
336	 VOLUME 33   NUMBER 4   APRIL 2015   NATURE BIOTECHNOLOGY

node j have changed, but other indirectly 
affected nodes also change because the 
initial perturbation has propagated through 
the network. MRA has solved the problem 
of finding local, direct links between 
components through the global responses 
for networks of any size and complexity2. 
The development and application of 
methods that are conceptually similar to 
MRA (e.g., regulatory strength analysis8 
and maximum likelihood-based MRA9,10) 
has reinforced the validity of using MRA-
type methods to reconstruct network 
connections11–16.

The Barzel & Barabási study1 uses 
the same concept and strikingly similar 
terminologies to reconstruct networks by 
deriving the local connection coefficients 
from the global response coefficients. Key 
equations (3) and (4) in their silencing 
method1 express the local coefficients 
in terms of the global coefficients and 
are a subset of the published MRA 
equations2,9,10,17–19 with a formal 
replacement of the diagonal elements 
of the local response matrix by zeros 
instead of minus ones (Supplementary 
Note 1). Another formal difference is that 
the variant of the global response matrix 
used by Barzel & Barabási1 considers the 
global change in each node that results 

To the Editor:
In the August 2013 issue of this journal, 
Barzel & Barabási reported a method for 
reconstructing network topologies1. Here we 
show that the Barzel & Barabási method is 
a variant of a previously published method, 
modular response analysis (MRA)2. We 
also demonstrate that the implementation 
of their algorithm using statistical similarity 
measures as a proxy for global network 
responses to perturbations is erroneous and 
its performance is overestimated.

The reconstruction of network 
connections from data remains a 
fundamental problem in biology. It is 
not immediately obvious how to capture 
direct links between individual network 
nodes from experimental data because a 
perturbation to a component propagates 
through a network, causing widespread 
(global) changes, thereby masking direct 
(local) connections between nodes. This 
question has been previously studied in 
>100 publications, collectively representing 
MRA (reviewed in refs. 3–7). MRA 
quantifies direct interactions between 
network nodes (i and j) using the local 
response coefficients (also known as 
connection coefficients), which describe 
direct effects of a small change in node j on 
node i, while keeping the remaining nodes 
unchanged to prevent the spread of the 
perturbation. The local responses cannot 
be directly assessed, whereas the global 

responses can be measured; when following 
a perturbation to node j, the entire network 
relaxes to a new steady state. In this new 
state, nodes that are directly affected by 

decision-making and contribute to the 
management of disease with biological 
drugs. The need to generate clinically 
relevant immunogenicity information 
should be recognized early in drug 
development so that appropriate ADA 
sampling and characterization strategies 
can be built into clinical trial design and 
protocols. However, the all-encompassing 
and idealized example presented here may 
not be feasible or necessary for all biologic 
drugs; the extent of immunogenicity 
evaluation for any biologic drug, and 
subsequent labeling, should be driven by 
the drug-specific immunogenicity risk 
assessment and consultations with pertinent 
regulatory authorities.
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Figure 1  The DREAM5 challenge performances of the Barzel & Barabási ‘silencer’ method (dark blue) 
and the raw statistical similarity measures, the Pearson (red) and Spearman (light blue) correlations 
and mutual information (MI, green). As in the original DREAM5 challenge, the performance was 
estimated using two scores: (a–c) AUROC. (d–f) AUPR. TPR, true-positive rate; FPR, false-positive 
rate; ‘Precision’ indicates the fraction of correctly inferred true interactions; ‘Recall’ equals TPR. Insets 
show the AUROC and AUPR scores for the Barzel & Barabási algorithm, the Pearson and Spearman 
correlations, and mutual information. In all three cases, the performance of the Barzel & Barabási 
algorithm was lower than the performance of the raw similarity measures alone (note that in Fig. 3 of 
the original publication1, the Barzel & Barabási algorithm was inappropriately applied and scored).
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from the change in every other node of the 
network, whereas MRA more generally 
considers the global changes in network 
nodes that result from changes in any 
parameter that might affect several nodes 
simultaneously18,19. Barzel & Barabási 
claim as one of the main outcomes of their 
study an approximate solution to equations 
(3) and (4) (equation (5))1, whereas MRA 
offers an exact solution2,18,19. Both the 
approximate1 and the exact MRA2 solutions 
require the inversion of the global response 
matrix. Consequently, Barzel & Barabási’s 
approximation1 does not decrease the 
computational complexity of the exact 
solution2,18,19. In fact, the proposed 
approximate iterative method (equations 
S12 and S13)1 needs repetitive matrix 
calculations, making it slower than the 
existing MRA algorithms that provide the 
exact solution.

The Barzel & Barabási approximate 
solution relies on the assumption that 
“typically, perturbations decay rapidly as 
they propagate through the network, so that 
the response observed between two nodes 
is dominated by the shortest path between 
them”1. This assumption disregards 
well-documented biological evidence, 
such as the sensitivity amplification in 
signaling cascades20,21 and the existence 
of positive feedback loops in biological 
networks, which amplify initial signals as 
they propagate through a network22. The 
common occurrence of positive or double-
negative feedback loops invalidates the 
Barzel & Barabási assumption for many 
known signaling pathways, including 
the restriction point pathway23, cell 
cycle signaling24–26, mitogen-activated 
protein kinase (MAPK) cascades27,28 that 
are evolutionary conserved from yeast 
to mammals, as well as transcription 
regulation networks29. In these regulatory 
networks, global responses of the 
neighboring nodes outside of positive 
feedback loops are typically smaller than 
the response of a node that lies inside a 
positive feedback loop to an upstream node 
outside the loop (Supplementary Note 1, 
Supplementary Note 2 and Supplementary 
Fig. 1). Sensing and processing of stimuli 
is the normal function of most, if not all, 
regulatory biological pathways, whose 
common feature is to increase the response 
of a ‘target’ node to a ‘source’ node with 
the distance between them30. For example, 
in an experimental study, Bastiaens and 
colleagues31 used MRA to unravel the 
direct linkage topology and strengths of 
connections in the MAPK cascade in PC12 

cells that were stimulated with epidermal 
growth factor (EGF) versus nerve growth 
factor (NGF). They calculated the local 
response coefficients from experimentally 
measured global responses and found that 
EGF elicits negative feedback, whereas NGF 
induces positive feedback, imposed on 
the backbone of the same MAPK pathway 
that propagates signals from both growth 
factors. The experimentally measured 
response between immediate neighbors, 
such as the global response of MEK to small 
interfering RNA (siRNA) against RAF, 
was much smaller than the response of the 
more distant neighbor ERK to RAF siRNA 
under both EGF and NGF stimulation, 
regardless of the growth factor–specific 
difference in network wiring31. In contrast 
to Barzel & Barabási’s assumption, real 
biological networks do not feature a rapid 
decay of specific perturbations because 
these pathways have evolved to sense and 
respond to external cues by processing, 
amplifying and integrating the signals. 
Thus, reconstruction of these pathways 
using the ‘average perturbation decay’ 
hypothesis misses key functional features of 
biological pathways.

Network reconstruction methods that 
exploit the global network responses 
require systematic perturbation 
measurements. Clearly, many high-
throughput approaches do not provide 
such perturbation data, whereas statistical 
similarity measures can be calculated from 
omics data. In the absence of perturbation 
data, Barzel & Barabási reconstructed 
the network by substitution of the global 
response coefficients with statistical 
similarity measures, such as the Pearson 
and Spearman correlation coefficients, 
and mutual information1. However, this 
substitution yields a symmetric correlation 
matrix with very different mathematical 
properties from the global response matrix. 
Inference based on these symmetric 
measures (using equation (5) and equations 
S11–S13 of ref. 1) results in networks 
where the local response matrix is always 
symmetrizable (Supplementary Note 3). 
In these inferred networks, the absence of a 
direct connection from node j to node  
i (Sij = 0) inevitably implies that there is no 
direct connection in the reverse direction 
(node i to node j, Sji = 0). Thus, the inferred 
networks cannot have a one-way connection 
between any two nodes. This approach 
violates the reality of cellular networks 
where one-way connections dominate. For 
example, ubiquitous post-translational 
protein modifications are typically 

one-way connections. When a kinase 
phosphorylates a substrate, the substrate 
usually does not phosphorylate the kinase. 
Equally important, the symmetrizable local 
response matrix implies that the overall 
signal amplification or attenuation along 
a circular path (for instance, formed by a 
feedback loop) is exactly the same as in the 
reverse direction along this path, which is 
also biologically unrealistic. Therefore, the 
local response coefficients inferred from the 
correlation or mutual information matrices1 
instead of the global response matrices do 
not represent real cellular networks and 
predict erroneous network connections 
(Supplementary Note 3).

There are many established methods 
that use statistical similarity measures to 
identify connections between network 
nodes, including lasso regression-based 
methods32–34, the partial correlation 
method35,36, Gaussian graphical models37 
and elastic nets38, which rank the predicted 
edges on the basis of correlations between 
experimental observations or regression 
coefficients, rather than incorrectly 
using MRA equations to express the local 
connections through the correlation or 
mutual information matrices.

Barzel & Barabási claim that their method 
is robust against noise1. However, neither 
the Barzel & Barabási algorithm nor the 
standard MRA2 take explicit precautions 
against extrinsic or intrinsic noise in the data 
(Supplementary Note 4). Several statistical 
reformulations of MRA have been developed 
to allow robust inference of network 
topology in the presence of noise. For 
example, the statistical adaptations of MRA 
based on the Monte Carlo31 and maximum 
likelihood9,10 methods were successfully 
applied to infer signaling pathway topologies 
from noisy perturbation data in mammalian 
cells. A recent Bayesian MRA reformulation 
is also capable of inferring networks from 
noisy and even incomplete data sets39.

We are also unconvinced by the claim 
that the Barzel & Barabási method 
“improves upon the top-performing 
inference methods”1 in the DREAM5 
network inference challenge (Network 3, 
http://wiki.c2b2.columbia.edu/dream/
data/scripts/DREAM5/files/DREAM5_
NetworkInference_Evaluation.zip). The 
DREAM5 data set contains the expression 
levels of 4,511 Escherichia coli genes, 
including 334 known transcription 
factors, and contestants were asked to rank 
the likelihood of interactions between 
transcription factors and target genes. 
Performances of the contenders were 
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then estimated against a gold standard 
network, which involved only 141 out of 334 
transcription factors. After we were unable 
to reproduce the results of Barzel & Barabási, 
the authors provided us with the source code 
for their algorithm. We found three issues in 
their analysis that rendered the comparison 
of their algorithm performance with the 
performances of the DREAM5 contestants 
invalid (Supplementary Note 5). First, 
although the identity of the 141 transcription 
factors of the gold standard network on which 
the performance was evaluated was unknown 
to the contestants, Barzel & Barabási exploited 
this information to zero out the correlations 
involving the other 193 transcription 
factors in their correlation matrix (used 
as a proxy for matrix G). Second, Barzel & 
Barabási incorrectly calculated the receiver 
operating characteristics (ROC) curves that 
estimated the performance of their algorithm 
(Supplementary Note 5). The DREAM5 
challenge gold standard network contains 
only 141 transcription factors and 1,080 out 
of 4,511 potential target genes, whereas the 
interactions involving the remaining 3,431 
genes are neither included in the gold standard 
network nor considered for the performance 
evaluation in the DREAM5 challenge (http://
wiki.c2b2.columbia.edu/dream/data/scripts/
DREAM5/files/DREAM5_NetworkInference_
Evaluation.zip). Even so, Barzel & Barabási 
erroneously count these omitted interactions 
(between the 141 transcription factors and 
the remaining 3,431 genes) as true negatives, 
resulting in the inflated area under the ROC 
curve (AUROC) estimate (Supplementary 
Note 5). Finally, to evaluate performance of 
their algorithm, Barzel & Barabási disregarded 
the precision recall score (AUPR) and used 
only the AUROC score, which is known to 
be insufficient and can be misleading when 
the numbers of true positive (the interactions 
present in the gold standard network) and 
true negatives (the interactions absent in the 
gold standard network) differ significantly40. 
In the E. coli network, true negatives are about 
100-fold more abundant than true positives. 
Consequently in the DREAM challenge, the 
performances were estimated using scores that 
combined both AUROC and AUPR. After 
we corrected these errors (Supplementary 
Note 5) and properly recalculated AUROC 
and AUPR using the evaluation script of 
the DREAM5 challenge (http://wiki.c2b2.
columbia.edu/dream/data/scripts/DREAM5/
files/DREAM5_NetworkInference_
Evaluation.zip), the Barzel & Barabási 
inference algorithm performed poorly 
compared with the best performers in the 
DREAM5 competition (using either AUROC 

or AUPR as criteria; Supplementary Note 5; 
supplementary materials are also available 
on GitHub and figshare: http://figshare.com/
articles/NBT_correspondence/1356170 
GitHub: https://github.com/SBIUCD/
NBT_correspondence.git ). Specifically, 
the performance of the Barzel & Barabási 
algorithm estimated by AUPR ranks between 
20th and 28th, and using AUROC it ranks 
between 3rd and 14th of the 29 participants, 
depending on whether the algorithm 
was applied to the Spearman correlation, 
Pearson correlation or Mutual Information. 
Predictions, in which we used merely ‘raw’ 
statistical similarity measures as substitutes of 
the local connections, ranked better (AUPR 
ranked between 7th and 13th, and AUROC 
ranks between 2nd and 10th depending on the 
statistical similarity measure used) than their 
algorithm (Fig. 1).

In summary, the concerns raised in 
this Correspondence cast doubt both on 
the level of conceptual advance and the 
practical usefulness of the silencing method 
proposed in the Barzel & Barabási study1. 
Ironically, many of the practical issues 
could have been remedied by consulting the 
extensive published literature describing 
MRA and MRA-based methods, which 
Barzel & Barabási unfortunately seem to have 
overlooked.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(doi:10.1038/nbt.3185).
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Barzel and Barabási reply:
Bastiaens et al.1 raise several pertinent 
issues regarding the silencing method we 
proposed in ref. 2. They argue that the 
method is conceptually similar to modular 
response analysis (MRA)3–5 and that the use 
of correlation-based predictions as input for 
silencing generates symmetrizable network 
predictions, which prevents the inference of 
directionality. We agree that the principles 
that underpin the silencing method reported 
in our manuscript2 are similar to those 
used to derive MRA3–5 methods and regret 
that we did not cite the relevant literature, 
which we were unaware of at the time of 
publication. However, the main contribution 
in ref. 2 was that silencing, unlike MRA, is 
designed to improve correlation and mutual 
information–based predictions. These 
statistical similarity measures are frequently 
used in the context of link prediction6,7, 
and thus, a method that can enhance their 
predictive power is a useful contribution 
towards the mapping of regulatory 
interactions8–10.

We find, however, the second criticism 
of Bastiaens et al.1, regarding the use of 

symmetrical predictions as inputs for 
silencing, to be rather unusual, as it does not 
seem to be directed towards our method, 
but rather towards the common practice 
of using the symmetrical correlation and 
mutual information–based methods for link 
predictions. Indeed, it has no relevance to our 
silencing method, which does not advocate 
the use of such predictions, but rather is 
designed to improve them. We would like 
to make it clear that silencing is not a stand-
alone method, but instead should be used 
as a post-processing step for enhancing 
preexisting predictions. The symmetry that 
Bastiaens et al.1 criticize originates from the 
characteristics of the preexisting predictions 
(e.g., correlations), but has little bearing on 
the improvement to these predictions offered 
by our silencing method.

The final criticism of Bastiaens et al.1 is 
that our evaluation of the performance of 
our silencing method did not follow the 
precise DREAM5 protocol that was used 
by Marbach et al.6. However, silencing was 
not designed to compete with the methods 
reported by Marbach et al.6 in DREAM5; 
instead, we created our method to improve 
them. Such improvement is independent 
of whether one does or does not follow the 
DREAM5 protocol.

The reservations of Bastiaens et al.1 
regarding the applicability of our method to 
predictions based on correlation and mutual 
information have prompted us to improve 
the method’s implementation by adding a 
preprocessing step that broadens the range 
of suitable input predictions. We present 
below a substantially expanded validation, 
reinforcing the conclusions in our original 
paper2. The improved code, now tested 
using the full DREAM5 evaluation criteria, 
achieves an average score increase for 
link prediction of 96% for Escherichia 
coli and several orders of magnitude for 
Saccharomyces cerevisiae. Both the original 
and improved source codes are also made 
available in Supplementary Software 
1 and 2 and on figshare (http://dx.doi.
org/10.6084/m9.figshare.1348220). In the 
following text, we respond in detail to the 
criticisms raised by Bastiaens et al.1.

First, we agree that the principles that 
we used to derive the silencing method 
have common roots with the derivation 
of MRA3–5, a mapping that, as opposed 
to our approximation, offers an exact 
solution to the fundamental equation (4) 
in our original paper2. However, whereas 
MRA was shown to enhance perturbation 
experiments, the strength of our silencing 
method, as reported in the original paper2, 

is that it also accounts for correlation-based 
predictions, namely Gij constructed from 
statistical similarity measures (see below). 
This is a crucial complement to MRA, 
because most current inference efforts 
rely strongly on correlations and other 
statistical similarity measures6. As we show 
in Figure 3 from our original paper and 
discuss in this response, our implementation 
of the silencing method allows us to 
enhance the predictive power not only of 
perturbation-based experiments, for which 
MRA is designed, but also of correlation-
based predictions, thereby offering a broader 
range of application than MRA.

Second, Bastiaens et al.1 argue that 
the application of the silencing method 
to correlation-based Gij results in 
“symmetrizable” network predictions, 
which violate the directionality of real 
biological networks. We find this difficult 
to reconcile, given that correlation-based 
matrices are perfectly symmetrical to begin 
with. It is therefore impossible for any 
methodology that uses correlation-based 
matrices as input to recover directionality. 
The information on the directions of the 
links is lost in the construction of Gij and 
cannot be retrieved without exogenous 
inputs, such as a list of transcription factors, 
as provided in the DREAM5 challenge6, 
which we used to validate our method.

This criticism may have resulted from a 
misunderstanding of the goal of our original 
paper in that silencing is not a stand-alone 
method. Rather, it is designed to take a 
preexisting Gij as input and enhance its 
predictive power. Thus, the criticism of 
Bastiaens et al.1 might be better directed 
toward the input matrix Gij, on account of 
its symmetrical structure, and not on the 
output provided by our method, Sij. Indeed, 
the use of correlation-based matrices 
for gene network inference is common 
practice6–9, despite the justified reservations 
of Bastiaens et al.1. Thus, as imperfect as 
these inputs are, there is a need to develop 
methods that improve their performance. 
The true test is not whether the silenced Sij 
matrix recovers the network’s directionality 
because that information is already absent 
from Gij, but rather whether Sij improves on 
Gij’s predictive power, namely does it predict 
direct links with higher fidelity. Our results 
as reported in our original paper clearly 
document that it does.

We agree with Bastiaens et al.1 that 
perturbations, the input for which silencing 
is ultimately designed, have different 
properties to correlations. However, 
like many other successful scientific 

CORRESPONDENCE
np

g
©

 2
01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://dx.doi.org/10.6084/m9.figshare.1348220
http://dx.doi.org/10.6084/m9.figshare.1348220

	Silence on the relevant literature and errors in implementation
	References


