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In the study of networked systems such as biological, technological, and social networks the available data
are often uncertain. Rather than knowing the structure of a network exactly, we know the connections between
nodes only with a certain probability. In this paper we develop methods for the analysis of such uncertain data,
focusing particularly on the problem of community detection. We give a principled maximum-likelihood method
for inferring community structure and demonstrate how the results can be used to make improved estimates of the
true structure of the network. Using computer-generated benchmark networks we demonstrate that our methods
are able to reconstruct known communities more accurately than previous approaches based on data thresholding.
We also give an example application to the detection of communities in a protein-protein interaction network.

DOI: 10.1103/PhysRevE.93.012306

I. INTRODUCTION

Many systems of scientific interest can be usefully repre-
sented as networks and the last few years have seen a surge
of interest in the study of networks, due in part to the fruitful
application of a range of techniques drawn from physics [1].
Most current techniques for the analysis of networks begin
with the assumption that the network data available to us
are reliable, a faithful representation of the true structure of
the network. But many real-world data sets, perhaps most of
them, in fact contain errors and inaccuracies. Thus, rather than
representing a network by a set of nodes joined by binary yes-
or-no edges, as is commonly done, a more realistic approach
would be to specify a probability or likelihood of connection
between every pair of nodes, representing our certainty (or
uncertainty) about the existence of the corresponding edge. If
most of the probabilities are close to 0 or 1 then the data are
reliable—for every node pair we are close to being certain that
it either is or is not connected by an edge. But if a significant
fraction of pairs have a probability that is neither close to 0 nor
close to 1 then we are uncertain about the network structure.
In recent years an increasing number of network studies have
started to provide probabilistic estimates of uncertainty in this
way, particularly in the biological sciences.

One simple method for dealing with uncertain networks
is thresholding: we assume that edges exist whenever their
probability exceeds a certain threshold that we choose. In
work on protein-protein interaction networks, for example,
Krogan et al. [2] assembled a sophisticated interaction data set
that includes explicit estimates of the likelihood of interaction
between every pair of proteins studied. To analyze their data
set, however, they then converted it into a conventional binary
network by thresholding the likelihoods, followed by tradi-
tional network analyses. While this technique can certainly
reveal useful information, it has some drawbacks. First, there
is the issue of the choice of the threshold level. Krogan et al.
used a value of 0.273 for their threshold, but there is little
doubt that their results would be different if they had chosen a
different value and little known about how to choose the value
correctly. Second, thresholding throws away potentially useful

information. There is a substantial difference between an edge
with probability 0.3 and an edge with probability 0.9, but the
distinction is lost if one applies a threshold at 0.273—both
fall above the threshold and so are considered to be edges.
Third, and more subtly, thresholded probability values fail to
satisfy certain basic mathematical requirements, meaning that
thresholded networks are essentially guaranteed to be wrong,
often by a wide margin. If, for instance, we have 100 node
pairs connected with probability 0.5 each, then on average we
expect 50 of those pairs to be connected by edges. If we place
a threshold on the probability values at, say, 0.273, however,
then all 100 of them will be converted into edges, a result
sufficiently far from the expected value of 50 as to have a very
low chance of being correct.

In this paper we develop an alternative and principled
approach to the analysis of uncertain network data. We focus in
particular on the problem of community detection in networks,
one of the best studied analysis tasks. We make use of
maximum-likelihood inference techniques, whose application
to networks with definite edges is well developed [3–6]. Here
we extend those developments to uncertain networks and show
that the resulting analyses give significantly better results in
controlled tests than thresholding methods. As a corollary,
our methods also allow us to estimate which of the uncertain
edges in a data set is mostly likely to be a true edge and hence
reconstruct, in a probabilistic fashion, the true structure of the
underlying network.

A number of authors have looked at related questions in
the past. There exists a substantial literature on the analysis of
weighted networks, meaning networks in which the positions
of the edges are exactly known but the edges carry varying
weights, such as strengths, lengths, or volumes of traffic.
Such weighted networks are somewhat similar to the uncertain
networks studied in this paper—edges can be either strong
or weak in a certain sense—but at a deeper level they are
different. For instance, the data sets we consider include
probabilities of connection for every node pair, whereas
weighted networks have weights only for node pairs that
are known to be connected by an edge. More importantly,
in our uncertain networks we imagine that there is a definite
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underlying network but that it is not observed; all we see
are noisy measurements of the underlying truth. In weighted
networks the data are considered to be exact and true and
the variation of edge weights represents an actual physical
variation in the properties of connections.

Methods for analyzing weighted networks include simple
mappings to unweighted networks and generalizations of
standard methods to the weighted case [7]. Inference methods,
akin to those we use here, have also been applied to the
weighted case [8] and to the case of affinity matrices, as
used for example in computer vision for image segmentation
[9]. A little further afield, Harris and Srinivasan [10] have
looked at network failures in a noisy network model in which
edges are deleted with uniform probability, while Saade et al.
[11] use spectral techniques to detect node properties, but
not community affiliations, when the underlying network is
known but the node properties depend on noisy edge labels.
Guimera and Sales-Pardo [12] similarly give a framework for
network inference in the presence of noise, but their model
assumes one can observe only an unweighted network with
possibly erroneous edges. In related work, Xu et al. [13] have
studied the prediction of edge labels using inference methods
and Kurihara et al. [14] have applied inference to a case where
the data give the frequency of interaction between nodes. Last,
Bassett et al. [15] have studied correlation matrices, which can
be viewed as a type of weighted network, and give a technique
for computing the probability that correlations are the result
of chance, though this type of data is quite distinct from the
edge probabilities studied in this paper.

II. METHODS

We focus on the problem of community detection in net-
works whose structure is uncertain. We suppose that we have
data which, rather than specifying with certainty whether there
is an edge between two nodes i and j , gives us only a likelihood
or probability Qij that there is an edge. We will assume
that the probabilities are independent. Correlated probabilities
are certainly possible, but the simple case of independent
probabilities already gives many interesting results, as we will
see.

At the most basic level our goal is to classify the nodes of the
network into nonoverlapping communities—groups of nodes
with dense connections within groups and sparser connections
between groups, also known as “assortative” structure. More
generally we may also be interested in disassortative structures
in which there are more connections between groups than
within them, or mixed structures in which different groups may
be either assortative or disassortative within the same network.

Conceptually, we assume that even though our knowledge
of the network is uncertain, there is a definite underlying
network in which each edge either exists or does not, but we
cannot see this network. The underlying network is assumed
to be undirected and simple (i.e., it has no multiedges or
self-edges). The edge probabilities we observe are a noisy
representation of the true network, but they nonetheless can
contain information about structure—enough information, as
we will see, to make possible the accurate detection of
communities in many situations.

Our approach to the detection problem takes the classic
form of a statistical inference algorithm. We propose a genera-
tive model for uncertain community-structured networks, then
fit that model to our observed data. The parameters of the fit
tell us about the community structure.

A. Model

The model we use is an extension to the case of uncertain
networks of the standard stochastic block model, a random
graph model widely used for community structure analyses
[3,16,17]. In the conventional definition of the stochastic block
model, a number n of nodes are distributed at random among
k groups, with a probability γr of being assigned to group
r , where

∑k
r=1 γr = 1. Then undirected edges are placed

independently at random between node pairs with probabilities
ωrs that depend only on the groups r,s that a pair belongs to and
nothing else. If the diagonal elements ωrr of the probability
matrix are significantly larger than the off-diagonal entries
then one has traditional assortative community structure, with
a higher density of connections within groups than between
them. But one can also make the diagonal entries smaller to
generate disassortative structure or mixed structure types.

Given the parameters γr and ωrs , one can write down the
probability, or likelihood, that we generate a particular network
in which node i is assigned to group gi and the placement of
the edges is described by an adjacency matrix A with elements
Aij = 1 if there is an edge between nodes i and j and 0
otherwise:

P (A,g|γ ,ω) = P (g|γ )P (A|g,ω)

=
∏

i

γgi

∏
i<j

ω
Aij

gigj
(1 − ωgigj

)1−Aij . (1)

Here γ represents the vector of group probabilities γr and ω

represents the matrix of probabilities ωrs .
In extending the stochastic block model to uncertain

networks we imagine a multistep process, illustrated in Figs. 1
and 2, in which the network is first generated using the

P (A,g|γ,ω)

Random network model

A

Network instance β1(x)

Noise process

β0(x)

Q

Uncertain network
Aij = 1

Aij = 0

FIG. 1. The model of uncertain network generation used in our calculations. A community assignment g and network A are drawn from
a random network model such as the stochastic block model. The experimental uncertainty is represented by giving each pair of nodes i,j a
probability Qij of being connected by an edge, drawn from different distributions for edges Aij = 1 and nonedges Aij = 0.
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FIG. 2. Simple example of the generation of two uncertain networks from an initial network with three nodes. The two networks generated
(right-hand side) differ only in their noise distributions, β0(Q) and β1(Q), whose probability density functions (PDFs) are shown in the center.
The lower pair of distributions corresponds to a low-noise setting in which the PDFs for edges and nonedges are quite distinct and the resulting
probability matrix Q retains most of the information from the original adjacency matrix A. The upper pair of distributions corresponds to a
high-noise setting in which the two PDFs are almost the same and the final matrix Q retains little of the original network structure.

standard stochastic block model and then the definite edges
and nonedges are replaced by probabilities, effectively adding
noise to the network data. The exact shape of the noise will
depend on the detailed effects of the experimental procedure
used to measure the network, which we assume to be unknown.
We assume only that the edge likelihoods are true probabilities
in a sense defined below [see Eq. (4)]. Remarkably, however,
it still turns out to be possible to perform precise inference on
the data.

We represent the noise process by two unknown functions.
The function β1(Q) represents the probability density on the
interval from 0 to 1 that a true edge between two nodes in
the original (unobserved) network gives rise to a measured
probability Q of connection between the same nodes in the
observed (probabilistic) data. Conversely, the function β0(Q)
represents the probability density that a nonedge gives rise to
probability Q.

Given these two functions, we can write an expression for
the probability (technically, probability density) that a true
network represented by adjacency matrix A gives rise to a
matrix of observed edge probabilities Q = {Qij } thus

P (Q|A) =
∏
i<j

[β1(Qij )]Aij [β0(Qij )]1−Aij . (2)

The crucial observation that makes our calculations pos-
sible is that the functions β0 and β1 are not independent,
because the numbers Qij that they generate are not just any
edge weights but are specifically probabilities and are assumed
to be independent. If we were to gather together all node pairs
that have probability Q of being connected by an edge, the
independence assumption implies that a fraction Q of them on
average should in fact be connected by edges and the remainder

should be nonedges. For example, 90% of all node pairs with
Qij = 0.9 should, in expectation, be connected by edges.

If there are m edges in total in our underlying true network,
then there are mβ1(Q) dQ edges with observed probability ly-
ing between Q and Q + dQ and [(n2) − m]β0(Q) dQ nonedges
in the same interval. Hence for every possible value of Q we
must have

mβ1(Q) dQ

mβ1(Q) dQ + [(
n

2

) − m
]
β0(Q) dQ

= Q. (3)

Rearranging, we then find that

β1(Q)

β0(Q)
= Q/ρ

(1 − Q)/(1 − ρ)
, (4)

where

ρ = m(
n

2

) (5)

is the so-called density of the network, the fraction of possible
edges that are in fact present. Since we do not know the true
network, we do not normally know the value of m, but it can
be approximated by the expected number of edges

∑
i<j Qij ,

which becomes an increasingly good estimate as the network
gets larger, and from this figure we can calculate ρ.

Note that Eq. (4) implies that β0(1) = 0 and β1(0) = 0. The
equation is also compatible with the choice β0(Q) = δ(Q),
β1(Q) = δ(Q − 1), where δ(x) is the Dirac δ function, which
corresponds to the conventional case of a perfectly certain
network with Qij = Aij .
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Using Eq. (4) we can now write Eq. (2) as

P (Q|A) =
∏
i<j

1 − ρ

1 − Qij

β0(Qij )
∏
i<j

(
Qij

ρ

)Aij
(

1 − Qij

1 − ρ

)1−Aij

. (6)

The first product is a constant for any given set of observed probabilities Q and hence will have no effect on our maximum-
likelihood calculations (which depend only on the position of the likelihood maximum and not on its absolute value). Henceforth,
we will neglect this factor. Then we combine Eqs. (1) and (6) to get an expression for the likelihood of the data Q and the
community assignments g, neglecting constants and given the model parameters γ and ω:

P (Q,g|γ ,ω) =
∑

A

P (Q|A)P (A,g|γ ,ω)

=
∏

i

γgi

∏
i<j

∑
Aij =0,1

[
Qijωgigj

ρ

]Aij
[

(1 − Qij )(1 − ωgigj
)

1 − ρ

]1−Aij

=
∏

i

γgi

∏
i<j

[
Qijωgigj

ρ
+ (1 − Qij )(1 − ωgigj

)

1 − ρ

]
. (7)

Our goal is now, given a particular set of observed data
Q, to maximize this likelihood to find the best-fit parameters
γ and ω. In the process we will determine the community
assignments g as well (which are frequently the primary
objects of interest).

B. Fitting to empirical data

Fitting the model to an observed but uncertain network,
represented by the probabilities Qij , means determining the
values of the parameters γ and ω that maximize the probability
of generating the particular data we see. In other words, we
want to maximize the marginal likelihood of the data given the
parameters

P (Q|γ ,ω) =
∑

g

P (Q,g|γ ,ω). (8)

Equivalently, we can maximize the logarithm of this quantity,
which gives the same result (since the logarithm is a monotone
function) but is often easier.

Direct maximization by differentiation gives rise to a set of
implicit equations that have no simple solution, so instead we
employ a standard trick from the statistics toolbox and apply
Jensen’s inequality, which says that for any set of positive-
definite quantities xi , the log of their sum satisfies

log
∑

i

xi �
∑

i

qi log
xi

qi

, (9)

where qi is any probability distribution over i satisfying the
normalization condition

∑
i qi = 1. One can easily verify that

the exact equality is achieved by choosing

qi = xi∑
i xi

. (10)

Applying Jensen’s inequality to (8), we get

logP (Q|γ ,ω) �
∑

g

q(g)log
P (Q,g|γ ,ω)

q(g)

=
∑

g

q(g)
∑

i

logγgi
+ 1

2

∑
g

q(g)
∑
ij

log

[
Qijωgigj

ρ
+ (1 − Qij )(1 − ωgigj

)

1 − ρ

]
−

∑
g

q(g)logq(g)

=
∑

i

∑
r

qi
r logγr + 1

2

∑
ij

∑
rs

qij
rs log

[
Qijωrs

ρ
+ (1 − Qij )(1 − ωrs)

1 − ρ

]
−

∑
g

q(g)logq(g), (11)

where qi
r is the marginal probability within the probability

distribution q(g) that node i belongs to community r:

qi
r =

∑
g

q(g)δgi ,r , (12)

and q
ij
rs is the joint marginal probability that nodes i and j

belong to communities r and s respectively:

qij
rs =

∑
g

q(g)δgi ,r δgj ,s , (13)

with δij being the Kronecker δ.
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Following Eq. (10), the exact equality in (11), and hence
the maximum of the right-hand side, is achieved when

q(g) = P (Q,g|γ ,ω)∑
g P (Q,g|γ ,ω)

=
∏

i γgi

∏
i<j

[Qij ωgi gj

ρ
+ (1−Qij )(1−ωgi gj

)

1−ρ

]
∑

g

∏
i γgi

∏
i<j

[Qij ωgi gj

ρ
+ (1−Qij )(1−ωgi gj

)

1−ρ

] . (14)

Thus, calculating the maximum of the left-hand side of (11)
with respect to the parameters γ ,ω is equivalent to a double
maximization of the right-hand side with respect to q(g) (by
choosing the value above) so as to make the two sides equal,
and then with respect to the parameters. At first sight, this
seems to make the problem more complex, but numerically it
is in fact easier—the double maximization can be achieved in
a relatively straightforward manner by alternately maximizing
with respect to q(g) using Eq. (14) and then with respect to
the parameters. Such alternate maximizations can trivially
be shown always to converge to a local maximum of the
log-likelihood. They are not guaranteed to find the global
maximum, however, so commonly we repeat the entire
calculation several times from different starting points and
choose among the results the one which gives the highest
value of the likelihood.

Once we have converged to the maximum, the final value
of the probability distribution q(g) is given by Eq. (14) to

be

q(g) = P (Q,g|γ ,ω)

P (Q|γ ,ω)
= P (g|Q,γ ,ω). (15)

In other words, q(g) is the posterior distribution over com-
munity assignments g given the observed data Q and the
model parameters. Thus, in addition to telling us the values
of the parameters, our calculation tells us the probability
of any assignment of nodes to communities. Specifically,
the one-node marginal probability qi

r , Eq. (12), tells us the
probability that node i belongs to community r and, armed
with this information, we can calculate the most probable
community that each node belongs to, which is the primary
goal of our calculation. These marginals also allow us to assess
the strength of our community structure, as when the data
poorly support community structure the posterior distribution
simply becomes uniform.

We still need to perform the maximization of (11) over the
parameters. We note first that the final sum is independent
of either γ or ω and hence can be neglected. Maximization
of the remaining terms with respect to γ is straightforward.
Differentiating with respect to γr , subject to the normalization
condition

∑
r γr = 1, gives

γr = 1

n

∑
i

qi
r . (16)

Maximization with respect to ω is a little more tricky. Only
the second term in (11) depends on ω, but direct differentiation
of this term yields a difficult equation, so instead we apply
Jensen’s inequality (9) again, giving

∑
ij

∑
rs

qij
rs log

[
Qijωrs

ρ
+ (1 − Qij )(1 − ωrs)

1 − ρ

]
�

∑
ij

∑
rs

qij
rs

[
t ijrs log

Qijωrs

ρt
ij
rs

+ (
1 − t ijrs

)
log

(1 − Qij )(1 − ωrs)

(1 − ρ)(1 − t
ij
rs )

]
, (17)

where t
ij
rs is any number between 0 and 1.

The exact equality, and hence the maximum of the right-
hand side, is achieved when

t ijrs = Qijωrs/ρ

Qijωrs/ρ + (1 − Qij )(1 − ωrs)/(1 − ρ)
. (18)

Thus, by the same argument as previously, we can maximize
the left-hand side of (17) by repeatedly maximizing the right-
hand side with respect to t

ij
rs using Eq. (18) and with respect

to ωrs by differentiation. Performing the derivative and setting
the result to 0, we find that the maximum with respect to ωrs

falls at

ωrs =
∑

ij q
ij
rs t

ij
rs∑

ij q
ij
rs

. (19)

The optimal values of the ωrs can now be calculated by
iterating Eqs. (18) and (19) alternately to convergence from
a suitable initial condition.

The quantity t
ij
rs has a simple physical interpretation, as we

can see by applying Eq. (4) to (18), giving

t ijrs = ωrsβ1(Qij )

ωrsβ1(Qij ) + (1 − ωrs)β0(Qij )
. (20)

But by definition

ωrs = P (Aij = 1|gi = r,gj = s), (21)

β1(Qij ) = P (Qij |Aij = 1), (22)

β0(Qij ) = P (Qij |Aij = 0), (23)

and hence

t ijrs = P (Aij = 1|gi = r,gj = s)P (Qij |Aij = 1)

P (Qij |gi = r,gj = s)

= P (Aij = 1|Qij ,gi = r,gj = s). (24)

In other words, t
ij
rs is the posterior probability that there is an

edge between nodes i and j , given that they are in groups r

and s respectively. This quantity will be useful shortly when
we consider the problem of reconstructing a network from
uncertain observations.

We now have a complete algorithm for fitting our model to
the observed data. The steps of the algorithm are as follows:

(1). Make an initial guess (for instance at random) for the
values of the parameters γ and ω.

(2). Calculate the distribution q(g) from Eq. (14).
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(3). Calculate the one- and two-node marginal probabilities
qi

r and q
ij
rs from Eqs. (12) and (13).

(4). From these quantities calculate updated values of γ

from Eq. (16) and ω by iterating Eqs. (18) and (19) to
convergence starting from the current estimate of ω.

(5). Repeat from step 2 until q(g) and the model parameters
converge.

Algorithms of this type are known as expectation-
maximization or EM algorithms [18,19]. The end result is a
maximum likelihood estimate of the parameters γ and ω along
with the posterior distribution over community assignments
q(g) and the probability t

ij
rs of an edge between any pair of

nodes.
Equation (19) can usefully be simplified a little further,

in two ways. First, note that Eq. (18) implies that t
ij
rs = 0

whenever Qij = 0. All of the real-world data sets we have
examined are sparse, meaning that a large majority of the
probabilities Qij are zero. This means that most of the terms
in the numerator of (19) vanish and can be dropped from the
sum, which speeds up the calculation considerably. Indeed
t
ij
rs need not be evaluated at all for node pairs i,j such that
Qij = 0, since this sum is the only place that t

ij
rs appears in our

calculation. Moreover it turns out that we need not evaluate q
ij
rs

for such node pairs either. The only other place that qij
rs appears

is in the denominator of Eq. (19), which can be simplified by
using Eq. (13) to rewrite it thus:

∑
ij

qij
rs =

∑
g

q(g)
∑

i

δgi ,r

∑
j

δgj ,s = 〈nrns〉, (25)

where 〈. . .〉 indicates an average over q(g) and nr = ∑
i δgi ,r

is the number of nodes in group r , for community assignment
g. For large networks the number of nodes in a group becomes
tightly peaked about its mean value so that 〈nrns〉 � 〈nr〉〈ns〉
where 〈nr〉 = ∑

g q(g)
∑

i δgi ,r = ∑
i q

i
r . Hence

ωrs =
∑

ij q
ij
rs t

ij
rs∑

i q
i
r

∑
j q

j
s

. (26)

This obviates the need to calculate q
ij
rs for node pairs such

that Qij = 0 (which is most node pairs), and in addition

speeds the calculation further because the denominator can
now be evaluated in time proportional to the number of nodes
in the network, rather than the number of nodes squared, as
in Eq. (19). (And the numerator can be evaluated in time
proportional to the number of nonzero Qij , which is small.)

C. Belief propagation

In principle, the methods of the previous section constitute a
complete algorithm for fitting our model to observed network
data. In practice, however, it is an impractical one because
it is unreasonably slow. The bottleneck is the sum in the
denominator of Eq. (14), which is a sum over all possible as-
signments g of nodes to communities. If there are n nodes and k

communities then there are kn possible assignments, a number
that grows with n so rapidly as to prohibit explicit numerical
evaluation of the sum for all but the smallest of networks.

This is not a new problem. It is common to most EM
algorithms, not only for network applications but for statistics
in general. The traditional way around it is to approximate
the distribution q(g) by importance sampling using Markov
chain Monte Carlo. In this paper, however, we use a different
method, proposed recently by Decelle et al. [6,20] and specific
to networks, namely belief propagation.

Originally developed in physics and computer science for
the probabilistic solution of problems on graphs and lattices
[21,22], belief propagation is a message passing method in
which the nodes of a network exchange messages or “beliefs,”
which are probabilities representing the current best estimate
of the solution to the problem of interest. In the present case
we define a message η

i→j
r which is equal to the probability

that node i belongs to community r if node j is removed
from the network. The removal of a node is crucial, since it
allows us to write a self-consistent set of equations satisfied
by the messages, whose solution gives us the distribution
q(g) over group assignments. Although the equations can
without difficulty be written exactly and in full, we will here
approximate them to leading order only in the small quantities
ωrs . We find this approximation to give excellent results in
our applications and the equations are considerably simpler,
as well as giving a faster final algorithm.

Within this approximation, the belief propagation equation
for the message η

i→j
r is

ηi→j
r = γr

Zi→j

exp

(
−

∑
k,s

qk
s ωrs

) ∏
k(�=j )
Qik �=0

∑
s

ηk→i
s

[
Qikωrs

ρ
+ (1 − Qik)(1 − ωrs)

1 − ρ

]
, (27)

where Zi→j is a normalization coefficient that ensures
∑

r η
i→j
r = 1, having value

Zi→j =
∑

r

γr exp

(
−

∑
k,s

qk
s ωrs

) ∏
k(�=j )
Qik �=0

∑
s

ηk→i
s

[
Qikωrs

ρ
+ (1 − Qik)(1 − ωrs)

1 − ρ

]
, (28)

and qi
r is, as before, the one-node marginal probability of Eq. (12), which can itself be conveniently calculated directly from the

messages η
i→j
r via

qi
r = γr

Zi

exp

(
−

∑
j,s

qj
s ωrs

) ∏
j

Qij �=0

∑
s

ηj→i
s

[
Qijωrs

ρ
+ (1 − Qij )(1 − ωrs)

1 − ρ

]
, (29)
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with

Zi =
∑

r

γr exp

(
−

∑
j,s

qj
s ωrs

) ∏
j

Qij �=0

∑
s

ηj→i
s

[
Qijωrs

ρ
+ (1 − Qij )(1 − ωrs)

1 − ρ

]
. (30)

These equations are exact if the set of node pairs i,j with
edge probabilities Qij > 0 forms a tree or is at least locally
treelike (meaning that arbitrarily large local neighborhoods
take the form of trees in the limit of large network size).
For nontrees, which includes most real-world networks, they
are only approximate, but previous results from a number of
studies show the approximation to be a good one in practice
[6,20,22–25]. Probability data of the kind we consider might
further deviate from a strict treelike form if they include a large
number of low-probability edges, but nonetheless we find the
belief propagation method to work well.

Solution of the equations is by iteration. Typically we start
from the current best estimate of the values of the beliefs
and iterate to convergence, then from the converged values
we calculate the crucial two-node marginal probability q

ij
rs by

noting that

qij
rs = P (gi = r,gj = s|Qij )

= P (gi = r,gj = s)P (Qij |gi = r,gj = s)∑
rs P (gi = r,gj = s)P (Qij |gi = r,gj = s)

. (31)

where all data Q other than Qij are assumed given in each
probability. The probabilities in these expressions are equal to

P (gi = r,gj = s) = ηi→j
r ηj→i

s , (32)

P (Qij |gi = r,gj = s)

= β0(Qij )
1 − ρ

1 − Qij

[
Qijωrs

ρ
+ (1 − Qij )(1 − ωrs)

1 − ρ

]
.

(33)

Substituting these into (31), we get

qij
rs =

η
i→j
r η

j→i
s

[Qij ωrs

ρ
+ (1−Qij )(1−ωrs )

1−ρ

]
∑

rs η
i→j
r η

j→i
s

[Qij ωrs

ρ
+ (1−Qij )(1−ωrs )

1−ρ

] . (34)

Our final algorithm then consists of alternately (a) iterating
the belief propagation equations (27) to convergence and using
the results to calculate the marginal probabilities qi

r and q
ij
rs

from Eqs. (29) and (34), and (b) iterating Eqs. (18) and (26)
to convergence to calculate new values of the ωrs and using
Eq. (16) to calculate new values of γr . In practice the algorithm
is efficient—in other tests of belief propagation it has been
found fast enough for applications to networks of a million
nodes or more.

D. Degree-corrected model

Our method gives a complete algorithm for fitting the
standard stochastic block model to uncertain network data
represented by the matrix Q of edge probabilities. As pointed
out previously by Karrer and Newman [17], however, the
stochastic block model gives poor performance for community

detection on many real-world networks because the model
assumes a Poisson degree distribution, which is strongly in
conflict with the broad, frequently fat-tailed degree distribu-
tions seen in real-world networks. Because of this conflict it
is often not possible to find a good fit of the stochastic block
model to observed network data, for any parameter values,
and in such cases the model can return poor performance on
community detection tasks.

The fix for this problem is straightforward. The degree-
corrected stochastic block model is identical to the standard
block model except that the probability of an edge between
nodes i,j that fall in groups r,s is didjωrs (instead of just
ωrs), where di is the observed degree of node i in the network.
This modification allows the model to accurately fit arbitrary
degree distributions, and community detection algorithms that
perform fits to the degree-corrected model are found to return
excellent results in real-world applications [17].

We can make the same modification to our methods as
well. The developments follow exactly the same lines as for
the ordinary (uncorrected) stochastic block model. The crucial
equations (18) and (26) become

t ijrs = Qijdidjωrs/ρ

Qijdidjωrs/ρ + (1 − Qij )(1 − didjωrs)/(1 − ρ)
(35)

and

ωrs =
∑

ij q
ij
rs t

ij
rs∑

i diqi
r

∑
j djq

j
s

, (36)

while the belief propagation equation (27) becomes

ηi→j
r = γr

Zi→j

exp

(
−didj

∑
k,s

qk
s ωrs

) ∏
k(�=j )
Qik �=0

∑
s

ηk→i
s

×
[
Qikdidjωrs

ρ
+ (1 − Qik)(1 − didjωrs)

1 − ρ

]
, (37)

with corresponding modifications to Eqs. (28)–(30) and
Eq. (34).

In the following sections we describe a number of example
applications of our methods. Among these, the tests on
synthetic networks (Sec. III A) are performed using the
standard stochastic block model, without degree correction,
while the tests on real-world networks (Sec. III B) use the
degree-corrected version.

III. RESULTS

We have tested the methods described in the previous
sections both on computer-generated benchmark networks
with known structure and on real-world examples.
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A. Synthetic networks

Computer-generated or “synthetic” networks provide a
controlled test of the performance of our algorithm. We
generate networks with known community structure planted
within them and then test whether the algorithm is able
accurately to detect that structure.

For the tests reported here, we generate networks using the
standard (not degree-corrected) stochastic block model and
then add noise to them to represent the network uncertainty,
using functions β0 and β1 as defined in Sec. II A. We use
networks of size n = 4000 nodes, divided into two equal-size
communities, and as the noise function β1(Q) for the edges
we use a β distribution:

β1(Q) = Qa1−1(1 − Q)b1−1

B(a1,b1)
, (38)

where B(a,b) is Euler’s β function. As the noise function
β0(Q) for the nonedges we use a β function plus an additional
δ function spike at zero:

β0(Q) = c
Qa0−1(1 − Q)b0−1

B(a0,b0)
+ (1 − c)δ(Q). (39)

The δ function makes the matrix Q of edge probabilities
realistically sparse, in keeping with the structure of real-world
data sets, with a fraction 1 − c of nonedges having exactly
zero probability in the observed data, on average.

Thus there are a total of five parameters in our noise
functions: a0, b0, a1, b1, and c. Not all of these parameters
are independent, however, because our functions still have to
satisfy the constraint (4). Substituting Eqs. (38) and (39) into
(4), we see that for the constraint to be satisfied for all Q > 0
we must have a0 = a1 − 1, b0 = b1 + 1, and

c = 1 − ρ

ρ

B(a1,b1)

B(a0,b0)
= 1 − ρ

ρ

B(a1,b1)

B(a1 − 1,b1 + 1)

= 1 − ρ

ρ

a1 − 1

b1
. (40)

Thus there are really just two degrees of freedom in the choice
of the noise functions. Once we fix the parameters a1 and
b1, everything else is fixed also. Alternatively, we can fix the
parameter c, thereby fixing the density of the data matrix Q,
plus one or other of the parameters a1 and b1.

The networks we generate are now analyzed using the
non-degree-corrected algorithm of Secs. II A–II C. To quantify
performance we assign each node i to the community r

for which its probability qi
r of membership, Eq. (12), as

computed by the algorithm, is greatest, then compare the result
to the known true community assignments from which the
network was generated. Success (or lack of it) is quantified
by computing the fraction of nodes placed by the algorithm
in the correct groups. We also compare the results against
the naive (but common) thresholding method discussed in the
Introduction [2], in which edge probabilities Qij are turned
into binary yes-or-no edges by cutting them off at some fixed
threshold τ , so that the adjacency matrix element Aij is 1 if
and only if Qij > τ . Community structure in the thresholded
network is analyzed using the standard stochastic block model
algorithm described in, for example, Refs. [6] and [20].
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FIG. 3. Tests of the method described in this paper on synthetic
benchmark networks. (a) Fraction of nodes placed in the correct
community for uncertain networks generated using a stochastic
block model with n = 4000 nodes, two groups of equal size,
edge probabilities ω11 = ω22 = 0.02, ω12 = ω21 = 0.014, and noise
parameters a1 = 1.4 and b1 = 2 [see Eq. (38)]. The horizontal dashed
line shows the performance of the algorithm described in this paper.
The points show the performance of a naive algorithm in which
the uncertain network is first converted to a binary network by
thresholding the edge probabilities and the result then fed into
a standard community detection algorithm. The results for each
algorithm are averaged over 20 repetitions of the experiment with
different networks. Statistical errors are comparable in size to the data
points. (b) Fraction of nodes classified into their correct communities
for stochastic block model networks with varying amounts of noise in
the data. The parameters are the same as for (a) but with the sparsity
parameter c fixed at 1/4n [see Eq. (39) and the ensuing discussion]
and varying the parameter b1, which controls the level of noise in the
data.

As we vary the parameters of the underlying network and
noise functions the performance of both algorithms varies.
When the community structure is strong and the noise is
weak both algorithms (not surprisingly) do well, recovering the
community structure nearly perfectly, while for weak enough
community structure or strong noise neither algorithm does
better than chance. But, as shown in Fig. 3(a), there is a regime
of intermediate structure and noise in which our algorithm
does significantly better than the naive technique. The figure
shows the fraction of correctly classified nodes in the naive
algorithm as a function of the threshold τ (data points in the
figure) compared against the performance of the algorithm
of this paper (dashed line) and, as we can see, the latter
outperforms the former no matter what value of τ is used.
Note that the worst possible performance still classifies half
of the nodes correctly—even a random coin toss would get
this many right—so this is the minimum value on the plot. For
high threshold values τ approaching 1, the threshold method
throws away essentially all edges, leaving itself no data to
work with, and hence does little better than chance. Conversely
for low thresholds the threshold method treats any node pair
with a nonzero connection probability Qij as having an edge,
even when an edge is wildly unlikely, thereby introducing
large amounts of noise into the calculation that again reduce
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performance to a level little better than chance. The optimal
performance falls somewhere between these two extremes,
around τ = 0.25 in this case, but even at this optimal point
the thresholding method’s performance falls far short of the
algorithm of this paper.

Figure 3(b) shows a different test of the method. Again we
use networks generated from a stochastic block model with two
groups and calculate the fraction of correctly classified nodes.
Now, however, we vary the amount of noise introduced into
the network to test the algorithm’s ability to recover structure
in data of varying quality. The parameters of the underlying
network are held constant, as is the parameter c that controls
the sparsity of the data matrix Q. This leaves only one degree
of freedom, which we take to be the parameter b1 of the noise
process [see Eq. (38)].

A network with little noise in the data is one in which
true edges in the underlying network are represented by
probabilities Qij close to 1, in other words by a noise
distribution β1(Q) with most of its weight close to 1. Such
distributions correspond to small values of the parameter
b1. Noisier data are those in which the values of the
Qij are smaller, approaching the values for the nonedges,
thereby making it difficult to distinguish between edges and
nonedges. These networks are generated by larger values of b1.
Figure 3(b) shows the fraction of correctly classified nodes as
a function of b1, so the noise level is increasing, and the quality
of the simulated data decreasing, from left to right in the figure.

As we can see, the algorithm returns close to perfect results
when b1 is small—meaning that the quality of the data is high
and the algorithm almost sees the true underlying structure of
the network. Performance degrades as the noise level increases,
although the algorithm continues to do significantly better than
chance even for high levels of noise, indicating that there is
still useful information to be extracted even from rather poor
data sets.

B. Protein interaction network

As a real-world example of our methods we have applied
them to protein-protein interaction networks from the STRING
database [26]. This database contains protein interaction
information for 1133 species drawn from a large body of
research literature covering a range of different techniques, in-
cluding direct interaction experiments, genomic information,
and cross-species comparisons. The resulting networks are of
exactly the form considered in this paper. For each network
there is assumed to be a true underlying network in which
every pair of proteins either interacts or does not, but, given
the uncertainty in the data on which they are based, STRING
provides only probabilistic estimates of the presence of each
interaction. Thus the data we have for each species consist of
a set of proteins—the nodes—plus a likelihood of interaction
for each protein pair. A significant majority of protein pairs in
each of the networks are recorded as having zero probability
of interaction, so the network is sparse in the sense assumed
by our analysis and conducive to fast computation.

In the STRING database as well as the work of Krogan
et al. [2], protein pairs are recorded as having zero interaction
probability when they never bind in high throughput
experiments. Though a true zero probability of interaction is

unlikely due to the possibility of human or equipment error,
proteins which do not bind are most likely to have a value
of 0. In principle one could add a small estimate of error to
every cell of the matrix, but a small enough error would make
no difference in the final outcome.

We analyze the data using the degree-corrected version
of our algorithm described in Sec. II D, which is appropriate
because the networks in the STRING database, like most real-
world networks, have broad degree distributions.

Figure 4(a) shows the communities found in a three-
way split of the protein-protein interaction network of the
bacterium Borrelia hermsii HS1. Node colors denote the
strongest community affiliation for each node, as quantified
by the one-node marginal probability qi

r , with node size being
proportional to the probability a node is in its most likely
community (so that larger nodes are more certain). In practice,
most nodes belong wholly to just one community.

For comparison, we also show in Fig. 4(b) the communities
found in the same network by the naive thresholding algorithm
discussed earlier in which a node pair i,j is considered
connected by an edge if and only if the probability Qij

exceeds a certain threshold, which here is set at 0.25, though
other thresholds gave similar results. By contrast with the
synthetic networks of the previous section, we do not know the
true underlying communities for this network and so cannot
calculate the fraction of correctly classified nodes, but it is
clear from the figures that the new technique gives significantly
different results from the thresholding method, particularly for
the community that appears in the upper right of the figure.

A closer examination of the data reveals a possible
explanation. The communities at the left and bottom in both
panels of Fig. 4 consist primarily of high-probability edges and
are easily identified in the data, so it is perhaps not surprising
that both algorithms identify these communities readily and
are largely in agreement. However, the third community, in
the upper right of the figure, consists largely of edges of
relatively low probability and the thresholding method has
more difficulty with this case because many edges fall below
the threshold value and so are lost, which may explain why
the thresholding method divides the nodes of this community
among the three groups.

To give a simple picture, imagine a community whose
nodes are connected by very many internal edges, but all of
those edges have low probability. Because there are so many
of them, the total expected number of true internal edges
in the underlying network—the number of node pairs times
the average probability of connection—could be quite high,
high enough to create a cohesive network community. Our
algorithm, which takes edge probabilities into account, will
allow for this. The thresholding algorithm on the other hand
can fail because the edges all have low probability, below the
threshold used by the algorithm, and hence are discarded. The
result is that the thresholding algorithm sees no edges at all
and hence no community. The fundamental problem is that
thresholding is just too crude a tool to see subtle patterns in
noisy data.

IV. EDGE RECOVERY

A secondary goal in our analysis of uncertain networks
is to deduce the structure of the (unobserved) underlying
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FIG. 4. Communities found by (a) the algorithm described in this paper and (b) the thresholding algorithm, in a three-way split of the
protein interaction network of the bacterium Borrelia hermsii HS1, taken from the STRING database. Nodes are laid out according to the
communities in (a) and the layout is the same in both panels.

network from the uncertain data. That is, given the matrix Q of
edge probabilities, can we make an informed guess about the
adjacency matrix A? We call this the edge recovery problem. It
is related to, but distinct from, the well studied link prediction
problem [27], in which one is given a binary network of edges
and nonedges but some of the data may be erroneous and the
problem is to guess which ones. In the problem we consider,
by contrast, the data given are assumed to be correct, but they
are incomplete in the sense of being only the probabilities of
the edges, rather the edges themselves.

The simplest approach in the present case is simply to use
the edge probabilities Qij themselves to predict the edges—
those node pairs i,j with the highest probabilities are assumed
most likely to be connected by edges. But if we know, or
believe, that our network contains community structure, then
we can do a better job. If we know where the communities in
the network lie, at least approximately, then given two pairs of
nodes with similar values of Qij , the pair that are in the same
community should be more likely to be connected by an edge
than the pair that are not (assuming “assortative” mixing in
which edge probabilities are higher inside communities).

It turns out that our EM algorithm gives us precisely the
information we need to perform edge recovery. The (posterior)
probability of having an edge between any pair of nodes i,j

can be written as

P (Aij = 1)

=
∑
rs

P (Aij = 1|gi = r,gj = s)P (gi = r,gj = s)

=
∑
rs

t ijrsq
ij
rs , (41)

where the data Q and the parameters γ ,ω are assumed given
in each probability and we have made use of Eq. (24) and the

definition of q
ij
rs . Both t

ij
rs and q

ij
rs are calculated in the course of

running the EM algorithm, so we already have these quantities
available to us and calculating P (Aij = 1) is a small extra step.

Figure 5 shows a test of the accuracy of our edge predictions
using synthetic test networks once again. In these tests
we generate networks with community structure using the
standard stochastic block model, as previously, then run
the network through the EM algorithm and calculate the
posterior edge probabilities of Eq. (41) above. We compare
the results against competing predictions based on the prior
edge probabilities Qij alone.

The figure shows receiver operating characteristic (ROC)
curves of the results. To construct an ROC curve, one asks
how many edges we would get right, and how many wrong,
if we were to simply predict that the fraction x of node
pairs with the highest probabilities of connection are in fact
connected by edges. The ROC curve is the plot of the fraction
of such predictions that turn out right (true positives) against
the fraction wrong (false positives) for values of x from 0 to
1. By definition the curve always lies on or above the 45◦ line
and the higher the curve the better the results, since a higher
curve implies more true positives and fewer false ones.

Figure 5 shows the ROC curves both for our method and
for the naive method based on the raw probabilities Qij alone
and we can see that, for the particular networks studied here,
the additional information revealed by fitting the block model
results in a substantial improvement in our ability to identify
the edges of the network correctly. One common way to
summarize the information contained in an ROC curve is
to calculate the area under the curve, where an area of 0.5
corresponds to the poorest possible results—no better than a
random guess—and an area of 1 corresponds to perfect edge
recovery. For the example shown in Fig. 5, the area under
the curve for our algorithm is 0.89 while that for the naive
algorithm is significantly lower at 0.80.
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FIG. 5. Receiver operating characteristic (ROC) curves for the
edge recovery problem on a synthetic network generated using a
two-group stochastic block model with n = 4000 nodes, ω11 = ω22 =
0.05, ω12 = ω21 = 0.001, and noise parameters b1 = 4 and c = 1/4n.
The three curves show the performance of the algorithm of this paper,
the naive algorithm based on the raw probabilities Qij alone, and a
hypothetical “ideal” algorithm that knows the values of the parameters
used to generate the model (so that one does not have to run the
EM algorithm at all). The diagonal dashed line represents a curve
generated by an algorithm that does no better than chance.

Also shown in the figure is a third curve representing
performance on the edge recovery task if we assume we
know the exact parameters of the stochastic block model
that were used to generate the network, i.e., that we do not
need to run the EM algorithm to learn the parameter values.
This is an unrealistic situation—we very rarely know such
parameters in the real world—but it represents the best possible
prediction we could hope to make under any circumstances.
And, as the figure shows, this best possible performance is in

this case indistinguishable from the performance of our EM
algorithm, indicating that the EM algorithm is performing the
edge recovery task essentially optimally in this case.

V. CONCLUSIONS

In this paper we have described methods for the analysis
of networks represented by uncertain measurements of their
edges. In particular we have described a method for performing
the common task of community detection on such networks
by fitting a generative network model to the data using a
combination of an expectation-maximization (EM) algorithm
and belief propagation. We have also shown how the resulting
fit can be used to reconstruct the true underlying network by
making predictions of which nodes are connected by edges.
Using controlled tests on computer-generated benchmark
networks, we have shown that our methods give better
results than previously used techniques that rely on simple
thresholding of probabilities to turn indefinite networks into
definite ones. And we have given an example application of
our methods to a bacterial protein interaction network taken
from the STRING database.

The methods described in this paper could be extended to
the detection of other types of structure in networks. If one
can define a generative model for a structure of interest then
the developments of Sec. II can be applied, simply replacing
the likelihood P (A,g|γ ,ω) in Eq. (7) with the appropriate
probability of generation. Generative models have been re-
cently proposed for hierarchical structure in networks [4],
overlapping communities [28], ranking or stratified structure
[29], and others. In principle, our methods could be extended
to any of these structure types in uncertain networks.
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detection in the censored block model, arXiv:1502.00163.

012306-11

http://dx.doi.org/10.1038/nature04670
http://dx.doi.org/10.1038/nature04670
http://dx.doi.org/10.1038/nature04670
http://dx.doi.org/10.1038/nature04670
http://dx.doi.org/10.1198/016214501753208735
http://dx.doi.org/10.1198/016214501753208735
http://dx.doi.org/10.1198/016214501753208735
http://dx.doi.org/10.1198/016214501753208735
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1561/2200000005
http://dx.doi.org/10.1561/2200000005
http://dx.doi.org/10.1561/2200000005
http://dx.doi.org/10.1561/2200000005
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1093/comnet/cnu026
http://dx.doi.org/10.1093/comnet/cnu026
http://dx.doi.org/10.1093/comnet/cnu026
http://dx.doi.org/10.1093/comnet/cnu026
http://dx.doi.org/10.1016/j.patcog.2003.10.017
http://dx.doi.org/10.1016/j.patcog.2003.10.017
http://dx.doi.org/10.1016/j.patcog.2003.10.017
http://dx.doi.org/10.1016/j.patcog.2003.10.017
http://arxiv.org/abs/arXiv:1502.00163


TRAVIS MARTIN, BRIAN BALL, AND M. E. J. NEWMAN PHYSICAL REVIEW E 93, 012306 (2016)

[12] R. Guimer and M. Sales-Pardo, Missing and spurious interac-
tions and the reconstruction of complex networks, Proc. Natl.
Acad. Sci. USA 106, 22073 (2009).
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