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Summary.Sparse high dimensional graphical model selection is a topic of much interest in mod-
ern day statistics. A popular approach is to apply l1-penalties to either parametric likelihoods,
or regularized regression/pseudolikelihoods, with the latter having the distinct advantage that
they do not explicitly assume Gaussianity. As none of the popular methods proposed for solving
pseudolikelihood-based objective functions have provable convergence guarantees, it is not
clear whether corresponding estimators exist or are even computable, or if they actually yield
correct partial correlation graphs. We propose a new pseudolikelihood-based graphical model
selection method that aims to overcome some of the shortcomings of current methods, but at
the same time retain all their respective strengths. In particular, we introduce a novel framework
that leads to a convex formulation of the partial covariance regression graph problem, resulting
in an objective function comprised of quadratic forms. The objective is then optimized via a co-
ordinatewise approach. The specific functional form of the objective function facilitates rigorous
convergence analysis leading to convergence guarantees; an important property that cannot
be established by using standard results, when the dimension is larger than the sample size, as
is often the case in high dimensional applications. These convergence guarantees ensure that
estimators are well defined under very general conditions and are always computable. In addi-
tion, the approach yields estimators that have good large sample properties and also respect
symmetry. Furthermore, application to simulated and real data, timing comparisons and numer-
ical convergence is demonstrated. We also present a novel unifying framework that places all
graphical pseudolikelihood methods as special cases of a more general formulation, leading to
important insights.

Keywords: Convergence guarantee; Generalized pseudolikelihood; Gene regulatory
network; Graphical model selection; Partial correlation graph; Soft thresholding; Sparse
inverse covariance estimation

1. Introduction

One of the hallmarks of modern day statistics is the advent of high dimensional data sets arising
particularly from applications in the biological sciences, environmental sciences and finance. A
central quantity of interest in such applications is the covariance matrix Σ of high dimensional
random vectors. It is well known that the sample covariance matrix S can be a poor estimator
of Σ, especially when p=n is large, where n is the sample size and p is the number of variables
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in the data set. Hence S is not a useful estimator for Σ for high dimensional data sets, where
often either p�n (‘large p, small n’) or when p is comparable with n and both are large (‘large
p, large n’). The basic problem here is that the number of parameters in Σ is of the order p2.
Hence, in the settings just mentioned, the sample size is often not sufficiently large to obtain a
good estimator.

For many real life applications, the quantity of interest is the inverse covariance or partial
covariance matrix Ω=Σ−1. In such situations, it is often reasonable to assume that there are
only a few significant partial correlations and the other partial correlations are negligible in
comparison. In mathematical terms, this amounts to making the assumption that the inverse
covariance matrix Ω=Σ−1 = ..ωij//1�i,j�p is sparse, i.e. many entries in Ω are zero. Note that
ωij =0 is equivalent to saying that the partial correlation between the ith and jth variables is zero
(under Gaussianity, this reduces to the statement that the ith and jth variables are conditionally
independent given the other variables). The zeros in Ω can be conveniently represented by
partial correlation graphs. The assumption of a sparse graph is often deemed very reasonable in
applications. For example, as Peng et al. (2009) pointed out, among 26 examples of published
networks compiled by Newman (2003), 24 networks had edge density less than 4%.

Various methods have been proposed for identifying sparse partial correlation graphs in the
penalized-likelihood and penalized-regression-based framework (Meinshausen and Bühlmann,
2006; Friedman et al., 2008, 2010; Peng et al., 2009). The main focus here is estimation of the
sparsity pattern. Many of these methods do not necessarily yield positive definite estimates of Ω.
However, once a sparsity pattern has been established, a positive definite estimate can be easily
obtained by using efficient methods (see Hastie et al. (2009) and Speed and Kiiveri (1986)).

The penalized likelihood approach induces sparsity by minimizing the (negative) log-likeli-
hood function with an l1-penalty on the elements of Ω. In the Gaussian set-up, this approach
was pursued by Banerjee et al. (2008) and others. Friedman et al. (2008) proposed the graphical
lasso algorithm ‘Glasso’ for the above minimization problem, which is substantially faster than
earlier methods. In recent years, many interesting and useful methods have been proposed for
speeding up the performance of the graphical lasso algorithm (see Mazumder and Hastie (2012)
for instance). It is worth noting that, for these methods to provide substantial improvements over
the graphical lasso, certain assumptions are required on the number and size of the connected
components of the graph implied by the zeros in Ω̂ (the minimizer).

Another useful approach that was introduced by Meinshausen and Bühlmann (2006) estima-
tes the zeros in Ω by fitting separate lasso regressions for each variable given the other variables.
These individual lasso fits give neighbourhoods that link each variable to others. Peng et al.
(2009) improved this neighbourhood selection method (the NS algorithm) by taking the natural
symmetry in the problem into account (i.e.Ωij =Ωji), as not doing so could result in less efficiency
and contradictory neighbourhoods.

In particular, the sparse partial correlation estimation (SPACE) method was proposed by
Peng et al. (2009) as an effective alternative to existing methods for sparse estimation of Ω. The
SPACE procedure iterates between

(a) updating partial correlations by a joint lasso regression and
(b) separately updating the partial variances.

As indicated above, it also accounts for the symmetry in Ω and is computationally efficient.
Peng et al. (2009) showed that, under suitable regularity conditions, SPACE yields consistent
estimators in high dimensional settings. All the above properties make SPACE an attractive
regression-based approach for estimating sparse partial correlation graphs. In the examples that
were presented in Peng et al. (2009), the authors found that empirically the SPACE algorithm
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seems to converge very fast. It is, however, not clear whether SPACE will converge in general.
Convergence is of course critical so that the corresponding estimator is always guaranteed to
exist and is therefore meaningful, both computationally and statistically. In fact, as we illustrate
in Section 2, the SPACE algorithm might fail to converge in simple cases, for both the standard
choices of weights that were suggested in Peng et al. (2009). Motivated by SPACE, Friedman
et al. (2010) presented a co-ordinatewise descent approach (the ‘symmetric lasso’), which may
be considered as a symmetrized version of the approach in Meinshausen and Bühlmann (2006).
As we show in Section 2.3, it is also not clear whether the symmetric lasso will converge.

In this paper, we present a new method called the convex correlation selection method and
algorithm (CONCORD) for sparse estimation of Ω. The algorithm obtains estimates of Ω by
minimizing an objective function, which is jointly convex, but more importantly comprised
of quadratic forms in the entries of Ω. The subsequent minimization is performed via co-
ordinatewise descent. The convexity is strict if n�p, in which case standard results guarantee
the convergence of the co-ordinatewise descent algorithm to the unique global minimum. If
n < p, the objective function may not be strictly convex. As a result, a unique global minimum
may not exist, and existing theory does not guarantee convergence of the sequence of iterates
of the co-ordinatewise descent algorithm to a global minimum. In Section 4, by exploiting the
quadratic forms that are present in the objective, it is rigorously demonstrated that the sequence
of iterates does indeed converge to a global minimum of the objective function regardless of
the dimension of the problem. Furthermore, it is shown in Section 6 that the CONCORD
algorithm estimators are asymptotically consistent in high dimensional settings under regular-
ity assumptions that are identical to those of Peng et al. (2009). Hence, our method preserves all
the attractive properties of SPACE, while also providing a theoretical guarantee of convergence
to a global minimum. In the process the CONCORD algorithm yields an estimator Ω̂ that is
well defined and is always computable. The strengths of the method are further illustrated in the
simulations and real data analysis that are presented in Section 5. A comparison of the relevant
properties of various algorithms proposed in the literature is provided in Table 1 (NS by Meins-
hausen and Bühlmann (2006), SPACE by Peng et al. (2009), the symmetric lasso algorithm
SYMLASSO by Friedman et al. (2010), the pseudolikelihood inverse covariance estimation al-
gorithm SPLICE by Rocha et al. (2008) and CONCORD). Table 1 shows that the CONCORD
algorithm preserves all the attractive properties of existing algorithms, while also providing rig-
orous convergence guarantees. Another major contribution of the paper is the development of a
unifying framework that renders the various pseudolikelihood-based graphical model selection
procedures as special cases. This general formulation facilitates a direct comparison between the
above pseudolikelihood-based methods and gives deep insights into their respective strengths
and weaknesses.

Table 1. Comparison of regression-based graphical model selection methods†

Property Method

NS SPACE SYMLASSO SPLICE CONCORD

Symmetry + + + +
Convergence guarantee (fixed n) NA +
Asymptotic consistency (n, p→∞) + + +

†A ‘+’ sign indicates that a specified method has the given property. A blank space indicates the
absence of a property. ‘NA’ stands for ‘not applicable’.
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The remainder of the paper is organized as follows. Section 2 briefly describes the SPACE
algorithm and presents examples where it fails to converge. This section motivates our work
and also analyses other regression-based or pseudolikelihood methods that have been proposed.
Section 3 introduces the convex correlation selection method and presents a general framework
that unifies recently proposed pseudolikelihood methods. Section 4 establishes convergence of
CONCORD to a global minimum, even if n < p. Section 5 illustrates the performance of the
CONCORD algorithm on simulated and real data. Comparisons with SPACE and Glasso are
provided. When applied to gene expression data, the results given by CONCORD are validated
in a significant way by a recent extensive breast cancer study. Section 6 establishes large sample
properties of the convex correlation selection approach. Concluding remarks are given in Section
7. The on-line supplemental document contains proofs of some of the results in the paper.

2. The SPACE algorithm and convergence properties

Let the random vector Yk = .yk
1, yk

2, : : : , yk
p/′, k = 1, 2, : : : , n, denote independent and identi-

cally distributed (IID) observations from a multivariate distribution with mean vector 0 and
covariance matrix Σ. Let Ω=Σ−1 = ..ωij//1�i, j�p denote the inverse covariance matrix, and
let ρ= .ρij/1�i<j�p where ρij =−ωij=

√
.ωiiωjj/ denotes the partial correlation between the ith

and jth variable for 1 � i �= j � p. Note that ρij = ρji for i �= j. Denote the sample covariance
matrix by S, and the sample corresponding to the ith variable by Yi = .y1

i , y2
i , : : : , yn

i /′.

2.1. The SPACE algorithm
Peng et al. (2009) proposed a novel iterative algorithm called SPACE to estimate the partial
correlations {ρij}1�i<j�p and the partial covariances {ωii}1�i�p corresponding to Ω. This
algorithm is summarized in the on-line supplemental section A.

2.2. Convergence properties of SPACE
From empirical studies, Peng et al. (2009) found that the SPACE algorithm converges quickly.
As mentioned in Section 1, it is not immediately clear whether convergence can be established
theoretically. In an effort to understand such properties, we now place the SPACE algorithm in
a useful optimization framework. (See the on-line supplemental section A for a proof.)

Lemma 1. For the choice of weights wi =ωii, the SPACE algorithm corresponds to an iterative
partial minimization procedure for the following objective function:

Qspc.Ω/= 1
2

p∑
i=1

{
−n log.ωii/+ωii

∥∥∥∥Yi −
∑
j �=i

ρij

√(
ωjj

ωii

)
Yj

∥∥∥∥
2
}

+λ
∑

1�i<j�p

|ρij|

= 1
2

p∑
i=1

−n log.ωii/+ 1
2
ωii

∥∥∥∥Yi +
∑
j �=i

ωij

ωii
Yj

∥∥∥∥
2

+λ
∑

1�i<j�p

|ρij|: .1/

Although lemma 1 identifies SPACE as an iterative partial minimization algorithm, the ex-
isting theory for iterative partial minimization (see for example Zangwill (1969), Jensen et al.
(1991) and Lauritzen (1996)) only guarantees that every accumulation point of the sequence of
iterates is a stationary point of the objective function Qspc. To establish convergence, one needs
to prove that every contour of the function Qspc contains only finitely many stationary points.
It is not clear whether this latter condition holds for the function Qspc. Moreover, for choice of
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High Dimensional Partial Correlation Estimation 807

weights wi =1, the SPACE algorithm does not appear to have an iterative partial minimization
interpretation.

To improve our understanding of the convergence properties of SPACE, we started by testing
the algorithm on simple examples. On some examples, SPACE converges very quickly; however,
examples can be found where SPACE does not converge when using the two possible choices
for weights: partial variance weights (wi =ωii) and uniform weights (wi = 1). We now give an
example of the lack of convergence.

2.1.1. Example 1
Consider the following population covariance and inverse covariance matrices:

Ω=
(3:0 2:1 0:0

2:1 3:0 2:1
0:0 2:1 3:0

)
,

Σ=Ω−1 =
( 8:500 −11:667 8:167

−11:667 16:667 −11:667
8:167 −11:667 8:500

)
:

.2/

A sample of n=100 IID vectors was generated from the corresponding N .0, Σ/ distribution. The
data were standardized and the SPACE algorithm was run with choice of weights wi =ωii and
λ=160. After the first few iterations successive SPACE iterates alternate between the following
two matrices: (29:009570 27:266460 0:000000

27:266460 51:863320 24:680140
0:000000 24:680140 26:359350

)
,

(28:340040 27:221520 −0:705390
27:221520 54:255190 24:569900
−0:705390 24:569900 25:753040

)
,

.3/

thereby establishing non-convergence of the SPACE algorithm in this example (see also
Fig. 1(a)). Note that the two matrices in expression (3) have different sparsity patterns. A sim-
ilar example of non-convergence of SPACE with uniform weights is provided in the on-line
supplemental section Q.

A natural question to ask is whether the non-convergence of SPACE is pathological or whether
it is widespread in settings of interest. For this, the following simulation study was under-
taken.

2.2.2. Example 2
We created a sparse 100 × 100 matrix Ω with edge density 4% and a condition number of 100.
A total of 100 multivariate Gaussian data sets (with n=100) having mean vector zero and co-
variance matrix Σ=Ω−1 were generated. Table 2 summarizes the number of times (out of 100)
that algorithms SPACE1 (SPACE with uniform weights) and SPACE2 (SPACE with partial
variance weights) do not converge within 1500 iterations. When they do converge, the mean
numbers of iterations are 22.3 for SPACE1 and 14.1 for SPACE2 (since the original imple-
mentation of SPACE by Peng et al. (2009) was programmed to stop after three iterations, we
modified the implementation to allow for more iterations to check for convergence of parameter
estimates). It is clear from Table 2 that both variations of SPACE, using unit weights as well
as ωii-weights, exhibit extensive non-convergence behaviour. Our simulations suggest that the
convergence problem is exacerbated as the condition number of Ω increases.
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Fig. 1. Illustrations of the non-convergence of SPACE and the convergence of CONCORD (the y -axes are
on the log-scale; for SPACE, the log-absolute difference between entries of successive estimates becomes
constant (thus indicating non-convergence) ( , pvar.1; , pvar.2; , pvar.3, , pcor.1;

, pcor.2; , pcor.3): (a) SPACE algorithm (partial variance weights) applied to the data set in
example 1; (b) CONCORD algorithm applied to the data set in example 1

2.3. Symmetric lasso
The symmetric lasso algorithm was proposed as a useful alternative to SPACE in recent work
by Friedman et al. (2010). The symmetric lasso minimizes the (negative) pseudolikelihood

Qsym.α, Ω̆/= 1
2

p∑
i=1

{
n log.αii/+ 1

αii
‖Yi +

∑
j �=i

ωijαiiYj‖2

}
+λ

∑
1�i<j�p

|ωij|: .4/

where αii = 1=ωii. Here α denotes the vector with entries αii for i = 1, : : : , p and Ω̆ denotes
the matrix Ω with diagonal entries set to 0. A comparison of equations (1) and (4) shows
a deep connection between SPACE (with wi = ωii) and symmetric lasso objective functions.
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High Dimensional Partial Correlation Estimation 809

Table 2. Number of simulations (out of 100) that do not converge
within 1500 iterations, NC, for select values of penalty parameter
(λ* Dλ=n)†

Results for SPACE1 (wi =1) Results for SPACE2 (wi =ωii)

λÅ NZ (%) NC λÅ NZ (%) NC

0.026 60.9 92 0.085 79.8 100
0.099 19.7 100 0.160 28.3 0
0.163 7.6 100 0.220 10.7 0
0.228 2.9 100 0.280 4.8 0
0.614 0.4 0 0.730 0.5 97

†The average percentages of non-zeros, NZ, in Ω are also shown.

In particular, the Qsym.α, Ω̆/ objective function in equation (4) is a reparameterization of equa-
tion (1): the only difference is that the l1-penalty on the elements of ρ is replaced by a penalty
on the elements of Ω in equation (4). The minimization of the objective function in equation
(4) is performed by co-ordinatewise descent on .α, Ω̆/. The symmetric lasso is indeed a useful
and computationally efficient procedure. However, theoretical properties such as convergence
or asymptotic consistency have not yet been established. The following lemma investigates the
properties of the objective function that are used in the symmetric lasso.

Lemma 2. The symmetric lasso objective in equation (4) is a non-convex function of .α, Ω̆/.

The proof of lemma 2 is given in the on-line supplemental section B. The arguments in
the proof of lemma 2 demonstrate that the objective function that is used in the symmetric
lasso is not convex, or even biconvex in the parameterization that is used above. However,
it can be shown that the SYMLASSO algorithm objective function is jointly convex in the
elements of Ω (see Lee and Hastie (2014) and the on-line supplemental section O). It is straight-
forward to check that the co-ordinatewise descent algorithms for both parameterizations are
exactly the same. However, unless a function is strictly convex, there are no general theoretical
guarantees of convergence for the corresponding co-ordinatewise descent algorithm. Indeed,
when n<p, the SYMLASSO objective function is not strictly convex. Therefore, it is not clear
whether the co-ordinate descent algorithm converges in general. We conclude this section by
remarking that both SPACE and the symmetric lasso are useful additions to the graphical model
selection literature, especially because they both respect symmetry and give computationally fast
procedures.

2.4. The SPLICE algorithm
The sparse pseudolikelihood inverse covariance estimates algorithm SPLICE was proposed by
Rocha et al. (2008) as an alternative means to estimate Ω. In particular, the SPLICE formulation
uses an l1-penalized regression-based pseudolikelihood objective function parameterized by
matrices D and B where Ω = D−2.I − B/. The diagonal matrix D has elements djj = 1=

√
ωjj,

j = 1, : : : , p. The (asymmetric) matrix B has as columns the vectors of regression coefficients,
βj ∈Rp. These coefficients, βj, arise when regressing Yj on the remaining variables. A constraint
on each βj is imposed so that regression of Yj is performed without including itself as a predictor
variable, i.e. βjj = 0. On the basis of the above properties, the l1-penalized pseudolikelihood
objective function of the SPLICE algorithm (without the constant term) is given by
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Qspl.B, D/= n

2

p∑
i=1

log.d2
ii/+ 1

2

p∑
i=1

1

d2
ii

∥∥∥Yi −
∑
j �=i

βijYj

∥∥∥2 +λ
∑
i<j

|βij|: .5/

To optimize equation (5) with respect to B and D, Rocha et al. (2008) also proposed an iterative
algorithm that alternates between maximizing B fixing D, followed by maximizing D fixing B.
As with other regression-based graphical model selection algorithms, a proof of convergence
of SPLICE is not available. The following lemma gives the convexity properties of the SPLICE
objective function.

Lemma 3.

(a) The SPLICE objective function Qspl.B, D/ is not jointly convex in .B, D/.
(b) Under the transformation C=D−1, Qspl.B, C/ is biconvex.

The proof of lemma 3 is given in on-line supplemental section C. The convergence properties
of the SPLICE algorithm are not immediately clear since its objective function is non-convex.
Furthermore, it is not clear whether the SPLICE solution yields a global optimum.

3. CONCORD: a convex pseudolikelihood framework for sparse partial
covariance estimation

The two pseudolikelihood-based approaches, SPACE and the symmetric lasso, have several
attractive properties such as computational efficiency, simplicity and use of symmetry. They also
do not directly depend on the more restrictive Gaussian assumption. Additionally, Peng et al.
(2009) also established (under suitable regularity assumptions) consistency of SPACE estimators
for distributions with sub-Gaussian tails. However, none of the existing pseudolikelihood-based
approaches yield a method that is provably convergent. In Section 2.2, we showed that there are
instances where SPACE does not converge. As explained earlier, convergence is critical as this
property guarantees well-defined estimators which always exist, and are computable regardless
of the data at hand. An important research objective therefore is the development of a pseudo-
likelihood framework which preserves all the attractive properties of the SPACE and SYM-
LASSO algorithms and, at the same time, leads to theoretical guarantees of convergence. It
is not clear immediately, however, how to achieve this goal. A natural approach to take is to
develop a convex formulation of the problem. Such an approach can yield many advantages,
including

(a) a guarantee of existence of a global minimum,
(b) a better chance of convergence by using convex optimization algorithms and
(c) a deeper theoretical analysis of the properties of the solution and corresponding algo-

rithm.

As we have shown, the SPACE objective function is not jointly convex in the elements of Ω (or
any natural reparameterization). Hence, one is not in a position to leverage tools from convex
optimization theory for understanding its behaviour. The SYMLASSO objective function is
jointly convex in the elements of Ω. However, unless a function is strictly convex, there are no
general guarantees of convergence for the corresponding co-ordinatewise descent algorithm.
Indeed, when n<p, the SYMLASSO objective function is not strictly convex, and it is not clear
whether the corresponding co-ordinatewise descent algorithm converges.

In this section, we introduce a new approach for estimating Ω, called the convex correla-
tion selection method and algorithm CONCORD, that aim to achieve the above objective. The
CONCORD algorithm constructs sparse estimators of Ω by minimizing an objective function
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High Dimensional Partial Correlation Estimation 811

that is jointly convex in the entries of Ω. We start by introducing the objective function for the
convex correlation selection method and then proceed to derive the details of the correspond-
ing co-ordinatewise descent updates. Convergence is not obvious, as the function may not be
strictly convex if n<p. It is proved in Section 4 that the corresponding co-ordinatewise descent
algorithm does indeed converge to a global minimum. Computational complexity and running
time comparisons for CONCORD are given in the on-line supplemental section E and Section
5.1 respectively. Subsequently, large sample properties of the resulting estimator are established
in Section 6 to provide asymptotic guarantees in the regime when both the dimension p and
the sample size n tend to ∞. Thereafter, the performance of CONCORD on simulated data
and on real data from biomedical and financial applications is demonstrated. Such analysis
serves to establish that CONCORD preserves all the attractive properties of existing pseudo-
likelihood methods and additionally provides the crucial theoretical guarantee of convergence
and existence of a well-defined solution.

3.1. The CONCORD objective function
To develop a convex formulation of the pseudolikelihood graphical model selection problem let
us first revisit the formulation of the SPACE objective function (1) with arbitrary weights wi

instead of ωii:

Qspc.Ω/= 1
2

p∑
i=1

{
−n log.ωii/+wi

∥∥∥∥Yi −
∑
j �=i

ρij

√(
ωjj

ωii

)
Yj

∥∥∥∥
2

2

}
+λ

∑
1�i<j�p

|ωij|: .6/

Now note that this objective function is not jointly convex in the elements of Ω, since

(a) the middle term for the regression with the choices wi =1 or wi =ωii is not a jointly convex
function of the elements of Ω and

(b) the penalty term is on the partial correlations ρij =−ωij=
√

.ωiiωjj/ and is hence not a
jointly convex function of the elements of Ω.

Now note the following relationship for the regression term:

wi

∥∥∥∥Yi −
∑
j �=i

ρij

√(
ωjj

ωii

)
Yj

∥∥∥∥
2

2
=wi

∥∥∥∥Yi +
∑
j �=i

ωij

ωii
Yj

∥∥∥∥
2

2

(
therefore ρij = −ωij√

.ωiiωjj/

)

=wi

∥∥∥∥ 1
ωii

.ωiiYi +
∑
j �=i

ωijYj/
∥∥∥2

2

= wi

ω2
ii

∥∥∥∥ p∑
j=1

ωijYj

∥∥∥∥
2

2

= wi

ω2
ii

.ω′�iY′Yω�i/:

The choice of weights wi =ω2
ii yields

wi

∥∥∥∥Yi −
∑
j �=i

ρij

√(
ωjj

ωii

)
Yj

∥∥∥∥
2

2
=ω′�iY′Yω�i �0: .7/

Expression (7) is a quadratic form (and hence jointly convex) in the elements of Ω. Putting
the l1-penalty term on the partial covariances ωij instead of on the partial correlations ρij yields
the following jointly convex objective function:
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Qcon.Ω/=:Lcon.Ω/+λ
∑

1�i<j�p

|ωij|

=:−
p∑

i=1
n log.ωii/+ 1

2

p∑
i=1

∥∥∥∥ωiiYi +
∑
j �=i

ωijYj

∥∥∥∥
2

2
+λ

∑
1�i<j�p

|ωij|: .8/

The function Lcon.Ω/ can be regarded as a pseudolikelihood function in the spirit of Besag
(1975). Since − log.x/ and |x| are convex functions, and Σp

i=1 ‖ωiiYi +Σj �=i ωijYj‖2 is a positive
semidefinite quadratic form in Ω, it follows that Qcon.Ω/ is a jointly convex function of Ω (but not
necessarily strictly convex). As we shall see later, this particular formulation helps us to establish
theoretical guarantees of convergence (see Section 4), and, consequently, yields a regression-
based graphical model estimator that is well defined and is always computable. Note that the
n=2 in equation (6) has been replaced by n in expression (8). The point is elaborated further in
remark 4. We now proceed to derive the details of the co-ordinatewise descent algorithm for
minimizing Qcon.Ω/.

3.2. A co-ordinatewise minimization algorithm for minimizing Qcon (Ω)
Let Ap denote the set of p×p real symmetric matrices. Let the parameter space M be defined
as

M :={Ω∈Ap : ωii > 0, for every 1� i�p}:

As in other regression-based approaches (see Peng et al. (2009)), we have deliberately not
restricted Ω to be positive definite as the main goal is to estimate the sparsity pattern in Ω.
As mentioned in Section 1, a positive definite estimator can be obtained by using standard
methods (Hastie et al., 2009; Xu et al., 2011) once a partial correlation graph has been
determined.

Let us now proceed to optimize Qcon.Ω/. For 1� i� j �p, define the function Tij :M→M
by

Tij.Ω/= arg min
{Ω̃:.Ω̃/kl=ωkl ∀.k, l/�=.i, j/}

Qcon.Ω̃/:
.9/

For each .i, j/, Tij.Ω/ gives the matrix where all the elements of Ω are left as they are except
the .i, j/th element. The .i, j/th element is replaced by the value that minimizes Qcon.Ω/ with
respect to ωij holding all other variables ωkl, .k, l/ �= .i, j/, constant. We now proceed to evaluate
Tij.Ω/ explicitly.

Lemma 4. The function Tij.Ω/ defined in equation (9) can be computed in closed form. In
particular,

.Tii.Ω//ii =
−∑

j �=i

ωijsij +
√{(∑

j �=i

ωijsij

)2 +4sii

}
2sii

, for 1� i�p, .10/

and

.Tij.Ω//ij =
Sλ=n

{
−
( ∑

j′ �=j

ωij′sjj′ +∑
i′ �=i

ωi′jsii′
)}

sii + sjj
, for 1� i<j �p, .11/

where sij is the .i, j/th entry of .1=n/YTY, and Sλ.x/ := sgn.x/.|x|−λ/+.

The proof is given in the on-line supplemental section F. An important contribution of lemma
4 is that it gives the necessary ingredients for designing a co-ordinate descent approach to min-
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imizing the CONCORD objective function. More specifically, equation (10) can be used to
update the partial variance terms, and equation (11) can be used to update the partial covari-
ance terms. The co-ordinatewise descent algorithm for CONCORD is summarized in algorithm
2 in the on-line supplemental section D. The computational complexity of the CONCORD
algorithm is min{O.np2/, O.p3/}. Hence CONCORD is competitive with the SPACE and the
symmetric lasso algorithms (see the on-line supplemental section E for details). The zeros in the
estimated partial covariance matrix can then subsequently be used to construct a partial covari-
ance or partial correlation graph.

The following procedure can be used to select the penalty parameter λ. Define the residual
sum of squares for i=1, : : : , p as

RSSi.λ/=
n∑

k=1

(
yk

i −∑
j �=i

ωij

ωii
yk

j

)2

:

Further, the ith component of a Bayes information criterion type of score can be defined as

BICi.λ/=n log{RSSi.λ/}+ log.n/|{j : j �= i, ωij,λ �=0}|:
The penalty parameter λ can be chosen to minimize the sum BIC.λ/=Σp

i=1 BICi.λ/.

3.3. A unifying framework for pseudolikelihood-based graphical model selection
In this section, we provide a unifying framework which formally connects the five pseudolike-
lihood formulations that are considered in this paper, namely algorithms SPACE1, SPACE2,
SYMLASSO, SPLICE and CONCORD (counting two choices for weights in the SPACE al-
gorithm as two different formulations). Recall that the random vectors Yk = .yk

1, yk
2, : : : , yk

p/′,
k =1, 2, : : : , n, denote IID observations from a multivariate distribution with mean vector 0 and
covariance matrix Σ, the precision matrix is given by Ω=Σ−1 = ..ωij//1�i,j�p, and S denotes the
sample covariance matrix. Let ΩD denote the diagonal matrix with ith diagonal entry given by
ωii. Lemma 5 below formally identifies the relationship between all five of the regression-based
pseudolikelihood methods.

Lemma 5.

(a) The (negative) pseudolikelihood functions of CONCORD, SPACE1, SPACE2, SYM-
LASSO and SPLICE formulations can be expressed in matrix form as shown in Table 3
(up to reparameterization).

(b) All five pseudolikelihoods above correspond to a unified or generalized form of the Gaus-
sian log-likelihood function

Luni{G.Ω/, H.Ω/}= n

2
.− log[det{G.Ω/}]+ tr{SH.Ω/}/,

where G.Ω/ and H.Ω/ are functions of Ω. The functions G and H which characterize
the pseudolikelihood formulations corresponding to CONCORD, SPACE1, SPACE2,
SYMLASSO and SPLICE are as follows:

Gcon.Ω/=Ω2
D, Hcon.Ω/=Ω2;

Gspc,1.Ω/=ΩD, Hspc,1.Ω/=ΩΩ−2
D Ω;

Gspc,2.Ω/=Gsym.Ω/=Gspl.Ω/=ΩD, Hspc,2.Ω/=Hsym.Ω/=Hspl.Ω/=ΩΩ−1
D Ω:

The proof of lemma 5 is given in the on-line supplemental section I. Lemma 5 gives various
useful insights into the different pseudolikelihoods that have been proposed for the inverse
covariance estimation problem. The following remarks discuss these insights.
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Table 3. Pseudo-log-likelihood for graphical models in both regression and matrix forms

Function Regression form Matrix form Expression

Lcon.Ω/
1
2

p∑
i=1

{
−n log.ω2

ii/+
∥∥∥ωiiYi +

∑
j �=i

ωijYj

∥∥∥2

2

} n

2
{−log|Ω2

D|+ tr.SΩ2/} (12)

Lspc,1.ΩD,ρ/
1
2

p∑
i=1

{
−n log.ωii/+

∥∥∥Yi −
∑
j �=i

ρij

√(
ωjj

ωii

)
Yj

∥∥∥2

2

}
n

2
{− log |ΩD|+ tr.SΩΩ−2

D Ω/} (13)

Lspc,2.ΩD,ρ/
1
2

p∑
i=1

{
−n log.ωii/+ωii

∥∥∥Yi −
∑
j �=i

ρij

√(
ωjj

ωii

)
Yj

∥∥∥2

2

}
n

2
{−log|ΩD|+ tr.SΩΩ−1

D Ω/} (14)

Lsym.α,ΩF /
1
2

p∑
i=1

{
n log.αii/+ .1=αii/

∥∥∥Yi +
∑
j �=i

ωijαiiYj

∥∥∥2} n

2
{−log|ΩD|+ tr.SΩΩ−1

D Ω/} (15)

Lspl.B, D/
1
2

p∑
i=1

{
n log.d2

ii/+ .1=d2
ii/

∥∥∥Yi −
∑
j �=i

βijYj

∥∥∥2

2

} n

2
{−log|ΩD|+ tr.SΩΩ−1

D Ω/} (16)

Remark 1. When G.Ω/=H.Ω/=Ω, L{G.Ω/, H.Ω/} corresponds to the standard (negative)
Gaussian log-likelihood function.

Remark 2. Ω−1
D Ω is a rescaling of Ω to make all the diagonal elements 1 (hence the sparsities

between Ω and Ω−1
D Ω are the same). In this sense, the SPACE2, SYMLASSO and SPLICE

algorithms make the same approximation to the Gaussian likelihood with the log-determinant
term, log |Ω|, replaced by log |ΩD|. The trace term tr.SΩ/ is approximated by tr.SΩΩ−1

D Ω/.
Moreover, if Ω is sparse, then Ω−1

D Ω is close to the identity matrix, i.e. Ω−1
D Ω≈ I +C for some C.

In this case, the term in the Gaussian likelihood tr.SΩ/ is perturbed by an off-diagonal matrix
C, resulting in an expression of the form tr{SΩ.I +C/}.

Remark 3. Conceptually, the sole source of difference between the three regularized versions
of the objective functions of the SPACE2, SYMLASSO and SPLICE algorithms is in the way
in which the l1-penalties are specified. SPACE2 applies the penalty to the partial correlations,
SYMLASSO to the partial covariances and SPLICE to the symmetrized regression coeffi-
cients.

Remark 4. The convex correlation selection method approximates the normal likelihood
by approximating the log |Ω| term by log |Ω2

D|, and tr.SΩ/ by tr.SΩ2/. Hence, the CONCORD
algorithm can be considered as a reparameterization of the Gaussian likelihood with the con-
centration matrix Ω2 (together with an approximation to the log-determinant term). More
specifically,

Lcon.Ω/=Luni.Ω2
D, Ω2/= n

2
[− log{det.Ω2

D/}+ tr.SΩ2/]=n

[
− log{det.ΩD/}+ 1

2
tr.SΩ2/

]
,

and justifies the appearance of ‘n’ as compared with ‘n=2’ in the CONCORD objective in ex-
pression (8). In the on-line supplemental section J, we illustrate the usefulness of this correction
based on the insight from our unification framework, and we show that it leads to better estim-
ates of Ω.

4. Convergence of CONCORD

We now proceed to consider the convergence properties of the CONCORD algorithm. Note
that Qcon.Ω/ is not differentiable. Also, if n<p, then Qcon.Ω/ is not necessarily strictly convex.
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Hence, the global minimum may not be unique and, as discussed below, the convergence of
the co-ordinatewise minimization algorithm to a global minimum does not follow from exist-
ing theory. Although Qcon.Ω/ is not differentiable, it can be expressed as a sum of a smooth
function of Ω and a separable function of Ω (namely λΣ1�i<j�p |ωij|). Tseng (1988, 2001)
proved that, under certain conditions, every cluster point of the sequence of iterates of the
co-ordinatewise minimization algorithm for such an objective function is a stationary point
of the objective function. However, if the function is not strictly convex, there is no general
guarantee that the sequence of iterates has a unique cluster point, i.e. there is no theoretical
guarantee that the sequence of iterates converges. The following theorem shows that the cyclic
co-ordinatewise minimization algorithm applied to the CONCORD objective function con-
verges to a global minimum. A proof of this result can be found in the on-line supplemental
section K.

Theorem 1. If Sii > 0 for every 1 � i�p, the sequence of iterates {Ω̂
.r/}r�0 that is obtained

by algorithm 2 converges to a global minimum of Qcon.Ω/. More specifically, Ω̂
.r/ → Ω̂∈M

as r →∞ for some Ω̂, and furthermore Qcon.Ω̂/�Qcon.Ω/ for all Ω∈M.

Remark 5. If n�2, and none of the underlying p marginal distributions (corresponding to
the p-variate distribution for the data vectors) is degenerate, it follows that the diagonal entries
of the data covariance matrix S are strictly positive with probability 1.

With theory in hand, we now proceed to illustrate numerically the convergence properties
that have been established above. When CONCORD is applied to the data set in example 1,
convergence is achieved (see Fig. 1(b) in Section 2.2), whereas SPACE does not converge (see
Fig. 1(a)).

5. Applications

5.1. Simulated data
5.1.1. Timing comparison
We now proceed to compare the timing performance of CONCORD with the graphical lasso
algorithm Glasso and the two versions of SPACE. The algorithm names SPACE1 and SPACE2
denote SPACE estimates using uniform weights and partial variance weights respectively. We
first consider the setting p=1000 and n=200. For this simulation study, a p×p positive definite
matrix Ω (with p=1000) with condition number 10 was used. Thereafter, 50 independent data
sets were generated, each consisting of n=200 IID samples from an Np.0, Σ=Ω−1/ distribution.
For each data set, the four algorithms were run until convergence for a range of penalty parameter
values. We note that the default number of iterations for SPACE in the R function by Peng et al.
(2009) is 3. However, given the convergence issues for SPACE, we ran SPACE until convergence
or until 50 iterations (whichever number of iterations was smaller). The timing results (averaged
over the 100 data sets) in the top part of Table 4 show wall clock times until convergence (in
seconds) for Glasso, CONCORD, SPACE1 and SPACE2.

We can see that, in the p = 1000, n = 200, setting, CONCORD is uniformly faster than its
competitors. Note that the low penalty parameter cases correspond to high dimensional settings
where the estimated covariance matrix is typically poorly conditioned and the log-likelihood
surface is very flat. The results in Table 4 indicate that in such settings CONCORD is faster
than its competitors by orders of magnitude (even though Glasso is implemented in Fortran).
Both SPACE1 and SPACE2 are much slower than CONCORD and Glasso in this setting.
The wall clock time for an iterative algorithm can be thought of as a function of the number
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Table 4. Timing comparison for pD1000, 3000 and varying n†

Results for Glasso Results for CONCORD Results for SPACE1 (wi =1) Results for SPACE2
(wi =ωii)

λ NZ Time λÅ NZ Time λÅ NZ Time
(%) (s) (%) (s) (%) (s) λÅ NZ Time

(%) (s)

p = 1000, n = 200
0.14 4.77 87.60 0.12 4.23 6.12 0.10 4.49 101.78 0.16 100.00 19206.55
0.19 0.87 71.47 0.17 0.98 5.10 0.17 0.64 99.20 0.21 1.76 222.00
0.28 0.17 5.41 0.28 0.15 5.37 0.28 0.14 138.01 0.30 0.17 94.59
0.39 0.08 5.30 0.39 0.07 4.00 0.39 0.07 75.55 0.40 0.08 108.61
0.51 0.04 6.38 0.51 0.04 4.76 0.51 0.04 49.59 0.51 0.04 132.34

Results for Glasso Results for CONCORD Results for Glasso Results for CONCORD

λ NZ Time λÅ NZ Time λ NZ Time λÅ NZ Time
(%) (s) (%) (s) (%) (s) (%) (s)

p = 3000, n = 600 p = 3000, n = 900
0.09 2.71 1842.74 0.09 2.10 266.69 0.09 0.70 1389.96 0.09 0.64 298.21
0.10 1.97 1835.32 0.10 1.59 235.49 0.10 0.44 1395.42 0.10 0.41 298.00
0.10 1.43 1419.41 0.10 1.19 232.67 0.10 0.27 1334.78 0.10 0.26 302.15

†SPACE is run until convergence or 50 iterations (whichever number of iterations is smaller). Note that SPACE1
and SPACE2 are much slower than CONCORD and Glasso in wall clock time, for the p=1000 simulations. Hence,
for p=3000, only Glasso and CONCORD are compared. Here, λ denotes the value of the penalty parameter for
the respective algorithms, with λÅ =λ=n for CONCORD and SPACE. NZ is the percentage of non-zero entries
in the corresponding estimator.

of iterations until convergence, the order of computations for a single iteration and also the
implementational details (such as the choice of software and efficiency of the code). Note that
the order of computations for a single iteration is the same for SPACE and CONCORD, and
lower than that of Glasso when n < p. It is likely that the significant increase in the wall clock
time for SPACE is due to implementational details and the larger number of iterations that are
required for convergence (or non-convergence, since we are stopping SPACE if the algorithm
does not satisfy the convergence criterion by 50 iterations).

We further compare the timing performance of CONCORD and Glasso for p = 3000 with
n = 600 and n = 900. (SPACE is not considered here because of the timing issues that were
mentioned above. These issues are amplified in this more demanding setting.) A p×p positive
definite matrix Ω (with p=3000) with 3% sparsity is used. Thereafter, 50 independent data sets
were generated, each consisting of n = 600 IID samples from an Np.0, Σ=Ω−1/ distribution.
The same exercise was repeated with n = 900. The timing results (averaged over the 100 data
sets) in the bottom part of Table 4 show wall clock times until convergence (in seconds) for
Glasso, CONCORD, SPACE1 and SPACE2 for various penalty parameter values. It can be
seen that, in both the n = 600 and the n = 900 cases, CONCORD was around 10 times faster
than Glasso.

In conclusion, these simulation results in this subsection illustrate that CONCORD is much
faster compared with SPACE and Glasso, especially in very high dimensional settings. We also
note that a downloadable version of the CONCORD algorithm has been developed in R and
is freely available from http://cran.r-project.org/web/packages/gconcord.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/77/4/803/7040591 by C

EU
 Library (inactive) user on 18 Septem

ber 2023



High Dimensional Partial Correlation Estimation 817

5.1.2. Model selection comparison
In this section, we perform a simulation study in which we compare the model selection per-
formance of CONCORD and Glasso when the underlying data are drawn from a multivariate
t-distribution (the reasons for not considering SPACE are provided in a remark at the end of
this section). The data are drawn from a multivariate t-distribution to illustrate the potential
benefit of using penalized regression methods (convex correlation selection) outside the Gaus-
sian setting.

For this study, using a similar approach to that in Peng et al. (2009), a p × p sparse posi-
tive definite matrix Ω (with p = 1000) with condition number 13:6 is chosen. Using this Ω for
each sample size n=200, n=400 and n=800, 50 data sets, each having an IID multivariate t-
distribution with mean 0 and covariance matrix Σ=Ω−1, are generated. We compare the model
selection performance of Glasso and CONCORD in this heavy-tailed setting with receiver oper-
ating characteristic (ROC) curves, which compare false positive rates FPR and true positive rates
TPR. Each ROC curve is traced out by varying the penalty parameter λ over 50 possible values.

We use the area under the curve, AUC, as a means to compare model selection performance.
This measure is frequently used to compare ROC curves (Fawcett, 2006; Friedman et al., 2010).
The AUC of a full ROC curve resulting from perfect recovery of zero–non-zero structure in Ω
would be 1. In typical real applications, FPR is controlled to be sufficiently low. We therefore
compare model selection performance when FPR is less than 15% (or 0.15). When controlling
FPR to be less than 0.15, a perfect method will yield AUC=0:15: Table 5 provides the median
of the AUCs (divided by 0.15 to normalize to 1), as well as the interquartile ranges IQR over
the 50 data sets for n=200, n=400 and n=800.

Table 5 shows that CONCORD has a much better model selection performance compared
with Glasso. Moreover, it turns out that CONCORD has a higher AUC than Glasso for every
single one of the 150 data sets (50 each for n = 200, 400, 800). We note that CONCORD not
only recovers the sparsity structure more accurately in general but also has much less variation.

Remark 5. We need to simulate 50 data sets for each of the three sample sizes n=200, 400, 800.
For each of these data sets, an algorithm must be run for 50 different penalty parameter val-
ues. In totality, this amounts to running the algorithm 7500 times. As we demonstrated in the
simulations in Section 5.1.1, when SPACE is run until convergence (or terminated after the
number of iterations is 50), then SPACE’s intractability makes it infeasible to run it 7500 times.
As an alternative, one could follow the approach of Peng et al. (2009) and stop SPACE after
running three iterations. However, given the possible non-convergence issues that are associated
with SPACE, it is not clear whether the resulting estimate is meaningful. Even so, if we fol-
low this approach of stopping SPACE after three iterations, we find that CONCORD outper-
forms SPACE1 and SPACE2. For example, if we consider the n = 200 case, then the median

Table 5. Median and IQR of area under the curve, AUC, for 50 simulations†

Solver Results for n = 200 Results for n = 400 Results for n = 800

Median IQR Median IQR Median IQR

Glasso 0.745 0.032 0.819 0.030 0.885 0.029
CONCORD 0.811 0.011 0.887 0.012 0.933 0.013

†Each simulation yields an ROC curve from which AUC is computed for FPR in
the interval [0, 0.15] and normalized to 1.
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AUC-value for SPACE1 is 0.779 (with IQR=0:054) and the median AUC-value for SPACE2 is
0.802 (with IQR=0:013).

5.2. Application to breast cancer data
We now illustrate the performance of the convex correlation selection method on a real data
set. To facilitate comparison, we consider data from a breast cancer study (Chang et al., 2005)
on which SPACE was illustrated. This data set contains expression levels of 24481 genes on 248
patients with breast cancer. The data set also contains extensive clinical data including survival
times.

Following the approach in Peng et al. (2009) we focus on a smaller subset of genes. This
reduction can be achieved by utilizing clinical information that is provided together with the
microarray expression data set. In particular, survival analysis via univariate Cox regression
with patient survival times is used to select a subset of genes that are closely associated with
breast cancer. A choice of p-value less than 0.0003 yields a reduced data set with 1107 genes.
This subset of the data is then mean centred and scaled so that the median absolute deviation
is 1 (as outliers seem to be present). Following a similar approach to that in Peng et al. (2009),
penalty parameters for each partial correlation graph estimation method were chosen so that
each partial correlation graph yields 200 edges.

Partial correlation graphs can be used to identify genes that are biologically meaningful
and can lead to gene therapeutic targets. In particular, there is compelling evidence from the
biomedical literature that highly connected nodes are central to biological networks (Carter
et al., 2004; Jeong et al., 2001; Han et al., 2004). For this, we focus on identifying the 10 most
highly connected genes (‘hub’ genes) identified by each partial correlation graph estimation
method. Table 6 in the on-line supplemental section L summarizes the top 10 hub genes ob-
tained by CONCORD, SYMLASSO, SPACE1 and SPACE2. That table also gives references
from the biomedical literature that place these genes in the context of breast cancer. These
references illustrate that most of the genes identified are indeed quite relevant in the study of
breast cancer. It can also be seen that there is a large level of overlap in the top 10 genes iden-
tified by the four methods. There are also, however, some notable differences. For example,
TPX2 has been identified only by CONCORD. Bibby et al. (2009) suggested that mutation of
Aurora A—a known general cancer-related gene—reduces cellular activity and mislocalization
due to loss of interaction with TPX2. Moreover, a recent extensive study by Maxwell et al.
(2011) (http://www.ncbi.nlm.nih.gov/pubmed/22110403) identifies a gene regula-
tory mechanism in which TPX2, Aurora A, RHAMM and BRCA1 play a key role. This finding
is especially significant given that BRCA1 (breast cancer type 1 susceptibility protein) is one of
the most well-known genes linked to breast cancer. We also remark that, if a higher number
of hub genes are targeted (like the top 20 or top 100 versus the top 10), CONCORD identifies
additional genes that have not been discovered by existing methods. However, identification of
even a single important gene can lead to significant findings and novel gene therapeutic targets,
since many gene silencing experiments often focus on one or two genes at a time.

We conclude this section by remarking that convex correlation selection is a useful addition
to the graphical models literature as it is competitive with other methods in terms of model
selection accuracy, timing and relevance for applications, and also gives provable convergence
guarantees.

5.3. Application to portfolio optimization
We now consider the efficacy of using CONCORD in a financial portfolio optimization set-
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ting where a stable estimate of the covariance matrix is often required. We follow closely the
exposition of the problem that was given in Won et al. (2013). A portfolio of financial in-
struments constitutes a collection of both risky and risk-free assets that are held by a legal
entity. The return on the overall portfolio over a given holding period is defined as the weighted
average of the returns on the individual assets, where the weights for each asset correspond to
its proportion in monetary terms. The primary objective of the portfolio optimization prob-
lem is to determine the weights that maximize the overall return on the portfolio subject to a
certain level of risk (or vice versa). In Markowitz mean variance portfolio theory, this risk is
taken to be the standard deviation of the portfolio (Markowitz, 1952). As noted in Luenberger
(1997) and Merton (1980), the optimal portfolio weights or the optimal allocation depends
critically on the mean and covariance matrix of the individual asset returns, and hence estima-
tion of these quantities is central to mean variance portfolio theory. As one of the goals in
this paper is to illustrate the efficacy of using CONCORD to obtain a stable covariance matrix
estimate, we shall consider the minimum variance portfolio problem, compared with the mean
variance portfolio optimization problem. The former requires estimating only the covariance
matrix and thus presents an ideal setting for comparing covariance estimation methods in the
portfolio optimization context (see Chan et al. (1999) for more details). In particular, we aim
to compare the performance of CONCORD with other covariance estimation methods, for
constructing a minimum variance portfolio. The performance of each of the methods and the
associated strategies will be compared over a sustained period of time to assess their respective
merits.

5.3.1. Minimum variance portfolio rebalancing
The minimum variance portfolio selection problem is defined as follows. Given p risky assets,
let rit denote the return of asset i over period t, which in turn is defined as the change in its
price over time period t, divided by the price at the beginning of the period. As usual, let Σt

denote the covariance matrix of the daily returns, rT
t = .r1t , r2t , : : : , rpt/. The portfolio weights

wT
k = .w1k, w2k, : : : , wpk/ denote the weight of asset i=1, : : : , p in the portfolio for the kth time

period. A long position or a short position for asset i during period k is given by the sign of wik,
i.e. wik > 0 for long and wik < 0 for short positions respectively. The budget constraint can be
written as 1Twk =1, where 1 denotes the vector of all 1s. Note that the risk of a given portfolio
as measured by the standard deviation of its return is simply .wT

k Σwk/1=2 .
The minimum variance portfolio selection problem for investment period k can now be for-

mally defined as

minimize wT
k Σwk subject to 1Twk =1: .17/

As definition (17) is a simple quadratic programme, it has an analytic solution given by wÅ
k =

.1TΣ−11/−1Σ−11. The solution depends on the theoretical covariance matrix Σ. In practice, the
parameter Σ must be estimated.

The most basic approach to the portfolio selection problem often makes the unrealistic
assumption that returns are stationary in time. A standard approach to dealing with the non-
stationarity in such financial time series is to use a periodic rebalancing strategy. In particular, at
the beginning of each investment period k = 1, 2, : : : , K, portfolio weights wk = .w1k, : : : , wpk/′
are computed from the previous Nest days of observed returns (Nest is called the ‘estimation
horizon’). These portfolio weights are then held constant for the duration of each investment
period. The process is repeated at the start of the next investment period and is often referred to
as ‘rebalancing’. More details of the rebalancing strategy are provided in on-line supplemental
section M.3.
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5.3.2. Application to the Dow Jones industrial average
We now consider the problem of investing in the stocks that feature in the Dow Jones industrial
average index. The Dow Jones industrial average is a composite blue chip index consisting of
30 stocks (note that the Kraft Foods data were removed in our analysis because of their limited
data span). (Kraft Foods were a component stock of the Dow Jones industrial average from
September 22nd, 2008, to September 13th, 2012. From September 14th, 2012, Kraft Foods were
replaced with the United Health Group.) Table 7 in the on-line supplemental section M.1 lists
the 29 component stocks that were used in our analysis.

Rebalancing time points were chosen to be every 4 weeks starting from February 18th, 1995, to
October 26th, 2012 (approximately 17 years), and are shown in Table 8 in the on-line supplemen-
tal section M.2. Start and end dates of each period are selected to be calendar weeks and need not
coincide with a trading day. The total number of investment periods is 231, and the number of
trading days in each investment period varies between 15 and 20 days. We shall compare the fol-
lowing five methods for estimating the covariance matrix: sample covariance, the graphical lasso
of Friedman et al. (2008), CONCORD, the condition-number-regularized estimator CondReg
of Won et al. (2013) and the Ledoit–Wolf estimator of Ledoit and Wolf (2004). We consider
various choices of Nest, in particular Nest ∈ {35, 40, 45, 50, 75, 150, 225, 300}, in our analysis.
Once a choice for Nest has been made, it is kept constant for all the 231 investment periods.

For l1-penalized regression methods, such as Glasso and CONCORD, a value for the penalty
parameter must be chosen. For the purposes of this study, cross-validation was performed within
each estimation horizon to minimize the residual sum of squares from out-of-sample prediction
averaged over all stocks. Further details are given in the on-line supplemental section M.4. The
condition-number-regularized and Ledoit–Wolf estimators each use different criteria to perform
cross-validation. The readers is referred to Won et al. (2013) and Ledoit and Wolf (2004) for
details on the cross-validation procedure for these methods. For comparison with Won et al.
(2013), we use the following quantities to assess the performance of the five minimum variance
rebalancing strategies: the realized return, realized risk, realized Sharpe ratio SR, turnover, size
of the short side and normalized wealth growth. Precise definitions of these quantities are given
in the on-line supplemental section M.5.

Table 6 gives the realized Sharpe ratio of all MVR strategies for the various choices of estima-
tion horizon Nest. The column DJIA stands for the passive index tracking strategy that tracks

Table 6. Realized Sharpe ratio of various investment strategies corresponding
to different estimators with various Nest†

Nest Ratios for the following methods:

Sample Graphical CONCORD CondReg Ledoit– DJIA
glasso Wolf

35 0.357 0.489 0.487 0.486 0.470 0.185
40 0.440 0.491 0.490 0.473 0.439 0.185
45 0.265 0.468 0.473 0.453 0.388 0.185
50 0.234 0.481 0.482 0.458 0.407 0.185
75 0.379 0.403 0.475 0.453 0.368 0.185

150 0.286 0.353 0.480 0.476 0.384 0.185
225 0.367 0.361 0.502 0.494 0.416 0.185
300 0.362 0.359 0.505 0.488 0.409 0.185

†The maximum annualized Sharpe ratios for each row, and others within 1% of this
maximum, are highlighted in italics.
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Fig. 2. Normalized wealth growth after adjusting for transaction costs (0.5% of the principal) and borrowing
costs (interest rate of 7% annualized percentage rate) with Nest D225: , CONCORD; , CondReg;

, graphical lasso; , Ledoit–Wolf; , Sample; , Dow Jones industrial average

the Dow Jones industrial average index. It is clear from Table 6 that CONCORD performs
uniformly well across different choices of estimation horizons.

Fig. 2 shows normalized wealth growth over the trading horizon for the choice Nest = 225.
A normalized wealth growth curve for another choice Nest =75 is provided in the on-line sup-
plemental section M.5. These plots demonstrate that CONCORD is either very competitive or
better than leading covariance estimation methods.

We also note that trading costs that are associated with CONCORD are the lowest for most
choices of estimation horizons and are very comparable with CondReg for Nest ={35, 40} (see
Table 12 in the on-line supplemental section M.5). Moreover, CONCORD also has by far the
lowest short side for most choices of estimation horizons. This property reduces the dependence
on borrowed capital for shorting stocks and is also reflected in the higher normalized wealth
growth.

6. Large sample properties

In this section, large sample properties of the CONCORD algorithm, estimation consistency and
oracle properties under suitable regularity conditions are investigated. We adapt the approach
in Peng et al. (2009) with suitable modifications. Now let the dimension p=pn vary with n so
that our treatment is relevant to high dimensional settings. Let {Ω̄n}n�1 denote the sequence
of true inverse covariance matrices. As in Peng et al. (2009), for consistency, we assume the
existence of suitably accurate estimates of the diagonal entries and consider the accuracy of the
estimates of the off-diagonal entries obtained after running the CONCORD algorithm with
diagonal entries fixed. In particular, the following assumption is made.

Assumption 1 (accurate diagonal estimates). There are estimates {α̂n,ii}1�i�pn such that, for
any η > 0, there is a constant C> 0 such that
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max
1�i�pn

|α̂n,ii − ω̄ii|�C
√{ log.n/

n

}
,

holds with probability larger than 1−O.n−η/.

The theory that follows is valid when the estimates {α̂n,ii}1�i�pn and the estimates of the off-
diagonal entries are obtained from the same data set. When lim supn→∞ pn=n < 1, Peng et al.
(2009) showed that the diagonal entries of S−1 can be used as estimates of the diagonal entries
of Ω. However, no such general recipe was provided in Peng et al. (2009) for the case pn > n.
Nevertheless, establishing consistency in the above framework is useful, as it indicates that the
estimators obtained are statistically well behaved when n and p both increase to ∞.

For vectors ωo ∈Rpn.pn−1/=2 and ωd ∈R
pn+ , the notation Ln.ωo, ωd/ stands for Lcon=n (Lcon is

defined in expression (8)) evaluated at a matrix with off-diagonal entries ωo and diagonal entries
ωd. Let ω̄o

n = ..ω̄n,ij//1�i<j�pn denote the vector of off-diagonal entries of Ω̄n, and α̂pn ∈R
pn+ de-

notes the vector with entries {α̂n,ii}1�i�pn . Let An denote the set of non-zero entries in the vector
ω̄o

n, and let qn =|An|. Let Σ̄n = Ω̄−1
n denote the true covariance matrix for every n�1. The fol-

lowing standard assumptions are required.

Assumption 2 (bounded eigenvalues). The eigenvalues of Ω̄n are bounded below by λmin > 0
and bounded above by λmax <∞ uniformly for all n.

Assumption 3 (sub-Gaussianity). The random vectors Y1, : : : , Yn are IID sub-Gaussian for
every n�1, i.e. there is a constant c>0 such that, for every x∈Rpn , E[exp .x′Yi/]�exp.cx′Σ̄nx/

and, for every i, j>0, there exists ηj >0 such that E[exp{t.Y i
j/2}]<K whenever |t|<ηj. Here K

is independent of i and j.

Assumption 4 (incoherence condition). There exists δ < 1 such that, for all .i, j/ �∈An,

|L̄′′
ij,An

.Ω̄n/ L̄′′
An,An

.Ω̄n/−1sgn.ω̄o
An

/|� δ,

where, for 1� i, j, t, s�pn satisfying i<j and t< s,

L̄′′
ij,ts.Ω̄n/ :=EΩ̄n

[.L′′
n.Ω̄n//ij,ts]= Σ̄n,js1{i=t} + Σ̄n,it1{j=s} + Σ̄n,is1{j=t} + Σ̄n,jt1{i=s}:

Conditions analogous to assumption 4 have been used in Zhao and Yu (2006), Peng et al.
(2009) and Meinshausen and Bühlmann (2006) to establish high dimensional model selection
consistency. In the context of lasso regression, Zhao and Yu (2006) showed that such a condition
(which they referred to as an irrepresentable condition) is almost necessary and sufficient for
model selection consistency and they provided some examples when this condition is satisfied.
We provide some examples of situations where condition 4 is satisfied, along the lines of Zhao
and Yu (2006), in the on-line supplemental section P.

Define θ̄
o
n = ..θ̄n,ij//1�i<j�pn ∈Rpn.pn−1/=2 by θ̄n,ij = ω̄n,ij=

√
.α̂n,iiα̂n,jj/ for 1� i<j �pn. Let

sn =min.i,j/∈An
ω̄n,ij. The assumptions above can be used to establish the following theorem.

Theorem 2. Suppose that assumptions 1–4 are satisfied. Suppose that pn = O.nκ/ for some
κ> 0, qn =o[

√{n= log.n/}],
√{qn log.n/

/
n}=o.λn/, λn

√{n= log.n/}→∞, sn=
√

qnλn →∞
and

√
qnλn →0, as n→∞. Then there is a constant C such that, for any η > 0, the following

events hold with probability at least 1−O.n−η/.

(a) There is a minimizer ω̂o
n = ..ω̂n,ij//1�i<j�pn of Qcon.ωo, α̂n/.

(b) Any minimizer ω̂o
n of Qcon.ωo, α̂n/ satisfies ‖ω̂o

n − ω̄o
n‖2 � C

√
qnλn and sgn.ω̂n,ij/ =

sgn.ω̄n,ij/, ∀1� i<j �pn:
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The proof of theorem 2 is provided in the on-line supplemental section N.

7. Conclusion

This paper proposes a novel regression-based graphical model selection method that aims to over-
come some of the shortcomings of current methods, but at the same time to retain their strengths.
We first placed the highly useful SPACE method in an optimization framework, which in turn
allowed us to identify SPACE with a specific objective function. These and other insights led to
the formulation of the CONCORD objective function. It was then shown that the CONCORD
objective function is comprised of quadratic forms, is convex and can be regarded as a penalized
pseudolikelihood. A co-ordinatewise descent algorithm that minimizes this objective, via closed
form iterates, was proposed and subsequently analysed. The convergence of this co-ordinatewise
descent algorithm was established rigorously, thus ensuring that CONCORD leads to well-
defined symmetric partial correlation estimates that are always computable—a guarantee that
is not available with popular regression-based methods. The large sample properties of CON-
CORD establish consistency of the method as both the sample size and dimension tend to∞. The
performance of CONCORD was also illustrated via simulations and was shown to be compe-
titive in terms of graphical model selection accuracy and timing. CONCORD was then applied
to a biomedical data set and to a finance data set, leading to novel findings. Last, but not least, a
framework that unifies all pseudolikelihood methods was established, yielding important in-
sights.

Given the attractive properties of CONCORD, a natural question that arises is whether
one should move away from penalized likelihood estimation (such as the graphical lasso) and
rather use only pseudolikelihood methods. We note that CONCORD is attractive over the Glasso
algorithm for several reasons: firstly, it does not assume Gaussianity and is hence more flexible.
Secondly, thecomputational complexityper iterationofCONCORDis lower thanthatofGlasso.
Thirdly, CONCORD is faster (in terms of wall clock time) than Glasso by an entire order of mag-
nitude in higher dimensions. Fourthly, CONCORD delivers better model selection performance.
It is, however, important to note that, if there is a compelling reason to assume multivariate Gaus-
sianity (which some applications may warrant), then using both Glasso and CONCORD can
potentially be useful for affirming multivariate associations of interest. In this sense, the two
classes of method could be complementary in practice.
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