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N E T W O R K  S C I E N C E

Generative hypergraph clustering: From blockmodels 
to modularity
Philip S. Chodrow1*, Nate Veldt2, Austin R. Benson3

Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task 
in network analysis is the identification of closely related or densely interconnected nodes. We propose a proba-
bilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approxi-
mate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular 
modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph 
community detection method, and a faster, specialized variant in which edges are expected to lie fully within 
clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and 
can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order 
structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in 
copurchasing behavior, and hotel locations from web browsing sessions.

INTRODUCTION
Graphs are a fundamental abstraction for complex relational systems 
throughout the sciences (1–3). A graph represents components of a 
system by a set of nodes and represents interactions or relationships 
among these components using edges that connect pairs of nodes. Much 
of the structure in complex data, however, involves higher-order inter-
actions and relationships between more than two entities at once (4–9). 
Hypergraphs are now a burgeoning paradigm for modeling these and 
many other systems (10–13). A hypergraph still represents the com-
ponents by a set of nodes, but the edges (often called hyperedges) may 
connect arbitrary numbers of nodes. A graph is a special case of a 
hypergraph, in which each edge connects exactly two nodes.

Graph clustering is a fundamental task in network science that 
seeks to describe large graphs by dividing their nodes into closely 
related or interconnected groups (also called clusters or communities) 
(5, 10, 14, 15). Clustering methods for hypergraphs have applications 
in parallel computation (16, 17), circuit design (18), image segmen-
tation (19), semisupervised learning (20, 21), and higher-order net-
work analysis of gene expression (22), food webs (23), and online 
social communities (24, 25).

A well-established graph clustering approach is to model the graph 
as a sample from a probabilistic generative model, in which case the 
clustering task can be recast as a statistical inference problem (26–32). 
While generative modeling is a mainstay in graph clustering, gener-
ative techniques for hypergraphs are largely lacking. While a small 
number of generative models of clustered hypergraphs have been 
proposed (33–36), these models typically generate hypergraphs with 
edges of only one size. With a recent exception (36), these models 
also do not model degree heterogeneity between nodes. Hetero-
geneity in edge size and node degree are both key features of empirical 
data (6), and their omission limits the applicability of many of these 
models for practical data analysis. An alternative to generative hyper-
graph modeling is to transform the hypergraph into a dyadic graph 
via clique expansion, where a dyadic edge connects any pair of nodes 

that appear together in some hyperedge (5, 20). While this enables 
the use of a wide array of existing models and algorithms for graphs, 
the higher-order structure is lost (37), and generative models of the 
resulting dyadic graph may rely on explicitly violated independence 
assumptions. Recently, nongenerative approaches based on the pop-
ular modularity clustering objective for graphs (38) have been pro-
posed for hypergraphs (39–41), although their lack of connection to 
a generative model limits their interpretability.

Another approach to generative clustering is to use the represen-
tation of a hypergraph as a bipartite graph and apply a generative 
model [e.g., (42–44)] to the latter representation. This approach, 
while appropriate in many datasets, involves a strong assumption: 
The memberships of any two nodes in a given hyperedge are inde-
pendent, conditional on the model parameters. This assumption is 
natural for certain classes of data. For example, consider an event 
coattendance network, with nodes representing music enthusiasts 
and hyperedges representing concerts. Node membership in a hyper-
edge corresponds to attendance at the specified event. To a reasonable 
approximation, the decision of two fans to attend a given concert 
may indeed be independent, conditioned on the popularity of the 
performers, the location of the venue, and so on. In other datasets, 
however, the conditional independence assumption is explicitly vi-
olated. Multiway social interaction networks give one important class 
of examples. Interactions such as gossip, for instance, normally take 
place only between trusted individuals. The presence of a single un-
invited outsider may entirely prevent the interaction from taking 
place. The “all-or-nothing” (AON) structure of these interactions is 
an important violation of the conditional independence assumptions 
made by most bipartite generative models. These examples high-
light that the task of matching assumptions to higher-order data is 
an ongoing challenge, for which we benefit from a diversity of dis-
tinct tools.

Here, we propose a generative approach to hypergraph cluster-
ing based on a degree-corrected hypergraph stochastic blockmodel 
(DCHSBM). This model generates clustered hypergraphs with het-
erogeneous degree distributions and hyperedge sizes. We outline an 
approximate coordinate-ascent maximum likelihood estimation 
scheme for fitting this model to hypergraph data and show that one 
stage of this scheme generalizes the well-studied modularity objec-
tive for graphs. We derive accompanying Louvain algorithms for 
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this class of modularity-like objectives, which are highly scalable in 
an important special case. We show computationally that hypergraph 
clustering methods are able to detect planted clusters in regimes in 
which graph-based methods necessarily fail because of known the-
oretical limits. We also show that, in datasets with appropriately 
matched higher-order structure, our generative hypergraph techniques 
are able to recover clusters correlated to metadata at higher rates 
than graph-based techniques. Our results highlight the importance 
of matching generative models to datasets and point toward a num-
ber of directions for further work in higher-order network science.

MATERIALS AND METHODS
The DCHSBM
The degree-corrected stochastic blockmodel (DCSBM) is a generative 
model of graphs with both community structure and heterogeneous degree 
sequences (29). We now extend this model to the case of hypergraphs.

For our model, let n be the number of nodes in a hypergraph. 
Each node i is assigned to one of ​​ℓ ̄ ​​ groups. We let ​​z​ i​​  ∈  [​ℓ ̄ ​ ] = {1, 2, … , ​ℓ ̄ ​}​ 
denote the group assignment of node i and collect these assign-
ments in a vector ​z  ∈ ​ [​ℓ ̄ ​]​​ n​​. As in the dyadic DCSBM, each node i 
is assigned a parameter i governing its degree, and we collect these 
parameters in a vector  ∈ ℝn. Let ℛ represent the set of unordered 
node tuples, so that each R ∈ ℛ is a set of nodes representing the 
location of a possible hyperedge (following the standard choice for 
the DCSBM in graphs, we allow ℛ to include node tuples with re-
peated nodes). Let zR denote the vector of cluster labels for nodes in 
a given tuple R, and R the vector of degree parameters.

We use an affinity function  to control the probability of placing 
a hyperedge at a given node tuple R, which depends on the group 
memberships of the nodes in R. Formally,  maps the group assign-
ments zR to a non-negative number. If (zR) is large, then there is a 
higher probability that a hyperedge forms between the nodes in 
R. In our model, the number of hyperedges placed at R ∈ ℛ is dis-
tributed as aR ∼ Poisson(bR(R)(zR)), where bR denotes the num-
ber of distinct ways to order the nodes of R and (R) = ∏i ∈ Ri is the 
product of degree parameters. The probability of realizing a given 
value aR is then

	​ P(​a​ R​​ | z, Ω, 𝛉 ) = ​ ​e​​ −​b​ R​​π(​𝛉​ R​​)Ω(​z​ R​​)​ ​(​b​ R​​ π(​𝛉​ R​​ ) Ω(​z​ R​​ ) )​​ ​a​ R​​​   ──────────────────  ​a​ R​​ ! ​​	  (1)

This edge generation process has the following intuitive interpretation: 
For each of bR possible orderings of nodes in R, we attempt to place a 
Poisson ((R)(zR)) number of hyperedges on this tuple. The re-
sult is a weighted hyperedge on the unordered tuple R, whose weight 
can be any non-negative integer. This is a helpful modeling feature, 
as many empirical hypergraphs contain multiple hyperedges between 
the same set of nodes. Even in hypergraph datasets where we only 
know the presence or absence of hyperedges (but no weights), the 
Poisson-based model serves as a computationally convenient ap-
proximation to a Bernoulli-based model. The probability of realizing 
a given hyperedge set A = (aR)R ∈ ℛ is then just the product of prob-
abilities over each R ∈ ℛ.

Estimation of degree and affinity parameters
There are many methods for inference in general stochastic block-
models (SBMs) and their relatives, including variational coordinate 
ascent (28), variational belief propagation (45, 46), and Markov Chain 
Monte Carlo (26, 47). We perform approximate maximum likelihood 

inference via coordinate ascent. We do so to exploit a recent con-
nection between maximum likelihood inference in the DCSBM and the 
popular modularity objective for graph clustering (48). Our coordi-
nate ascent framework, in which we alternate between estimating pa-
rameters and node labels, is a close relative of expectation-maximization 
(EM) algorithms for blockmodel inference (45). Standard versions of 
EM construct “soft” clusters, in which each node is given a weighted 
assignment in every possible cluster. “The” cluster for a given node 
is often taken to be the cluster in which the node has largest weight. 
In contrast, our approach generates “hard” clusters in which each 
node belongs to exactly one cluster. Profile likelihood methods offer 
an alternative framework for maximum likelihood inference (49), 
and their development for hypergraphs is another promising ave-
nue of future work.

In the maximum likelihood framework, we learn estimates ​​   z​​ of 
the node labels, ​​  ​​ of the affinity function, and ​​  ​​ of the degree pa-
rameters by solving the optimization problem

	​​    z​, ​  Ω​, ​  𝛉​  ≡ ​ argmax​ 
z,Ω,𝛉

​ ​  P(A | z, Ω, 𝛉)​	 (2)

where A is a given dataset represented by a collection of (integer-
weighted) hyperedges. As usual, it is easier to work with the log-likelihood, 
which has the same local optima. The log-likelihood is

	​ ℒ(z, Ω, 𝛉) = ​ ∑ 
R∈ℛ

​​​log P(​a​ R​​ | z, Ω, 𝛉) = Q(z, Ω, 𝛉 ) + K(𝛉 ) + C​	 (3)

where

	​ Q(z, , ) ≡ ​ ∑ 
R∈ℛ

​​​ [ ​a​ R​​ log (​z​ R​​ ) − ​b​ R​​ (​​ R​​ ) (​z​ R​​ ) ]​	 (4)

                         ​K( ) ≡ ​ ∑ 
R∈ℛ

​​​ ​a​ R​​ log (​​ R​​)​	 (5)

                             ​C  ≡ ​ ∑ 
R∈ℛ

​​​ [ ​a​ R​​ log ​b​ R​​ − log ​a​ R​​ !] ​	 (6)

The first term Q(z, , ) is the only part of the log-likelihood that 
depends on the group assignments z and affinity function . The 
second term depends on , while the third term depends only on the 
data A and can be disregarded for inferential purposes.

In the coordinate ascent approach to maximum likelihood, we 
alternate between two stages. In the first stage, we assume a current 
estimate ​​   z​​ and obtain new estimates of  and  by solving

	​​   ​, ​  ​  = ​ argmax​ 
,

​ ​  ℒ(​   z​, , ) ​	 (7)

The resulting pair ​​  ​, ​  ​​ can be viewed as maximum likelihood esti-
mates, conditioned on the current estimate ​​   z​​ of the label vector z. In 
the second stage, we assume current estimates ​​  ​​ and ​​  ​​ and obtain a 
new estimate of z by solving

	​​    z​  = ​ argmax​ 
z
​ ​  ℒ(z, ​  ​, ​  ​) ​	 (8)

We alternate between these two stages until convergence.
There are several identifiability issues that must be addressed. 

First, permuting the group labels in z and  does not alter the value 
of the likelihood. We therefore impose an arbitrary order on group 
labels. Second, the number of possible groups ​​ℓ ̄ ​​ can, in principle, be 
larger than the number of groups present in z. Such a case would 
correspond to the presence of groups that are statistically possible 

 on July 13, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Chodrow et al., Sci. Adv. 2021; 7 : eabh1303     7 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 13

but empty in the given data realization. While other treatments are 
possible, we choose to disregard empty groups and treat ​​ℓ ̄ ​​ as equal 
to the number of distinct labels in an estimate of z. A final form of 
unidentifiability relates to the scales of  and . For a fixed  and , 
we can construct ′ ≠  and ′ ≠  such that ℒ(z, , ) = ℒ(z, ′, 
′) (Supplementary Appendix A). To enforce identifiability, we must 
therefore place a joint normalization condition on either  or . We 
choose to constrain  such that

	​​  ∑ 
i=1

​ 
n
 ​​ ​θ​ i​​ δ(​z​ i​​, ℓ ) = vol(ℓ ) ,  ℓ  =  1, … , ​   ℓ​​	 (9)

where ​vol(ℓ ) = ​∑ i=1​ n  ​​ ​d​ i​​ (​z​ i​​, ℓ)​ and di is the (weighted) number of 
hyperedges in which node i appears. In this expression and below, 
 is an indicator function with value 1 if all its inputs are equal and 
value 0 otherwise.

The usefulness of eq. (9) is that, when z is known or estimated, 
the conditional maximum likelihood estimates ​​  ​​ and ​​  ​​ in eq. (7) take 
simple, closed forms. First, for a fixed label vector z, when using the 
normalization (9), the maximum likelihood estimate for  is (see 
Supplementary Appendix B)

	​​   ​ = d​	 (10)

Second, conditioned on z, if  takes constant value  on some set Y 
of unordered tuples of labels, then the maximum likelihood esti-
mate for  is (see Supplementary Appendix C)

	​​   ω​  = ​ 
​∑ y∈Y​ ​​ ​∑ R∈ℛ​ ​​ ​a​ R​​ δ(​z​ R​​, y)

  ─────────────  
​∑ y∈Y​ ​​ ​∏ y∈y​ ​​ vol(y)

 ​​	  (11)

In full generality, we can estimate one such  for every possible label 
arrangement in the data. Later, we will make natural restrictions on . 
Although eq. (10) assumes that z was fixed, it is not necessary to know 
z to form the estimate ​​  ​​. However, forming the estimate ​​  ​​ via eq. 
(11) requires that we know or estimate z. It is therefore important to 
remember that ​​  ​​ is not a globally optimal estimate, but rather a locally 
optimal estimate conditioned on the currently estimated group labels.

The formula (11) could also be inserted directly into the full like-
lihood maximization problem (2), eliminating the parameters corre-
sponding to  and producing a lower-dimensional profile likelihood, 
which could then in principle be optimized directly. This approach 
has been successful for dyadic blockmodels (49), and the develop-
ment of similar methods for hypergraph blockmodels would be of 
considerable interest. The advantage of our coordinate ascent frame-
work is that we are able to develop fast heuristics for solving problem 
(8), by generalizing widely used algorithms for graph clustering 
hypergraph maximum likelihood Louvain, below. Solving problem 
(7) in our framework can also be interpreted as evaluating the 
profile likelihood for a fixed cluster vector z, highlighting the re-
lationship between these approaches.

We now turn to the problem of inferring the label vector z. This 
problem leads naturally to a class of modularity-type objectives for 
hypergraph clustering.

Symmetric modularities
Our results from the previous section imply that the estimated de-
gree parameter ​​  ​​ and piecewise constant affinity function ​​  ​​ can be 
efficiently estimated in closed form, provided an estimate of z. This 
provides a solution to the first stage (7) of coordinate ascent. We 
now discuss the second stage (8). From eq. (3), it suffices to optimize 

Q with respect to z. To do so, it is helpful to impose some addition-
al structure on ​​  ​​.

We obtain an important class of objective functions by stipulating 
that  is symmetric with respect to permutations of node labels. In 
this case, (zR) depends not on the specific labels zR in a given node 
tuple R but only on the number of repetitions of each. Statistically, 
the corresponding DCHSBM generates hypergraphs in which all 
groups are statistically identical, conditioned on the degrees of their 
constituent nodes. Symmetric affinity functions thus give a flexible 
generalization of the planted partition SBM (50, 51) to the setting of 
hypergraphs.

Define the function (z) = p, where pj is the number of entries of 
z in the jth largest group in z, with ties broken arbitrarily. For exam-
ple, if z = (1,1,4,1,2,3,2), then p = (3,2,1,1). We call p a partition 
vector. The symmetry assumption implies that  is a function of zR 
only through p = (zR). Accordingly, we abuse notation by writing 
(p) ≡ (z) when p = (z).

We now define generalized cuts and volumes corresponding to a 
possible partition vector p for tuples of k nodes

	​​ cut​ p​​(z) ≡ ​  ∑ 
R∈​ℛ​​ k​

​​​ ​a​ R​​ δ(p, ϕ(​z​ R​​))​	 (12)

	           ​v ​ol​ p​​(z ) ≡ ​   ∑ 
y∈​[​   ℓ​]​​ k​

​​​δ(p, ϕ(y ) ) ​ ∏ 
y∈y

​​​vol(y)​	 (13)

where ℛk is the subset of tuples in ℛ consisting of k nodes. The 
function cutp(z) counts the number of edges that are split by z into 
the specified partition p, while the function volp(z) is a sum-product 
of volumes over all grouping vectors y that induce partition p. Let 
𝒫 be the set of partition vectors on sets up to size ​​k ̄ ​​, the maximum 
size of hyperedges. We show in Supplementary Appendix D that the 
symmetric modularity objective can then be written as

	​​ Q​(​​z, Ω, d​)​​  = ​  Σ​ 
p∈P

​​​[​​ ​cut​ p​​(z) log Ω(p) − ​vol​ p​​(z) Ω(p)​]​​​​	 (14)

For a partition vector p for tuples of k nodes, direct calculation of 
volp(z) is a summation of ​​​   ℓ​​​ k​​ elements, which can be impractical 
when either ​​   ℓ​​ or k are large. We show in Supplementary Appendix 
E, however, that it is possible to efficiently evaluate these sums via a 
combinatorial identity. We also give a formula for updating volume 
terms volp(z) when a candidate labeling is modified.

The objective function (14) is related to a recent formulation of 
the multiway hypergraph cut problem (52). They formulate the 
hypergraph cut objective in terms of splitting functions, which asso-
ciate penalties when edges are split between two or more clusters. One 
then aims to minimize the sum of penalties subject to constraints that 
certain nodes must not lie in the same cluster. Symmetric affinity func-
tions in our framework correspond to signature-based splitting 
functions in their terminology. Table 1 lists four of many families of 
affinity functions.

The All-Or-Nothing (AON) affinity function distinguishes only 
whether a given edge is contained entirely within a single cluster. 
This affinity function is especially important for scalable computa-
tion, and we discuss it further below. The Group Number (GN) affinity 
depends only on the number of distinct groups represented in an 
edge, regardless of the number of incident nodes in each one. Spe-
cial cases of the GN affinity arise frequently in applications. When 
f(‖p‖0, k) = exp (‖p‖0 − 1), the first term of the modularity objective 
corresponds to a hyperedge cut penalty that is known in the scientific 
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computing literature as “connectivity − 1” (53), the K–1 metric (54), 
or the boundary cut (55). It has also been called fanout in the data-
base literature (17). The related Sum of External Degrees penalty 
(54) is also a special case of the GN affinity. The Relative Plurality 
(RP) affinity considers only the relative difference between the size 
of the largest group represented in an edge and the next largest 
group. This rather specialized affinity function is especially appro-
priate in contexts where groups are expected to be roughly balanced, 
as we find, for example, in party affiliations in congressional com-
mittees. Last, the Pairwise affinity counts the number of pairs of nodes 
within the edge whose clusters differ. While this affinity function uses 
similar information to that used in dyadic graph models, there is no 
immediately apparent equivalence between any dyadic random graph 
and a DCHSBM with the Pairwise affinity function. There are many 
more symmetric affinity functions; see table 3 of (52) for several other 
splitting functions that can be used to define affinities.

An important subtlety has been recently raised (56) concerning 
the relationship between blockmodels and modularity derived in (48). 
This consideration also applies to our derivation of eq. (14) above and 
eq. (15) below. We derived the conditional maximum likelihood es-
timates (10) and (11) of  and  under the assumption of a general, 
unconstrained affinity function . It is not guaranteed that these same 
estimates maximize the likelihood when additional constraints—
such as the symmetry constraint (z) = ((z))—are imposed. In 
the case of dyadic graphs, eqs. (10) and (11) for estimating ​​  ​​ and ​​  ​​ 
are only exact under the symmetry assumption on  when vol(𝓁) 
is constant for each ​ℓ  ∈  [​   ℓ​]​ (56). When the sizes of groups vary, as 
is typical in most datasets, eqs. (10) and (11) are instead approxima-
tions of the exact conditional maximum likelihood estimates. The 
situation is reminiscent of the tendency of the graph modularity 
objective to generate clusters of approximately equal sizes (57). The 
objectives and algorithms that we develop below should therefore 
be understood as approximations to coordinate-ascent maximum 
likelihood inference, which are exact only in the case that all clus-
ters have equal volumes.

AON modularity
The AON affinity function is of special interest for modeling and com-
putation. This affinity function is a natural choice for systems in which 
the occurrence of an interaction or relationship depends strongly 
on group homogeneity.

Inserting the AON affinity function from Table 1 into eq. (14) yields, 
after some algebra (Supplementary Appendix F), the objective

	​​ Q(z, Ω, d ) = − ​ ∑ 
k=1

​ 
​   k ​
 ​​ ​ β​ k​​​[​​​cut​ k​​(z ) + ​γ​ k​​ ​ ∑ 

ℓ=1
​ 

​   ℓ​
 ​​ vol ​(ℓ)​​ k​​]​​ + J(𝛚)​​	 (15)

where k = log k1 − log k0, ​​​ k​​  = ​ ​k​ 
−1​(​​ k1​​ − ​​ k0​​)​, and J() collects 

terms that do not depend on the partition z. We collect {k} and {k} 
into vectors ​,   ∈ ​ ℝ​​ ​k ̄ ​​​. We have also defined

	​​ cut​ k​​(z ) ≡ ​ m​ k​​ − ​  ∑ 
R∈​ℛ​​ k​

​​​ ​a​ R​​ δ(​z​ R​​)​	 (16)

In this expression, mk is the (weighted) number of hyperedges of 
size k, i.e., mk = R ∈ ℛkaR. The cut terms cutk(z) thus count the num-
ber of hyperedges of size k that contain nodes in two or more dis-
tinct clusters. This calculation is a direct generalization of a recent 
derivation for graph modularity (48). We recover the standard dy-
adic modularity objective by restricting to k = 2. We call eq. (15) the 
AON hypergraph modularity.

Recently, the authors of (40) proposed a “strict modularity” ob-
jective for hypergraphs. This strict modularity is a special case of eq. (15), 

obtained by choosing k0 and k1 such that k = 1 and ​​γ​ k​​  = ​   ​m​ k​​ _ 
​vol(H)​​ k​

​​, 

where ​vol(H ) = ​∑ i=1​ n  ​​ ​d​ i​​​ is the sum of all node degrees in hypergraph 
H. However, leaving these parameters free lends important flexibility 
to our proposed AON objective eq. (15). Tuning  allows one to 
specify which hyperedge sizes are considered to be most relevant for 
clustering. In email communications, for example, a very large list 
of recipients may carry minimal information about their social rela-
tionships, and it may be desirable to down-weight large hyperedges. 
Tuning  has the effect of modifying the sizes of clusters favored by 
the objective, in a direct generalization of the resolution parameter 
in dyadic modularity (58, 59). It is not necessary to specify the val-
ues of these parameters a priori; instead, they can be adaptively es-
timated via eq. (11).

Hypergraph Maximum Likelihood Louvain
To optimize the modularity objectives (14) and (15), we propose a 
family of agglomerative clustering algorithms. These algorithms greed-
ily improve the specified objective through local updates to the node 
label vector z. The structure of these algorithms is based on the widely 
used and highly performant Louvain heuristic for graphs (60). The 
standard heuristic alternates between two phases. In the first phase, 
each node begins in its own singleton cluster. Then, each node i is 
visited and moved to the cluster of the adjacent node j that maxi-
mizes the increase in the objective Q. If no such move increases the 
objective, then i’s label is not changed. This process repeats until no 
such moves exist that increase the objective. In the second phase, a 
“supernode” is formed for each label. The supernode represents the 
set of all nodes sharing that label. Then, the first phase is repeated, 
generating an updated labeling of supernodes, which are then aggregated 
in the second phase. The process repeats until no more improve-
ment is possible. Because every step in the first phase improves the 
objective, the algorithm terminates with a locally optimal cluster vector z.

This heuristic generalizes naturally to the setting of hypergraphs. 
However, the incorporation of heterogeneous hyperedge sizes and 
general affinity functions considerably complicates implementation. 
Here, we provide a highly general hypergraph maximum likelihood 
Louvain (HMLL) algorithm for optimizing the symmetric modularity 
objective (14). For the important case of the AON affinity, the sim-
plified objective (15) admits a much simpler and faster specialized 
Louvain algorithm, which we describe in Supplementary Appendix 
G. As we show in subsequent experiments, this specialized algorithm 
is highly scalable and effective in recovering ground truth clusters in 
datasets with polyadic structure plausibly modeled by the AON affinity.

Table 1. Symmetric affinity functions. Throughout, k=‖p‖0 is the 
number of nodes in partition p, k0 and k1 are scalars, and f, g, and h are 
arbitrary scalar functions. 

All-or-nothing (AON) ​​Ω(p) = ​{​​​
​ω​ k1​​

​ 
​​‖​​p​‖​​​ 0​​ = 1

​  
​ω​ k0​​

​ 
otherwise.

​​​

Group Number (GN) (p) = f(‖p‖0, k)

Relative Plurality (RP) (p) = g(p1 − p2, k)

Pairwise (p) = h(∑i ≠ jpipj, k)
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Symmetric HMLL
The first phase of our symmetric HMLL algorithm mirrors standard 
graph Louvain: Nodes begin in singleton clusters and, in turn, greedily 
move to adjacent clusters until no more improvement is possible. 
Phase 2 of graph Louvain reduces edges between clusters into weighted 
edges between supernodes in a structure-preserving way. However, 
in the hypergraph case, naively collapsing clusters and hyperedges 
would discard important information about hyperedge sizes and 
the way each hyperedge is partitioned across clusters. Therefore, in 
subsequent stages of our algorithm, we greedily improve the objec-
tive by moving entire sets of nodes in the original hypergraph, rath-
er than greedily moving individual nodes. In this way, a set of nodes 
that was assigned to the same cluster in a previous iteration is essen-
tially treated as a supernode and moved as a unit, without collapsing 
the hypergraph and losing needed information about hyperedge 
structure.

Our overall procedure is formalized in algorithms S1 and S2. Al-
gorithm S1 visits in turn each set of nodes Sc that represents a clus-
ter c from a previous iteration. The algorithm evaluates the change 
Q in the objective function Q associated with moving all of Sc to an 
adjacent cluster and then carries out the move that gives the largest 
positive change to the objective. This is repeated until moving a set 
Sc can no longer improve the objective. The entire symmetric HMLL 
method is summarized by running algorithm S2, which starts by 
placing every node in a singleton cluster before calling algorithm S1 
for the first time.

Algorithm S1 relies on a function Q that computes the change 
in the objective Q associated with moving all nodes from Sc to an adja-
cent cluster. Changes to the second (volume) term in the objective 
can be computed efficiently using combinatorial identities (Supple-
mentary Appendix E, Proposition 1). Changes to the first (cut) term 
require summing across all hyperedges incident to a node or set of 
nodes. At each hyperedge, we must evaluate the affinity (p) on the 
current partition p, as well as the affinity (p′) associated with the 
candidate updated partition p′. This situation contrasts with the case 
of the graph Louvain algorithm, in which it is sufficient to check 
whether a given edge joins nodes in the same or different clusters. 
The fact that we need to store and update the partition vector p for 
each hyperedge is what prevents us from collapsing a cluster of nodes 
into a monolithic supernode and recursively applying algorithm S2 
on a reduced data structure, as customary in graph Louvain.

Thus, while clusters of nodes move as a unit in algorithm S1 as 
well, it is necessary in this case to operate on the full adjacency data 
𝒜 at all stages of the algorithm. This can make algorithm S2 slow on 
hypergraphs of even modest size. Developing efficient algorithms 
for optimizing the general symmetric modularity objective or vari-
ous special cases is an important avenue of future work.

All-or-nothing hypergraph maximum likelihood Louvain
When  is the AON affinity function, considerable simplification is 
possible. For each edge, we need not compute the full partition vec-
tor p but only check whether ‖p‖0 = 1. Rather than a general affinity 
function , we instead supply the parameter vectors  and  ap-
pearing in eq. (15). This allows us to compute on considerably simpli-
fied data structures. In particular, we are able to follow the classical 
Louvain strategy of collapsing clusters into single, consolidated su-
pernodes and restrict attention to hyperedges that span multiple su-
pernodes. Because we do not need to track the precise way in which 
the hyperedges span multiple supernodes, we can forget much of 

the original adjacency data 𝒜 and instead simply store the edge sizes 
of the hypergraph. These simplifications enable both substantial 
memory savings and very rapid evaluation of the objective update 
function Q. We provide pseudocode for exploiting these simplifi-
cations in Supplementary Appendix G.

Number of clusters
Like most Louvain-style modularity methods, the user cannot directly 
control the number of clusters returned by HMLL. One approach to 
influence the number of clusters is to manually set values for the 
affinity function  or the parameters  and  (if using the AON af-
finity). Rather than inferring these parameters from data, one can 
set them a priori and perform a single round of optimization over z. 
This approach generalizes the common treatment of the resolution 
parameter in dyadic modularity maximization as a tuning hyperpa-
rameter rather than a number to be estimated from data (58). Con-
siderable experimentation may be required to obtain the desired number 
of clusters, and retrieving an exact number may not be possible.

Another approach to influencing the number of clusters is to im-
pose a Bayesian prior on the community labels. In the simplest version 
of a Bayesian approach, one assumes that each node is independent-
ly assigned one of ​​ℓ ̄ ​​ labels with equal probability, before sampling 
edges. The probability of realizing a given label vector z is then ​​​ℓ ̄ ​​​ −n​​, 
which generates a term of the form ​− nlog  ​ℓ ̄ ​​ in the log-likelihood 
ℒ. This term may then be incorporated into Louvain implementa-
tions, with the result that greedy moves that reduce the total num-
ber of clusters ​​ℓ ̄ ​​ are strongly incentivized. The resulting regularized 
algorithm may then label vector z with slightly smaller numbers of 
distinct clusters. This can be useful when it is known a priori that 
the true number of clusters in the data is small. Our implementation 
of AON HMLL incorporates this optional regularization term. We use 
this term only in the synthetic detectability experiments presented below.

RESULTS
Runtime
Dyadic Louvain algorithms are known for being highly efficient in 
large graphs. Here, we show that AON HMLL can achieve similar 
performance on synthetic data to graph MLL (GMLL), a variant of 
the standard dyadic Louvain algorithm in which we return the com-
bination of resolution parameter and partition that yield the highest 
dyadic likelihood. For a fixed number of nodes n, we consider a 
DCHSBM-like hypergraph model with ​​ℓ  ̄​  =  n / 200​ clusters and m = 10n 
hyperedges with size k uniformly distributed between 2 and 4. Each 
k-edge is, with probability pk, placed uniformly at random on any 
k nodes within the same cluster. Otherwise, with probability 1 − pk, the 
edge is instead placed uniformly at random on any set of k nodes. 
We use this model rather than a direct DCHSBM to avoid the com-
putational burden of sampling edges at each k-tuple of nodes, which 
is prohibitive when n is large. For the purpose of performance test-
ing, we compute estimates of the parameter vectors  and  (in the 
case of AON HMLL) and the resolution parameter  (in the case of 
GMLL) using ground truth cluster labels. We emphasize that this is 
typically not possible in practical applications, because the ground 
truth labels are not known. We make this choice to focus on a direct 
comparison of runtimes of each algorithm in a situation in which 
both can succeed. In later sections, we study the ability of HMLL and 
GMLL to recover known groups in synthetic and empirical data 
when affinities and resolution parameters are not known.
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Figure 1 shows runtime, adjusted Rand index (ARI), and num-
ber of clusters returned on synthetic hypergraphs when p2 = 0.6, p3 = 
1/n3, and p4 = 1/n4. These parameter are chosen so that hyperedges 
of size three and four are rarely (if ever) contained completely in-
side clusters. Thus, hyperedges of different sizes provide different 
signal regarding ground truth clusters. For this experiment, we im-
plemented GMLL by computing a normalized clique projection, in 
which nodes are joined by weighted dyadic edges with weights

	​​ w​ ij​​ = ​  ∑ 
e:i,j∈e

​​​ ​  1 ─ ∣e∣− 1 ​ ​	 (17)

We also performed experiments on an unnormalized clique projec-
tion with wij = ∣e : i, j ∈ e∣ but do not show these results because, in 
this experiment, the associated MLL algorithm consistently fails to 
recover labels correlated with the planted clusters.

On smaller instances, HMLL outperforms GMLL in recovering 
planted clusters, as measured by the ARI. For larger instances, the 
recovery results are comparable. Although GMLL and HMLL obtain 
similar accuracy in this experiment, they do so in different ways, with 
HMLL tending to generate more, smaller clusters than GMLL. The 
runtimes are nearly indistinguishable, indicating that dyadic clique 
projections are necessary neither for accuracy nor for performance. 
We observed other choices of the parameters p2, p3, and p4 in which 
HMLL substantially outperformed GMLL in cluster recovery and vice 
versa; however, in each case, the algorithms’ respective runtimes 
tended to differ by only a small constant factor.

In this synthetic experiment, a combination of the two algorithms 
leads to the strongest recovery results. In addition to independently 
running each algorithm, we also ran a two-stage algorithm in which 
GMLL is used to generate an intermediate partition and then HMLL 
is used to refine it. We emphasize again that these results are obtained 
on synthetic hypergraphs with preoptimized affinity parameters, and 
so the effectiveness of the refinement strategy may not generalize to 

real datasets. In the experiments on empirical data shown below we 
do not show results from the refinement procedure because the 
output partition was, in each case, essentially indistinguishable 
from the output of the dyadic partition. This may reflect the fact 
that we did not allow the algorithms to learn a priori the affinity 
parameters associated with the true data labels. Further investiga-
tion into the performance of hybrid strategies would be of consider-
able practical importance.

Dyadic projections and the detectability threshold
Informally, an algorithm is able to detect communities in a random 
graph model with fixed labels z when the output labeling ​​   z​​ of that 
algorithm is, with probability bounded above zero, correlated with 
z. Using arguments from statistical physics, the authors of (45) con-
jectured the existence of a regime in the graph SBM in which no 
algorithm can successfully detect communities. This conjecture has 
since been refined and proven in various special cases; see (61) for a 
survey. In the dyadic SBM with two equal-sized planted communities, 
a necessary condition for detectability in the large-graph limit is

	​​  ​(​c​ i​​ − ​c​ o​​)​​ 2​ ─ 2(​c​ i​​ + ​c​ o​​) ​  ≥ 1​	 (18)

where ci is the mean number of within-cluster edges attached to a 
node and co is the mean number of between-cluster edges attached to 
a node. If this condition is not satisfied, then no algorithm can reliably 
detect communities in the associated graph SBM, although the com-
munities are statistically distinct. This bound limits direct inferential 
methods, such as Bayesian or maximum likelihood techniques, and 
methods based on maximization of modularity or other graph objec-
tives (62). Several recent papers have considered the detectability prob-
lem in the case of uniform hypergraphs (33, 35, 63). In our model, the 
presence of edges of multiple sizes complicates analysis. Here, we limit 
ourselves to an experimental demonstration that the regimes of detect-
ability for the graph SBM and our DCHSBM can differ significantly.

Figure 2 shows two experiments on a simple DCHSBM with 
two equal-sized communities of 250 nodes each. The affinity  is 
tuned so that

1) Each node is incident to, on average, five 2-edges and five 3-edges.
2) A fraction p2 of 2-edges join nodes in the same cluster, while a 

fraction 1 − p2 of 2-edges join nodes in different clusters.
3) A fraction p3 of 3-edges join nodes in the same cluster, while a 

fraction 1 − p3 of 3-edges join nodes in different clusters.
In this experiment only, both GMLL and AON HMLL discussed 
below use the Bayesian regularization term ​− nlog ​ℓ ̄ ​​ in the likelihood 
objective to encourage each algorithm to form a relatively small 
number of clusters. In the lefthand panel, we show the ARI of 
the returned partition ​​   z​​ against the true partition z when using the 
unnormalized variant of GMLL (results for the normalized variant 
are similar). This choice reflects the fact that the true number of 
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clusters is known and is equal to 2. The dashed and dotted white 
lines give the boundaries at which eq. (18) holds with equality. The 
dashed white line gives the detectability threshold for the assorta-
tive regime in which nodes are more likely to link with others in the 
same cluster. Louvain, as an agglomerative algorithm, is well suited for 
detecting assortative clusterings and is able to detect communities 
in much, but not all, of this regime. The gap between the theoretical 
threshold and the performance of Louvain reflects the fact that Lou-
vain, as a stagewise greedy algorithm, has no optimality guarantees. 
There is also a disassortative detectable region below the dotted 
white line. The agglomerative structure of graph-based Louvain 
causes the algorithm to entirely fail here.

In the righthand panel, we show the same experiment using AON 
HMLL. The dashed lines q2 and q3 give assortative detectability 
thresholds for hypothetical algorithms that entirely ignore 3-edges 
and 2-edges, respectively, while the dotted lines r2 and r3 give the 

corresponding disassortative thresholds. HMLL is able to detect the 
planted partition for a range of parameter values in which GMLL is 
not. These include the case in which edges of certain sizes are large-
ly between-cluster, as shown in the top left (small p2) and bottom 
right (small p3). There is a regime (mid and bottom right) in which 
the algorithm appears to be constrained by the boundary q2, suggesting 
that HMLL is effectively ignoring 3-edges in this regime. As p3 in-
creases, however, 3-edges become more informative and the parti-
tion can be detected for some values p2 < q2 (top right). There is also 
a broad regime (top left) in which the hypergraph algorithm is able 
effectively to use both 2- and 3-edges to detect clusters, even when 
2-edges are largely between-cluster. We also observe some very lim-
ited ability of HMLL to detect clusters in the regime in which both 
2-edges and 3-edges are between-cluster (bottom left). Because HMLL 
is again an agglomerative algorithm, its performance for fully disas-
sortative partitions such as these is unreliable at best.

Fig. 1. Runtime, ARI, and number of clusters returned by GMLL and HMLL in a synthetic testbed with optimal affinity parameters. The within-cluster edge place-
ment probabilities are p2 = 3/5, p3 = 1/n3, and p4 = 1/n4. We also show in light gray the results obtained by using GMLL as a preprocessing step, whose output partition is 
then refined by HMLL (light gray).

Fig. 2. Detectability experiments in synthetic hypergraphs. For i = 2,3, pi is the proportion of within-cluster edges of size i. Each pixel gives the mean ARI over 20 inde-
pendently generated DCHSBMs of size n = 500 where each node is incident to, on average, five 2-edges and five 3-edges. (Left) The recovered partition ​​  z​​ is obtained from 
GMLL. (Right) The recovered partition is obtained from AON HMLL (algorithm S1). The dashed and dotted lines give various detectability thresholds as described in the 
main text. In each panel, the returned partition ​​  z​​ is the highest-likelihood partition from 20 alternations between updating ​​  z​​ and inference of the affinity parameters. In 
this experiment only, we incorporate a regularization term ​− nlog ​ℓ ̄ ​​ in the modularity objective to promote label vectors z with fewer clusters.
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Intriguingly, there are also combinations of p2 and p3 in which 
GMLL is able to detect the planted partition while HMLL is not. This 
may indicate that the pooling of edges of different sizes implied by 
the dyadic projection can be useful in some regimes. We note again 
that neither GMLL nor HMLL are optimal inference algorithms. An 
optimal hypergraph algorithm might significantly extend the detect-
able regime in the right panel of Fig. 2. We pose the development of 
these algorithms, as well as their analysis, as highly promising ave-
nues for future research.

Experiments with empirical data
Next, we analyze several hypergraphs derived from empirical data. 
The first two are hypergraphs of human close-proximity contact in-
teractions (6), obtained from wearable sensor data at a primary school 
(64) and a high school (65). Nodes are students or teachers, and a 
hyperedge connects groups of people that were all jointly in prox-
imity to one another. Node labels identify the classrooms to which 
each student belongs, and the primary school data also includes a 
teacher associated to each class. Next, we created two hypergraphs 
from U.S. congressional bill cosponsorship data (66, 67), where nodes 
correspond to congresspersons and hyperedges correspond to the 
sponsor and all cosponsors of a bill in either the House of Represen-
tatives or the Senate. We constructed another pair of datasets from 
the U.S. Congress in the form of committee memberships (68). Each 
edge is a committee in a meeting of Congress, and each node again 
corresponds to a member of the House or a senator. A node is con-
tained in an edge if the corresponding legislator was a member of 
the committee during the specified meeting of Congress. The 103rd 
through 115th Congresses are represented, spanning the years 1993–2017. 
There are again separate datasets for House and Senate members. In 
all congressional datasets, the node labels give the political parties of 
the members. We also used a hypergraph of Walmart purchases (69), 
where each node is a product and a hyperedge connects a set of 
products that were copurchased by a customer in a single shopping 
trip. Each node has an associated product category label. Last, we 
constructed a hypergraph where nodes correspond to hotels listed 
at trivago.com, and each hyperedge corresponds to a set of hotels 
whose website was clicked on by a user of Trivago within a browsing 
session. This hypergraph was derived from data released for the 
2019 ACM RecSys Challenge contest (70). For each hotel, the node 
label gives the country in which it is located. The datasets vary in 
size in terms of the number of nodes, hyperedges, hyperedge sizes, 
and node labels (Table 2).

Model comparison and higher-order structure
It is often stated that higher-order features are important for under-
standing the structure and function of complex networks. It is less 
often clarified what kinds of higher-order features are relevant for 
which networks. Generative modeling provides one way to compare 
different kinds of higher-order structure. In the DCHSBM, this struc-
ture is specified by the affinity function . Comparison of the like-
lihood functions obtained by each affinity can indicate which one is 
most plausible as a higher-order generative mechanism of the un-
derlying data. We performed such a comparison using the symmet-
ric affinity functions from Table 1 and the labels for nodes described 
above. In this setup, we can compute an approximate ML estimate 
for , given its functional form. To make concrete comparisons, it 
is necessary to specify the functional forms of the GN, RP, and 
Pairwise affinities. We use the following parameterizations

	​ (p ) = ​​ ∥p​∥​ 0​​,k​​                                    (Group Number)​	

	​​   Ω(p ) = ​
{

​​​​ω​ k1​​​  ​p​ 1​​ − ​p​ 2​​  < ​  k ─ 4 ​​  
​ω​ k0​​

​ 
otherwise

 ​            (Relative Plurality)​​	

	​  ​Ω(p ) = ​
{

​​​​ω​ k1​​​  ​∑ i≠j​ ​​ ​p​ i​​ ​p​ j​​  < ​  k(k − 1) ─ 4 ​ ​  
​ω​ k0​​

​ 
otherwise

 ​           (Pairwise)​​	

The GN affinity function assigns a separate parameter to each 
combination of edge size and number of groups. The RP affinity 
function assigns one parameter for the case that the difference be-
tween the largest and second largest groups within an edge exceeds 
k/4, where k is the size of the edge. The Pairwise affinity function 
assigns one parameter to the case that the total number of dyadic pairs 
in differing groups exceeds half the possible number of these pairs. 
RP, which favors edges that the two most common labels are roughly 
balanced in representation, is qualitatively distinct from AON, GN, and 
Pairwise, all of which favor edges with homogeneous cluster labels.

Because these affinity functions have different numbers of pa-
rameters, we compare them via the Bayesian Information Criterion 
(BIC) (71), which penalizes affinity functions with more parameters 
than are supported by the data. In computing the BIC, we exclude 
the n parameters , as these are the same in each model and there-
fore contribute an unimportant additive constant. The AON, RP, 
and Pairwise affinities each have ​2​k ̄ ​​ parameters. In the case of GN, 
we compute the number of possible parameters for each edge size k 
by computing the number of possible groups using the number of 

Table 2. Summary of study datasets. Shown are the number of nodes n, number of hyperedges m, mean degree 〈d〉, SD of degree s(d), mean edge size 〈k〉, 
SD of edge size s(k), and number of data labels ​​ℓ ̄ ​​. 

n m 〈d〉 s(d) 〈k〉 s(k) ​​ℓ ̄ ​​

contact-primary-school 242 12,704 127.0 55.3 2.4 0.6 11

contact-high-school 327 7,818 55.6 27.1 2.3 0.5 9

house-bills 1,494 43,047 274.0 282.7 9.5 7.2 2

senate-bills 293 20,006 493.4 406.3 7.3 5.5 2

house-committees 1,290 340 9.2 7.1 35.2 21.3 2

senate-committees 282 315 19.0 14.7 17.5 6.6 2

walmart-purchases 88,860 65,979 5.1 26.7 6.7 5.3 11

trivago-clicks 171,495 220,758 4.0 7.0 4.2 2.0 160
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distinct labels in the given partition. For example, if the given parti-
tion contained only three distinct groups, then we do not posit 
parameters corresponding to edges containing more than three groups. 
It would also be reasonable to remove this restriction, in which case 
there would be k parameters for edges of size k regardless of z.

Table 3 shows the BIC for the DCHSBM using each of these af-
finity functions. No single affinity function is preferred across all of 
the study datasets, suggesting the presence of different kinds of polyadic 
structure. In the two congressional committee datasets, RP achieves 
the optimal BIC, while in each of the other datasets, one of the three 
affinities that promotes edge homogeneity is instead preferred. 
There are also important differences between these three affinities. 
In house-bills, the Pairwise affinity function achieves the lowest BIC 
overall, while in walmart-purchases the Pairwise affinity is preferred 
over all but the GN affinity. This suggests that a model involving 
only pairwise comparison of node labels can provide relatively strong 
generative explanations of the data in these cases. This, in turn, 
suggests that dyadic algorithms may perform at least as well on these 
datasets as their polyadic counterparts. As we will see below, in both 
of these datasets, dyadic algorithms can return clusterings more 
correlated with ground truth than those returned by AON HMLL.

Recovering classes in contact hypergraphs
To test the AON HMLL algorithm itself, we first study its behavior 
in the contact-primary-school and contact-high-school networks. The 
comparison of BIC scores from Table 3 suggests that GN may be the 
most explanatory model of the data, but we instead use AON to take 
advantage of its considerable computational benefits. We performed 
20 alternations between AON HMLL and estimation of the AON 
parameters and returned the partition with the highest DCHSBM 
likelihood. We compare the results to two dyadic methods. Each step 
of the Graph Louvain algorithm alternates between using the stan-
dard Louvain algorithm (60) to infer clusters and estimating the 
resolution parameter  using the approximate maximum likelihood 
framework of (48). Graph Louvain returns the partition that maximizes 
the classical dyadic modularity objective. We also compare to GMLL, 
which carries out the same alternation but instead returns the partition 
that maximizes the approximate log-likelihood of the corresponding 
planted partition SBM.

Figure 3 compares the performance of each of these algorithms. 
In the case of contact-primary-school, we consider the ground truth 
partition to be the one that assigns exactly one teacher to each class. 

Graph Louvain is able to find partitions of students with clear cor-
relations with the given class labels but conflates two primary school 
classes and splits several high school classes (left column, top two rows). 
GMLL is able to perfectly recover the primary school student class 
labels and misclassifies three high school students. Our proposed AON 
HMLL is able to correctly recover the given partitions in both datasets.

We can obtain some qualitative insight into the behavior of HMLL 
by studying the structure of the inferred affinity function . The most 
intuitive way to do so is through the derived parameters k and k from 
eq. (15). The bottom row of Fig. 3 shows these parameters and the 
distribution of edge sizes. The dependence of k on edge size k pro-
vides one explanation of why GMLL succeeds in contact-primary-
school but makes several errors in contact-high-school. Under the 
standard dyadic projection, a k-hyperedge generates ​​​(​​ ​ k   2​​)​​​​ 2-edges and 
therefore appears in the dyadic modularity objective ​​​(​​ ​ k   2​​)​​​​ distinct 
times. In the case of contact-primary-school, the estimated impor-
tance parameter k is indeed relatively close to ​​​(​​ ​ k   2​​)​​​​ (Fig. 3, bottom 
center). At the optimal partition, the relative weights of edges are 
therefore distorted relatively little by the clique projection. On the 
other hand, the estimates for k in contact-high-school deviate con-
siderably from ​​​(​​ ​ k   2​​)​​​​, especially for k = 2,3. Here, small edges feature 
much more prominently in the polyadic modularity objective than 
they do in the projected dyadic objective, implying that the latter is 
a poorer approximation to the former near the optimal partition. 
This difference may explain the small errors in GMLL in contact-
high-school. The bottom-right panel of Fig. 3 compares the inferred 
value of the size-specific resolution parameter k to k0 = mk/vol(H)k, 
the implicit value used in (40). The inferred resolution parameters 
are consistently larger k0 and increase with k, highlighting the val-
ue of adaptively estimating these parameters in our approach.

Cluster recovery with large hyperedges
In Fig. 4, we study the ability of AON HMLL to recover ground 
truth communities in several more of our study datasets. Unlike the 
two contact networks, each of these datasets contains edges of size 
up to 25 nodes. We have excluded house-committees and senate-
committees on the grounds that these datasets are disassortative, 
indicating that AON is clearly inappropriate. We compare AON 
HMLL to two variants of GMLL. In the unnormalized variant, we 
obtain a dyadic graph by replacing each k-edge with a k-clique, thus 
generating a total of ​​​(​​ ​ k   2​​)​​​​ dyadic edges. In the normalized variant, we 
weight each edge in the k-clique by a factor of ​​  1 _ k − 1​​. The normalized 

Table 3. BIC of the DCHSBM using the AON, GN, RP, and Pairwise affinity functions on our full study datasets. Definitions of each affinity function are 
supplied in Table 1. Lower BIC indicates a more plausible model. The affinity function achieving the lowest BIC in each dataset is shown in bold. 

AON GN RP Pairwise

contact-high-school 2.2003 2.1946 2.4330 2.2003 ×105

contact-primary-school 4.1954 4.1646 4.3990 4.1954 ×105

house-committees 2.7128 2.7128 2.7119 2.7127 ×105

senate-committees 9.7934 9.7934 9.7736 9.7933 ×104

house-bills 9.9719 9.9720 10.003 9.9670 ×106

senate-bills 3.1925 3.1926 3.2030 3.1925 ×106

walmart-purchases 1.0763 1.0753 1.0806 1.0758 ×106

trivago-clicks 1.6854 1.6866 2.0257 1.6960 ×108
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dyadic degree of each node is then equal to its degree in the original 
hypergraph. In either case, we then alternate between the dyadic 
Louvain algorithm for estimating clusters and conditional maxi-
mum likelihood inference of the resolution parameter . In each 
trial, we perform 20 iterations of AON HMLL and the two GMLL 
variants, returning from these the combination of group labels and 
parameters that achieves the highest likelihood. We then compare 
the clustering to the ground truth labels via the ARI. We vary the 
maximum edge size ​​k ̄ ​​ to show how each algorithm responds to the 
incorporation of progressively larger edges. Because extreme sparsi-
ty poses issues for community detection algorithms in general (61), 
we show experiments for progressively denser cores of trivago-clicks 
and walmart-purchases. The c-core of of a hypergraph H is defined 
as the largest subhypergraph Hc such that all nodes in Hc have de-
gree at least c.

The results highlight the strong dependence of the performance 
of AON HMLL on the relative plausibility of the AON affinity func-
tion as a generative mechanism for the data (cf. Table 3). In trivago-
clicks, the AON affinity function achieved the lowest BIC of all four 
candidates. Because AON is a more plausible generating mechanism 
by this metric, it is not unusual that AON HMLL is able to find 
partitions considerably more correlated with the supplied data labels 
than those returned by the dyadic variants. In walmart-purchases, on 
the other hand, the Pairwise affinity is preferred to AON. In this case, 
AON HMLL performs much worse and, in the 2-core, even returns 
clusters that are anticorrelated with the supplied labels. As weakly 
connected nodes are removed and the resulting data become denser, 
HMLL begins to return correlated clusters. However, the normalized 
GMLL variant is at least as effective in recovering the data labels. In 
the two congressional bills datasets, the Pairwise affinity achieves 

Fig. 3. Comparison of clustering algorithms in contact-primary-school and contact-high-school. For each dataset, we show a partition obtained from the classical 
graph Louvain modularity maximization heuristic, a partition obtained from GMLL, and partition obtained by AON HMLL. The partition shown is the one that attains the 
corresponding objective function after 20 rounds of iterative likelihood maximization. Each box records the number of agents with the specified combination of inferred 
cluster and ground truth label. The bottom row visualizes the number mk of edges of size k, the inferred size weights k, and inferred resolution parameters k as defined 
in (15). On the far right, k0 = mk/vol(H)k.
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a lower BIC than AON in the House and a comparable one in the 
Senate. Echoing this finding, a dyadic method outperforms AON 
HMLL in each of these cases. Unnormalized GMLL performs best 
in house-bills and senate-bills, while normalized GMLL is prefera-
ble in walmart-purchases. In addition, HMLL is the worst algorithm 
only in the case of the 2-core of walmart-purchases for small ​​k ̄ ​​. HMLL 
may therefore be the algorithm of choice in cases when it is not known 
whether normalized or unnormalized dyadic representations are 
more appropriate for the data.

When interpreting these recovery results, it is important to con-
textualize them against the limitations of community detection 
methods in general and of modularity maximization in particular. 
There is no “best algorithm” for community detection that does not 
make implicit assumptions about the structure of the data, and mis-
match of algorithms to datasets can generate misleading results (72). 
Even when the data-generating process indeed matches algorithmic 
assumptions—such as a synthetic dataset generating from an SBM—
optimal algorithms may fail to detect planted communities because 
of sparsity (45, 61). Greedy modularity maximization, including the 
Louvain variants considered here, only finds one of possibly many 
local optima (73), some of which may be largely uncorrelated with 
each other. These considerations imply that (i) we cannot rule out 
the existence of other local optima that might achieve higher scores 

in any of the three algorithms and (ii) the fact that an algorithm fails 
to recover a clustering close to the ground truth does not imply that 
it is “failing” in its stated objective, namely, local likelihood maximi-
zation. Overall, our results suggest that, when the assumptions of 
the DCHSBM with AON affinity are appropriate to the data, AON 
HMLL can outperform dyadic approaches in recovering ground 
truth communities. In practice, because we often do not have access 
to ground truth labels, the question of whether the assumptions are 
appropriate to the data should be informed by domain expertise.

DISCUSSION
We have proposed a generative approach for clustering polyadic 
data, grounded in a DCHSBM. From this model, we have derived a 
symmetric, modularity-like objective, which includes the AON mod-
ularity objective as an important special case. This derivation connects 
hypergraph modularity objectives to concrete modeling assumptions, 
which can be tuned in response to domain expertise. We have also 
formulated Louvain-like algorithms for optimizing these objectives, 
which are highly scalable in the case of the AON affinity function. 
Embedding this heuristic within an alternating approximate maxi-
mum likelihood scheme allows adaptive estimation of both node 
clusters and affinity parameters. We have shown experimentally that 

Fig. 4. Comparison of hypergraph AON MLL (algorithm S1) against dyadic likelihood Louvain in data with known clusters. Points give the ARI of the highest-likelihood 
partition obtained after 20 alternations between partitioning and parameter estimation. The maximum edge size ​​k ̄ ​​ varies along the horizontal axis. In the panel titles, n is 
the number of nodes and m the number of edges when ​​k ̄ ​  =  25​. Note that the vertical axis limits vary between panels.  on July 13, 2021
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hypergraph algorithms have markedly different detectability regimes 
from dyadic algorithms. We have also conducted experiments on 
empirical data, finding that hypergraph methods are preferred to 
dyadic ones in datasets where their modeling assumptions are 
well founded.

Our work points toward many directions of further research. One 
of these directions is algorithmic. Our greedy coordinate ascent 
framework for inference in the DCHSBM has several important 
limitations. First, because we rely on an NP-hard optimization step, 
global maximization of the likelihood is never assured. Second, 
even exact maximum likelihood itself is limited as an inference par-
adigm, as it uses information contained only within a small part of 
the likelihood landscape. Our method, as an approximation that is 
exact only when clusters are of roughly equal sizes, may also suffer 
from estimation bias. Third, the edgewise agglomerative approach 
embodied by Louvain-style algorithms is limited in applicability to 
affinity functions that promote homogeneity within edges. Alternative 
inference paradigms may ameliorate some or all of these limita-
tions. Within the framework of maximum likelihood inference, di-
rectly maximizing a profile likelihood offers an intriguing alternative 
to coordinate ascent (49). While all maximum likelihood methods 
are equivalent insofar as they optimize the same objective function, 
algorithmic properties such as runtime and propensity to be trapped 
in undesirable local optima may vary between different approaches. 
Fully Bayesian treatments (74) offer another promising path, although 
these are sometimes limited in their computational scalability. 
Variational belief propagation (45, 46) provides an intriguing com-
promise, achieving considerable scalability in exchange for several 
approximations. Recent work (35) has made progress in this direc-
tion, but several questions related to scalability and behavior in non-
uniform hypergraphs remain extant. Belief propagation methods 
for scalable inference with more general affinity functions would be 
of particular practical interest.

There are also several important directions of theoretical devel-
opment. One of these is the question of detectability in the DCHSBM.  
Because the DCHSBM is more flexible than the dyadic DCSBM, the 
theory of detectability in this model may be substantially more 
complex. Another direction concerns the properties of the dyadic 
modularity objective that extend to the hypergraph modularity ob-
jectives discussed here. In addition to its role as a comparison against 
null models (75) and as a term in the DCSBM likelihood (48), the 
dyadic modularity also expresses the stability of diffusion processes 
on graphs (76) and the energy of discrete surface tensions defined 
on graphs (77). Extensions of these properties, or explanations of 
why they fail to generalize, would be helpful for both theorists 
and practitioners.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/28/eabh1303/DC1
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