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A
s the biology of information process-
ing in the living cell shifts from the
study of single signal transduction

pathways to increasingly complex regula-
tory networks, mathematical models
become indispensable tools. Detailed pre-
dictive models of large genetic networks
could revolutionize how researchers study
complex diseases, yet such models are not
yet within reach. One reason is that experi-
mental data for large
genetic systems are in-
complete; another is that
large genetic systems are
difficult to model. Extra-
polating the standard dif-
ferential equations model
of a single gene (with its
several kinetic parame-
ters) to large systems
would render the model
prohibitively complicated.
One possible way to sim-
plify such models would
be to f ind a “coarse-
grained” level of descrip-
tion for genetic networks;
that is, to focus on the sys-
tem behavior of the net-
work while neglecting
molecular details wher-
ever possible (see the fig-
ure). Such an approach
exists for other f ields of
science—for example, the
concept of molecular
orbitals in organic chem-
istry, which mercifully
spares us from the details
of the underlying quantum
physics. On page 496 in
this issue, Brandman et al.
(1) points to the possibil-
ity of simplifying large
genetic network models.
Using a standard differen-

tial equations approach, the authors find
that the intricate internal dynamics of a fre-
quent cellular subcircuit exhibits a simple
bistable “ON/OFF” behavior, and thus
could be modeled by something much sim-
pler than differential equations—something
as simple as a switch. 

A f irst level of coarse-graining in
genetic regulation already exists in the
standard approach of modeling protein and

RNA concentrations with specific equa-
tions called “ordinary” differential equa-
tions. These equations nicely summarize
the molecular interactions that make up the
cellular machinery that regulates the activ-
ity of a gene. When at least a few tens of
molecules are involved in regulating a
gene, details of the interactions can usually
be neglected, and interaction rates can be
used instead of tracking the single molecu-
lar binding events (2). 

With large networks involving thousands
of regulatory genes (genes that encode pro-
teins that regulate other genes), the number
of differential equations needed to describe
the system can become huge. The sheer
number of parameters (such as decay rates,
production rates, and interaction strengths)
in this mathematical model poses a chal-
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lenge, both for experiment and theory. A cen-
tral question is what the right level of
description is when constructing quantitative
models of large or even systemwide genetic
networks (see the figure). Is coarse-graining
of genetic network models possible? 

A number of general building blocks
identified in genetic networks at least indi-
cate that robust simplified models are pos-
sible. Modules such as autoregulatory exci-
tatory (positive) feedback loops (which can
convert a transient signal into a sustained
signal and thus serve as “storage” devices),
inhibitory feedback loops (which suppress
instability due to noise), or feed-forward
loops (which may enhance responsiveness
of a gene) represent different kinds of
robust switching elements. Brandman et al.
describe another such building block—the
dual positive-feedback loop, which is fre-
quently found in subnetworks of larger cel-
lular and genetic networks. But why would
cells have evolved two positive feedback
loops when one is enough to create a
switch? Brandman et al. find that the com-
bination of the two loops can make genetic
switching faster and, at the same time,
reduce signal noise. A slow loop creates
robustness in the signal, whereas a fast loop
allows for switching speed. Given the quite
complex cellular machinery that is needed
to run this dual positive feedback circuit
with biochemical means, its dynamic
behavior is intriguingly simple. It functions
as a particularly robust, yet fast switch that
is reminiscent of the robustly designed
electronic building blocks used to build
modern computers. 

This observation provides support for
discrete models of genetic networks in
which genes are modeled as switchlike
dynamic elements that are either ON or
OFF. The f irst such models, generated
about 36 years ago, were random networks
of discrete dynamical elements, as few data
about regulatory genetic networks were
available at the time (3). These models were
long considered to be merely a speculative
analogy. However, recent advances in mod-
eling combined with the first opportunities
to validate genetic network models with
data from living cells show that simplified
network models, such as those representing
a regulatory gene as a binary (ON/OFF)
switch, can indeed predict the overall
dynamical trajectory of a biological genetic
circuit. For example, the trajectory of the
segment polarity network in the fly
Drosophila melanogaster has been pre-
dicted solely on the basis of discrete binary
model genes (4). Similarly, a dynamic
binary model of the genetic network that
controls the yeast cell cycle was con-
structed (5). In both systems, the dynamics
converge to so-called attractors (states or

sequences of states of the genes) and for
these, the models match the biological
dynamics. These dynamical attractors seem
to depend not so much on the details of the
kinetic constants, as on the circuit wiring.
Insensitivity to biochemical kinetic param-
eters indicates that for understanding the
dynamics of these circuits, it’s their wiring
that is most important (6). This seems to be
why large genetic networks can be repre-
sented as networks of discrete dynamic
elements, without the tuning of parame-
ters. Simplif ied models on even larger
scales are encouraged. 

Modeling of large cellular networks is
often hampered by incomplete knowledge
of the full circuitry, despite a wealth of data.
An example of how simplification of the
dynamics of single elements enables us to
gain valuable information about a system’s
function is presented in the recent article by
Ma’ayam et al. (7). Here, discrete “pseudo-
dynamics” of binary states simply percolate
through the known part of a 1500-node
mammalian cellular network and give a
rough but informative estimate of the prop-
erty of the regulatory information flow
through the system. The thousands of
parameters required to generate a standard
differential equations model of all the rele-
vant biochemical interactions has been neg-
lected here in favor of a statistical perspec-
tive that provides valuable information
about the global architecture of a cellular
network. It is not a direct representation of

the biochemical dynamics and does not
allow a detailed dynamic simulation of the
network. However, it is an analog of the
potential propagation of a signal and there-
fore useful to determine the global signal-
ing structure of an overall network. This
approach is error tolerant and gives a
robust picture of the overall global modular
structure of a network. 

The simple dynamics of the building
blocks points to an interesting perspective
for our further understanding of genetic
networks. Distinguishing between the
robust effective dynamics of a genetic or
regulatory switch and the biochemical
means to practically run it shows that, to
understand the system, we do not have to
retrace all the details of the biochemistry.
Characterizing the circuit wiring seems to
be the most important consideration, and
when going “dynamic,” a clever way to
throw away details may be the most impor-
tant part of model building. 
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A
round half of the drugs currently in
clinical use are of natural product
origin (1, 2). Despite this statistic,

pharmaceutical companies have embraced
the era of combinatorial chemistry,
neglecting the development of natural
products as potential drug candidates in
favor of high-throughput synthesis of large
compound libraries (3). Perhaps it is time
to reassess this prevailing dogma for chas-
ing quantity over quality. 

Cancer chemotherapy, in particular,
presents an ideal opportunity for natural
product–inspired drug discovery and devel-
opment. Unfortunately, many of the most

promising natural lead compounds are
available only in extremely small quanti-
ties, especially those from marine organ-
isms such as sponges. The reluctance of
industry to pursue such bioactive natural
products as potential drugs lies primarily in
the perceived supply problem. This leaves
organic synthesis as a key option for sourc-
ing these important drug candidates for pre-
clinical and clinical studies. However, the
academic-style approach to “hot target
molecules” usually results in lengthy syn-
thetic routes owing to their often exquis-
itely complicated architectures, with long
development times, low overall yields, and
impracticality of scale-up and provision of
diverse structural analogs.

An alternative approach to drug discov-
ery, which has been embraced by the phar-
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