~%k"l^" I        n

Similarly, when kn/nxl2 -> 0 and k„ —► oo , the variance of

E xk
k'f<k<k„

equals

Inki/Veh-V-e-y]2

-nk„/\/6ñ

E qn

kl,l2<k<k„
[l-iB*]2 E

k\ß<k<kn

6«

7i2A:2
= o(n).
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For step (iii) we use Proposition 4.1 to calculate the expectation of T,k>k Xk ,

when governed by Qqn

ak _%       p—nk¡\f^ñ
"n

^ 1 - qk      ¿-" i
7,^,7, **n ¡.v.l.     i

. p—nklsfbñ
k>k„ '      ■""        k>k„ l

V6n   i

n   L
00 p-y (    p-nk„/V6n

dy + 0'
Kk„iV^ 1-e-y \l- e-nk,/VSi^

Ven, 1 n( e-Kk-i^" \
-log-—-= + O

1 — p-7tk„/\/6ñ V 1 — e-xk„/V6n~ J

The first term is the term that is subtracted in the numerator of Theorem 2.9;

and the second term (the "big Oh" term) divided by the standard deviation

approaches 0, and so can be ignored. The expectation of

(8.1) E    Xk
kj,/2<k<k„

equals

w>      Et^-E # = f^'2+»<»"2>-
kln<k<kn klß<k<kn

Turning to step (iv) for the setting of Theorem 2.9, there is one minor diffi-

culty in applying a standard theorem giving conditions for convergence to the

normal distribution of distributions of finite series of independent random vari-
ables; our series are infinite, being over all k > kn . Of course, with probability

1 all but finitely many terms are 0. And, with probability close to 1 all terms

but those in an appropriate fixed finite collection are 0. This last fact makes it

clear that we can apply the standard theorems even though in our setting the

individual series are infinite. In view of Proposition 4.1 and the Normal Con-

vergence Criterion in §22.2 of [6], we can complete the proof of convergence to

the normal distribution by showing that, for each positive e,

(8.3) E E x2(l-qk)qkx-*0

k>k„  x>en1/* e\p{-nk„/2V6ñ)

as « —> 00. To do this one begins by discarding the factor (1 - qk), then

interchanging the order of summation, and, after the resulting interior sum-

mation is completed, approximating the resulting single summation by an in-
tegral. Finally, (8.3) follows in a straightforward manner from the hypothesis

nkn/V6ñ - log«/2 —> -00.
In the discussion leading to the statement of Theorem 2.10 in §2, a proof of

that theorem was given for kn approaching 00 more slowly than «'/4 . Since

we now, as we are proving Theorem 2.10 in full generality, are assuming that

k„/nxl2 —► 0, we already know the desired conclusion to hold with kf in lieu

of k„ . So, beginning with this conclusion for k„ , we add n/\/6ñ multiplied

by (8.1) and subtract this same factor multiplied by (8.2) at the left of the in-
equality in Theorem 2.10. The conclusion is not affected by these manipulations

because step (i) of this proof shows that the variance of the difference that we

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



PARTITIONS OF LARGE INTEGERS 731

have inserted approaches 0 as « -> oo . The above manipulations have resulted

in an undesired term o(l) = o(nxl2)/nxl2 from step (iii) that can be dropped

without affecting the conclusion.      ■

9. Results for distinct-part partitions

A distinct-part partition of a positive integer is a way of writing it as the sum
of distinct positive integers without regard to order. We denote the number of

distinct-part partitions of « by Pd(n). There are four distinct-part partitions

of the number 6:3 + 2+1,4 + 2,5+1, and 6; thus, Pd(6) = 4. The empty
partition of 0 is a distinct-part partition so Pd(0) = 1 . The generating function

for the sequence (Pd(0), Pd(l), Pd(2) > • • • ) is well known:

oo oo

(9.1) EAfW^na-rY)-
71=0 k = \

The functions Xk and Yt introduced in § 1 will, in this and the next section,

still be a focus of our attention. But they will have probability distributions

different from those in earlier sections because the underlying probability dis-

tributions on A will be different. We let P¿ t n denote the probability measure

that assigns probability l/Pd(n) to each of the p¿(n) distinct-part partitions of
« (and probability 0 to any partition that is not a distinct-part partition of n).

For the remainder of this section we describe the results for the 'distinct-part'

setting. In the following section we deal with the methods of proof. The first

two theorems are concerned with the small parts.

Theorem 9.1. Suppose that k„/nx/2 -* 0 as n —> oo. Then, as « -> oo,

Pd,n(Xkn = I) -y 1/2.

This theorem says that the presence or absence of any particular small part in

a random distinct-part partition of a large integer is approximately determined

by a coin flip. Can independent coin flips be used for different sizes of small

parts? The answer, according to the following theorem, is 'yes' provided that a
stricter interpretation of small is used than that used in the preceding theorem.

Theorem 9.2. Suppose that kn/nxl4 —> 0 as « —► oo. For each n, let £,„

be the probability measure on Rkn induced by Pdtn via the random vector

(Xx, X2, ... , Xkf) and let r\n denote the measure on Rkn that assigns prob-

ability 2~kn to each point all of whose coordinates equal I or 0. Then, the

Prohorov distance between t\n and nn approaches 0 as « —> oo.

Under the slightly stronger assumption that kn < «'/5, the preceding theorem

can be proved in a rather straightforward manner from the lemma in §5 of [4];

in fact, the stronger assertion that

Pd,n(Xk = xk,n for k<k„)~(l/2)k"

can be proved from that lemma. This local limit theorem can also be proved

using the methods of this paper even if only k„/nxl4 —> 0 is assumed.

From Theorem 9.2 we conclude that the number of parts no larger than a

fixed constant k„ has a distribution that converges to the binomial distribution
on {0,1,..., k„} with mean k„/2. Also, we can conclude that if k„ —> oo

sufficiently slowly that k„/nxl4 —> 0, then the distribution, after normalization
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by subtraction of kn/2 and division by \Jkn/2, is close to the normal distribu-

tion. The following theorem says that there is a normal limit even if k„ grows

faster than nxl4 provided that it grows more slowly than «1/2 . However, if kn

grows at least as fast as «'/3, then the quantity that must be subtracted from

the number of parts no larger than k„ is essentially smaller than kn/2.

Theorem 9.3. //*/:„—► oo and kn/nxl2 —► 0 as n -» oo, then

p     (\Zk<k„Xk - ^log(2/(l +exp(-nkn/Vl2n~)))       \
Pdn XT' 7kZT2-x

— f
y/2~ñ J-t

e~u/2du
-00

as n —► oo.

Even though we cannot replace the logarithm by a simpler expression in the

preceding theorem we can make such a substitution in the law of large numbers

that follows from it.

Corollary. Under the hypotheses of Theorem 9.3,

¿2k<k„ Xk
lim Pd „

71—»OO

for each e > 0.

kn/2
> e

For the large parts there are results very similar to Theorems 2.3-2.6. The

only difference comes from a constant in the normalization. We state this semi-

formally.

Theorem 9.4. Each of Theorems 2.3, 2.4, 2.5, and 2.6 remains true if P„ is

replaced by Pd,n and every occurrence of (sn is replaced by 12«.

Just as we obtained, in §3, a limiting Poisson distribution for the number of

very large parts in the case of unrestricted partitions, we conclude that, when

governed by Pd i „ , the number of parts greater than

v/Ï2« /      VÏÏn      \
-   log-+ v

71     \ n )

has a limiting Poisson distribution with expectation e~v . In so far as an analog

of Theorem 2.9 is concerned we have the following result which cannot be

written by merely replacing 6« by 12« in Theorem 2.9.

Theorem 9.5. Suppose that kn/nx/2 —>■ oo and

nkn      log«

v/T2« ~^2~

as « —► oo. Then

• \ n-i/2^2ny/4e-nk„/2vm - )    ^iliJ-co

as « —* oo .

-00
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We will not formally state the law of large numbers that is an immediate

consequence. It is similar to the corollary of Theorem 2.9; 12« replaces 6« ,

and the hypotheses are those of Theorem 9.5.

10. Methods. Distinct-part partitions

The results described in the preceding section can be proved by methods very

similar to those used in §§4, 5, 6, and 8. The details will be omitted, but the

remainder of this section will be devoted to some comments on the proofs.

Let q £ (0, 1). For any distinct-partition A let

(lo.i) Qd,qW = qwÜ^ + qky
k=l

In view of (9.1), summation of (10.1) over all distinct-part A for which \X\ = «

followed by summation over all « gives 1. Thus, Qd,q is a probability measure.

The first of these two summations also gives the probability distribution of the

random variable N(X) = \X\, when governed by Qd,q-
oo

Qd,q(N = n)=pd(n)qnYl(l+qk)-x.
k=l

The joint probability distribution of the random variables X\, X2, X$,... is

also easily obtained:

00    qkxk

Qd,q{Xk = xk for k = 1, 2,... ) = JJ ——r
k=i       q

for all sequences (xx, x2, ...) of 0's and l's. Thus, the Xk are independent

{1, 0}-valued random variables and Qd,q(Xk = 1) = qk/(l + qk). The proba-
bility measure Pd,n, which is really the measure of interest, equals the measure

obtained by conditioning the measure Qd q by the event N = n .

Arguments similar to those leading to Proposition 4.3 give the generating

function of N, when governed by Qd,q ■ As a function of r it equals

The expectation and variance, which are also easily obtained, equal

^     kqk .    f>     *V
èi(i+«*)      k(l+^2'

respectively. The proof of Corollary 4.4 can be mimicked for the present setting.

As one does so, one sees that an appropriate choice for qn is exp(-n/Vl2n),
rather than the value given in (4.2). For this choice of qn, the variance of

N, when governed by Qd,q„, is asymptotic to (48'/2/7r)«3/2 and the difference

between « and the expected value of N equals o(n3/4).

The path leading to Lemma 4.6 can be followed for the current setting. The

condition (4.13) should be replaced by

v-     k2qk

£k^+^2

= o(«3/2).

The methods of §§5, 6, and 8 carry over in a straightforward manner.
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11. General part restrictions

Distinct-part partitions can be regarded as partitions satisfying the restriction
that the multiplicity of each part size A: is a member of Hk = {1, 0} . We can

generalize by considering Hk to be an arbitrary nonempty set of nonnegative

integers. We write h = (Hx, H2, ...) and assume that 0 £ Hk for all but

finitely many k. Let p¡,(n) denote the number of partitions of « that satisfy

the restriction that the number of parts of size k belongs to Hk . The generating
function of Ph is given by

oo

(ii.i) E^(«)<7"=n ( ¿z<ikw
71=0 k=l  \wÇHk

Provided that pn(n) > 0, we set A,„(A) = l/Ph(n) if ^ is a partition of «

for which the sequence of cardinalities of its parts belongs to h and Pn n (X) = 0

otherwise. The probability measure P¡, „ is the appropriate measure for the

experiment of choosing, on an equiprobable basis, a partition of « for which,
for each k , the number of parts equal to £ is a member of Hk .

Even in this generality it is possible to arrange for a partition to be chosen

at random so that the random variables Xk are independent random variables

and, when the probability distribution is conditioned by the event that N = n ,

the measure Pf,<n is obtained. The appropriate probability measure Qn q is
given by

oo     /

(11.2) Qh,qW = qWU[ E <?"
k=l  \w€Hk

for each partition A having the property that the number of parts of size k

belongs to Hk .
From (11.1) and (11.2) the following facts follow in a straightforward man-

ner. The distribution of N, when governed by Qh,q , is given by

-i

ckw

k=l   \w€Hk

and the corresponding generating function is given by

00 °°  V        (ar\kx

EöA,^=«K=n^
n=n i--i    ¿-éwÇ-Hi

Qh,q(N = n)=ph(n)qnf[l Y Qk

kw

Also,

Qh,q(Xk = xkfork=l,2,...) = l[—^—-li
k=x 2^weHk "

for every sequence (xx, x2, ... ) satisfying xk £ Hk for each k. The random

nkxk

■ikw

variables Xk are thus independent and, for x £ Hk

nkx

Qh,a(Xk=X)
2^weHk q

If pn(n) > 0, or, equivalently, Qn,q(N = n) > 0, then Q„ q conditioned by

the event that N = n is the probability measure Ph „ .
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