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Abstract

We present a systematic small-correlation expansion to solve the inverse Ising
problem and find a set of couplings and fields corresponding to a given set of
correlations and magnetizations. Couplings are calculated up to the third order
in the correlations for generic magnetizations and to the seventh order in the
case of zero magnetizations; in addition, we show how to sum some useful
classes of diagrams exactly. The resulting expansion outperforms existing
algorithms on the Sherrington–Kirkpatrick spin-glass model.

PACS numbers: 05.20.−y, 02.50.Tt, 02.30.Zz

1. Introduction

Calculating average values of observables given in a Hamiltonian is a general problem in
statistical mechanics. This can be done either analytically for a few exactly solvable systems
or numerically through simulations with, e.g., Monte Carlo techniques. These techniques
give access, for not too low temperatures or too big systems, to the local magnetizations mi

and spin–spin correlations cij of an Ising sample, even in the notoriously complex case of
spatially distributed interactions Jij and fields hi [1]. Much less attention has been brought
in the physics literature to the inverse problem, that is, calculating the couplings and fields
from the knowledge of the magnetizations and correlations, a problem known as Boltzmann-
machine learning in statistical inference theory [2]. Yet the growing availability of data in
many biological systems of interest as neural assemblies [3, 4], proteins [5], gene networks [6],
etc, have strengthened the need for efficient techniques to infer interactions from correlations
[7].

The purpose of this paper is to present a systematic expansion procedure to solve the
inverse Ising problem. Given a set of observed magnetizations and correlations we look for
the (a priori non-uniform) couplings and fields of the Ising Hamiltonian reproducing those
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UMR 8549. LPTENS-08/53.

1751-8113/09/055001+17$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/5/055001
http://stacks.iop.org/JPhysA/42/055001


J. Phys. A: Math. Theor. 42 (2009) 055001 V Sessak and R Monasson

average observables at equilibrium. Our procedure is inspired from works by Plefka on mean-
field spin glasses [10], and subsequent results by Georges and Yedidia [11, 12], who derived
the free energy of a spin glass at fixed magnetization and interactions, performing a Legendre
transform of the free energy with respect to the fields. Technically speaking, our work is an
extension where one more Legendre transform, this time with respect to the interactions, is
carried out to obtain the free energy at fixed magnetization and correlations.

The need for calculating free energies under some constraints is not new. One well-
known example comes from the physics of gas or liquids, where one looks for the free energy
of interacting particles at fixed density and pair correlations [8]. Another example can be
found in field theory, where one is interested in determining the thermodynamic potential for
fixed average values of the field and two-point correlations [9]. Calculations generally rely
on expansions in powers of the correlations around the non-interacting case which can be
exactly handled. We stress that, in contradistinction with the above-mentioned examples and
most of the existing literature, our work deals with the case of discrete spin variables and
non-translationally invariant interactions.

The plan of the paper is as follows. The general procedure for the expansion is exposed
in section 2. Section 3 is devoted to the generic case of non-zero magnetizations while
section 4 concentrates on the simpler case of zero magnetizations where the expansion can be
pushed to higher orders. The results for the couplings are checked on two standard models:
the unidimensional Ising model, and the Sherrington–Kirkpatrick (SK) model of a spin glass.
We show that our procedure for inferring couplings works better than existing methods for
the SK model. The major technicalities are presented in the appendices; the reader interested
in explicit expressions for the couplings given the correlations and magnetizations can skip
section 2.

2. Procedure for the small c expansion

We consider an Ising model over N spins σi = ±1, i = 1, . . . , N , with Hamiltonian

H({Si}) = −
∑
i<j

Jij σiσj −
∑

i

hiσi . (1)

We want to find the values of couplings and the fields, J ∗
ij , h

∗
i such that the average values

of the spins and of the spin–spin correlations match the prescribed magnetizations mi and
connected correlations cij :

mi = ∂ log Z

∂hi

({J ∗
ij }, {h∗

i }), cij = ∂ log Z

∂Jij

({J ∗
ij }, {h∗

i }) − mimj , (2)

where the partition function (at unit temperature) reads

Z({Jij }, {hi}) = Tr
{σi }

e−H({σi }). (3)

These couplings and fields are the ones that minimize the entropy of the Ising model at fixed
magnetizations and correlations2,

S({Jij }, {hi}; {mi}, {cij }) = log Z({Jij }, {hi}) −
∑
i<j

Jij (cij + mimj) −
∑

i

himi

= log Tr
{σi }

exp

⎧⎨
⎩
∑
i<j

Jij [(σi − mi)(σj − mj) − cij ] +
∑

i

λi(σi − mi)

⎫⎬
⎭ , (4)

2 Note that the minimum may be reached for infinitely large values of hi or Jij i.e. as happens for fully correlated
sites 〈σiσj 〉 = 1.
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where the new fields λi are simply related to the physical fields hi through λi = hi +
∑

j Jijmj .
The calculation of the entropy (4) for a given set of Jij and λi is, in general, a

computationally challenging task, not to say about its minimization. To obtain a tractable
expression we multiply all (connected) correlations cij in (4) by a small parameter β,
which can be interpreted as a fictitious inverse temperature. The calculation of the entropy
S({Jij }, {λi}; {mi}, {βcij }) is straightforward for β = 0 since spins are uncoupled in this limit.
The values of the couplings and fields minimizing the β = 0 entropy are thus

J ∗
ij (β = 0) = 0, λ∗

i (β = 0) = h∗
i (β = 0) = tanh−1(mi). (5)

Our goal is to expand the couplings and fields in powers of β; to each order of the expansion
the couplings and fields will be functions of the magnetizations and correlations. Ideally, the
couplings and fields that we are looking for will be obtained by setting β = 1 in the expansion.

To implement the expansion of J ∗
ij and λ∗

i from equation (4) we proceed in the following
way. First we define a potential U over the spin configurations at inverse temperature β through

U({σi}) =
∑
i<j

J ∗
ij (β)[(σi − mi)(σj − mj) − βcij ]

+
∑

i

λ∗
i (β)(σi − mi) +

∑
i<j

cij

∫ β

0
dβ ′J ∗

ij (β
′) (6)

and a modified entropy, compare to (4),

S̃({mi}, {cij }, β) = log Tr
{σi }

eU({σi }). (7)

Note that U depends on the coupling values J ∗
ij (β

′) at all inverse temperatures β ′ < β. The
true entropy (at its minimum) and the modified entropy are simply related to each other:

S = S̃ −
∑
i<j

cij

∫ β

0
dβ ′J ∗

ij (β
′). (8)

The modified entropy S̃ (7) has an explicit dependence on β through the potential U (6), and an
implicit dependence through the couplings and the fields. As the latter are chosen to minimize
S, the full derivative of S̃ with respect to β coincides with its partial derivative, and we get

dS̃

dβ
= −

∑
i<j

cij J
∗
ij (β) +

∑
i<j

cij J
∗
ij (β) = 0. (9)

The above equality is true for any β. Consequently S̃ is constant, and equal to its β = 0 value,
that is, to the entropy of N uncoupled spins with known magnetizations {mi}. We now present
three facts, shown in the appendices:

1. For any integer k � 2,

∂kS̃

∂βk

∣∣∣∣
0

= −
∑
i<j

cij

∂k−1J ∗
ij

∂βk−1

∣∣∣∣∣
0

+ Qk, (10)

where Qk is a (known) function of the magnetizations, correlations, and of the derivatives
in β = 0 of the couplings J ∗

ij and fields λ∗
i of order � max(1, k − 2). See appendix A

and C. Recall that S̃ is constant by virtue of (9) thus both sides of (10) vanishes.
2. For any integer k � 2 the kth derivative of λ∗

i in β = 0 can be calculated from the
magnetizations and the knowledge of the derivatives in β = 0 of the couplings J ∗

ij of
order � k − 1. See appendix B.
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3. The first derivative of the couplings in β = 0 is given by
∂J ∗

ij

∂β

∣∣∣∣
0

= cij(
1 − m2

i

)(
1 − m2

j

) . (11)

See appendix A.1.

Those facts allow us to calculate the derivatives of the couplings in β = 0 to any order in a
recursive way. Let k � 3. From the definition (4) of the entropy

∂S

∂cij

({J ∗
ij }, {λ∗

i }; {mi}, {βcij }) = −βJ ∗
ij . (12)

Differentiation of the above equation k times with respect to β in β = 0 gives

∂k

∂βk

∣∣∣∣
0

∂S

∂cij

({J ∗
ij }, {λ∗

i }; {mi}, {βcij }) = −k
∂k−1J ∗

ij

∂βk−1

∣∣∣∣∣
0

. (13)

Using relationship (8) we obtain

∂

∂cij

[
∂kS̃

∂βk

∣∣∣∣
0

−
∑
r<s

crs

∂k−1J̃ ∗
rs

∂βk−1

∣∣∣∣
0

]
= −k

∂k−1J ∗
ij

∂βk−1

∣∣∣∣∣
0

. (14)

We now use that S̃ is constant and fact 1 to deduce
∂k−1J ∗

ij

∂βk−1

∣∣∣∣∣
0

= 1

k

∂Qk

∂cij

. (15)

As a consequence the (k−1)th derivative of J ∗
ij in β = 0 is a known function of the derivatives

in β = 0 of the couplings J ∗
ij and fields λ∗

i of order � k − 2 (and of the magnetizations and
correlations). Using fact 2 we express all the derivatives of the fields in terms of the derivatives
of the couplings of order � k − 2. Hence we can compute the (k − 1)th derivative of the
couplings from the knowledge of all derivatives with lower orders. The recursive procedure
uses fact 3 as a starting point to generate all derivatives.

3. General results for non-zero magnetizations

3.1. Explicit expansions of the entropy, couplings and fields

The procedure exposed in the previous section has allowed us to expand the entropy S and
the fields hi up to the order c4 and the couplings up to the order c3. Details are given in
appendix A. We define

Li = 1 − m2
i , Kij = cij

LiLj

. (16)

The entropy reads

S = −
∑

i

[
1 + mi

2
ln

1 + mi

2
+

1 − mi

2
ln

1 − mi

2

]

− β2

2

∑
i<j

K2
ijLiLj +

2

3
β3

∑
i<j

K3
ijmimjLiLj + β3

∑
i<j<k

KijKjkKkiLiLjLk

− β4

12

∑
i<j

K4
ij

[
1 + 3m2

i + 3m2
j + 9m2

i m
2
j

]
LiLj − β4

2

∑
i<j

∑
k

K2
ikK

2
kjL

2
kLiLj

−β4
∑

i<j<k<l

(KijKjkKklKli + KikKkjKljKil + KijKjlKlkKki)LiLjLkLl

+ O(β5). (17)
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The terms in the expansion can be represented diagrammatically. A point in the diagram
represents a spin, and a line represents a Kij link. We do not represent the polynomial in the
variables {mi} that multiplies each diagram. Summation over the indices is implicit:

S({ckl}, {mi}, β) = − − 1
2

+
2
3

+

− 1
12

− 1
2

− . (18)

In contradistinction with [11] the expansion includes non-irreducible diagrams. It should be
noted that, as in [11], the Feynman rules of these graphs is unknown even in the mi = 0 case,
which makes impossible to do the expansion by a simple enumeration of the diagrams. The
result for Jij is

J ∗
ij ({ckl}, {mi}, β) = βKij − 2β2mimjK

2
ij − β2

∑
k

KjkKkiLk

+
1

3
β3K3

ij

[
1 + 3m2

i + 3m2
j + 9m2

i m
2
j

]
+ β3

∑
k

(�=i,�=j)

Kij

(
K2

jkLj + K2
kiLi

)
Lk

+ β3
∑
k,l

(k �=i,l �=j)

KjkKklKliLkLl + O(β4). (19)

We can also represent J ∗
ij diagrammatically, with the difference that we connect the i and j

sites with a dashed line that do not represent any term in the expansion:

J∗
ij = − 2 −

+
1
3

+ + + .
(20)

We end up with the expansion for the ‘physical’ field

hl({cij }, {mi}, β) = 1

2
ln

(
1 + ml

1 − ml

)
−

∑
j

J ∗
ljmj + β2

∑
j (�=l)

K2
ljmlLj

− 2

3
β3(1 + 3m2

l )
∑
j (�=l)

K3
ljmjLj − 2β3ml

∑
j<k

KljKjkKklLjLk

+ 2β4ml

∑
i<j

∑
k

KikKkjKjlKliLiLjLk

+ β4ml

∑
j

K4
ljLj

[
1 + m2

l + 3m2
j + 3m2

l m
2
j

]
+ β4ml

∑
i( �=l)

∑
j

K2
ijK

2
j lLiL

2
j + O(β5). (21)

The diagrammatic representation of hl is very similar to that of S (not shown).
We have tested the behaviour of the series on the Sherrington–Kirkpatrick model in

the paramagnetic phase [13]. We randomly draw a set of N × (N − 1)/2 couplings
J true

ij from uncorrelated normal distributions of variance J 2/N , calculate the correlations

5



J. Phys. A: Math. Theor. 42 (2009) 055001 V Sessak and R Monasson

Figure 1. Relative error � (22) on the inferred couplings as a function of the inverse temperature
J of the Sherrington–Kirkpatrick model with N = 200 spins. Monte Carlo simulations are run
over 100 steps, and averages and error bars are computed from 100 samples. Top: orders 1,2, 3
of the expansion. Bottom: expression (24) which includes the sum over all loop diagrams. Inset:
largest eigenvalue � of matrix M as a function of J .

and magnetizations from Monte Carlo simulations, infer the couplings J ∗
ij from the above

expansion formulae and compare the outcome to the true couplings through the estimator

� =
√√√√ 2

N(N − 1)J 2

∑
i<j

(
J ∗

ij − J true
ij

)2
. (22)

The quality of inference can be seen in figure 1 for orders (powers of β) 1,2 and 3. For large
couplings the inference gets worse when the order of the expansion increases, as could be
guessed from the presence of terms with alternating signs in the expansion, compare the 2-site
loop, triangle and square in (19), (20).

3.2. Resummation of loop diagrams

The divergence coming from the alternate series can be cured by summing all loop diagrams.
A simple inspection shows that each diagram is multiplied by ±1 depending on the parity of
the number of its links. From an algebraic point of view

J
∗(loop)

ij = βKij − β2
∑

k

KjkKkiLk + β3
∑
k,l

KjkKklKliLkLl + · · ·

= (LiLj )
−1/2[(M)ij − (M2)ij + (M3)ij − · · ·]

= (LiLj )
−1/2[M · (Id + M)−1)]ij , (23)

where M is the matrix defined by Mij = βKij

√
LiLj and Mii = 0. Expression (23) for the

coupling was already known as a consequence of the TAP equations (see [14] and [10]), and is
exact up to O(1/N) corrections for infinite range models. Our calculation shows how models

6
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Figure 2. Absolute error J × � on the inferred couplings as a function of the inverse temperature
J of the Sherrington–Kirkpatrick model. Inference is done through formula (24), which takes into
account all loop diagrams. The error decreases with the number of spins and the number of Monte
Carlo steps (shown on the figure).

with O(1) couplings depart from the TAP expression:

J ∗
ij ({ckl}, {mi}) = J

∗(loop)

ij − 2β2mimjK
2
ij

+
2

3
β3K3

ij

[−1 + 3m2
i + 3m2

j + 3m2
i m

2
j

]
+ O(β4). (24)

Figure 1 shows how the resummation of loop diagrams eliminates the divergence in the relative
error � as expected. The same phenomenon takes place in the simpler Curie–Weiss model of a
ferromagnet where spins interact through uniform couplings Jij = J0/N , and the (connected)
correlations are of the same order, cij = c/N . From the relation Nc = ∂m/∂h we can deduce
that the large-N expression for the coupling,

J0 = c

1 + c
= c − c2 + c3 − c4 + · · · , (25)

is an alternating series with the radius of convergence c = 1. This radius is also given by the
condition that the largest eigenvalue of cij equals 1.3 This condition applies to the general case
too: a necessary condition for the convergence of equation (24) is that the largest eigenvalue
� of M must be smaller than unity. We plot in the inset of figure 1 the behaviour of � as a
function of J . It appears that � = 1 for J � 0.3, a value comparable to the intersection point
of the lowest order expansions, J � 0.35.

The apparent large value of the relative error � in figure 1 is not due to the quality of the
expansion but to the noise in the correlations and magnetizations introduced by the imperfect
sampling of MC simulations. We show in figure 2 how the absolute error J ×� decays as the
square root of the number of MC steps, and is roughly independent of J (except close to the

3 The on-diagonal entries of the correlations are chosen to be 0—as is the case for diagonal couplings—while
off-diagonal coefficients coincide with cij .
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spin-glass temperature J = 1). As expected, for an infinite number of MC steps and N → ∞,
the error should vanish.

3.3. Resummation of 2-spin diagrams

Looking carefully at the results of the section 3.1 one can deduce a general formula for the
two spins diagrams:

J
∗(2-spin)

ij = Kij − 2mimjK
2
ij +

1

3
K3

ij

(
1 + 3m2

i

)(
1 + 3m2

j

) − 4K4
ijmimj

(
1 + m2

i

)(
1 + m2

j

)
+ · · · + (−1)k

1

k − 1
Kk−1

ij

〈(σi − mi)
k〉

1 − m2
i

〈(σj − mj)
k〉

1 − m2
j

+ · · ·

= 1

4
ln[1 + Kij (1 + mi)(1 + mj)] +

1

4
ln[1 + Kij (1 − mi)(1 − mj)]

− 1

4
ln[1 − Kij (1 − mi)(1 + mj)] − 1

4
ln[1 − Kij (1 + mi)(1 − mj)], (26)

where we have used equation (C.3) from appendix C to evaluate the averages. This expression
is exact, and was checked by a symbolic calculation program. Note that in the case of zero
magnetization, (26) simplifies to J

∗(2-spins)
ij = tanh−1 cij .

The resummation of all 2-spin diagrams and loop diagrams can be done, with the result

J
∗(2-spin+loop)

ij = J
∗(loop)

ij + J
∗(2-spin)

ij − Kij

1 − K2
ijLiLj

. (27)

The last term in (27) prevents double counting of diagrams of the type , (obtained
through contraction of ), and is derived in appendix C. The compact expression (27) contains
all the diagrams present in (19), in addition to higher order loop and 2-spin contributions.

Resummation of all diagrams with a larger number k of spins is harder. It is done in
section 4.2 in the case of zero magnetizations and k = 3. For larger values of k we are
not aware of any closed analytical expression, and resummation can be done by means of
numerical procedures only. An important remark is that contributions from diagrams with k
spins behave as O

(∏k
i=1

(
1−m2

i

))
when the mi s tend to 1 (or − 1) as we show in appendix C.

This expansion is particularly adapted to the inference of couplings from strongly magnetized
data; a practical application can be found in [15].

4. Further results in the zero magnetization case

4.1. Higher order expansions of the entropy, couplings and fields

While the procedure described in section 2 allows for a systematic expansion of the couplings
in powers of β it is technically involved to do by hand. In this section, we find numerically
the expansion up to the order O(β8) in the simpler case where mi = 0 for all spins i.

We know that the expansion of S up to the fifth order is given by the sum of all diagrams
with five links or less. More precisely,

S(5th order) = S(4th order) + a1 · + a2 · +

+ a3 · + a4 · + a5 · + · · · + O(c6) .
(28)

8
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As we already know from S(4th order) from the previous section what remains to be found are
the ai coefficients. According to the procedure outlined in section 2 those coefficients are
rational (and in particular, for low orders, with a small integer denominator). Our idea is to
find those coefficients from a fit of a numerical solution.

Numerically we minimize the entropy (4) for a small number N of spins (not larger than
eight). Correlations are arbitrary numbers chosen to be very small (about 10−7) since we want
the corrections of the order of O(c6) to be numerically negligible compared to O(c5) terms.
Of course, when the correlations are very small, so are the inferred couplings. To estimate the
latter to sufficient accuracy we have performed our calculations with an unusual large number
of decimal units (≈400). A computer program, at each step l, randomly chooses the couplings
cl
ij and numerically evaluates the corresponding entropy Sl and correlations cl

ij through an
exact enumeration over the 2N spin configurations. Then it calculates

D =
L∑

l=1

[
Sl − S(5th order)(cl

ij

)]2
(29)

over a large number L of random samples. This quantity is quadratic in the coefficients ai , so
its minimum can be easily obtained, and we could deduce that the coefficients in the expansion
(28) are all zero. Using this procedure, order by order, we have determined the following
expansion for J ∗

ij (where the coefficients found numerically differed from the rational fractions
listed below by less than 10−10):

J∗
ij = J

∗(2-spin+loop)
ij + − 4

3
− 4

⎛
⎜⎝ +

⎞
⎟⎠

+ 2 + + 16 + 8

⎛
⎜⎝ +

⎞
⎟⎠

− 2 − 4 − 4 + .O(c8)
(30)

We can note the absence of any term with five or more spins in this expansion. We
suspect that the lowest order diagram in this expansion for a given number spins is the loop
with double links. In particular, the first diagram with five spins would be , which is not
present in (30) since it is O(c9).

4.2. Three spins summation for zero magnetization

For three spins and zero magnetizations the entropy (4) can be minimized exactly with a
symbolic algebra program, with the following results for the couplings:

J
∗(3-spin)

ij = 1

4

∑
k(�=i,j)

{
log

[
1 + cij − cik − cjk

1 − cij − cik + cjk

]

− log

[
1 − cij + cik − cjk

1 − cij − cik + cjk

]
+ log

[
1 + cij + cik + cjk

1 − cij − cik + cjk

]}
. (31)

9
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Following the same lines as in section 3.3 we gather our previous results in the mi = 0 case
under the form4,

J
∗(2-spin+loop+3-spin)

ij = J
∗(2-spin+loop)

ij + J
∗(3-spin)

ij

−
∑

k(�=i,j)

{
J

∗(2-spins)
ij +

cij − cikcjk

1 − c2
ij − c2

ik − c2
jk + 2cij cjkcki

− cij

1 − c2
ij

}
. (32)

4.3. Check on the one-dimensional Ising model

We consider a unidimensional Ising model with uniform coupling J between nearest
neighbours5. We have

cij = | tanh J ||i−j | (33)

J
∗(2-spin)

ij = tanh−1(| tanh J ||i−j |). (34)

We can see from the above formula that the sum of all 2-spin diagrams infers the correct value
of the couplings Ji,i+1, but gives a non-zero value for the other ones. We can also evaluate the
sum of loop diagrams (with c = tanh J ):

J
∗(loop)

ij = c

1 − c2
(δi,i+1 + δi,i−1), (35)

where δi,j is the Kronecker function. We obtain a zero contribution for non-neighbouring
sites, but an erroneous values for the nearest-neighbour coupling Ji,i+1. If we consider the
contributions from both 2-spin and loop diagrams,

J
(2-spin+loop)

ij = J (δi,i+1 + δi,i−1) +

[
tanh cij − cij

1 − c2
ij

]
(1 − δi,i+1)(1 − δi,i−1)

= J (δi,i+1 + δi,i−1) + O(c6), (36)

which is correct to the order c6. The next contribution to the couplings coming from
the expansion (30) corresponds to , whose leading term is indeed proportional to
ci,i+2 · c2

i,i+1 · c2
i+1,i+2 = c6.

We may also want to understand how Ji,i+2 converges to zero. Using geometric series
calculations, one can evaluate

= c2γ+α+β · 1 + c2α + c2β

1 − cα+β (37)

= 2c10
1 + c4

1 − c4
+ c14

2 + c8

(1 − c4)2
. (38)

Performing the whole summation in (30) we find that Ji,i+2 = O(c8), which is consistent with
the first missing contribution from the expansion, .

4 Calculations to avoid double counting are similar to those shown in appendix C, with a 3 × 3 instead of 2 × 2
matrix, and are not shown.
5 The case of non-uniform couplings varying from link to link can be treated along the same lines.
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Figure 3. Relative error � (22) as a function of J for the SK model for our resummation
J

(2-spin+loop+3-spin)

ij (32) compared to the susceptibility propagation method of Mézard and Mora

[7] and loop resummation J
(loop)

ij (24).

4.4. Application to the Sherrington–Kirkpatrick model

We have seen above that the error on the inferred couplings for the Sherrington–Kirpatrick
model is essentially due to the noise in the MC estimates of the correlations and magnetizations.
To avoid this source of noise we now evaluate the error due to our truncated expansion using
a program that calculates cij through an exact enumeration of all 2N spin configurations. We
are limited to small values of N (10, 15 and 20). However the case of a small number of spins
is particularly interesting because, for the SK model, the summation of loop diagrams is exact
in the limit N → ∞. The importance of terms in our expansions not included in the loop
resummation is thus better studied at small N.

Results are shown in figure 3. The error is remarkably small for weak couplings, and get
dominated by finite-digit accuracy (10−13) in this limit. Not surprisingly it behaves better than
simple loop resummation, and also outperforms the message-passing-based method recently
introduced in [7].

5. Perspectives

As we saw in sections 4.3 and 4.4 the expansion method introduced in this paper works
well for both the Sherrington–Kirkpatrick spin-glass—an infinite dimensional system, with
very dilute couplings—and the unidimensional Ising—with only a few but strong couplings
per site—models. It would be interesting to investigate how accurate our method is for
‘Small-World’-like interaction networks, which have both kinds of couplings [16].

In principle, the assumption of binary-valued spins (σi = ±1) is not central to our
expansion and could be straightforwardly released to tackle the case of Potts models, where
each spin can be in q possible states (σi = 1, . . . , q). Such a generalization would make the
method useful to connect with biological problems involving amino acids [5].

11
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Finally, our expansion breaks down with the onset of the spin-glass phase as can be seen
from figure 3. The failure of our method (and of other existing algorithms) is not surprising.
Correlations and magnetizations have a physical meaning when there is a single pure state.
In the presence of more than one phases Gibb’s averages have indirect significance. A well-
known example is the ferromagnet at low temperature and zero field where two equally likely
phases of opposite magnetizations ±ms exist, and the resulting Gibb’s magnetization m truly
vanishes (for any finite N). The work is in progress to extend our expansion technique to this
multiple-phase regime.
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Appendix A. Details of the small-β expansion

Let O be an observable of the spin configuration (which can explicitly depend on the inverse
temperature β) and

〈O〉 = 1

Z
Tr
{σi }

O eU (A.1)

its average value, where U is defined in (6), and Z = exp(S̃). The derivative of the average
value of O fulfils the following identity:

∂〈O〉
∂β

= 1

Z
Tr
{σi }

[
∂O

∂β
+ O

∂U

∂β

]
eU − 1

Z2

∂Z

∂β
Tr
{σi }

O eU =
〈
∂O

∂β

〉
+

〈
O

∂U

∂β

〉
(A.2)

where the term in Z−2 vanishes as a consequence of (9).

A.1. First-order expansion

Using (A.2) and (9),

0 = ∂2S̃

∂β2
= ∂

∂β

〈
∂U

∂β

〉
=

〈
∂2U

∂β2

〉
+

〈(
∂U

∂β

)2
〉

, (A.3)

and by using the explicit form of U given in (6):

∂2S̃

∂β2

∣∣∣∣
0

= −
∑
i<j

cij

∂J ∗
ij

∂β

∣∣∣∣
0

+
∑
i<j

(
∂J ∗

ij

∂β

∣∣∣∣
0

)2 (
1 − m2

i

)(
1 − m2

j

)
+
∑

i

(
∂λ∗

i

∂β

∣∣∣∣
0

)2 (
1 − m2

i

)
.

(A.4)

In appendix B we show that ∂λ∗
i

∂β

∣∣
0 = 0. As S̃ is constant we end up with the following

algebraic equation for the first-order derivative of J ∗
ij (β):

0 = −
∑
i<j

cij

∂J ∗
ij

∂β

∣∣∣∣
0

+
∑
i<j

(
∂J ∗

ij

∂β

∣∣∣∣
0

)2 (
1 − m2

i

)(
1 − m2

j

)
. (A.5)

The only non-zero solution of the above equation, symmetric under index permutations, is the
announced result (11).
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A.2. Second-order expansion

Using (A.2) and (A.3),

0 = ∂3S̃

∂β3
= ∂

∂β

[〈
∂2U

∂β2

〉
+

〈(
∂U

∂β

)2
〉]

=
〈
∂3U

∂β3

〉
+ 3

〈
∂2U

∂β2

∂U

∂β

〉
+

〈(
∂U

∂β

)3
〉

. (A.6)

A straightforward calculation gives (where we omit for clarity the notation |0 and the ∗

subscript from Jij and λi)〈
∂3U

∂β3

〉
0

= −2
∑
i<j

∂2Jij

∂β2
cij (A.7)

〈
∂2U

∂β2

∂U

∂β

〉
0

=
∑
i<j

∂2Jij

∂β2

∂Jij

∂β
LiLj +

∑
i

∂2λi

∂β2

∂λi

∂β
Li (A.8)

〈(
∂U

∂β

)3
〉

0

= 6
∑

i<j<k

∂Jij

∂β

∂Jjk

∂β

∂Jki

∂β
LiLjLk

+
∑
i<j

(
∂Jij

∂β

)3

4mimjLiLj + 6
∑
i<j

∂Jij

∂β

∂λi

∂β

∂λj

∂β
LiLj . (A.9)

Using (A.6), results from appendix B for the expressions of the derivatives of λi in β = 0
and (11) we obtain (10) for k = 3 with

Q2 = −4
∑
i<j

c3
ijmimj(

1 − m2
i

)2(
1 − m2

j

)2 − 6
∑

i<j<k

cij cjkcki(
1 − m2

i

)(
1 − m2

j

)(
1 − m2

k

) , (A.10)

from which we deduce

∂3S

∂β3

∣∣∣∣
0

= 4
∑
i<j

K3
ijmimjLiLj + 6

∑
i<j<k

KijKjkKkiLiLjLk (A.11)

and

∂2Jij

∂β2

∣∣∣∣
0

= −4mimjK
2
ij − 2

∑
k(�=i,�=j)

KjkKkiLk. (A.12)

A.3. Third-order expansion

The procedure to derive the third-order expansion for the coupling is identical to the second-
order one. We start from

0 = ∂4S̃

∂β4
=

〈
∂4U

∂β4

〉
+ 3

〈(
∂2U

∂β2

)2
〉

+ 4

〈
∂3U

∂β3

∂U

∂β

〉
+ 6

〈(
∂U

∂β

)2
∂2U

∂β2

〉
+

〈(
∂U

∂β

)4
〉

(A.13)

and evaluate each term in the sum:〈
∂4U

∂β4

〉
0

= −3
∑
i<j

∂3Jij

∂β3

∣∣∣∣
0

KijLiLj (A.14)
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〈(
∂2U

∂β2

)2
〉

0

=
∑
i<j

(
∂2Jij

∂β2

)2

LiLj +
∑

i

(
∂2λi

∂β2

)2

Li +

⎡
⎣∑

i<j

K2
ijLiLj

⎤
⎦

2

(A.15)

〈
∂3U

∂β3

∂U

∂β

〉
0

=
∑
i<j

Kij

∂3Jij

∂β3
LiLj (A.16)

〈(
∂U

∂β

)2
∂2U

∂β2

〉
0

= 2
∑
i<k

∑
j

KijKjk

∂2Jki

∂β2
LiLjLk + 4

∑
i<j

K2
ij

∂2Jij

∂β2
mimjLiLj

+
∑

i

∑
j

K2
ij

∂2λi

∂β2
(−2mi)LiLj −

〈(
∂U

∂β

)2
〉

0

∑
i<j

K2
ijLiLj (A.17)

〈(
∂U

∂β

)4
〉

0

=
∑
i<j

K4
ij

(
3m2

i + 1
)
Li

(
3m2

j + 1
)
Lj + 3

∑
i<j,k<l(k �=i,l �=j)

K2
ijK

2
klLiLjLkLl

+ 6
∑
i<k

∑
j

K2
ijK

2
jk

(
3m2

j + 1
)
LiLjLk

+ 12
∑

i<j<k

KijKjkKkiLiLjLk[4mimjKij + 4mimkKik + 4mkmiKki]

+ 3
∑

i,j,k,l( �=)

KijKjkKklKliLiLjLkLl. (A.18)

Using the results from appendix B we can write all the terms above in the same form

− 3

⎡
⎣∑

i<j

K2
ijLiLj

⎤
⎦

2

= −3
∑

i<j,k<l(k �=i,l �=j)

K2
ijK

2
klLiLjLkLl

− 6
∑
i<j

∑
k

K2
ikK

2
kjLiLjL

2
k − 3

∑
i<j

K4
ijL

2
i L

2
j (A.19)

12
∑
i<j

∑
k

KikKkj

∂2Jij

∂β2
LiLjLk = −48

∑
i<j

∑
k

K2
ijKikKkjmimjLiLjLk

− 12
∑

i,j,k,l( �=)

KijKjkKklKliLiLjLkLl − 24
∑
i<j

∑
k

K2
ikK

2
kjLiLjL

2
k (A.20)

∑
i<j

K2
ij

∂2Jij

∂β2
mimjLiLj = −4

∑
i<j

K4
ijm

2
i m

2
jLiLj − 2

∑
i<j

∑
k

K2
ijKjkKkimimjLiLjLk

(A.21)

3
∑
i<j

(
∂2Jij

∂β2

)2

LiLj = 48
∑
i<j

K4
ijm

2
i m

2
jLiLj + 48

∑
i<j

∑
k

K2
ijKikKkjmimjLiLjLk

+ 6
∑

i,j,k,l( �=)

KijKjkKklKliLiLjLkLl + 12
∑
i<j

∑
k

K2
ikK

2
kjL

2
kLiLj (A.22)
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6
∑

i

∑
j

K2
ij

∂2λi

∂β2
(−2mi)LiLj = −24

∑
i

∑
j

K4
ijm

2
i

(
1 − m2

j

)
LiLj

− 48
∑
i<j

∑
k

K2
ikK

2
kjm

2
kLiLjLk (A.23)

3
∑

k

(
∂2λk

∂β2

)2

Lk = 24
∑
i<j

∑
k

K2
ikK

2
kjm

2
kLiLjLk + 12

∑
i

∑
j

K4
ijm

2
i LiL

2
j . (A.24)

Again we find equation (10) with

Q3 = −
∑
i<j

K4
ij

[(
3m2

i + 1
)(

3m2
j + 1

) − 48m2
i m

2
j

]
LiLj

+ 12
∑
i<j

∑
k

K2
ikK

2
jkLiLjL

2
k + 3

∑
i,j,k,l( �=)

KijKjkKklKliLiLjLkLl

+ 12
∑

i

∑
j

K4
ijm

2
i LiL

2
j + 3

∑
i<j

K4
ijL

2
i L

2
j , (A.25)

which gives the fourth-order contribution to the entropy:

∂4S

∂β4
= −2

∑
i<j

K4
ij

[
1 + 3m2

i + 3m2
j + 9m2

i m
2
j

]
LiLj − 12

∑
i<j

∑
k

K2
ikK

2
kjL

2
kLiLj

− 24
∑

i<j<k<l

(KijKjkKklKli + KikKkjKljKil + KijKjlKlkKki)LiLjLkLl

(A.26)

and the third-order contribution to the coupling,

∂3Jij

∂β3

∣∣∣∣
0

= 2K3
ij

[
1 + 3m2

i + 3m2
j + 9m2

i m
2
j

]
+ 6

∑
k(�=i,�=j)

Kij

(
K2

jkLj + K2
kiLi

)
Lk

+ 6
∑
k,l

(k �=i,l �=j)

KjkKklKliLkLl. (A.27)

Appendix B. Derivatives of λ∗
i in β = 0

Since mi and hi are conjugated thermodynamic variables, it is natural to evaluate

∂S̃

∂mk

=
〈

∂U

∂mk

〉
=

∑
i<j

cij

∫ β

0
dβ ′ ∂J ∗

ij (β
′)

∂mk

−
∑
i<j

J ∗
ij (β)〈(σi − mi)δjk + (σj − mj)δik〉

+
∑
i<j

∂J ∗
ij

∂mk

〈(σi − mi)(σj − mj)〉 − λ∗
k(β)

= −λ∗
k(β) +

∑
i<j

cij

∫ β

0
dβ ′ ∂J ∗

ij (β
′)

∂mk

. (B.1)

As the modified entropy is independent of β,

∂S̃

∂mk

= ∂S̃

∂mk

∣∣∣∣
0

= −λ∗
k(0) = tanh−1(mk) = 1

2
ln

(
1 + mk

1 − mk

)
, (B.2)
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where we used the well-known result for the entropy of uncorrelated spins. We can then
deduce the formula, valid for any β:

λ∗
k(β) = 1

2
ln

(
1 − mk

1 + mk

)
+
∑
i<j

cij

∫ β

0
dβ ′ ∂J ∗

ij (β
′)

∂mk

. (B.3)

It is now straightforward to deduce the expansion of λ∗
i to the order O(βk) from the expansion

of J ∗
ij to the order O(βk−1). In particular,

∂λ∗
k

∂β

∣∣∣∣
0

= 0 (B.4)

and using the order O(β) of the J ∗
ij expansion,

∂2λ∗
k

∂β2

∣∣∣∣
0

= 2mk

∑
i

K2
ikLi. (B.5)

Appendix C. Large magnetization expansion

Equation (19) suggests that to expand J ∗
ij to the order of (Li)

k one has to sum all the diagrams
with up to k + 2 spins. This statement is true if the expansion for J ∗

ij is of the form

J ∗
ij = Aij +

∑
k

LkAijk +
∑

k

∑
l

LkLlAijkl + · · · , (C.1)

where the coefficients Ai1i2...in are polynomials in the couplings Kiαiβ and the magnetizations
mα (α, β < n). In the following, we will show that the above statement is true to any order
of the expansion in β by recurrence. First of all, from (B.3) we see that if J ∗

ij is of the form
(C.1) up to the order k, so is λ∗

i to the same order.
As we saw in section 2, to find an equation for ∂kS

∂βk , one must evaluate ∂k+1S̃
∂βk+1 . Using

equation (A.2), we can write

∂k+1S̃

∂βk+1
=

〈(
∂

∂β
+

∂U

∂β

)k
∂U

∂β

〉
=

∑
{α}

Pα

〈
k+1∏
j=1

∂αj U

∂βαj

〉
, (C.2)

where α is a multi-index and |α| = k + 1, and Pα a multiplicity coefficient. The highest order

term of this expression evaluates to
∑

ij LiLjKij
∂j J ∗

ij

∂βj = ∂kS
∂βk .

Due to the structure of U, spin dependence in (C.2) will come either from the lower
derivatives of J ∗

ij (of the form (C.1) by hypothesis), from the derivatives of λ∗
i , or explicitly

from U. In the later case, we get a multiplicative factor (σi − mi). Hence, we end up with
computing a term, with k � 1, of the form

〈(σi − mi)
k〉 = (−1)k

(
1 − m2

i

) (m + 1)k−1 − (m − 1)k−1

2
. (C.3)

Clearly any term including (σi − mi) will give a multiplicative factor Li after averaging. As
spins are decoupled in the β = 0 limit, we obtain the product of those factors over the spins
in the diagram as claimed.
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Appendix D. Double counting

We want to remove 2-spin diagrams from the resummation of loop diagrams. These 2-spin
diagrams are precisely those appearing in the loop diagrams in a system including two spins
only. In the case of N = 2 spins, the matrix M reads

M = β

(
0 Kij

√
LiLj

Kij

√
LiLj 0

)
. (C.4)

We then calculate J
∗(loop)

ij for this simple N = 2 spin model from formula (23), and get this
way the contribution to be subtracted to the sum of 2-spin and loop diagrams (third term
in (27)).
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[7] Mézard M and Mora T 2007 Tauc Conf. Complexity in Neural Network Dynamics (arXiv:0803.3061)
[8] Hansen J P and McDonald I R 1976 Theory of Simple Liquids (New York: Academic)
[9] Dominicis C De and Martin P C 1964 J. Math. Phys. 5 31

[10] Plefka T 1982 J. Phys. A: Math. Gen. 15 1971
[11] Georges A and Yedidia J 1991 J. Phys. A: Math. Gen. 24 2173
[12] Georges A 2004 Lectures on the Physics of Highly Correlated Electron Systems VIII: 8th Training Course in

the Physics Correlated Electron Systems and High-Tc Superconductors vol 715 p 3
[13] Sherringtion D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792
[14] Thouless D J, Anderson P W and Palmer R G 1977 Phil. Mag. 35 593
[15] Cocco S, Leibler S and Monasson R 2008 in preparation
[16] Watts D J and Strogatz S H 1998 Nature 393 409

17

http://dx.doi.org/10.2277/0521642981
http://dx.doi.org/10.1038/nature04701
http://dx.doi.org/10.1523/JNEUROSCI.1282-06.2006
http://dx.doi.org/10.1038/nature03991
http://www.arxiv.org/abs/
http://dx.doi.org/10.1119/1.11184
http://dx.doi.org/10.1063/1.1704064
http://dx.doi.org/10.1088/0305-4470/15/6/035
http://dx.doi.org/10.1088/0305-4470/24/9/024
http://dx.doi.org/10.1063/1.1800733
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1080/14786437708235992
http://dx.doi.org/10.1038/30918

	1. Introduction
	2. Procedure for the small c expansion
	3. General results for non-zero magnetizations
	3.1. Explicit expansions of the entropy, couplings and fields
	3.2. Resummation of loop diagrams
	3.3. Resummation of 2-spin diagrams

	4. Further results in the zero magnetization case
	4.1. Higher order expansions of the entropy, couplings and fields
	4.2. Three spins summation for zero magnetization
	4.3. Check on the one-dimensional Ising model
	4.4. Application to the Sherrington--Kirkpatrick model

	5. Perspectives
	Acknowledgments
	Appendix A. Details of the small- expansion
	A.1. First-order expansion
	A.2. Second-order expansion
	A.3. Third-order expansion

	Appendix B. Derivatives of lambda * i in beta = 0
	Appendix C. Large magnetization expansion
	Appendix D. Double counting
	References

