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Abstract

Multilayer networks are a useful way to capture and model multiple, binary relationships

among a fixed group of objects. While community detection has proven to be a useful ex-

ploratory technique for the analysis of single-layer networks, the development of community

detection methods for multilayer networks is still in its infancy. We propose and investigate a

procedure, called Multilayer Extraction, that identifies densely connected vertex-layer sets in

multilayer networks. Multilayer Extraction makes use of a significance based score that quan-

tifies the connectivity of an observed vertex-layer set by comparison with a multilayer fixed

degree random graph model. Unlike existing detection methods, Multilayer Extraction handles

networks with heterogeneous layers where community structure may be different from layer to

layer. The procedure is able to capture overlapping communities, and it identifies background

vertex-layer pairs that do not belong to any community. We establish large-graph consis-

tency of the vertex-layer set optimizer of our proposed multilayer score under the multilayer

stochastic block model. We investigate the performance of Multilayer Extraction empirically

on three applications, as well as a test bed of simulations. Our theoretical and numerical evalu-

ations suggest that Multilayer Extraction is an effective exploratory tool for analyzing complex

multilayer networks. Publicly available R software for Multilayer Extraction is available at

https://github.com/jdwilson4/MultilayerExtraction.
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1 Introduction

Networks are widely used to represent and analyze the relational structure among inter-
acting units of a complex system. In the simplest case, a network model is an unweighted,
undirected graph G = (V,E), where V is a set of vertices that represent the units, or actors,
of the modeled system, and E is an edge set containing all pairs of vertices {u, v} such that
actors u and v share a physical or functional relationship. Networks have been successfully
applied in a wide array of fields, including the social sciences to study social relationships
among individuals [52], biology to study interactions among genes and proteins [1], and
neuroscience to study the structure and function of the brain [48].

In many cases, the vertices of a network can be divided into groups (often disjoint) with
the property that there are many edges between vertices in the same group, but relatively
few edges between vertices in different groups. Vertex groups of this sort are commonly
referred to as communities. The unsupervised search for communities in a network is known
as community detection. Community structure has been used to identify functionally relevant
groups in gene and protein interaction systems [30; 39], structural brain networks [3], and
social networks [37; 24]. As communities are often associated with important structural
characteristics of a complex system, community detection is a common first step in the
understanding and analysis of networks. The search for communities that optimize a given
quantitative performance criterion is typically an NP-hard problem, so in most cases one
must rely on approximate algorithms to identify community structure.

The focus of this paper is community detection in multilayer networks. Formally, an
(m,n)-multilayer network is a collection G(m,n) = (G1, . . . , Gm) of m simple graphs G` =
([n], E`) having common vertex set [n] = {1, . . . , n}, where the edge sets E` may vary from
layer to layer. The graph G` will be referred to as the `th layer of the network. We assume
that the vertices of the multilayer network are registered, in the sense that a fixed vertex
u ∈ [n] refers to the same actor across all layers. Thus the graph G` reflects the relationships
between identified actors 1, . . . , n in circumstance `. There are no edges between vertices in
different layers, and the layers are regarded as unordered so that the indices ` ∈ [m] do not
reflect an underlying spatial or temporal order among the layers.

In general, the actors of a multilayer network may not exhibit the same community
structure across all layers. For example in social networks, a group of individuals may be well
connected via friendships on Facebook; however, this common group of actors will likely, for
example, not work at the same company. In realistic situations such as these, a given vertex
community will only be present in a subset of the layers, and different communities may be
present in different subsets of layers. We refer to such multilayer systems as heterogeneous as
each layer may exhibit noticeably different community structure. Complex and differential
relationships between actors will be reflected in the heterogenous behavior of different layers
of a multilayer network. In spite of this heterogeneity, existing community detection methods
for multilayer networks typically assume that the community structure is the same across
all, or a substantial fraction of, the layers.

We develop and investigate a multilayer community detection method called Multilayer
Extraction, which efficiently handles multilayer networks with heterogeneous layers. The-
oretical and numerical evaluation of our method reveals that Multilayer Extraction is an
effective exploratory tool for analyzing complex multilayer networks. Our contributions to
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the current literature of statistical analysis of multilayer networks are threefold

1. We develop a testing-based algorithm for identifying densely connected vertex-layer
sets (B,L), where B ⊆ [n] is a set of vertices and L ⊆ [m] is a set of layers such
that the vertices in B are densely connected across the layers in L. The strength
of the connections in (B,L) is measured by a local modularity score derived from
a null random network model that is based on the degree sequence of the observed
multilayer network. Identified communities can have overlapping vertex or layer sets,
and some vertex-layer pairs may not belong to any community. Vertex-layer pairs
that are not assigned to any community are interpreted as background as they are
not strongly connected to any other. Overlap and background are common features of
real networks that can have deleterious effects on partition based methods [28; 53; 54].
The Multilayer Extraction procedure directly addresses community heterogeneity in
multilayer networks.

2. We assess the consistency of Multilayer Extraction under a multilayer generalization
of the stochastic 2 block model from [47; 51] for multilayer networks, which we call
the multilayer stochastic block model (MSBM). The MSBM is a generative model
that characterizes assortative behavior of pre-specified vertex-layer communities in
a multilayer network. We are able to show that under the MSBM, the number of
mis-clustered vertices and layers from the vertex-layer community that maximizes our
proposed significance score vanishes to zero with high probability as the number of
vertices tends to infinity. There has been considerable work in the area of consistency
analysis for single-layer networks (e.g. [55]); however, to the best of our knowledge,
we are the first to address the joint optimality properties for both vertices and layers.
Furthermore, we provide complete and explicit expressions of all error bounds in the
proof since we anticipate future analyses where the number of layers is allowed to grow
with the size of the network. Our proof involves a novel inductive argument, which, to
our knowledge, has not been employed elsewhere.

3. We apply Multilayer Extraction to three diverse multilayer networks, including social
networks, arXiv citation networks and airline transportation networks. Our findings
reveal important insights about these complex relational systems beyond the capa-
bilities of existing detection methods. We further compare and contrast Multilayer
Extraction with contemporary methods, and highlight the advantages of our approach
over single layer and aggregate alternatives.

1.1 Related Work

Multilayer network models have been applied to a variety of problems, including modeling
and analysis of air transportation routes [10], studying individuals with multiple sociometric
relations [20; 21], and analyzing relationships between social interactions and economic ex-
change [19]. Kivelä et al. [27] and Boccaletti et al. [8] provide two recent reviews of multilayer
networks. We note that G(m,n) is also sometimes referred to as a multiplex network.

While there is a large and growing literature concerning community detection in standard,
single-layer, networks [22; 34; 43], the development of community detection methods for
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multilayer networks is still relatively new. One common approach to multilayer community
detection is to project the multilayer network in some fashion onto a single-layer network and
then identify communities in the single layer network [5; 45]. A second common approach
to multilayer community detection is to apply a standard detection method to each layer
of the observed network separately [2; 6]. The first approach fails to account for layer-
specific community structure and may give an oversimplified or incomplete summary of the
community structure of the multilayer network; the second approach does not enable one to
leverage or identify common structure between layers.

In addition to the methods above, there have also been several generalizations of single-
layer methods to multilayer networks. For example, Holland et al. [26] and Paul and Chen
[40] introduce multilayer generalizations of the standard stochastic block model from Wang
and Wong [51] and Snijders and Nowicki [47]. However, these generative models require the
community structure to be the same across layers. Paul and Chen [41] describe a class of
null models for multilayer community detection based on the configuration and expected
degree model. We utilize a similar model in our consideration. Stanley et al. [49] consid-
ered the clustering of layers of multilayer networks based on recurring community structure
throughout the network. Mucha et al. [32] first extended the notion of modularity to multi-
layer networks, and De Domenico et al. [15] generalized the map equation, which measures
the description length of a random walk on a partition of vertices, to multilayer networks.
De Domenico et al. [16] discuss a generalization of the multilayer method in Mucha et al.
[32] using tensor decompositions. Approximate optimization of either multilayer modularity
or the map equation can be carried out by applying single network algorithms to a large
graph formed by concatenating the layers of the observed graph. The communities that are
identified by these methods form a partition of [n]× [m]. By contrast, Multilayer Extraction
identifies densely connected vertex-layer collections, directly addressing multilayer networks
with heterogeneous layers.

1.2 Overview of the Paper

In the next section we describe the null multilayer random graph model and the scoring
of vertex-layer sets. In Section 3 we present and prove theoretical results regarding the
asymptotic consistency properties of our proposed score for multilayer networks. Section 5
provides a detailed description of the proposed Multilayer Extraction procedure. We apply
Multilayer Extraction to three real-world multilayer networks and compare and contrast
its performance with existing community detection methods in Section 6. In Section 7 we
evaluate the performance of Multilayer Extraction on a test bed of simulated multilayer
networks. We conclude the main paper with a discussion of future research directions in
Section 8. The Appendix is divided into three sections. In Appendix A, we prove supporting
lemmas contributing to the results given in Section 3. In Appendix B, we discuss competing
methods to Multilayer Extraction. In Appendix C, we give the complete details of our
simulation framework.
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2 Scoring a Vertex-Layer Group

Seeking a vertex partition that optimizes, or approximately optimizes, an appropriate
score function is a standard approach to single layer community detection. Prominent ex-
amples of score-based approaches include modularity maximization [36], likelihood maxi-
mization for a stochastic block model [51], as well as minimization of the conductance of a
partition [12]. Rather than scoring a partition of the available network, Multilayer Extrac-
tion makes use of a significance based score that is applicable to individual vertex-layer sets.
Below, we describe the multilayer null model, and then the proposed score.

2.1 The Null Model

Our significance-based score for vertex-layer sets in multilayer networks relies on the
comparison of an observed multilayer network with a null multilayer network model. Let
G(m,n) be an observed (m,n)-multilayer network. For each layer ` ∈ [m] and pair of vertices
u, v ∈ [n], let

x`(u, v) = I({u, v} ∈ E`)

indicate the presence or absence of an edge between u and v in layer ` of G(m,n). The
degree of a vertex u ∈ [n] in layer `, denoted by d`(u), is the number of edges incident on u
in G`. Formally,

d`(u) =
∑
v∈[n]

x`(u, v).

The degree sequence of layer ` is the vector d` = (d`(1), . . . , d`(n)) of degrees in that layer;
the degree sequence of G(m,n) is the list d = (d1, . . . ,dm) containing the degree sequence
of each layer in the network.

Let G(m,n) denote the family of all (m,n)-multilayer networks. Given the degree se-
quence d of the observed network G(m,n), we define a multilayer configuration model and
an associated probability measure Pd on G(m,n), as follows. In layer G1, each node is given
d1(u) half-stubs. Pairs of these edge stubs are then chosen uniformly at random, to form
edges until all half-stubs are exhausted (disallowing self-loops and multiple edges). This pro-
cess is done for every subsequent layer G2, . . . , Gm independently, using the corresponding
degree sequence from each layer.

In the multilayer network model described above, each layer is distributed according to
the configuration model, first introduced by [9] and [4]. The probability of an edge between
nodes u and v in layer ` depends only on the degree sequence d` of the observed graph G`.
The distribution Pd has two complementary properties that make it useful for identifying
communities in an observed multilayer network: (i) it preserves the degree structure of
the observed network; and (ii) subject to this restriction, edges are assigned at random,
without regard to the higher order connectivity structure of the network. Because of these
characteristics, the configuration model has long been taken as the appropriate null model
against which to judge the quality of a proposed community partition.

The configuration model is the null model which motivates the modularity score of a
partition in a network [34; 36]. Consider a single-layer observed network G(n) with n nodes
and degree sequence d. For fixed K > 0, let cu ∈ [K] be the community assignment of node
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u. The modularity score of the partition associated with the assignment c1, . . . , cn is defined
as

M(c1, . . . , cn; G(n)) :=
1

2|E|
∑
i∈[K]

∑
u<v∈[n]

(
x(u, v)− d(u)d(v)∑

w∈[n] d(w)

)
I(cu = cv = i). (1)

Above, the ratio d(u)d(v)∑
w∈[n] d(w)

is the approximate expected number of edges between u and

v under the configuration model. If the partition c1, . . . , cn represents communities with a
large observed intra-edge count relative to what is expected under the configuration model, it
receives a high modularity score. The identification of the communities that (approximately)
maximize the modularity of a partition is among the most common techniques for community
detection in networks.

2.2 Multilayer Extraction Score

Rather than scoring a partition, the Multilayer Extraction method scores individual
vertex-layer sets. We define a multilayer node score that is based on the single-layer modu-
larity score (1) and amenable to iterative maximization. We first define a local set modularity
for a collection of vertices B ⊆ [n] in the layer ` ∈ [m]:

Q`(B) :=
1

n
(|B|

2

)1/2 ∑
u,v∈B:u<v

(
x`(u, v)− d`(u)d`(v)∑

w∈[n] d`(w)

)
(2)

The scaling term in the equation above is related to the total number of vertices in the
network and the total number of possible edges between the vertices in B. This score is
one version of the various set-modularities considered in [18], and is reminiscent of the local
modularity score introduced in [13].

Our Multilayer Extraction procedure seeks communities that are assortative across layers,
in the sense that Q`(B) is large and positive for each ` ∈ L. In light of this, we define the
multilayer set score as

H(B,L) :=
1

|L|

(∑
`∈L

Q`(B)+

)2

, (3)

where Q+ denotes the positive part of Q. Generally speaking, the score acts as a yardstick
with which one can measure the connection strength of a vertex-layer set. Large values of
the score signify densely connected communities.

We note that the multilayer score H(B,L) is reminiscent of a chi-squared test-statistic
computed from |L| samples. That is, under appropriate regularity assumptions on Q`(B),
the score in (3) will be approximately chi-squared with one degree of freedom.
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3 Consistency Analysis

Existing community detection methods differ widely in their underlying performance
criteria, as well as the algorithms employed to identify communities that (approximately)
optimize these criteria. As such, it can be difficult to compare the effectiveness of one
community detection method with another, and it has become common to evaluate com-
munity detection methods through a theoretical study of their asymptotic consistency. The
first work in this direction was that of [7], who investigated the consistency of score-based
community detection methods in single-layer networks with a large number of vertices. Con-
sistency analysis has since been used to evaluate a number of community detection methods,
including spectral clustering [46], modularity-based methods [17; 31; 33], likelihood-based
methods [55; 11], and aggregate community detection methods for multilayer networks with
homogeneous layers [25].

3.1 The Multilayer Stochastic Block Model

We assess the consistency of Multilayer Extraction under the multilayer stochastic block
model (MSBM) with two vertex communities, defined as a probability distribution Pm,n =
Pm,n(·|P , π1, π2) on the family of undirected multilayer networks with m layers, n vertices
and 2 communities. The distribution is fully characterized by (i) containment probabilities
π1, π2 > 0, which satisfy π1 + π2 = 1, and (ii) a sequence of symmetric 2 × 2 matrices
P = {P1, . . . , Pm} where P` = {P`(i, j)} with entries P`(i, j) ∈ (0, 1). Under the distribution

Pm,n, a random multilayer network Ĝ(m,n) is generated using two simple steps:

1. A subset of dπ1ne vertices are placed in community 1, and remaining vertices are placed
in community 2. Each vertex u in community j is assigned a community label cu = j.

2. An edge is placed between nodes u, v ∈ [n] in layer ` ∈ [m] with probability P`(cu, cv),
independently from pair to pair and across layers, and no self-loops are allowed.

For a fixed n and m, the community labels cn = (c1, . . . , cn) are chosen once and only

once, and the community labels are the same across each layer of Ĝ(m,n). On the other
hand, the inner and intra community connection probabilities (and hence the assortativity)
can be different from layer to layer, introducing heterogeneity among the layers. Note that
when m = 1, the MSBM reduces to the (single-layer) stochastic block model from Wang and
Wong [51].

3.2 Consistency of the Score

We evaluate the consistency of the Multilayer Extraction score under the MSBM de-
scribed above. Our first result addresses the vertex set maximizer of the score given a fixed
layer set L ⊆ [m]. Our second result (Theorem 3 in Section 3.2.1) leverages the former to
analyze the global maximizer of the score across layers and vertex sets. Explicitly, consider
a multilayer network Ĝ(m,n) with distribution under the multilayer stochastic block model
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Pm,n = Pm,n(P , π1, π2). For a fixed vertex set B ⊆ [n] and layer set L ⊆ [m], define the
random score by

Ĥ(B,L) :=
1

|L|

(∑
`∈L

Q̂`(B)+

)2

,

where Q̂`(B) is the set-modularity of B in layer ` under Pm,n. Our main results address the

behavior of Ĥ(B,L) under various assuptions on the parameters of the MSBM.

Toward the first result, for a fixed layer set L ⊆ [m], let B̂
(n)
opt (L) denote the node set that

maximizes Ĥ(B,L) (if more than one set does, any may be chosen arbitrarily). To define
the notion of a “misclassified” node, for any two sets B1, B2 ⊆ [n] let dh(B1, B2) denote the
Hamming distance (rigorously defined as the cardinality of the symmetric difference between
B1 and B2). We then define the number of misclassified nodes by a set B by

Error(B) := dh(B,C1) ∧ dh(B,C2).

Note that this definition accounts for arbitrary labeling of the two communities. As the
nodes and community assignments are registered across layers, neither dh nor Error depend
on the choice of L. Before stating the main theorem, we define a few quantities that will be
used throughout its statement and proof:

Definition 1. Let “det” denote matrix determinant. For a fixed layer set L ⊆ [m], define

δ` := detP` δ(L) := min
`∈[L]

δ` π := (π1, π2)
t κ` := πTP`π κ(L) := min

`∈[L]
κ` (4)

We now state the fixed-layer-set consistency result:

Theorem 2. Fix m and let {Ĝ(m,n)}n>1 be a sequence of multilayer stochastic 2 block

models where Ĝ(m,n) is a random graph with m layers and n nodes generated under
Pm,n(·|P , π1, π2). Assume π1 6 π2, and that π1, π2, and P do not change with n. Fix a
layer set L ⊆ [m]. If δ(L) > 0 then there exist constants A, η > 0 depending on π1 and δ(L)
such that for all fixed ε ∈ (0, η),

Pm,n
(
Error

(
B̂

(n)
opt (L)

)
< Anε log n

)
> 1− exp

{
−κ(L)2ε

32
nε(log n)2−ε + log 4|L|

}
(5)

for large enough n.

Note that an immediate corollary of Theorem 2 is that for any ε ∈ (0, 1),

Pm,n
(
Error

(
B̂

(n)
opt (L)

)
< nε log n

)
→ 1 as n→∞.

Therefore, the constants A and η play a role only in bounding the convergence rate of the
probability.

The proof of Theorem 2 is given in Section 4.1. We note that the assumption that
π1 6 π2 is made without loss of generality, since the community labels are arbitrary. When
m = 1, Theorem 2 implies asymptotic n → ∞ consistency in the (single-layer) stochastic
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block model. In this case, the condition that δ` = P`(1, 1)P`(2, 2)−P`(1, 2)2 > 0 is a natural
requirement on the inner community edge density of a block model. This condition appears in
a variety of consistency analyses, including the evaluation of modularity [55]. When m > 1,
Theorem 2 implies the vertex set that maximizes H(B,L) will have asymptotically vanishing
error with high probability, given that L is a fixed layer set with all layers satisfying δ` > 0.

3.2.1 Consistency of the joint optimizer

Theorem 2 does not address the joint optimizer of the score across all vertex-layer pairs.
First, we point out that for a fixed B ⊆ [n], the limiting behavior of the score Ĥ(B,L)
depends on L ⊆ [m] through the layer-wise determinants {δ` : ` ∈ [n]} and the scaling
constant 1

|L| inherent to H(B,L), as defined in equation (3). Let γ : N+ 7→ R+ be a non-

decreasing function of |L|. Define

Hγ(B,L) :=
1

γ(|L|)

(∑
`∈L

Q`(B)+

)2

. (6)

and let Ĥγ(B,L) be the corresponding random version of this score under an MSBM. We
analyze the joint node-set optimizer of Hγ under some representative choices of γ, an analysis
which will ultimately motivate the choice γ(|L|) = |L|.

We first provide an illustrative example. Consider a MSBM with m > 1 layers having
the following structure: the first layer has positive determinant, and all m − 1 remaining
layers have determinant equal to 0. Note that δ1 > 0 implies that the first layer has ground-
truth assortative community structure, and that δ` = 0 for all ` > 1 implies that the
remaining layers are (independent) Erdos-Renyi random graphs. In this case, the desired
global optimizer of Hγ(B,L) is community 1 (or 2) and the first layer. However, setting
γ(|L|) ≡ 1 (effectively ignoring the scaling of H) will ensure that, in fact, the entire layer set
is optimal, since Q`(B)+ > 0 by definition. It follows that setting γ(|L|) to increase (strictly)
in |L|, which introduces a penalty on the size of the layer set, is desirable.

For a fixed scaling function γ, define the global joint optimizer of Ĥ(B,L) by(
L̂
(n)
opt, B̂

(n)
opt

)
:= arg max

2[n]×2[m]

Ĥγ(B,L) (7)

Note that
(
L̂
(n)
opt, B̂

(n)
opt

)
is random, and may contain multiple elements of 2[m] × 2[n]. The

next theorem addresses the behavior of
(
L̂
(n)
opt, B̂

(n)
opt

)
under the MSBM for various choices of

γ(|L|), and shows that setting γ(|L|) = |L| is desirable for consistency.

Theorem 3. Fix m and let {Ĝ(m,n)}n>1 be a sequence of multilayer stochastic 2 block

models where Ĝ(m,n) is a random graph with m layers and n nodes generated under
Pm,n(·|P , π1, π2). Assume π1 6 π2, and that π1, π2, and P do not change with n. Fix
0 = δ(0) < δ(1) < 1. Suppose the layer set [m] is split according to [m] = ∪i=0,1Li, where
δ` = δ(i) for all ` ∈ Li. Then for any ε > 0, the following hold:
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(a) Let L̂+ := {` : Q̂`(B̂
(n)
opt ) > 0}. If γ(|L|) ≡ 1, then for all n > 1, L̂

(n)
opt = L̂+, and

Pm,n
(
Error

(
B̂

(n)
opt

)
< nε log n

)
→ 1 as n→∞

(b) If γ(|L|) = |L|,

Pm,n
(
L̂
(n)
opt = L1, Error

(
B̂

(n)
opt

)
< nε log n

)
→ 1 as n→∞

(c) If γ(|L|) = |L|2,

Pm,n
(
L̂
(n)
opt ⊆ 2L1 , Error

(
B̂

(n)
opt

)
< nε log n

)
→ 1 as n→∞

The proof of Theorem 3 is given in Section 4.2. Part (a) implies that setting γ(|L|) ≡ 1
ensures that the optimal layer set will be, simply, all layers with positive modularity, thereby
making this an undesirable choice for the function γ. Part (c) says that if γ(|L|) = |L|2,
the layer set with the highest average layer-wise modularity will be optimal (with high
probability as n → ∞), which means that all subsets of L1 are asymptotically equivalent

with respect to Ĥ(B,L) (with high probability). By part (b), if γ(|L|) = |L|, then L1 is the
unique asymptotic maximizer of the population score (with high probability). Therefore,
γ(|L|) = |L| is the most desirable choice of scaling.

4 Proofs

In this section we prove the theoretical results given in Section 3. The majority of the
section is devoted to a detailed proof of Theorem 2 and supporting lemmas. This is followed
by the proof of Theorem 3, of which we give only a sketch, as many of the results and
techniques contributing to the proof of Theorem 2 can be re-used.

4.1 Proof of Theorem 2, and Supporting Lemmas

We prove Theorem 2 via a number of supporting lemmas. We begin with some notation:

Definition 4. For a fixed vertex set B ⊆ [n] define

ρn(B) =
|B ∩ C1,n|
|B|

, sn(B) =
|B|
n
, vn(B) := (ρn(B), 1− ρn(B)) (8)

We will at times suppress dependence on n and B in the above expressions.

Definition 5. Define the population normalized modularity of a set B in layer ` by

q`(B) :=
sn(B)√

2

(
vn(B)tP`vn(B)− (vn(B)tP`π)2

κ`

)
(9)
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Define the population score function H∗(·, L) : 2[n] 7→ R by

H∗(B,L) = |L|−1
∑
`∈[L]

q`(B)

2

(10)

Throughout the results in this section, we assume that L ⊆ [m] is a fixed layer set (as
in the statement of Theorem 2). We will therefore, at times, suppress the dependence on L
from δ(L) and κ(L) (from Definition 1).

4.1.1 Sketch of the Proof of Theorem 2

The proof of Theorem 2 is involved and broken into many lemmas. In this section, we
give a rough sketch of the argument, as follows. The lemmas in this section establish that:

1. C1,n maximizes the population score H∗(·, L) (Lemmas 6 and 7).

2. For large enough sets B ⊆ [n], the random score Ĥ(B,L) is bounded in probability
around the population score H∗(B,L) (Lemmas 9 and 12).

3. Inductive Step: For fixed k > 1, assume that dh(B̂
(n)
opt (L), C1,n)/n = Op(bn,k), where

larger k makes bn,k of smaller order. Then, based on concentration properties of the

score, in fact dh(B̂
(n)
opt (L), C1,n)/n = Op(bn,k+1) (Lemma 13).

4. There exists a constant η such that for any ε ∈ (0, η), dh(B̂
(n)
opt (L), C1,n)/n =

Op(n
ε log n) (Theorem 2). This result is shown using the Inductive Step.

4.1.2 Supporting lemmas for the Proof of Theorem 2

Lemma 6. Define φ(L) := (|L|−1
∑

`
detP`

2κ`
)2. Then:

1. For any B ⊆ [n], q`(B) = sn(B)√
2

(π1 − ρn(B))2 · detP`

2κ`
, and therefore

H∗(B,L) = |L|φ(L)
sn(B)2

2
(π1 − ρn(B))4

2. δ(L)2 6 φ(L) 6 1
π2
1δ(L)

2 and therefore H∗(C1,n, L) > |L|π
2
1

2
(1− π4

1)δ(L)2

Lemma 7. Fix any n > 1. Define

R(t) :=

{
{B ⊆ [n] : |s(B)− π1| ∨ [1− ρ(B)] 6 t}, π1 < π2

{B ⊆ [n] : |s(B)− π1| ∨ ρ(B) 6 [1− ρ(B)] 6 t}, π1 = π2

Then there exists a constant a > 0 depending just on π1 such that for sufficiently small t,
B /∈ R(t) implies H∗(B,L) < H∗(C1,n, L)− a|L|φ(L)t.
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The proofs of Lemmas 6-7 are given in Appendix A. We now give a general concentration
inequality for Ĥ(B,L), which shows that for sufficiently large sets B ⊆ [n], Ĥ(B,L) is close
to the population score H∗(B,L) with high probability. This result is used in the proof of
Lemma 12, and its proof is given in Appendix A. We first give the following definition:

Definition 8. For fixed ε > 0 and n > 1, define Bn(ε) := {B ⊆ [n] : |B| > nε}.

Lemma 9. Fix ε ∈ (0, 1). Let κ be as in Definition 1. For each n > 1 suppose a collection
of node sets Bn is contained in Bn(ε). Then for large enough n,

Pn
(

sup
Bn

(∣∣∣Ĥ(B,L)−H∗(B,L)
∣∣∣) > 4|L|t

n2
+

52|L|
κn

)
6 4|L||Bn| exp

(
−κ2 εt

2

16n2

)
for all t > 0.

We now define new notation that will serve the remaining lemmas:

Definition 10. Let γn := log n/n, and for any integer k > 0, define bn,k := γ
1− 1

2k
n .

Definition 11. For any r ∈ [0, 1] and C ⊆ [n], define the r-neighborhood of C by N(C, r) :=
{B ⊆ [n] : dh(B,C)/n 6 r}. For all n > 1, any constant A > 0, and fixed k > 1, define

Ñn,k(A) :=

{
N (C1, A · bn,k−1) ∪N (C2, A · bn,k−1) , k > 1

Bn(A), k = 1

Lemma 12, stated below, is a concentration inequality for the random variable Ĥ(B,L)
on particular neighborhoods of C1:

Lemma 12. Fix ε ∈ (0, π1) and any constant A > 0. For k > 1 satisfying 1/2k−1 < ε, we
have for sufficiently large n that

sup
B∈Ñn,k(A)

∣∣∣Ĥ(B,L)−H∗(B,L)
∣∣∣ 6 5|L|bn,k (11)

with probability greater than 1 − 2 exp{−κ2ε
32
nγ1−εn log(n) + log 4|L|}. The conclusion holds

with k = 1 if A = ε.

The proof of Lemma 12 is given in Appendix A. We now state and prove the key lemma
used to drive the induction step in the proof of Theorem 2:

Lemma 13. Fix ε ∈ (0, π1) and an integer k > 1 satisfying 1/2k−1 < ε. Suppose there exist
constants A, b > 0 such that for large enough n,

Pn
(
B̂opt(n) ∈ Ñn,k(A)

)
> 1− b exp

{
−κ

2ε

32
nγ1−εn log n+ log 4|L|

}
:= 1− bβn(ε)

Then there exists a constant A′ > 0 depending only on π1 and δ such that for large enough

n, Pn
(
B̂opt(n) ∈ Ñn,k+1(A

′)
)
> 1− (4 + b)βn(ε). The conclusion holds for k = 1 if A = ε.

12



Figure 1: Illustration of relationship between collections of node sets.

Proof. Assume π1 < π2; the following argument may be easily adapted to the case where
π1 = π2, which we explain at the end. Recall bn,k from Definition 10. For c > 0, define

Rn,k(c) := {B ⊂ [n] : |s(B)− π1| ∨ [1− ρ(B)] 6 c · bn,k},

Note that sets B ∈ Rn,k(c) have bounded Hamming distance from C1,n, as shown by the
following derivation. Writing s = s(B) and ρ = ρ(B), for all B ∈ Rn,k(c) we have

n−1|dh(B,C1,n)| = n−1
(
|B \ C1,n|+ |C1,n \B|

)
= n−1

(
|B| − |B ∩ C1,n|+ |C1,n| − |B ∩ C1,n|

)
= s+ π1 − 2ρs 6 s+ (s+ c · bn,k)− 2 (1− c · bn,k) s

= c · bn,k + 2sc · bn,k 6 3c · bn,k (12)

Therefore, Rn,k(c) ⊆ N(C1,n, A
′ · bn,k) ⊂ Ñn,k+1(A

′) with A′ = 3c.

We have assumed B̂
(n)
opt (L) ∈ Ñn,k(A) with high probability; our aim is to show B̂

(n)
opt (L) ∈

Ñn,k+1(A
′). Since Rn,k(c) ⊆ Ñn,k+1(A

′), it is sufficient to show that B̂
(n)
opt (L) /∈ Ñn,k(A) ∩

Rn,k(c)
c with high probability. This is illustrated by figure 1: since B̂

(n)
opt (L) is inside the

outer oval (with high probability), it is sufficient to show that it cannot be outside the inner

oval. To this end, it is enough to show that, with high probability, Ĥ(B,L) < Ĥ(C1,n, L)

for all sets B in Ñn,k(A) ∩Rn,k(c)
c. Note that by Lemma 12,

sup
B∈Ñn,k(A)

Ĥ(B,L) < H∗(B,L) + 5|L|bn,k (13)

for large enough n, with probability at least 1− 2βn(ε). Next, since cbn,k → 0 as n→∞, by
Lemma 7 there exists a constant a > 0 depending just on π1 such that for large enough n,
B ∈ Rn,k(c)

c implies H∗(B,L) < H∗(C1,n) − a|L|φ(L)cbn,k. Applying Lemma 12 again, we

also have H∗(C1,n, L) < Ĥ(C1,n)+5|L|bn,k with probability at least 1−2βn(ε). Furthermore,

13



φ(L) > δ2 by Lemma 6. Applying these inequalities to (13), we get

sup
B∈Ñn,k(A)∩Rn,k(c)c

Ĥ(B,L) < Ĥ(C1,n, L)− a|L|δ2cbn,k + 10|L|bn,k (14)

with probability at least 1 − 4βn(ε). With c large enough, (14) implies that Ĥ(B,L) <

Ĥ(C1,n, L) for all B ∈ Ñn,k(A) ∩Rn,k(c)
c. This proves the result in the π1 < π2 case.

If π1 = π2, the argument is almost identical. We instead define Rn,k(c) as

Rn,k(c) := {B ⊆ [n] : |s(B)− π1| ∨ ρ(B) ∨ [1− ρ(B)] 6 c · bn,k}.

A derivation analogous to that giving inequality (12) yields

n−1 (dh(B,C1,n) ∨ dh(B,C2,n)) 6 3c · bn,k

which directly implies that Rn,k(c) ⊆ Ñn,k+1(A
′) with A′ = 3c. The rest of the argument

goes through unaltered. �

4.1.3 Proof of Theorem 2

Recall Q`(B) from Definition 2 and let Q̂`(B) be its random version under the MSBM,
as in Section 3.2. For any B ⊆ [n], we have the inequality

[
Q̂`(B)

]
+
6

Y`(B)

n
(|B|

2

)1/2 6
(|B|

2

)
n
(|B|

2

)1/2 6 |B|n (15)

This yields the following inequality for Ĥ(B,L):

Ĥ(B,L) = |L|−1
∑

`∈[L]

Q`(B)


+

2

6 |L|−1
∑
`∈[L]

Q`(B)+

2

6 |L|−1n−2|B|2 (16)

Recall that Bn(ε) := {B ∈ 2[n] : |B| > εn}. Inequality (16) implies Ĥ(B,L) 6 |L|ε2 for all

B ∈ Bn(ε)c. By part 2 of Lemma 6, φ(L) > δ2. Therefore, defining τ :=
π2
1

2
(1− π1)4δ2/2,

|L|τ < |L|φ(L)
π2
1

2
(1− π1)4 = H∗(B,L)

Therefore, for all B ∈ Bn(ε)c, we have Ĥ(B,L) 6 |L|ε2 < H∗(C1,n, L) − |L|(τ − ε2). By
Lemma 12, for large enough n we therefore have

sup
Bn(ε)c

Ĥ(B,L) < Ĥ(C1,n, L)− |L|(τ − ε2) + 5|L|γ1−εn (17)

with probability greater than 1 − 2βn(ε), where βn(ε) := exp{−κ2ε
32
nγ1−εn log n + log 4|L|}.

For any ε <
√
τ , inequality (17) implies Ĥ(B,L) < Ĥ(C1,n, L) for all B ∈ Bn(ε), and
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therefore B̂opt(n) ∈ Bn(ε), with probability at least 1− 2βn(ε). Note that ε <
√
τ < π1, and

Nn,k(ε) = Bn(ε) by Definition 11. Therefore, the conditions for Lemma 13 with k = 1 (and
A = ε) are satisfied. For any fixed ε ∈ (0, η) with η :=

√
τ , we may now apply Lemma 13

recursively until 1/2k 6 ε. This establishes that for sufficiently large n,

Pn
(
B̂opt(n) ∈ Ñn,k(A)

)
> 1− (2 + 4k)βn(ε) (18)

By definition, B̂opt(n) ∈ Ñn,k(A) implies that

Error(B̂opt(n)) := min
C=C1,C2

dh(B̂opt(n), C) 6 A · n · bn,k. (19)

Note that

n · bn,k = nγ
1− 1

2k
n = n · n

1

2k
−1(log n)1−

1

2k < nε log n

since 1/2k 6 ε. Combined with inequality (18), this completes the proof. �

4.2 Proof of Theorem 3

To prove part (a), we first note that Theorem 2 implies that on the layer set L1, for any

ε > 0, Error(B̂
(n)
opt ) = Op(n

ε log n). Lemma 6 can be used to show that H∗(B,L) = 0 for
any L ⊆ L0 and any B ⊆ [n]. Using Lemma 9 and taking a union bound over L0, it is then
straightforward to show (using techniques from the proof of Theorem 2) that on the full

layer set [m], for any ε > 0, Error(B̂opt) = Op(n
ε log n). Considering now L̂

(n)
opt, observe that

if Q̂`(B) 6 0, then Ĥ(B,L) = Ĥ(B,L \ {`}). This immediately implies that L̂
(n)
opt = L̂+.

To prove part (b), we note that it is straightforward to show (using Lemma 6) that
H∗(B,L1) > H∗(B,L) for any L ⊂ [m], with equality if and only if L = L1. Using Lemma

9 and a union bound over [m] will show that L̂
(n)
opt = L1 with high probability. Applying

Theorem 2 completes the part. Part (c) is shown similarly, with the application of Lemma 6
showing that for any L ⊆ L1 and L′ ⊆ [m], H∗(B,L) > H∗(B,L

′), with equality if and only
if L′ ⊆ L1. �

5 The Multilayer Extraction Procedure

The Multilayer Extraction procedure is built around three operations: initialization,
extraction, and refinement. In the initialization stage, a family of seed vertex sets is specified.
Next an iterative extraction procedure (Extraction) is applied to each of the seed sets.
Extraction alternately updates the layers and vertices in a vertex-layer community in a
greedy fashion, improving the score at each iteration, until no further improvement to the
score is possible. The family of extracted vertex-layer communities is then reduced using
the Refinement procedure, which ensures that the final collection of communities contains
the extracted community with largest score, and that the pairwise overlap between any pair
of communities is at most β, where β ∈ [0, 1] is a user-defined parameter. The importance
and relevance of this parameter is discussed in Section 5.3.1. We describe the Multilayer
Extraction algorithm in more detail below.
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5.1 Initialization

For each vertex u ∈ [n] and layer ` ∈ [m] let N(u, `) = {v ∈ [n] : {u, v} ∈ E`} be the set
of vertices connected to u in G`. We will refer to N(u, `) as the neighborhood of u in layer `.
Let B0 = {N(u, `), u ∈ [n], ` ∈ [m]} be the family of all vertex neighborhoods in the observed
multilayer network G(m,n). Multilayer Extraction uses the vertex sets in B0 as seed sets for
identifying communities. Our choice of seed sets is motivated by Gleich and Seshadhri [23],
who showed that vertex neighborhoods are optimal seed sets for local detection methods
seeking communities with low conductance.

5.2 Extraction

Given an initial vertex set, the Extraction procedure seeks a vertex-layer community
with large score. The algorithm iteratively conducts a Layer Set Search followed by a Vertex
Set Search, and repeats these steps until a vertex-layer set, whose score is a local maximum,
is reached. In each step of the procedure, the score of the candidate community strictly
increases, and the procedure is stopped once no improvements to the score are possible.
These steps are described next.
Layer Set Search: For a fixed vertex set B ⊆ [n], Extraction searches for the layer set
L that maximizes H(B, ·) using a rank ordering of the layers that depends only on B. In
particular let Q`(B) be the local set modularity of layer ` from (2). Let Lo be the layer
set identified in the previous iteration of the algorithm. We will now update the layer set
L0 ; L. This consists of the following three steps:

(i) Order the layers so that Q`1(B) > · · · > Q`m(B).

(ii) Identify the smallest integer k such that H(B, {`1, . . . , `k}) > H(B, {`1, . . . , `k, `k+1}).
Write Lp := {`1, . . . , `k} for the proposed change in the layer set.

(iii) If H(B,Lp) > H(B,Lo) set L = Lp. Else set L = Lo

In the first iteration of the algorithm (where we take Lo = ∅), we set L = Lp in step (iii) of
the search. The selected layer set Lp is a local maximum for the score H(B, ·).
Vertex Set Search: Suppose now that we are given a vertex-layer set (B,L). Extraction
updates B, one vertex at a time, in a greedy fashion, with updates depending on the layer
set L and the current vertex set. In detail, for each u ∈ [n] let

δu(B,L) =

{
H(B/{u}, L)−H(B,L) if u ∈ B
H(B ∪ {u}, L)−H(B,L) if u /∈ B.

(20)

Vertex Set Search iteratively updates B using the following steps:

(i) Calculate δu(B,L) for all u ∈ [n]. If δu(B,L) 6 0 for all u ∈ [n], then stop. Otherwise,
identify u∗ = arg maxu∈[n] δu(B,L).

(ii) If u∗ ∈ B, then remove u∗ from B. Otherwise, add u∗ to B.
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At each iteration of Extraction, the score of the updated vertex-layer set strictly in-
creases, and the eventual convergence of this procedure to a local maximum is guaranteed
as the possible search space is finite. The resulting local maxima is returned as an extracted
community.

5.3 Refinement

Beginning with the n vertex neighborhoods in each layer of the network, the Extraction
procedure identifies a collection CT = {(Bt, Lt)}t∈T of at most m∗n vertex-layer communities.
Given an overlap parameter β ∈ [0, 1], the family CT is refined in a greedy fashion, via the
Refinement procedure, to produce a subfamily CS, S ⊆ T , of high-scoring vertex-layer sets
having the property that the overlap between any pair of sets is at most β.

To quantify overlap, we specify a generalized Jaccard match score to measure overlap
between two communities. We measure the overlap between two candidate communities
(Bq, Lq) and (Br, Lr) using a generalized Jaccard match score

J(q, r) =
1

2

|Bq ∩ Cr|
|Bq ∪ Cr|

+
1

2

|Lq ∩ Lr|
|Lq ∪ Lr|

(21)

It is easy to see that J(q, r) is between 0 and 1. Moreover, J(q, r) = 1 if and only if
(Bq, Lq) = (Br, Lr) and J(q, r) = 0 if and only if (Bq, Lq) and (Br, Lr) are disjoint. Larger
values of J(·, ·) indicate more overlap between communities.

In the first step of the procedure, Refinement identifies and retains the community
(Bs, Ls) in CT with the largest score and sets S = {s}. In the next step, the procedure
identifies the community (Bs, Ls) with largest score that satisfies J(s, s′) 6 β for all s′ ∈ S.
The index s is then added to S. Refinement continues expanding S in this way until no
further additions to S are possible, namely when for each s ∈ T , there exists an s′ ∈ S such
that J(s, s′) > β. The refined collection CS = {Bs, Ls}s∈S is returned.

5.3.1 Choice of β

Many existing community detection algorithms have one or more tunable parameters
that control the number and size of the communities they identify [50; 29; 32; 28; 54]. The
family of communities output by Multilayer Extraction depends on the overlap parameter
β ∈ [0, 1]. In practice, the value of β plays an important role in the structure of the vertex-
layer communities. For instance, setting β = 0 will provide vertex-layer communities that
are fully disjoint (no overlap between vertices or layers). On the other hand, when β = 1 the
procedure outputs the full set of extracted communities, many of which may be redundant. In
exploratory applications, we recommend investigating the identified communities at multiple
values of β, as the structure of communities at different resolutions may provide useful
insights about the network itself (see for instance Leskovec et al. [29] or Mucha et al. [32]).

Empirically, we observe that the number of communities identified by the Multilayer
Extraction procedure is non-decreasing with β, and there is typically a long interval of β
values over which the number and identity of communities remains constant. In practice
we specify a default value of β by analyzing the number of communities across a grid of
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β between 0 and 1 in increments of size 0.01. For fixed i, let βi = (i − 1) ∗ 0.01 and let
ki = k(βi) denote the number of communities identified at βi. The default value β′ is the
smallest β value in the longest stable window, namely

β′ = smallest βi such that k(βi) = mode(k1, . . . , k101)

6 Application Study

In this section, we assess the performance and potential utility of the Multilayer Extrac-
tion procedure through an empirical case study of three multilayer networks. We compare
and contrast the performance of Multilayer Extraction with four benchmark methods: Spec-
tral Clustering [35], Label Propagation [44], Fast and Greedy [14], and Walktrap [42]. Each
of these methods have publicly available implementations in the igraph package in R and
in Python, and each method is a standard single-layer detection method that can handle
weighted edges. We apply these methods to both the aggregate (weighted) network com-
puted from the average of the layers in the analyzed multilayer network, and to each layer
separately. We note that we do not compare Multilayer Extraction with the multilayer meth-
ods described in Section 1.1 due to the fact that the communities identified by those methods
are difficult to compare directly with Multilayer Extraction. A more detailed description of
the competing methods and their parameter settings is provided in the Appendix. For this
analysis and the subsequent analysis in Section 7, we set Multlayer Extraction to identify
vertex-layer communities that have a large significance score as specified by equation (2).

For each method we calculate a number of quantitative features, including the number and
size of the identified communities, as well as the number of identified background vertices.
We also evaluate the similarity of communities identified by each method. As aggregate
and layer-by-layer methods do not provide informative layer information, we compare the
vertex sets identified by each of the competing methods with those identified by Multilayer
Extraction. To this end, for two vertex sets B, C ⊆ 2[n] define the coverage of B by C as

C(B; C) = |B|−1
∑
B∈B

max
C∈C

(
|B ∩ C|
|B ∪ C|

)
(22)

The coverage C(B; C) quantifies the extent to which vertex sets in B are contained in C. In
general, C(B; C) 6= C(C;B). The coverage value C(B; C) is between 0 and 1, with C(B; C) = 1
if and only if B is a subset of C.

We investigate three multilayer networks of various size, sparsity, and relational types: a
social network from an Austrailian Computer Science department [25]; an air transportation
network of European airlines [10]; and a collaboration network of network science authors
on arXiv.org [15]. The size and edge density of each network is summarized in Table 1.

Figure 2 provides a summary of the quantitative features of the communities identified
by each method. The coverage between each family of identified communities is shown in
Figure 3. For ease of discussion, we will abbreviate Multilayer Extraction by M-E in the
next two sections of the manuscript, where we evaluate the performance of the method on
real and simulated data.
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Network # Layers # Vertices Total # Edges

AU-CS 5 61 620
EU Air Transport 36 450 3588
arXiv 13 14489 59026

Table 1: Summary of the real multilayer networks in our study.

# Communities
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Figure 2: Quantitative summary of the identified communities in each of the three real applications.
Boxplots represent the number of vertices (log10) in identified communities for each method. For
the layer-by-layer methods, we report the average number of communities and background vertices
for each layer.

6.1 AU-CS Network

The AU-CS network describes online and offline relationships of 61 employees of a Com-
puter Science research department in Australia. The vertices of the network represent the
employees in the department. The layers of the network represent five different relationships
among the employees: Facebook, leisure, work, co-authorship, and lunch.

Results

M-E identified 4 communities, which are illustrated in Figure 4 a. These communities
reveal several interesting patterns in the network. Both the work and lunch layers were
contained in all four of the identified communities, reflecting a natural co-occurrence of work
and lunch interactions among the employees. Furthermore, two of the identified communities
contained the leisure and Facebook layers, both of which are social activities that sometimes
extend beyond work and lunch. These interpretable, and perhaps expected, features of this
social network were directly identified by M-E. None of the competing methods were able to
identify these types of layer features.
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Figure 3: A heat map illustrating the coverage of communities identified by each of the methods
applied to the real multilayer networks. Coverage is assessed using the measure in (21).

All of the methods identify a similar number of communities (ranging from 4 to 7).
The 37 background vertices identified by M-E were sparsely connected, having two or fewer
connections in 3 of the layers. The vertex sets identified by M-E were similar to those
identified by the single-layer methods. Furthermore, Figure 3 reveals that the communities
identified by the aggregate approaches are in fact well contained in the family identified by
M-E (average coverage = 0.78). In summary, the vertex sets identified by M-E reflect both
the aggregate and separate layer community structure of the network, and the layer sets
reveal important features about the social relationships among the employees that could not
have been easily identified using existing methods.

6.2 European Air Transportation Network

Vertices in the European Air Transportation Network represent 450 airports in Europe
and layers represent 37 different airlines. An edge in layer j is present between two airports
if airline j traveled a direct flight between the two airports on June 1st, 2011. Each airline
belongs to one of five classes: major (18); low-cost (10); regional (6); cargo (2); and other
(1). A multiplex visualization of this network is shown in Figure 5.

Results

M-E identified 11 small communities (mean number of vertices = 11.82, mean number
of layers = 3.73). Both the single-layer methods and M-E identified on the order of 400
background vertices (≈ 89%). This suggests that the airlines follow distinct routes containing
a small number of unique airports. Aggregate detection approaches identified a similar
number of communities as M-E. However, the sizes of the identified communities were twice as
large on average (mean = 24.10), and the aggregate methods identified far fewer background
vertices.

The layer sets of the extracted M-E communities are illustrated in Figure 4 b, which
shows that the layers of each community are closely associated with airline classes. Indeed,
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Figure 4: a) The AU-CS multilayer network. The vertices have been reordered based on the
four communities identified by M-E. b) The layers of the eleven extracted significant communities
identified in the EU transport network. The layers are ordered according to the type of airline. The
darkness of the shaded in blocks represents the score of the identified community. c) Adjacency
matrix of layers in the arXiv network, where edges are placed between layers that were contained
in one or more of the communities identified by M-E. Dotted lines separate three communities of
submission types that were identified using spectral clustering.

an average of 78 % of the layers in each community belonged to the same airline class,
reflecting the fact that airlines of the same class tend to have direct flights between similar
airports. Interestingly, the regional airline Norwegian Air Shuttle (NAX) and the major
airline Scandanavian Airlines (SAS) appeared together in 4 unique communities. These
airlines are in fact the top two air carriers in Scandanavia and fly primarily to airports in
Norway, Sweden, Denmark, and Finland.

6.3 arXiv Network

The arXiv network of De Domenico et al. [15] represents the authors of all arXiv sub-
missions that contained the word “networks” in its title or abstract between the years 2010
and 2012. The network has 14489 vertices representing authors, and 13 layers representing
the arXiv category under which the submission was placed. An edge is placed between two
authors in layer ` if they co-authored a paper placed in that category. The network is sparse,
with each layer having edge density less than 1.5%.
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Figure 5: A one-dimensional visualization of the European Air Transportation Network. Edges
are placed between airlines that share at least two routes between airports.

Results

M-E identified 272 multilayer communities, with an average of 2.39 layers per community.
The communities were small in size, suggesting that network science collaboration groups
are relatively tightly-knit. In Figure 4 c, we plot an adjacency matrix for layers whose (i, j)
entry is 1 if and only if layers i and j were contained in at least one multilayer community.
Using the adjacency matrix, the layers of the network were partitioned into communities
using Spectral clustering. The results support the existence of three active interdisciplinary
working groups among the selected researchers. Though directly identified by M-E, these
interdisciplinary groups would be difficult to identify without using such a method.

Aggregate approaches identify on the order of 1000 small to moderately sized communi-
ties (mean number of vertices between 6.04 and 9.80) with approximately 400 background
vertices. On the other hand, M-E and the single layer approaches identify a smaller number
of communities (between 272 and 383), and classify about 12 thousand (roughly 86%) of the
vertices as background. These findings suggest that the individual layers of the arXiv network
have heterogeneous community structure, and that they contain many non-preferentially at-
tached vertices. Figure 3 illustrates the discrepancy between the aggregate and single layer
methods. In this application, Multilayer Extraction identifies community structure that is
substantially different than any competing method, and the layers identified by the procedure
highlight interesting and non-trivial features of these arXiv collaborations.

7 Simulation Study

As noted above, Multilayer Extraction has three key features: it allows community over-
lap; it identifies background; and it can identify communities that are present in a small
subset of the available layers. Below we describe a simulation study that aims to evaluate
the performance of M-E with respect to these features. The results of additional simulations
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are described in the Appendix.
We compare the performance of M-E with layer-by-layer and aggregate approaches using

the community detection methods described in Section 6. Define the match between two
vertex families B and C by

M(B; C) =
1

2
O(B; C) +

1

2
O(C;B), (23)

where O(B; C) is the coverage measure for vertex families from (22). The match M(B; C) is
symmetric and takes values in [0, 1]. In particular, M(B; C) = 1 if and only if B = C and
M(B; C) = 0 if and only if B and C are disjoint.

In our simulations, we compute the match between the family of vertex sets identified by
each method and the family of true simulated communities. For the layer-by-layer methods,
we evaluate the average match of the communities identified in each layer. Suppose that T
is the true family of vertex sets in a simulation and D is the family of vertex sets identified
by a detection procedure of interest. Note that the value O(D; T ) quantifies the specificity
of D, while O(T ;D) quantifies its sensitivity; thus, M(D; T ) is a quantity between 0 and
1 that summarizes both the sensitivity and specificity of the identified vertex sets D. The
results of the simulation study are summarized in Figure 6, and discussed in more detail
below.

7.1 Multilayer Stochastic Block Model

In the first part of the simulation study we generated multilayer stochastic block models
with m ∈ {1, 5, 10, 15} layers, k ∈ {2, 5} blocks, and n = 1000 vertices such that each
layer has the same community structure. In more detail, each vertex is first assigned a
community label {1, . . . , k} according to a probability mass function π = (0.4, 0.6) for k = 2
and π = (0.2, 0.1, 0.2, 0.1, 0.4) for k = 5. In each layer, edges are assigned independently,
based on vertex community membership, according to the probability matrix P with entries
P (i, i) = r+0.05 and P (i, j) = 0.05 for i 6= j. Here r is a parameter representing connectivity
strength of vertices within the same community. The resulting multilayer network consists
of m independent realizations of a stochastic k block model with the same communities. For
each value of m and k we vary r from 0.00 to 0.10 in increments of 0.005. M-E and all other
competing methods are run on ten replications of each simulation. The average match of
each method to the true communities is given in the left panel of Figure 6.

Results

In the single-layer (m = 1) setting M-E is competitive with the existing single-layer meth-
ods for r > 0.05, and identifies the true communities without error for r > 0.06. For m > 5
M-E outperforms all competing single-layer methods for r > 0.02. As the number of layers
increases, M-E exhibits improved performance across all values of r. As expected, aggregate
approaches perform well in this simulation, outperforming or matching other methods when
m 6 5 (results not shown). These results suggest that in homogeneous multilayer networks
M-E can outperform or match existing methods when the network contains a moderate to
large number of layers.
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Figure 6: (Color) Simulation results for multilayer stochastic block model, persistence, and single
embedded simulations. In each plot, we report the match of the identified communities with the
true communities where the match is calculated using the match score in (23).

7.2 Persistence

In the second part of the simulation study we consider multilayer networks with het-
erogeneous community structure. We simulated networks with 50 layers and 1000 vertices.
The first τ ∗ 50 layers follow the stochastic block model outlined in Section 7.1 with a fixed
connection probability matrix P having entries P (i, i) = 0.15 and P (i, j) = 0.05 for i 6= j.
The remaining (1−τ)∗50 layers are independent Erdős-Rényi random graphs with p = 0.10,
so that in each layer every pair of vertices is connected independently with probability 0.10.
For each k ∈ {2, 5} we vary the persistence parameter τ from 0.02 to 1 in increments of 0.02,
and for each value of τ , we run M-E as well as the competing methods on ten replications.
The average match of each method is reported in the center panel of Figure 6.
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Results

In both block model settings with k = 2 and 5 communities, M-E outperforms competing
aggregate methods for small values of τ . At these values, aggregate methods perform poorly
since the community structure in the layers with signal is hidden by the noisy Erdős-Rényi
layers once the layers are aggregated. Though not shown in Figure 6, the layer-by-layer
methods are able to correctly identify the community structure of the layers with signal.
However, these methods identify on average of 4 or more non-trivial communities in each
noisy layer where there is in fact no community structure present. Whereas the noisy Erdős-
Rényi layers posed a challenge for all other competing methods, M-E never included any
of these layers in an identified community. These results highlight M-E’s ability to handle
networks with noisy and heterogeneous layers.

7.3 Single Embedded Communities

We next evaluate the ability of M-E to detect a single embedded community in a mul-
tilayer network. We construct multilayer networks with m ∈ {1, 5, 10, 15} layers and 1000
vertices according to the following procedure. Each layer of the network is generated by
embedding a common community of size γ ∗ 1000 in an Erdős-Rényi random graph with
connection probability 0.05 in such a way that vertices within the community are connected
independently with probability 0.15. The parameter γ is varied between 0.01 and 0.20 in
increments of 0.005; ten independent replications of the embedded network are generated for
each γ. For each method, we calculate the coverage C(E, C) of the true embedded commu-
nity E by the identified collection C. We report the average coverage over the ten replications
in the right panel of Figure 6.

Results

In the single layer setting, M-E is able to correctly identify the embedded community
when the embedded vertex set takes up approximately 11 percent (γ = 0.11) of the layer.
As before, the performance of M-E greatly improves as the number of layers in the observed
multilayer network increases. For example at m = 5 and m = 10, the algorithm correctly
identifies the embedded community (with at least 90% match) once the community has size
taking as little as 6 percent (γ = 0.055) of each layer. At m = 15, M-E correctly extracts
communities with size as small as three percent of the graph in each layer.

In the upper right plot of Figure 6, we illustrate the results for the aggregate methods
applied to the simulated network with m = 15 layers. In the lower right plot of Figure
6, we show the results for the layer-by-layer methods in this simulation. For m > 5 M-E
outperforms all of the aggregate methods. In addition, M-E outperforms every layer-by-
layer method for all m. These results emphasize the extraction cabilities of M-E and show
that the procedure, contrary to the competing methods, is able to detect small embedded
communities in the presence of background vertices.
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8 Discussion

Multilayer networks have been profitably applied to a number of complex systems, and
community detection is a valuable exploratory technique to analyze and understand net-
works. In many applications, the community structure of a multilayer network will differ
from layer to layer due to heterogeneity. In such networks, actors interact in tightly con-
nected groups that persist across only a subset of layers in the network. In this paper we
have introduced and evaluated the first community detection method to address multilayer
networks with heterogeneous communities, Multilayer Extraction. The core of Multilayer
Extraction is a significance score that quantifies the connection strength of a vertex-layer
set by comparing connectivity in the observed network to that of a fixed degree random
network.

Empirically, we showed that Multilayer Extraction is able to successfully identify com-
munities in multilayer networks with overlapping, disjoint, and heterogeneous community
structure. Our numerical applications revealed that Multilayer Extraction can identify rele-
vant insights about complex relational systems beyond the capabilities of existing detection
methods. We also established consistency of Multilayer Extraction under the multilayer
stochastic block model under both regimes in which the number of layers was fixed or al-
lowed to grow exponentially in nε.

The Multilayer Extraction method provides a first step in understanding and analyzing
multilayer networks with heterogeneous community structure. This work encourages several
interesting areas of future research. For instance, the techniques used in this paper could be
applied, with suitable models, to networks having ordered layers (e.g. temporal networks),
as well as to networks with weighted edges such as the recent work done in Palowitch et al.
[38]. Furthermore, one could incorporate both node- and layer-based covariates in the null
model to handle exogenous features of the multilayer network. Finally, it would be interest-
ing to evaluate the consistency of Multilayer Extraction in multilayer networks in the high
dimensional setting where the number of vertex-layer communities grows with the number
of vertices.

A Proofs of Lemmas from Section 3.2

A.1 Proof of Lemma 6

It is easy to show that for any 2× 2 symmetric matrix A and 2-vectors x, y,

(xTAx)(yTAy)− (xTAy)2 = (x1y2 − x2y1)
2det(A)
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Fix B ⊆ [n] and let s, ρ, and v correspond to B, as in Definition 4. Then for any ` ∈ [L],
using the fact that κ` := πTP`π and the identity above, we have

vtP`v −
(πtP`π)2

κ`
=
κ`v

tP`v

κ`
− (vtP`π)2

κ`
=

(πtP`π)(vtP`v)− (vtP`π)2

κ`

= (π1(1− ρ)− π2ρ)2
detP`
κ`

= (π1 − ρ)2
detP`
κ`

Recall that q`(B) := s√
2

(vtP`v − (πtP`π)2/κ`) and H∗(B,L) = |L|−1 (
∑

` q`(B))2. Part

1 follows by summation over L. For part 2, note that π2
1P`(1, 1) + π2

2P (2, 2) >
2π1π2

√
P`(1, 1)P`(2, 2). Therefore,

κ` = π2
1P`(1, 1) + 2π1π2P`(1, 2) + π2

2P (2, 2)

> 2π1π2

(√
P`(1, 1)P`(2, 2) + P`(1, 2)

)
> 2π1π2

(√
P`(1, 1)P`(2, 2) + P`(1, 2)

)(√
P`(1, 1)P`(2, 2)− P`(1, 2)

)
= 2π1π2δ > π1δ

Thus δ 6 detP`

κ`
6 1

π1δ
. Part 2 follows. �

A.2 Proof of Lemma 7

Define g : 2[n] 7→ R by g(B) := s(B)
2

(ρ(B) − π1)
4. Recall the function φ(L) defined in

Lemma 6. Note that part 1 of Lemma 6 implies H∗(B,L) = |L|φ(L)g(B). It is therefore
sufficient to show that there exists a constant a > 0 such that for sufficiently small t,
B ∈ R(t)c implies g(B) < g(C1,n) − at. We will show this separately for the π1 < π2 and
π1 = π2 cases.

Part 1 (π1 < π2): Define the intervals I1 := [0, π1], I2 := (π1, π2], and I3 := (π2, 1]. We
trisect 2[n], the domain of g, with the collections Di,n := {B ⊆ [n] : s(B) ∈ Ii}, for i = 1, 2, 3.
We will prove that the inequality g(B) < g(C1,n)−at holds for all B ∈ R(t) on each of those
collections. We will continually rely on the fact that B ∈ R(t) implies at least one of the
inequalities (I) |s(B)− π1| > t or (II) 1− ρ(B) < t is true.

Suppose B ∈ R(t)c ∩ D1,n and inequality (I) is true. Then s(B) < π1 − t, and

g(B) :=
s(B)2

2
(ρ(B)− π1)4 6

s(B)2

2
(1− π1)4 (since π1 6 1/2)

<
(π1 − t)2

2
(1− π1)4 =

π2
1

2
(1− π1)4 − 2t(1− π1)4 + o(t)

<
π2
1

2
(1− π1)4 − t(1− π1)4 = g(C1,n)− t(1− π1)4 (24)
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for sufficiently small t. If inequality (II) is true, then

(ρ(B)− π1)4 6 max{(1− t− π1)4, π4
1} = max{(π2 − t)4, π4

1} = (π2 − t)4

for sufficiently small t, as π1 < π2. Therefore,

g(B) 6
π4
1

2
(π2 − t)4 =

π4
1

2
π4
2 − 4π3

2t+ o(t) < g(C1,n)− 2π3
2t (25)

for sufficiently small t. Thus for all B ∈ R(t)c ∩ D1,n, g(B) < g(C1,n) − a1t with a1 =
min{(1− π1)4, 2π3

2}.
Suppose B ∈ R(t)c ∩ D2,n and inequality (I) is true. Then s(B) > π1 + t. Note that

0 6 ρ(B)|B| 6 |C1,n|, yielding the useful inequality

0 6 ρ(B) 6 π1/s(B). (26)

Subtracting through by π1 gives

(ρ(B)− π1)4 6 max{π4
1, π

4
1(1/s(B)− 1)4} = π4

1(1/s(B)− 1)4.

Therefore,

g(B) 6
s(B)2

2
π4
1(1/s(B)−1)4 =

π4
1

2
(1/
√
s(B)−

√
s(B))4 <

π4
1

2
(1/
√
π1 + t−

√
π1 + t)4, (27)

since F (x) := (1/
√
x−
√
x)4 is decreasing on (0, 1], and s(B) > π1 + t. Note that

d

dt

(
1√
π1 + t

−
√
π1 + t

)4

= −3

(
1√
π1 + t

−
√
π1 + t

)3 [
1

2(π1 + t)3/2
+

1

2
√
π1 + t

]
. (28)

By Taylor’s theorem, this implies that

(1/
√
π1 + t−

√
π1 + t)4 = (1/

√
π1 −

√
π1)

4 − a2t+ o(t) < (1/
√
π1 −

√
π1)

4 − a2t/2

for sufficiently small t, where a2 is the right-hand-side of (28) at t = 0. Note further that
(1/
√
π1 −

√
π1)

4 = (π2/
√
π1)

4 = π4
2/π

2
1. Putting these facts together with inequality (27),

we obtain

g(B) <
π4
1

2

π4
2

π2
1

− a2t/2 =
π1
2
π4
2 − a2t/2 = g(C1,n)− a2t/2 (29)

If inequality (II) is true, ρ(B) < 1 − t. If ρ(B) 6 π1, (ρ(B) − π1)
4 is maximized when

ρ(B) = 0, so that, since s(B) 6 π2,

g(B) 6
π2
2

2
π4
1 = g(C1,n) +

π2
2

2
π4
1 −

π2
1

2
π4
2 = g(C1,n) +

π2
1π

2
2

2
(π2

2 − π2
1) < g(C1,n)− t (30)

for sufficiently small t, since π1 is fixed. If ρ(B) > π1, note that inequality (26) implies
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s(B) 6 π1/s(B). Therefore,

g(B) 6
π2
1

2ρ(B)2
(ρ(B)− π1)4 =

π2
1

2
(
√
ρ(B)− π1/

√
ρ(B))4 <

π2
1

2
(
√

1− t− π1/
√

1− t)4 (31)

since G(x) := (
√
x− π1/

√
x)4 is increasing on (π1, 1]. A similar Taylor expansion argument

to that yielding inequality (29) yields, for a constant a3 depending only on π1,

g(B) <
π2
1

2
(1− π1)4 − a3t/2 = g(C1,n)− a3t/2, (32)

for sufficiently small t. Pulling together inequalities (29), (30), and (32), we have that for
all B ∈ R(t)c ∩ D1,n, g(B) < g(C1,n)− a4 with a4 := min{a2/2, 1, a3/2}.

Suppose B ∈ R(t)c∩D3,n. Note that |B|− |C2,n| 6 |B∩C1,n| 6 |C1,n|. Dividing through
by |B| yields the useful inequality

1− π2/s(B) 6 ρ(B) 6 π1/s(B). (33)

Subtracting inequality (33) by π1 gives

π2(1− 1/s(B)) 6 ρ(B)− π4
1 6 π1(1/s(B)− 1).

Since π1 < π2, this implies that (ρ(B)− π1)4 6 π4
2(1− 1/s(B))4. Therefore,

g(B) 6
s(B)2

2
π4
2(1/s(B)− 1)4 =

π4
2

2
(1/
√
s(B)−

√
s(B))4 <

π4
2

2
(1/
√
π2 −

√
π2)

4, (34)

since F (x) := (1
√
x −
√
x)4 is decreasing on I3 := (π2, 1] and s(B) ∈ I3. Note that

√
π2 −

1/
√
π2 = −π1/

√
π2. Therefore,

g(B) <
π4
2

2

π4
1

π2
2

=
π2
2

2
(0− π1)4 = g(C2,n) < g(C1,n)− t

for t sufficiently small. Thus, for a := min{a1, a4, 1}, for sufficiently small t we have
g(B) < g(C1,n)− at whenever B ∈ R(t). This completes the proof in the case π1 < π2.

Part 2 (π1 = π2): Recall that when π1 = π2 we define R(t) by

R(t) := {B ⊆ [n] : |s(B)− π1| ∨ ρ(B) ∨ [1− ρ(B)] 6 t}

Hence we will use the fact that B ∈ R(t) implies at least one of the inequalities (I) |s(B)−
π1| > t or (II) t < ρ(B) < 1 − t is true. Define the intervals I1 := [0, π1], I2 := (π1, 1]. We
bisect 2[n], the domain of g, with the collections Di,n := {B ⊆ [n] : s(B) ∈ Ii}, for i = 1, 2.
We will prove that the inequality g(B) < g(C1,n)−at holds for all B ∈ R(t) on each of those
collections.

Suppose B ∈ R(t)c ∩ D1,n and inequality (I) is true. Then the same derivation yielding
inequality (24) gives g(B) < g(C1,n)− t(1− π1)4 for sufficiently small t. If inequality (II) is
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true, then

(ρ(B)− π1)4 6 max{(1− t− π1)4, (π1 − t)4} = max{(π2 − t)4, (π1 − t)4} = (π2 − t)4,

since π1 = π2. Therefore, inequality (25) remains intact. Both inequalities hold on I2 as well,
for the roles of π1 and π2 may be interchanged, and the derivations treated symmetrically.
This completes the proof in the case π1 = π2. �

A.3 Proof of Lemma 9

Recall the definitions of set modularity and population set modularity from Definitions
2 and 9. Define W :=

∑
`∈[L] Q̂`(B) and w :=

∑
`∈[L] q`(B). Note that by Part 1 of Lemma

6, q`(B) > 0 regardless of B, a fact which will allow the application of Lemma 16 in what

follows. We have Ĥ(B,L) = |L|−1W 2
+, H∗(B,L) = |L|−1w2, and for any B such that

|B| > nε,

Pn
(∣∣Ĥ(B,L)−H∗(B,L)

∣∣ > 4|L|t
n2

+
52|L|
κn

)
= Pn

(∣∣W 2
+ − w2| > 4|L|2t

n2
+

52|L|2

κn

)

6 Pn
(

max
`∈[L]

∣∣Q̂`(B)− q`(B)
∣∣ > t

n2
+

13

κn

)
6 4|L| exp

(
−κ2 εt

2

16n2

)
for large enough t > 0, where the first inequality follows from Lemma 16 for large enough
n, and the second inequality follows from Lemma 19 and a union bound. Applying a union
bound over sets B ∈ Bn yields the result. �

A.4 Proof of Lemma 12

Assume first that k > 1. By definition, B ∈ Ñn,k(A) implies that at least one of
dh(B,C1) 6 A · n · bn,k−1 or dh(B,C2) 6 A · n · bn,k−1 is true. Suppose the first inequal-
ity holds. Since dh(B,C1) = |B \ C1|+ |C1 \B|, we have the inequality∣∣|B| − nπ1∣∣ =

∣∣|B| − |C1|
∣∣ 6 ∣∣|B| − |B ∩ C1| − |C1|+ |B ∩ C1|

∣∣ 6 ∣∣|B| − |B ∩ C1|
∣∣

+
∣∣|C1| − |B ∩ C1|

∣∣ = |B \ C1|+ |C1 \B| 6 A · n · bn,k−1

Alternatively, if dh(B,C2) 6 A ·n ·bn,k−1, we have the same bound for
∣∣|B|−nπ2∣∣. Therefore,

since π1 6 π2, B ∈ Ñn,k(A) implies that |B| > nπ1 − A · n · bn,k−1. Since bn,k−1 = o(1) as

n → ∞ and ε < π1, this implies that for large enough n, Ñn,k(A) ⊆ Bn(ε). By Lemma 9,
therefore, for large enough n, we have

Pn

(
sup

Ñn,k(A)

∣∣∣Ĥ(B,L)−H∗(B,L)
∣∣∣ > 4|L|t

n2
+

52|L|
κn

)
6 4|L||Ñn,k(A)| exp

(
−κ2 εt

2

16n2

)
(35)
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for all t > 0. We now bound the right-hand side of inequality (35) with t replaced by

tn := n1+ 1

2k (log n)1−
1

2k . Note that

t2n
n2

=
1

n2
n2+ 1

2k−1 (log n)2−
1

2k−1 = n · n
1

2k−1−1(log n)1−
1

2k−1 log n = n · bn,k−1 log n.

Furthermore, by Corollary 15 (see Appendix B) we have |Ñn,k(A)| 6
2 exp [3A · n · bn,k−1 log (1/bn,k−1)]. These facts yield the bound

|Ñn,k(A)| exp

(
−κ2 εt

2
n

16n2

)
6 2 exp

{
−κ2 ε

16
n · bn,k−1

[
log n− 16

κ2ε
3A log (1/bn,k−1)

]}

6 2 exp
(
−κ2 ε

32
n · bn,k−1 log n

)
(for large n, since 1/bn,k−1 = o(n))

< 2 exp
(
−κ2 ε

32
nγ1−εn log n

)
where the final inequality follows from the choice of k satisfying 1

2k−1 < ε. Therefore,

4|L||Ñn,k(A)| exp

(
−κ2 εt

2
n

16n2

)
6 2 exp

{
−κ

2ε

32
nγ1−εn log n+O(log |L|)

}
(36)

for large enough n. Notice now that tn/n
2 = bn,k vanishes slower than 1/n, and is therefore

the leading order term in the expression 4|L|tn
n2 + 52|L|

κn
(see equation 35). Hence for large

enough n we have 4|L|tn
n2 + 52|L|

κn
6 5|L|bn,k. Combining this observation with lines (35) and

(36) proves the result in the case k > 1.
If k = 1, assume A = ε. By definition, then (see Definition 11), Nn,k(A) = Bn(ε).

Returning to inequality (35), we note that log |Bn(ε)| = O(n), and thus we can derive the

bound (36) with the same choice of tn := n1+ 1

2k (log n)1−
1

2k = n
√
n log n. The rest of the

argument goes through unaltered. �

B Technical Results

Lemma 14. Fix π1 ∈ [0, 1]. For each n, let C1 ⊆ [n] be an index set of size bnπ1c. Let
C2 := [n] \C1. Let γn ∈ [0, 1] be a sequence such that γn → 0 and nγn →∞. Then for large
enough n,

|N(C1, γn)| 6 exp{3nγn log(1/γn)}

Proof. Define the boundary of a neighborhood of C ⊆ [n] by

∂N(C, r) := {B ⊆ [n] : dh(B,C) = bnrc}.

Note that any B ⊆ [n] may be written as the disjoint union B = {C2∩B}∪{C1∩B}. Since
C1∩B = C1 \ {C1 \B}, for fixed k ∈ [n] it follows that each set B ∈ ∂N(C, k/n) is uniquely
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identified with choices of |C2 ∩B| indices from C2 and |C1 \B| indices from C1 such that

|B ∩ C2|+ |C1 \B| = |B \ C1|+ |C1 \B| = dh(B,C1) = k

Therefore, we have the equality

|∂N(C1, k)| =
k∑

m=0

[(
|C2|
m

)
+

(
|C1|
k −m

)]
(37)

Note that for positive integers K,N with K < N/2, properties of the geometric series yield
the following bound:(

N

K

)−1 K∑
m=0

(
N

m

)
=

K∑
m=0

(N −K)!K!

(N −m)!m!
=

K∑
m=0

K∏
j=m+1

j

N − j + 1

<
K∑
m=0

(
K

N −K + 1

)m
<

N − (K − 1)

N − (2K − 1)
(38)

For sufficiently small K/N , the right-hand side of inequality (38) is less than 2, and thus∑K
m=0

(
N
m

)
< 2

(
N
K

)
if K � N . We apply this inequality to equation (37). Choose n large

enough so that nγn < 1
2

min{|C1|, |C2|}, which is possible since γn → 0. Then for fixed

k 6 nγn, we have that |∂N(C1, k)| < 2
[(|C2|

k

)
+
(|C1|
k

)]
for large enough n. By another

application of the inequality derived from (38), using the fact that nγn = o(n), we therefore
obtain

|N(C1, γn)| =
bnγnc∑
k=0

|∂N(C1, k)| <
bnγnc∑
k=0

2

[(
|C2|
k

)
+

(
|C1|
k

)]

< 4

[(
|C2|
bnγnc

)
+

(
|C1|
bnγnc

)]
6 8

(
n

bnγnc

)
As
(
N
K

)
6
(
N ·e
K

)K
, we have

|N(C1, γn)| 6 exp {log(8) + nγn [log(e) + log(1/γn)]} 6 exp{3nγn log(1/γn)}

for large enough n, since 1/γn →∞. �

Here we give a short Corollary to Lemma 14 which directly serves the proof of Lemma
12. Recall Ñn,k(A) from Definition 11 in Section 4.1.2.

Corollary 15. Fix an integer k > 1. For large enough n,

|Ñn,k(A)| 6 2 exp [3A · n · bn,k−1 log (1/bn,k−1)]

Proof. The corollary follows from a direct application of Lemma 14 to N(C1, A · bn,k−1) and
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N(C2, A · bn,k−1). �

Lemma 16. Let x1, . . . , xk ∈ (0, 1) be fixed and let X1, . . . , Xk be arbitrary random variables.
Define W :=

∑
iXi and w :=

∑
i xi. Then for t sufficiently small, P(|W 2

+ − w2| > 4k2t) 6
P(maxi |Xi − xi| > t).

Proof. Define Di := |Xi − xi| and fix t < mini xi. Then if maxiDi 6 t, all Xi’s will be
positive, and thus W+ = W and |W − w| 6 kt, by the triangle inequality. Therefore
maxiDi 6 t implies that

|W 2
+ − w2| = |(W − w)2 + 2w(W − w)| 6 k2t2 + 2wkt 6 k2t2 + 2k2t (39)

Thus by the law of total probability, we have

P(|W 2
+ − w2| > 4k2t) 6 P({|W 2

+ − w2| > 4k2t} ∩ {max
i
Di 6 t}) + P(max

i
Di > t)

Inequality (39) implies that for sufficiently small t, the first probability on the right-hand
side above is equal to 0. The result follows. �

In what follows we state and prove Lemma 19, a concentration inequality for the mod-
ularity of a node set (see Definition 2) from a single-layer SBM with n nodes and two
communities. We first give a few short facts about the 2-community SBM. For for all results
that follow, let s, ρ, and v (see Definition 4) correspond to the fixed set B ⊆ [n] in each
result (though sometimes we will make explicit the dependence on B). Define a matrix V
by V (i, j) := P (i, j)(1 − P (i, j)) for i = 1, 2, where P is the probability matrix associated
with the 2-block SBM.

Lemma 17. Consider a single-layer SBM with n > 1 nodes, two communities, and param-
eters P and π1. Fix a node set B ⊆ [n] with |B| > αn for some α ∈ (0, 1). Then

1.
∣∣∣E[Y (B)]−

(|B|
2

)
vtPv

∣∣∣ 6 3|B|/2

2.
∣∣∣E [∑u∈B d̂(u)

]
− |B|nvtPπ

∣∣∣ 6 |B|
3. Var

[∑
u∈B d̂(u)

]
6 9|B|n

Proof. For part 1, note that by definition,

E [Y (B)] =
∑

u,v∈B:u<v

P
(

(u, v) ∈ Ê
)

=
1

2

∑
u6=v:u,v∈B

P
(

(u, v) ∈ Ê
)

The right-hand sum can be expressed the sum of the entries of a 2×2 symmetric block matrix
with zeroes on the diagonal. In this matrix, the upper diagonal block is of size |B ∩C1| with
off-diagonal entries equal to P (1, 1). The lower diagonal block is of size |B ∩ C2| with
off-diagonal entries equal to P (2, 2). The off-diagonal blocks have entries equal to P (1, 2).
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Therefore, summing over blocks and accounting for the zero diagonal, we have

E [Y (B)] =
1

2

[
|B ∩ C1|2P (1, 1) + |B ∩ C1||B ∩ C2|P (1, 2) + |B ∩ C2|2P (2, 2)

]
− 1

2

[
|B ∩ C1|P (1, 1) + |B ∩ C2|P (2, 2)

]
By dividing and multiplying by |B|2 and collapsing cross-products, we get

E [Y (B)] =
|B|2

2

[
vtPv − ρP (1, 1) + (1− ρ)P (2, 2)

|B|

]

=

(
|B|
2

)[
1 +

1

|B| − 1

] [
vtPv − ρP (1, 1) + (1− ρ)P (2, 2)

|B|

]

=

(
|B|
2

)[
vtPv − ρP (1, 1) + (1− ρ)P (1, 2)

|B|
+

vtPv

|B| − 1
− ρP (1, 1) + (1− ρ)P (2, 2)

|B|(|B| − 1)

]
Part 1 follows by carrying out the multiplication by

(|B|
2

)
in the last expression.

For part 2, let P (·, i) denote the i-th column of P . Note that E
[
d̂(u)

]
= nπTP (·, cu) −

P (cu, cu), with cu ∈ {1, 2} denoting the community index of u. Therefore,

E

[∑
u∈B

d̂(u)

]
=
∑
u∈B

E
[
d̂(u)

]
=

∑
u∈B∩C1

E
[
d̂(u)

]
+

∑
u∈B∩C2

E
[
d̂(u)

]
= |B ∩ C1|

[
nπTP (·, 1)− P (1, 1)

]
+ |B ∩ C2|

[
nπTP (·, 2)− P (2, 2)

]
= |B|

[
nρπTP (·, 1) + n(1− ρ)πTP (·, 2)− ρP (1, 1)− (1− ρ)P (2, 2)

]
= |B|nvtPπ − |B|

[
ρP (1, 1) + (1− ρ)P (2, 2)

]
which completes part 2.

Finally, for part 3, we have

Var

[∑
u∈B

d̂(u)

]
= Var [2Y (B)] +

∑
u,v:u∈B,v∈BC

Var
[
X̂(u, v)

]
. (40)

We address these two terms separately. For the first term, a calculation analogous to that
from part 1 yields that |Var [Y (B)]−

(|B|
2

)
vtV v| 6 3|B|/2. Defining v̄ := (ρ(BC), 1−ρ(BC))t,

it is easy to show that
∑

u,v:u∈B,v∈BC Var
[
X̂(u, v)

]
= |B||BC |vtV v̄, which is simply the sum

of variances of all edge indicators for edges from B to BC . Applying these observations to
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equation (40), we have

Var

[∑
u∈B

d̂(u)

]
6 4

(
|B|
2

)
vtV v + 12|B|/2 + |B||BC |vTV v̄

6 |B|
[
2(|B| − 1)vtV v + 6 + |BC |vtV v̄

]
6 9|B|n

�

Lemma 18. Under a single-layer SBM with n > 1 nodes, two communities, and parame-

ters P and π1, define κ := πTPπ. Then for large enough n, P
(∣∣2|Ê| − n2κ

∣∣ > t+ 4n
)
6

2 exp
{
− t2

n2

}
for any t > 0.

Proof. Note that |Ê| = Y ([n]). Thus part 1 of Lemma 17 with B = [n] yields∣∣∣E[|Ê|]−
(
n
2

)
κ
∣∣∣ 6 3n/2 for large enough n. As n2/2 =

(
n
2

)
+ n/2, by the triangle inequality,∣∣∣∣E[|Ê|]− n2

2
κ

∣∣∣∣ 6 ∣∣∣∣E[|Ê|]−
(
n

2

)
κ

∣∣∣∣+
n

2
6 2n

Thus for any t > 0, Hoeffding’s inequality gives

P
(∣∣∣2Ê − n2κ

∣∣∣ > t+ 4n
)
6 P

(∣∣∣2Ê − n2κ
∣∣∣ > t+ 2

∣∣∣∣E[|Ê|]− n2

2
κ

∣∣∣∣)

6 P
(∣∣∣2Ê − 2E[|Ê|]

∣∣∣ > t
)
6 2 exp

{
−2

t2

4
(
n
2

)} 6 2 exp{−t2/n2}

�

Lemma 19. Consider a single-layer 2-block SBM having n > 1 nodes and parameters P
and π. Fix α ∈ (0, 1) and B ⊆ [n] such that |B| > αn. Then for large enough n we have

Pn
(∣∣∣Q̂(B)− q(B)

∣∣∣ > t

n2
+

8

κn

)
6 4 exp

(
−κ

2αt2

16n2

)
(41)

for any t > 0.

Proof. With notation laid out in Section 2.2, define

Q̃(B) := n−1
(
|B|
2

)−1/2
(Y (B)− µ̃(B)) (42)

where

µ̃(B) :=

∑
u,v∈B:u<v

d̂(u)d̂(v)

n2κ
(43)
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We will prove the inequality in three steps: Step 1 : bounding
∣∣Q̂(B) − Q̃(B)

∣∣ in prob-

ability; Step 2 : deriving a concentration inequality for Q̃(B); and Step 3 : showing that∣∣∣E [Q̃(B)
]
− q(B)

∣∣∣ is eventually bounded by a constant.

Step 1. As
∑

u,v∈B;u<v d̂(u)d̂(v) 6
∑

u∈B d̂(u)2, we have

∑
u,v∈B;u<v

d̂(u)d̂(v) 6

√ ∑
u,v∈B;u<v

d̂(u)d̂(v)

√∑
u∈B

d̂(u)2 6 n

(
|B|
2

)1/2

|Ê|

Therefore,

∣∣∣Q̂(B)− Q̃(B)
∣∣∣ = n−1

(
|B|
2

)−1/2∣∣∣(2|Ê| − n2κ)
∑

u,v∈B;u<v d̂(u)d̂(v)

2|Ê|n2κ

∣∣∣ 6 ∣∣2|Ê| − n2κ
∣∣

2n2κ
(44)

Combining the inequality in (44) with Lemma 18, for any t > 0,

P
(∣∣∣Q̂(B)− Q̃(B)

∣∣∣ > t

2n2
+

2

κn

)
6 P

(∣∣∣2|Ê| − n2κ
∣∣∣ > κt+ 4n

)
6 2 exp

(
−κ

2t2

n2

)
. (45)

Step 2. This step relies on McDiarmid’s concentration inequality. Recall from Section 2.1
that X̂(u, v) denotes the indicator of edge presence between nodes u and v. Note that node
pairs have a natural, unique ordering along the upper-diagonal of the adjacency matrix.
Define ord{u, v} = 2(u − 1) + (v − 1), for {u, v} ∈ [n]2 with u < v (e.g. ord{1, 2} = 1,

ord{1, 3} = 2, etc.). For all n > 1 and i 6 n(n − 1)/2, define Ẑ(i) := X̂(u, v) such that
ord{u, v} = i. If ord{u, v} = i, we call {u, v} the “i-th ordered node pair”. Define the set

I(B) := {i : the i-th ordered node pair has at least one node in B}

and let Ẑ(B) := {Ẑ(i) : i ∈ I(B)}. Note that the proxy score Q̃(B) is a function f(z1, z2, . . .)

of the indicators Ẑ(B).
Consider a fixed indicator set Z(B). For each j ∈ I(B), define Zj(B) := {Zj(i) : i ∈

I(B)} with

Zj(B) :=

{
Zj(i) = 1− Z(i), i = j

Zj(i) = Z(i), i 6= j
(46)

To apply McDiarmid’s inequality, we must bound ∆(j) := |f(Z(B))− f(Zj(B))| uniformly
over j ∈ I(B). Fix j ∈ I(B) and let {u′, v′} be the j-th ordered edge. Without loss of
generality, we assume Z(j) = 1. Since f(Z(B)) = Q(B), f(Z(B)) has a representation in
terms of Y (B) and µ̃(B). We let Y j(B) and µ̃j(B) correspond to f(Z(B)j). Notice that

n

(
|B|
2

)1/2

∆(j) =
∣∣Y (B)− Y j(B)−

[
µ̃(B)− µ̃j(B)

]∣∣ (47)

We bound the right hand side of equation (47) in two cases: (i) u′, v′ ∈ B, and (ii) u′ /∈
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B, v′ ∈ B. In case (i), Y (B)− Y j(B) = 1, and

µ̃(B)− µ̃i(B) =

∑
u,v∈B;u6=v

d(u)d(v)− dj(u)dj(v)

n2κ
=
d(u′)d(v′)− dj(u′)dj(v′)

n2κ

=
d(u′)d(v′)− (d(u′)− 1)(d(v′)− 1)

n2κ
=
d(u′) + d(v′)− 1

n2κ
,

which is bounded in the interval (0, 1) for large enough n. Thus in case (i), ∆(j) 6 2
(|B|

2

)−1/2
by the triangle inequality, for large enough n. In case (ii), Y (B)− Y ′(B) = 0, and

µ̃(B)− µ̃j(B) =

∑
u,v∈B;u6=v

d(u)d(v)− dj(u)dj(v)

n2κ
=

∑
u∈B;u6=v′

d(u)
[
d(v′)− dj(v′)

]
n2κ

=

∑
u∈B;u6=v′

d(u)

n2κ
6
n|B|
n2κ

6 κ−1

Hence due to equation (47), we have for sufficiently large n that

∆(j) 6 n−1
(
|B|
2

)−1/2
·max{2, κ−1} 6 n−1

(
|B|
2

)−1/2
· 2 · κ−1 (48)

for all j ∈ I(B), as κ 6 1. Since |I(B)| =
(|B|

2

)
+ |B||BC | 6 n|B|, McDiarmid’s bounded-

difference inequality implies that for sufficiently large n,

P
(∣∣∣Q̃(B)− E

[
Q̃(B)

] ∣∣∣ > t

n

)
= 2 exp

(
−t2

n|B|∆(j)

)
6 2 exp

(
−κ2

n2
(|B|

2

)
t2

4n3|B|

)

6 2 exp

(
−κ2 (|B| − 1)t2

8n

)
6 2 exp

(
−κ2αt

2

16

)
for any t > 0. Replacing t by t/n gives

P
(∣∣∣Q̃(B)− E

[
Q̃(B)

] ∣∣∣ > t

n2

)
6 2 exp

(
−κ2 αt

2

16n2

)
(49)

Step 3. Turning our attention to E[Q̃(B)], recall that n
(|B|

2

)1/2
Q̃(B) = Y (B)−µ̃(B) and that

µ̃(B) :=
∑

u,v∈B;u<v d̂(u)d̂(v)/(n2κ). As in previous lemmas, we will shorthand the quantities
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s(B), ρ(B), and v(B), by s, ρ, and v (respectively). Note that

E

[
2 ·

∑
u,v∈B;u<v

d̂(u)d̂(v)

]
= E


[∑
u∈B

d̂(u)

]2
−
∑
u∈B

d̂2(u)


= Var

[∑
u∈B

d̂(u)

]
+ E

[∑
u∈B

d̂(u)

]2
−
∑
u∈B

E
[
d̂2(u)

]
(50)

Part 3 of Lemma 17 gives Var
[∑

u∈B d̂(u)
]
6 9sn2. Furthermore, for u ∈ Ci we have

E
[
d̂2(u)

]
= Var

[
d̂(u)

]
+ E

[
d̂(u)

]2
= nπTV (·, i)− V (i, i) + n2

[
πTP (·, i)− P (i, i)

]2
,

and therefore
∑

u∈B E
[
d̂2(u)

]
6 2sn3. Finally, Part 2 of Lemma 17 gives∣∣∣E [∑u∈B d̂(u)

]
− |B|nvTPπ

∣∣∣ 6 |B|. By expansion, this implies there exists a constant a

with |a| < 3 such that for large enough n, E
[∑

u∈B d̂(u)
]2

= s2n4(vtPπ)2 +as2n3. Therefore

overall, line (50) implies there exists a constant b with |b| < 6 such that for large enough n,

E
[
2 ·
∑

u,v∈B;u<v d̂(u)d̂(v)
]

= s2n4(vTPπ)2 + bsn3. Therefore, using the definition of µ̃(B),

E [µ̃(B)] = s2n4 (vtPπ)2 + b(sn)−1

2n2κ
=

(
sn

2

)[
1 +

1

sn− 1

] [
(vtPπ)2

κ
+

b

κsn

]

=

(
sn

2

)[
(vtPπ)2

κ
+

b

κsn
+

(vtPπ)2

κ(sn− 1)
+

b

κsn(sn− 1)

]

=

(
sn

2

)[
(vtPπ)2

κ
+

1

κsn

(
b+

sn(vtPπ)2 + b

sn− 1

)]
=

(
sn

2

)[
(vtPπ)2

κ
+

c1
κsn

]
(51)

for a constant c1 with |c1| < 8, for large enough n. Now, part 1 of Lemma 17 gives that∣∣∣E[Y (B)]−
(|B|

2

)
vtPv

∣∣∣ 6 3|B|/2 for large enough n. Thus there exists a constant c2 with

|c2| < 3 such that for large enough n, E[Y (B)] =
(|B|

2

) [
vtPv + c2

sn

]
. Thus

nE
[
Q̃(B)

]
=

(
|B|
2

)−1/2
(E[Y (B)]− E[µ̃(B)]) =

sn√
2

[
vtPv − (vtPπ)2

κ
+

1

sn
(c1/κ+ c2)

]

∗

(√
1− 1

sn

)
=

sn√
2

[
vtPv − (vtPπ)2

κ

]
+
c1/κ+ c2√

2

(√
1− 1

sn

)
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Thus there exists a constant c with |c| 6 |c1|/κ + |c2| < 8/κ + 3 such that for large enough

n, E[Q̃(B)] = q(B) + c/n. This completes Step 3.

Completion of the proof: We now recall the results of the three steps:

(i) For large enough n, we have P
(∣∣∣Q̂(B)− Q̃(B)

∣∣∣ > t
2n2 + 2

κn

)
6 2 exp

(
−κ

2t2

n2

)

(ii) P
(∣∣∣Q̃(B)− E

[
Q̃(B)

] ∣∣∣ > t
n2

)
6 2 exp

(
−κ2 αt

2

16n2

)
(iii) There exists c with |c| < 8/κ+ 3 such that for large enough n, E

[
Q̂(B)

]
= q(B) + c/n

Noting that α/16 < 1, we apply a union bound to the results of steps (i) and (ii):

P
(∣∣∣Q̂(B)− E

[
Q̃(B)

] ∣∣∣ > t

n2
+

2

κn

)
6 4 exp

(
−κ

2αt2

16n2

)
(52)

Applying the inequality |x− a| > |x| − |a| with (iii) and some algebra gives the result. �

C Competing Methods

In Sections 6 and 7, we compare and contrast the performance of Multilayer Extraction
with the following methods:

Spectral clustering [35]: an iterative algorithm based on the spectral properties of the
modularity matrix of an observed network. In the first step, the modularity matrix of
the observed network is calculated and its leading eigenvector is identified. The graph
is divided into two disjoint communities so that each vertex is assigned according to its
sign in the leading eigenvector. Next, the modularity matrix is calculated for both of
the subgraphs corresponding to the previous division. If the modularity of the partition
increases, these communities are once again divided into two disjoint communities, and
the procedure is repeated in this fashion until the modularity no longer increases.

Label Propagation [44]: an iterative algorithm based on propagation through the net-
work. At the first step, all vertices are randomly assigned a community label. Sequen-
tially, the algorithm chooses a single vertex and updates the labels of its neighborhood
to be the majority label of the neighborhood. The algorithm continues updating labels
in this way until no updates are available.

Fast and greedy [14]: an iterative and greedy algorithm that seeks a partition of vertices
with maximum modularity. The algorithm is an agglomerative approach that is a
modification of the Kernighan-Lin algorithm commonly used in the identification of
community structure in network.
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Walktrap [42]: an agglomerative algorithm that seeks a partition of vertices that min-
imizes the total length of a random walk within each community. At the first stage,
each vertex of the network is placed in its own community. At each subsequent stage,
the two closest communities (according to walk distance) are merged. This process is
continued until all vertices have been merged into one large community, and a com-
munity dendrogram is formed. The partition with the smallest random walk distance
is chosen as the final partition.

When used, we apply each of the above methods to the aggregate (weighted) network
computed from the average of the layers in the analyzed multilayer network as well as to
each layer separately. For each method, we use the default settings from the igraph package
version 0.7.1 set in R.

D Extraction Simulations

D.1 Simulation

We now investigate several intrinsic properties of Multilayer Extraction by applying the
method to multilayer networks with several types of community structure, including I) dis-
joint, II) overlapping, III) persistent, IV) non-persistent, and V) hierarchical structure. Fig-
ure 7 illustrates six multilayer networks that we analyze for this purpose. Each simulated
network contains 1000 nodes and 90 layers. Embedded communities have inner connec-
tion probability 0.15; whereas, the remaining vertices independently connected to all other
vertices with probability 0.05.
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Figure 7: Simulation test bed for extraction procedures. Each graphic displays a multilayer network
on 1000 nodes and 90 layers. In each plot, shaded rectangles are placed over the nodes (rows) and
layers (columns) that are included in a multilayer community. Communities are labeled by number.
Vertices within the same community are randomly connected with probability 0.15 while all other
vertices have connection probability 0.05 to vertices in their respective layer.
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D.2 Results

In the disjoint, overlapping, persistent, and non-persistent networks (I, II, III, and IV,
respectively), Multilayer Extraction identifies communities that perfectly match the true em-
bedded communities. On the other hand, in the hierarchical community setting, Multilayer
Extraction is unable to identify the full set of communities. In example V, Multilayer Extrac-
tion does not identify community 1, and in example VI Extraction identifies a community
with vertices 1 - 300 across layers 1 - 60, which combines community 1 and community 2.

Together, these results suggest two properties of the Multilayer Extraction procedure.
First, the method can efficiently identify disjoint and overlapping community structure in
multilayer networks with heterogeneous community structure. Second, Multilayer Extraction
tends to disregard communities with a large number of vertices (e.g. communities that
include over half of the vertices in a network). The inverse relationship between the score
and the number of vertices in a community may provide some justification as to why this
is the case. In networks with large communities, one can in principle modify the score by
introducing a reward for large collections. We plan to pursue this further in future research.
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