

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1418–1430, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Two Broad Classes of Functions for Which a No Free
Lunch Result Does Not Hold

Matthew J. Streeter

Genetic Programming, Inc.
Mountain View, California

mjs@tmolp.com

Abstract. We identify classes of functions for which a No Free Lunch result
does and does not hold, with particular emphasis on the relationship between
No Free Lunch and problem description length. We show that a NFL result
does not apply to a set of functions when the description length of the functions
is sufficiently bounded. We consider sets of functions with non-uniform asso-
ciated probability distributions, and show that a NFL result does not hold if the
probabilities are assigned according either to description length or to a Solo-
monoff-Levin distribution. We close with a discussion of the conditions under
which NFL can apply to sets containing an infinite number of functions.

1 Introduction

The No Free Lunch theorems [3,8,12] loosely state that all search algorithms have the
same performance when averaged over all possible functions. Given this fact, an
important question for anyone interested in the design of black-box search algorithms
is whether a No Free Lunch result holds for the subset of all possible problems that
represents actual problems of interest. In this paper we approach this question from
two angles: Bayesian learning and description length. In Sect. 2 we show that a No
Free Lunch result applies only when a certain form of Bayesian learning is impossible,
and suggest that the possibility of this form of Bayesian learning may be characteristic
of interesting problems. Sections 3 and 4 focus on the relationship between No Free
Lunch and problem description length. Section 5 discusses circumstances under
which No Free Lunch applies to infinite sets. Section 6 discusses limitations of this
work. Section 7 is the conclusion. The remainder of this section introduces terminol-
ogy that will be used throughout this paper.

1.1 Terminology

Search Algorithm Framework. Our framework is essentially that given in [10]. Let
X be a finite set of points in a search space, and let Y be a finite set of cost values
assigned to the points in X by a cost function f:X→Y. For simplicity, we assume in
this paper that the elements of X and Y are integers. Define a trace of size m to be a
sequence of pairs Tm ≡ 〈(x0,y0), (x1, y1), ..., (xm-1,ym-1)〉 where for 0 ≤ i ≤ m-1, xi∈X and
yi∈Y. Adopt the notation: Tm

x ≡ 〈x0, x1, ..., xm-1〉; Tm
y ≡ 〈y0,y1, ..., ym-1〉.

Define a search algorithm A:T,X→X to be a function that takes as input a trace T
and a domain X, and returns as output a point xi where xi∈X and xi∉Tx. Under this

Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold 1419

formulation, we consider only non-retracing, deterministic black-box search algo-
rithms (hereafter, "search algorithms"). However, the conclusions we will draw about
such search algorithms can be extended to stochastic, potentially retracing algorithms
using the arguments made by Wolpert and Macready [12] to show that the No Free
Lunch theorem applies to such algorithms.

A search algorithm A operating on cost function f:X→Y is evaluated according to
the following steps:

1. Let T=T0, where T0 ≡ 〈〉 is the empty trace.
2. Evaluate A(T,X) to obtain a point xi∉Tx.
3. Evaluate f(xi), and append the pair (xi,f(xi)) to T.
4. As long as there exists some xj such that xj∈X and xj∉Tx, return to step 2.

Let Tm(A,f) denote the length m trace generated by algorithm A and function f (i.e.
the trace T obtained after executing steps 2-3 m times). We define Vm(A,f) ≡ (Tm(A,f))y
to be the length m performance vector generated by A and f. When the subscript is
omitted, the performance vector will be assumed to have length |X| (i.e.,
V(A,f)≡V|X|(A,f)). We let P(v,A) denote the probability of obtaining performance vec-
tor v when running algorithm A against a cost function chosen at random under P.

No Free Lunch Results. Define a performance measure M:V→ℜ to be a function
that takes a performance vector as input and produces a non-negative real number as
output. Let F be a set of functions, and let P be a probability distribution over F. We
define the overall performance, MO(A), of a search algorithm A as:

MO(A) ≡ () ()()∑
∈Ff

fAVMfP , .

We say that a No Free Lunch result applies to the pair (F,P) iff., for any perform-

ance measure M and any pair of search algorithms A and B, MO(A) = MO(B). In other
words, a No Free Lunch result applies to (F,P) iff. the overall performance with re-
spect to any performance measure M is independent of the chosen search algorithm.
This is essentially the definition of a No Free Lunch result used by Wolpert and
Macready [12]. Schumacher [10] has proposed a related definition of a No Free Lunch
result that applies when P is uniform (and is equivalent to our definition in this case).
In some cases we shall omit P and simply say that a No Free Lunch result applies to a
set of functions F. By this we shall mean that a No Free Lunch result applies to (F,P),
where P is a uniform probability distribution over F.

Set-Theoretic Terminology. A multiset is a set that may contain multiple copies of a
given element (e.g. {0,0,1,0}). A generalized permutation is an ordered listing of the
elements in a multiset. We define G(Ymult) to be the number of generalized permuta-
tions of some multiset Ymult. Where f:X→Y is a function, we let Ymult(f) denote the
multiset containing one copy of f(xi) for each xi∈X. Ymult(f) differs from the range of f
in that Ymult(f) may contain more than one copy of a given f(xi)∈Y.

Let f:X→Y be a function and let σ:X→X be a permutation. We define the permuta-
tion σf of f to be the function σf(x)=f(σ -1(x)). We say that a set of functions F is

1420 M.J. Streeter

closed under permutation iff., for any f∈F and any σ, σf∈F. By the words "set of
functions", we will mean a finite set of functions having a common, finite domain,
unless otherwise specified.

1.2 The No Free Lunch Theorems

The following is essentially the No Free Lunch theorem proved by Wolpert and
Macready [12].

NFL: Let X and Y be finite sets, and let F≡YX be the set of all functions having domain
X and codomain Y. Let P be a uniform distribution over F. A No Free Lunch result
applies to (F,P).

Schumacher [10] has provided a sharpened version of this theorem that gives both
necessary and sufficient conditions when P is uniform. We refer to this as NFLP.

NFLP: Let F be a set of functions, and let P be a uniform probability distribution. A
No Free Lunch result applies to (F,P) iff. F is closed under permutation.

Though Schumacher uses a different definition of No Free Lunch result than the
one used in this paper, it can easily be shown that the two definitions are equivalent
when P is uniform. The relationship between No Free Lunch and permutations of
functions has also been studied by Whitley [11].

2 No Free Lunch and Bayesian Learning

In this section we investigate the relationship between No Free Lunch and Bayesian
learning. We show that a No Free Lunch result applies to a set of functions if and only
if a certain form of Bayesian learning is not possible. We then argue that only very
weak assumptions about the set of "interesting" functions are necessary in order to
guarantee that this type of Bayesian learning is possible for interesting functions.

Let F be a set of functions, and let f be a function chosen at random from F under
some probability distribution P. Let S be a set of points in the search space that have
already been visited (i.e., that are known to be part of f). Let xi be a point in the search
space that has not yet been visited. Let P(f(xi)=y | S) denote the conditional probabil-
ity, given our knowledge that f contains the points in S, that f(xi)=y. The task of the
search algorithm is to choose the value of i (subject to the constraint that xi has not yet
been visited). Clearly if P(f(xi)=y | S) is independent of xi for all y, the decision made
by the search algorithm has no influence on the next y-value that is obtained. Thus,
intuitively, one might expect that all search algorithms would perform identically if
the value of P(f(xi)=y | S) is independent of i for all S and y. What we establish in this
section is that this independence is both a necessary and sufficient condition for a No
Free Lunch result to apply to (F,P). We first prove the following Lemma.

Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold 1421

Lemma 2.1. Let F be a set of functions, and let P be a probability distribution over F.
A No Free Lunch result holds for the pair (F,P) iff., for any performance vector v and
any search algorithms A and B, P(v,A) = P(v,B).
Proof: (IF) Trivial. (ONLY IF) Suppose that P(v,A)≠P(v,B) for some v, A, and B. In
this case we can define M to be a performance measure that assigns a value of 1 to v
while assigning a value of 0 to all other performance vectors. We will thus have
MO(A)=P(v,A) whereas MO(B)=P(v,B), so MO(A)≠MO(B).

Theorem 2.2. Let F be a set of functions, and let P be a probability distribution over
F. Let f be a function selected at random from F under P, and let S={(xf,0,yf,0),
(xf,1,yf,1), ..., (xf,n-1,yf,n-1)} denote a (possibly empty) set of n pairs that are known to
belong to f. Let XS denote the domain of S, and let P(f(xi)=y | S) denote the conditional
probability that f(xi)=y, given our knowledge of S. Let xi,xj∉XS be two points in the
search space whose cost values are not yet known. Then a No Free Lunch result ap-
plies to (F,P) iff., for any S and y, the equation

 P(f(xi)=y | S) = P(f(xj)=y | S) (2.1)
holds for all xi,xj.

Proof: (ONLY IF) By way of contradiction, suppose that a No Free Lunch result
applies to (F,P), but that P(f(xi)=y | S) ≠ P(f(xj)=y | S) for some xi,xj. Let FS denote the
subset of F containing functions that are consistent with S. Let XLEX = 〈x0,x1, ..., x|X|〉
denote some fixed (perhaps lexicographic) ordering of the elements of X.

Let A and B be two search algorithms that each unconditionally evaluate the n
points xf,0, xf,1, ..., xf,n-1 as the first n steps of their execution. If the cost values ob-
tained by evaluating these n points are not exactly the cost values in S, then both A and
B continue to evaluate the remaining points in the order specified by XLEX. If the ob-
served cost values are those in S, then A chooses xi as the next point whereas B
chooses xj. From this point onward, A and B both evaluate the remaining points in the
order specified by XLEX.

Let VPRE denote the set of performance vectors that begin with the prefix 〈yf,0, yf,1,
..., yf,n-1, y〉, and let PVPRE(a) denote the probability of obtaining a performance vector
that is a member of VPRE using search algorithm a (run against a function drawn at
random from F under P). Let PS(a) denote the probability of obtaining the n points in
S as the result of the first n evaluations of a search algorithm a. We have:

PVPRE(A) = P(f(xi)=y | S)*PS(A) and PVPRE(B) = P(f(xj)=y | S)*PS(B).

Because A and B behave identically for the first n steps of their execution, it is clear
that PS(A)=PS(B). It cannot be the case that PS(A)=0, because A obtains the points in S
when running against f. Thus the fact that PS(A)=PS(B), in combination with the as-
sumption that P(f(xi)=y | S) ≠ P(f(xj)=y | S), establishes that PVPRE(A) ≠ PVPRE(B).
There must therefore be some v∈VPRE that satisfies the equation P(v,A)≠P(v,B). By
Lemma 2.1, this establishes that a No Free Lunch result does not apply to (F,P), which
is a contradiction.

(IF) If S is the empty set, then equation 2.1 becomes P(f(xi)=y) = P(f(xj)=y), so the
initial choice made by the search algorithm cannot effect the probability of obtaining

1422 M.J. Streeter

any particular performance vector v1 (of length 1). Assume that the search algorithm
cannot affect the probability of obtaining a performance vector vn (of length n), and let
S denote the first n pairs observed by some search algorithm. The equation P(f(xi)=y |
S) = P(f(xj)=y | S) guarantees that the choice of i made by the search algorithm cannot
affect the probability of obtaining any particular value y on the next evaluation.
Therefore the performance vector vn+1 of length n+1 obtained on the next evaluation
will also be independent of the search algorithm. Thus, by induction, the probability
of obtaining any particular performance vector is independent of the search algorithm,
which by Lemma 2.1 establishes that a No Free Lunch result holds for (F,P). Note
that this second half of our proof is similar to the derivation of the No Free Lunch
theorem itself [12].

2.1 Discussion

Equation 2.1 provides a necessary and sufficient condition for a No Free Lunch result
to hold for (F,P). We now examine some of the consequences this equation. Suppose
equation 2.1 holds for some (F,P), where F is a set of functions and P is a probability
distribution. Letting S be the empty set, we have P(f(xi)=y) = P(f(xj)=y) for all xi,xj.
Since the probability that f(xi) is equal to any particular value y is independent of i, the
expected fitness of xi is also independent of i, so E[f(xi)]=E[f(xj)] for all xi,xj. Thus, by
linearity of expectations,

 E[|f(xi)-f(xj)|] = E[|f(xk)-f(xl)|] (2.2)
for all xi, xj, xk, xl.

Equation 2.2 is of particular relevance for genetic algorithms. Suppose the xi are
chromosomes, and the cost values f(xi) are their fitness values. Equation 2.2 tells us
that even if xi and xj have 98% of their genetic material in common, while xk and xl
have only 2% of their genetic material in common, we are to make no assumption that
the fitness of xi and xj is likely to be closer than that of xk and xl. As another illustra-
tion of the consequences of equation 2.2, suppose that k=i, that xj is an individual
obtained by randomly mutating one gene of xi, and that xl is an individual obtained by
randomly mutating all the genes of xi. Equation 2.2 tells us that the expected effect of
this point mutation on fitness is the same as the expected affect on fitness of replacing
xi with a chromosome generated at random. In short, equation 2.2 expresses the as-
sumption that there is no correlation between genotypic similarity and similarity of
fitness.

Under (a form of) the assumption that nearby points in the search space do tend to
have similar cost values, Christensen and Oppacher [3] have shown that a simple
algorithm called SUBMEDIAN-SEEKER outperforms random search.

As a further consequence of equation 2.1, note that if the probability of obtaining
any particular value y is independent of the choice of i, then the probability of obtain-
ing any range of y-values is also independent of i, so that equation 2.1 implies:
 P(ymin ≤ f(xi) ≤ ymax | S) = P(ymin ≤ f(xj) ≤ ymax | S) (2.3)

Equation 2.3 is particularly relevant to the analysis of genetic algorithms by Hol-
land involving schema [5]. As an illustration, suppose the search space X consists of
all 32-bit chromosomes, and the set of cost values Y are interpreted as rational num-
bers between 0 and 1. Let s1≡ ab0c???? and s2≡f18a???? denote two schemata,

Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold 1423

where the chromosomes are specified in hexadecimal and where the ? characters are
4-bit wildcards. Suppose each of these schemata are sampled at random (without
replacement) 1000 times, and the observations are placed into a set S containing 2000
pairs. Let the schema s1 have an observed fitness distribution with mean 0.7 and vari-
ance 0.1, while that of s2 is observed to have mean 0.3 and variance 0.01. Now sup-
pose that two additional (unique) samplings are made of s1 and s2, and that one is
asked to bet on which sampling returns the higher value. If one enters this scenario
with equation 2.3 as an assumption, one shall regard the fact that the points in s1 and s2
are distributed so differently as an extreme coincidence, but one will not make any
extrapolations about unseen points in s1 or s2. Yet clearly there are a wide variety of
interesting problems for which such statistical inferences are possible.

Given that equation 2.1 holds if and only if a No Free Lunch result applies to the
pair (F,P), both equations 2.2 and 2.3 can be regarded as consequences of the No Free
Lunch theorem. However, because equation 2.1 is both a necessary and sufficient
condition for a No Free Lunch result to hold for (F,P), equations 2.2 and 2.3 can also
be regarded as assumptions required by the No Free Lunch theorem. Thus, if one
does not accept these assumptions, one has grounds for ignoring No Free Lunch.
 Other restrictions on the circumstances under which a No Free Lunch result can
apply have been provided by Igel and Toussaint [6], who show that a No Free Lunch
does not apply to F when F includes only those functions having less than the maxi-
mum number of local optima or less than the maximum steepness (as measured w.r.t.
some neighborhood structure defined on the search space). Arguments similar to the
ones above have been made by Droste, Jansen, and Wegener [4].

3 Functions of Bounded Description Length

In the previous section, we defined various statistical properties that the set of func-
tions F and probability distribution P must satisfy in order for a No Free Lunch result
to apply to (F,P). We now focus on properties that the cost functions in F must have
in order for a No Free Lunch result to apply, assuming that the cost functions are im-
plemented as programs. In this section, we assume P is a uniform distribution, and
that the restrictions on the admissible cost functions are couched in terms of descrip-
tion length. In the next section, we will consider the case where P is defined as a
function of description length.

The (minimum) description length, KU(f), of a function f:X→Y with respect to some
universal Turing machine U is the length of the shortest program that runs on U and
implements f. By a program that implements f, we mean a program that produces
output f(x) for input x∈X, and that produces an error code for all inputs x∉X. Descrip-
tion length is also known as Kolmogorov complexity [7]. The Compiler theorem [7]
shows that for two universal Turing machines U and V, the difference |KU(f)-KV(f)| is
bound by some constant that depends on U and V but not on f. For this reason, it is
customary to omit the subscript and simply write the description length as K(f).

1424 M.J. Streeter

3.1 Relevance of Description Length

Consider running a genetic algorithm on a problem involving a 500 byte chromosome
and 4 byte fitness values. A fitness function f:X→Y defines a mapping from the set of
chromosomes X to the set of fitness values Y. An explicit representation of f in mem-
ory (i.e., one that simply listed all pairs (xi,yi)∈f) would require |X|*(lg|X|+lg|Y|)≈24012
bits of storage. Even if we allow the domain of f to be implicit (i.e., we simply list the
y-values in Ymult(f) in some fixed order), the amount of storage required is still
|X|*lg|Y|=24005 bits. No amount of memory in any way approaching this quantity is
available on current computer systems. Rather, evaluation of a fitness function f (as-
suming that f is implemented in software) would typically involve a call to compiled
code occupying perhaps tens of megabytes of memory. In such a case, implementing f
as a program rather than an explicit list provides a compression ratio of over 101000:1.
Thus, we say that real-world fitness functions are highly compressible.
 Given this property of real-world fitness functions, the question arises as to
whether a No Free Lunch result applies to sets of functions whose definition reflects
this property. Droste, Jansen, and Wegener have shown that a No Free Lunch result
does not hold for certain classes of functions having highly restricted description
length (e.g., functions representable by a boolean circuit of size at most 3) [4].
Schumacher has shown that a No Free Lunch result can hold for some sets of functions
that are compressible [10] (e.g., needle-in-the-haystack functions), but this does not
mean that a NFL result will apply to a subset of F≡YX defined by placing a bound on
description length.

 The remaining theorems in this section will make use of the following Lemma.

Lemma 3.1. Let F be the permutation closure of some function f:X→Y (i.e., F≡{σf,
σ:X→X is a permutation}). Then |F|=G(Ymult(f)), for any f∈F.

Proof: Because all functions in F are permutations of one another, YF≡Ymult(f) denotes
the same multiset for any f∈F. The functions in F also have the same domain X. If we
establish some ordering for the elements of X, then any function f∈F can be uniquely
specified by listing in order the y-values (among those in YF) that f assigns to the ele-
ments of X. Thus, there is a one-to-one correspondence between elements of F and
generalized permutations of YF, so |F|=G(YF).

 The following theorem defines bounds on description length that are sufficient to
ensure that a No Free Lunch result does not hold for a set of functions (under a uni-
form probability distribution).

Theorem 3.2 (“Hashing theorem”). Let h be a hashing function, and let F≡YX be a
set of functions. Let Fk be the subset of F containing only those functions of descrip-
tion length k bits or less, where K(h) ≤ k. Then a No Free Lunch result does not apply
to Fk so long as:

k < lg(G(Ymult(h))+1)-1.

Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold 1425

Proof: The number of halting programs of description length k bits is at most 2k.
Therefore the number of halting programs of description length k or less is at most
2k+1-1, so |Fk|≤2k+1-1. Let H be the set of functions containing all permutations of h.
By Lemma 3.1, |H|=G(Ymult(h)). The inequality k<lg(G(Ymult(h))+1)-1 can be rewritten
as 2k+1-1<G(Ymult(h)), so that we have 2k+1-1<|H|. This implies |Fk|<|H|, which means
that H is not a subset of Fk. Let hk∈H denote a function not in Fk. By the definition of
H, hk must be a permutation of h. But h must be a member of Fk since we have as-
sumed K(h)≤k. Thus Fk is not closed under permutation, so by NFLP a No Free Lunch
result does not apply to Fk.

We refer to h as a "hashing function" because hashing functions (used to assign a

key to a random position in a hash table) typically have small description length K(h)
and are designed to generate many different y-values, which maximizes G(Ymult(h)).
Thus, the theorem will tend to provide sharper upper and lower bounds when h is a
hashing function. Of course, the theorem applies equally to any function h.

We now prove a special case of Theorem 3.2 that will allow us to illustrate some of
its implications.

Theorem 3.3. Let X be a set containing the first |X| non-negative integers, and let Y be
a set containing the first |Y| non-negative integers. Let h be the hashing function h(x) =
x mod |Y|, and let the description length of this function be denoted by kmod≡K(h). Let
Fk be the subset of YX containing only those functions of description length k bits or
less, where kmod ≤ k. Then a No Free Lunch result does not apply to Fk so long as k<

lg(G(Ymult(h))+1)-1, where the value of G(Ymult(h)) is given by:

 ()() () ()()|| mod |||||| mod ||

!
||

||
!

||

||

!
YXYYXmult

Y

X

Y

X

X
hYG

−







































= (3.1)

Proof: The Hashing theorem establishes that a No Free Lunch result does not apply to
Fk so long as k<lg(G(Ymult(h))+1)-1. It remains only to establish the value of
G(Ymult(h)). Let n denote the number of distinct elements in the multiset Ymult(h), and
let a0, a1, …, an-1 be counts of the number of occurrences of each of these n elements
in Ymult(h). G(Ymult(h)) is given by the standard formula for counting the number of
generalized permutations of a multiset [1]:

 ()() ()
()() ()!...!!

!

110 −
=

n

mult
mult aaa

hY
hYG (3.2)

We now establish that the right hand sides of equations 3.1 and 3.2 are equal. Be-

cause there is one element in Ymult(h) for every element in X, clearly |X|=|Ymult(h)|, so
that the numerators in the two expressions are equal. To see that the denominators are

1426 M.J. Streeter

also equal, note that the first (|X| mod |Y|) integers will appear the most times in
Ymult(h). Specifically, these integers will each appear ceiling(|X|/|Y|) times in Ymult(h).
The remaining (|Y|-(|X| mod |Y|)) integers will appear only floor(|X|/|Y|) times in
Ymult(h). Letting L=(|X| mod |Y|), c=ceiling(|X|/|Y|), and f=floor(|X|/|Y|), we see that the
equation ai=c holds for L distinct values of i, while the equation ai=f for holds for |Y|-L
values of i. The value of the denominator is thus ((c)!)L*(f!)|Y|-L, so that:

 ()()
() ()()LYLmult

fc

X
hYG

−
=

||!!

! (3.3)

Expanding equation (3.3) in terms of c, f, and L establishes the theorem.

As an illustration of Theorem 3.3, let X contain all n-bit integers ("chromosomes"),
and let Y contain all m-bit integers ("fitness values"). Let Fk be the subset of YX con-
taining only those functions of description length k bits or less. Theorem 3.3 ensures
that a No Free Lunch result does not apply to Fk so long as kmod<k<lg(G(Ymult(h))+1)-
1, where the value of G(Ymult(h)) is given by equation 3.1. Table 1 presents the values
of these lower and upper bounds on k (which is itself an upper bound on the descrip-
tion length of functions in Fk) as a function of n and m. The values in the last column
of the table were computed using Stirling’s approximation for factorials. All table
entries are in bits. Note that the values in the rightmost column of the table are the
upper bounds lg(G(Yh)+1)-1, and not the numbers of generalized permuations G(Yh).

Table 1. Upper bounds on description length necessary to ensure that a No Free Lunch result
does not hold

Chromosome
length n

Fitness value
length m

Least upper
bound

Greatest upper bound
lg(G(Ymult(h))+1)-1

16 1 kmod 6.55*104
32*8 8 kmod 9.26*1077
500*8 32 kmod 4.22*101205

The second row of the table tells us that for a No Free Lunch result to apply to Fk
where n=32 bytes and m=1 byte, we must be prepared to allow Fk to contain functions
of description length 9.26*1077 bits. To put this number into perspective, the number
of atoms in the universe is estimated to be approximately 1080. For any reasonable
machine architecture, the lower bound kmod will be measured in tens of bytes. Thus, if
we assume that P is uniform and define Fk as above, only very weak assumptions
about k are required in order to ensure that a No Free Lunch result does not apply to
(Fk,P).

4 Distributions Defined by Description Length

The previous section concerned sets of functions that are defined by placing a bound
on description length. In this section, we will be concerned with probability distribu-
tions that are defined in ways that are closely related to description length. We begin

Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold 1427

by introducing some complexity-theoretic terminology that is relevant to our discus-
sion.

Let U be a special type of Turing machine that runs only self-delimiting programs
(i.e., no halting program can be the prefix of another). The Solomonoff universal
prior (or Solomonoff-Levin distribution), PU, is defined as:

() ∑ −=
Ufpp

p
U fP

 on implements :

2

The Solomonoff universal prior has been well-studied in theoretical computer sci-

ence [7]. This distribution has the characteristic that for any computable probability
distribution PC, PC(f)/PU(f) is bound by a constant dependent on PC but not on f, which
is the origin of the name "universal prior". It has been argued that the Solomonoff
universal prior is a formalization of Occam’s Razor [9]. In the context of genetic
algorithms, the Solomonoff universal prior has the desirable property that it assigns
high probabilities to problems that have actually been studied in the GA literature (e.g.
TSP, maximum clique), while assigning low probability to most of the functions that
could only be described as random.

Theorem 4.1 lays the groundwork both for the remaining theorem proved in this
section and for our discussion of infinite sets in Sect. 5. Theorem 4.2 shows that a No
Free Lunch result does not apply to (F,P) if P is a Solomonoff universal prior.

Theorem 4.1. Let F be a set of functions, where each f∈F has a finite (but not neces-
sarily common) domain Xf and range Yf, and let P be a probability distribution over F.
A No Free Lunch result holds for (F,P) iff., for any f∈F and any permutation g of f,
P(g)=P(f), where we define P(g∉F)≡0.

Proof: (IF) Suppose that for any f∈F and any permutation g of f, P(g)=P(f). The set F
can thus be partitioned into subsets which are each closed under permutation and
assigned uniform probability by P. By NFLP, a No Free Lunch result applies to each
of these subsets. Thus, because the overall performance is simply the sum of the per-
formance on each of these subsets, a No Free Lunch result applies to (F,P).

(ONLY IF) Suppose P(g)≠P(f) for some g that is a permutation of f. Let H denote
the set of all functions that are permutations of f. Schumacher has shown that, when
run against all functions in H, any search algorithm will obtain each possible perform-
ance vector exactly once [10]. Let A be a search algorithm, and let V(A,f) denote the
performance vector that A obtains against f. Let B be a search algorithm that, for all
domains X≠Xf, behaves identically to A (B can recognize such cases because the do-
main X is an input to the search algorithm). However, for X=Xf, let B be the search
algorithm such that V(B,g)=V(A,f). Such a B must exist because f and g are permuta-
tions of one another (and B can simply visit points in whatever order is necessary to
obtain V(A,f) when running against g). Furthermore, for all h∈H, h≠g we have
V(B,h)≠V(A,f) because (as just mentioned), when running over all functions in H, B
must obtain each performance vector exactly once.

1428 M.J. Streeter

Now consider the performance measure M that assigns a value of 1 to V(A,f) and a
value of 0 to all other performance vectors. Let Xi represent the domain of some arbi-
trary function i, and suppose we run both A and B on i. For Xi≠Xf, A and B will be
assigned the same performance because they are defined to perform identically in this
case. For Ymult(i)≠Ymult(f), A and B will both be assigned 0 performance, because the
performance vector V(A,f) can only be obtained when the available multiset of y-
values are those in V(A,f). Thus the difference MO(f)-MO(g) must depend only on
those i for which Xi=Xf and Ymult(i)=Ymult(f) (i.e., only on those i∈H). When run over
all i∈H, A will obtain V(A,f) only on f while B obtains V(A,f) only on g. Thus, over all
i∈H, A will have performance P(f) while B has performance P(g). Thus the overall
performance difference MO(f)-MO(g) is precisely equal to P(f)-P(g). Since we have
hypothesized that P(f)≠P(g), it follows that MO(f)≠MO(g), so a No Free Lunch result
does not hold for (F,P). This establishes the theorem.

Theorem 4.1 can be seen as a generalization of NFLP simultaneously to non-

uniform probability distributions, to sets of functions that do not have a common do-
main, and (as will be seen in Sect. 5) to infinite sets of functions. The only significant
restriction we have placed on each f∈F is that it have a finite domain. Thus, aside
from this one restriction, Theorem 4.1 is the most general possible form of the No
Free Lunch theorem.

Theorem 4.2. Let F and P be defined as in Theorem 4.1, let h be a hashing function,
and let PU be a Solomonoff universal prior. Then a No Free Lunch result does not
hold for (F,PU) so long as KU(h)<lg(G(Ymult(h))).

Proof: Let k≡KU(h). Because h has description length k, there must be at least one
program of length k that computes h. Thus h must be assigned a probability of at least
2-k under PU. Since the sum of the probabilities PU assigns to all functions in F must
not exceed 1, there can be at most 2k functions assigned probability PU(h). If a No
Free Lunch Result holds for (F,PU), then by Theorem 4.1 all functions that are
permutations of h must be assigned probability PU(h). The number of such functions
is G(Ymult(h)). Thus a No Free Lunch result cannot hold so long as 2k < G(Ymult(h)).

A similar proof can be used to establish the same result for P that assign probability

in a manner that is strictly decreasing w.r.t. description length.

5 No Free Lunch and Infinite Sets

The No Free Lunch theorems are commonly said to apply to "all possible functions".
However, the original No Free Lunch theorems applied only to any finite set of func-
tions F≡YX having a specified finite domain X and specified finite codomain Y. In this
section we discuss circumstances under which a No Free Lunch result will apply when
F is infinite.

Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold 1429

When F may be infinite, our terminology from Sect. 1 essentially still works, with
two caveats. First, we must now distinguish between search functions and search algo-
rithms. We define a search function A:T,X→X in the same way we defined a search
algorithm in Sect. 1.1, and we now define a search algorithm as a computable search
function. Second, we must require that the values returned by a performance measure
M not be unbounded (i.e., there must always exists some CM such that M(v)<CM for all
v), so that the summation required to compute the overall performance MO will always
be guaranteed to converge.

The output of the performance measure M used in second half of the proof of Theo-
rem 4.1 is certainly bounded, since it can only take on the values of 0 and 1. The only
objection one might have to the assertion that Theorem 4.1 applies to infinite sets is
that the proof of this theorem describes A and B as search algorithms, whereas using
our above terminology they may only be search functions. However, it turns out that
both A and B can be search algorithms. Because the choice of A in the proof of the
theorem was arbitrary, A may be a search algorithm by hypothesis, whereas B is a
search algorithm because it emulates A in all but a finite number of cases. Thus,
Theorem 4.1 applies to infinite sets of functions.

When considering a finite set of functions F≡YX, a No Free Lunch result applies to
(F,P) so long as P is uniform. Though we would argue against such a choice of P
even in this case, such a choice of P can at least be justified under the grounds of
"making no assumptions". However, when F is infinite, a uniform distribution is not
possible, and a No Free Lunch result will apply to (F,P) only if P satisfies the parti-
tioning criteria given in the statement of Theorem 4.1. It can be shown that these
partitioning criteria are satisfied iff., for any f∈F, P can be fully specified as a func-
tion of the domain Xf and the multiset Ymult(f) (i.e., P(f)=PXY(Xf,Ymult(f)) for all f∈F, for
some PX,Y). What can be the argument for assuming the real world’s P is of this form?

One could of course argue that memory limitations restrict X and Y to be finite in
practice, but these limitations also restrict description length. And, as we have seen in
Sect. 3, only very moderate bounds on description length are required to ensure that a
No Free Lunch result does not apply to YX.

6 Limitations

The purpose of the proofs in this paper has been identify pairs (F,P) for which a No
Free Lunch result does and does not hold. We must acknowledge, however, that the
mere fact that a No Free Lunch result does not apply to some pair (F,P) does not
guarantee that the development of black-box algorithms for (F,P) is worthwhile. All
that is guaranteed is that, if a No Free Lunch result does not hold for (F,P), some
search algorithms will perform better than some others in terms of some performance
measure. We have not shown that any algorithms outperform either random or ex-
haustive search. Also, we have not shown that the performance measures are of the
kind that typically would be used in optimization. We hope to address both of these
limitations in future work.

1430 M.J. Streeter

7 Summary and Conclusions

We have presented two broad classes of functions for which a No Free Lunch result
does not hold: functions of bounded description length, and functions whose probabil-
ity is defined according to description length. We have argued that such probability
distributions are more relevant to search and optimization than are the ones required
by NFL. Finally, we have identified the circumstances under which a No Free Lunch
result may apply to infinite sets of functions.

References

1. V.K. Balakrishnan. Introductory Discrete Mathematics. New York: Dover Publications;
1991.

2. S. Christensen and F. Oppacher. What can we learn from no free lunch? A first attempt to
characterize the concept of a searchable function. In Proc. 2001 Genetic and Evolution-
ary Computation Conf., 2001, pp. 1219–1226.

3. J. Culberson. On the futility of blind search. Evolutionary Computation, 6(2):109–127,
1999.

4. S. Droste, T. Jansen, and I. Wegener. Perhaps Not a Free Lunch But At Least a Free Ap-
petizer. In Proc. 1999 Genetic and Evolutionary Computation Conf., 1999, pp. 833–839.

5. J. Holland. Adaptation in Natural and Artificial Systems. Cambridge, MA: The MIT
Press; 1992.

6. C. Igel and M. Toussaint. On classes of functions for which no free lunch results hold.
Los Alamos e-Print Archive cs.NE/0108011. 2001.

7. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
New York: Springer-Verlag; 1993.

8. N.J. Radcliffe and P.D. Surry. Fundamental limits on search algorithms: Evolutionary
computing in perspective. In J. van Leeuwen, ed., Lecture Notes in Computer Science
1000. Springer-Verlag, 1996.

9. J. Schmidhuber. Discovering solutions with low Kolmogorov complexity and high gener-
alization capability. In Proc. 12th Intern. Conf. on Machine Learning, 1995, pp. 488–496.

10. C. Schumacher, M.D. Vose, and L.D. Whitley. The no free lunch and problem description
length. In Proc. 2001 Genetic and Evolutionary Computation Conf., 2001, pp. 565–570.

11. D. Whitley. Functions as permutations: regarding no free lunch, walsh analysis and sum-
mary statistics. In Schoenauer et al., eds., Parallel Problem Solving from Nature 6, 2000,
pp. 169–178.

12. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 4:67–82, 1997.

	1 Introduction
	1.1 Terminology
	1.2 The No Free Lunch Theorems

	2 No Free Lunch and Bayesian Learning
	2.1 Discussion

	3 Functions of Bounded Description Length
	3.1 Relevance of Description Length

	4 Distributions Defined by Description Length
	5 No Free Lunch and Infinite Sets
	6 Limitations
	7 Summary and Conclusions

