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The complexity of biological, social, and engineering networks
makes it desirable to find natural partitions into clusters (or com-
munities) that can provide insight into the structure of the overall
system and even act as simplified functional descriptions. Although
methods for community detection abound, there is a lack of con-
sensus on how to quantify and rank the quality of partitions. We
introduce here the stability of a partition, a measure of its quality
as a community structure based on the clustered autocovariance of
a dynamic Markov process taking place on the network. Because
the stability has an intrinsic dependence on time scales of the
graph, it allows us to compare and rank partitions at each time
and also to establish the time spans over which partitions are op-
timal. Hence the Markov time acts effectively as an intrinsic resolu-
tion parameter that establishes a hierarchy of increasingly coarser
communities. Our dynamical definition provides a unifying frame-
work for several standard partitioning measures: modularity and
normalized cut size can be interpreted as one-step time measures,
whereas Fiedler’s spectral clustering emerges at long times. We
apply our method to characterize the relevance of partitions over
time for constructive and real networks, including hierarchical
graphs and social networks, and use it to obtain reduced descrip-
tions for atomic-level protein structures over different time scales.

community structure ∣ Markov chain ∣ modularity ∣ multiscale modelling ∣
networks

In recent years, there has been a surge of interest in the analysis
of networks as models of complex systems. The literature is

extensive, spanning areas as diverse as gene regulation, protein
interactions and metabolic pathways, neural science, social net-
works or engineering systems such as transportation networks
and the internet, to name but a few (1, 2). The tools for network
analysis are firmly grounded on results in graph theory, with an
influx of concepts from statistical physics, dynamical systems, and
stochastic processes (3). Due to the large-scale, complex nature
of many systems under study, an appealing idea is to obtain
relevant partitions of the network (also called clusterings or com-
munities) that can reveal the underlying structure of the system
and hence provide insight into its function. These partitions could
potentially lead to reduced, more manageable representations of
the original system (4, 5).

The topic of community detection in graphs has a long history
and multiple methods and heuristics have been proposed to
partition graphs into communities or clusters. (See for instance
ref. 6 and references therein for a recent survey.) However,
the extensive list of partitioning methods comes with a parallel
lack of theory or consensus on measures to quantify the goodness
of a community structure. For instance, consider the simplest
such measure: the cut size, i.e., the sum of the weights of edges
that lie at the boundaries of different communities. As a general
rule, good community structures should have small cut size
implying that the communities are weakly interconnected. Unfor-
tunately, this intuitive notion has negligible applicability since the
partition with minimum cut size is often trivial. Therefore, a vari-
ety of generalized, compound measures have been proposed to
induce more balanced partitions. These include, without claim
of exhaustivity, normalized cut (7), ðα;ϵÞ-clustering (8), modular-
ity (9, 10) and variants and extensions of modularity (11, 12).

These methods, which are based on different heuristics, have
distinct features and have been shown to produce reasonable
community structures for a variety of examples. In particular,
modularity does not require that the number of communities
be specified in advance, unlike most of the other partitioning
methods. However, it has been recently shown that optimizing
modularity can overpartition or underpartition the network, fail-
ing to find the most natural community structure (13). To com-
pensate for this, recent methods (12, 14, 15), have included an ad
hoc resolution parameter that can be tuned to bias towards
small or large communities. The introduction of such resolution
parameters highlights the fact that one would expect that any
given graph could be described by different natural community
structures (finer or coarser) in different regimes.

Here we introduce a quality measure that has the intrinsic
flexibility to find which clusterings are relevant at different time
scales. This goal is achieved by establishing a link between the
quality of the partition and a stochastic process taking place
on the clustered graph. To establish this connection, we use
the well known relationship between graphs and Markov chains:
any graph has an associated random walk in which the probability
of leaving a vertex is distributed among the outgoing edges
according to their weight. Conversely, a Markov chain is repre-
sented by a graph with edges weighted by probabilities. This
Markov viewpoint provides a dynamical interpretation of com-
munity detection: natural communities at a given time scale
correspond to persistent dynamical basins, that is, to sets of states
from which escape is unlikely within the given time scale. This
correspondence can be established quantitatively through the
autocovariance of the clustered Markov process, a measure that
defines the persistence of a cluster in time. In essence, one can
think of the time scale as an intrinsic resolution parameter for the
clustering: over short time scales, many small clusters should be
coherent; on the other hand, the expectation is that, as time
evolves, there will be fewer, larger clusters that are persistent
under the dynamics of the Markov chain.

A satisfying feature of our dynamical approach is that it
provides a framework that unifies seemingly disparate clustering
heuristics in the literature, which turn out to have a natural
Markov probabilistic interpretation. In particular, we show below
that modularity and normalized cut are related to the clustered
autocovariance on paths of length one (i.e., at time t ¼ 1), while
Fiedler’s spectral method is favored in the asymptotic limit of
long paths (i.e, as time t → ∞). Moreover, we also show that re-
cent methods that include ad hoc resolution parameters (12, 14)
are obtained as a linearization of the continuous Markov process
at small times (i.e., as time t → 0). In contrast, our measure
incorporates paths of all lengths and provides an evaluation of
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the quality of a clustering at all times. The resulting sequence of
partitions with maximum stability as a function of time includes
typically clusterings that are both coarser (for t > 1) and finer (for
0 < t < 1) than those obtained by modularity optimization. We
now introduce the definition of stability of a partition, including
the connections with other clustering heuristics, and exemplify
the applications of the method with networks drawn from differ-
ent fields to showcase the generality of the approach.

Methods
Stability of Graph Communities Based on Their Markov Autocovariance. Con-
sider an undirected, connected graph with N vertices (or nodes) andm edges
and assume that the graph is nonbipartite. For simplicity, we will assume that
the graph is unweighted, although all our results apply equally to weighted
graphs. The topology of the graph is described by the N × N adjacency matrix
A, a symmetric 0–1 matrix with a “1” if two vertices are connected and a
“0” otherwise. The number of edges of each vertex or degree, di , can be
compiled into the vector d ¼ A1, where 1 is the N × 1 vector of ones. We will
also use the diagonal matrix of degrees: D ¼ diagðdÞ.

A random walk on any such graph defines an associated Markov chain
in which the probability of leaving a vertex is split uniformly among the
outgoing edges with a transition probability 1∕di for each edge:

ptþ1 ¼ pt D−1A≡ ptM; [1]

where pt is the 1 × N (normalized) probability vector and M is the transition
matrix. Under these assumptions, we have an ergodic and reversible Markov
chain with stationary distribution π ¼ dT∕∑idi ¼ dT∕2m, given by π ¼ πM.
We will also use the corresponding diagonal matrix Π ¼ diagðπÞ.

Consider now a partition of the graph into c nonoverlapping commu-
nities. This (hard) clustering can be encoded in an N × c indicator matrix
H, a 0–1 matrix that records which vertex belongs to which community. Each
row ofH is all zeros except for a one indicating the cluster to which the vertex
belongs. Let us now observe the Markov process [1] under the prism of a
given partition. If we assign a different real value αi to the vertices of each
of the c clusters, the observed signal is then a stationary, not necessarily
Markovian, random variable ðXtÞt∈N which consists of a sequence of αi . If
the partition of the graph involves good communities over a given time scale,
we expect that the state is more likely to remain within the starting cluster
for such a time span, as compared with that event occurring at random. This
phenomenon can be quantified through the autocovariance of the observa-
ble cov½Xt;Xtþτ � ¼ E½XtXtþτ � − E½Xt �2, where E denotes expectation. If the
intercommunity connections are weak, the values of Xt and Xtþτ will be
correlated for longer times. Indeed, how fast the autocovariance decays
as a function of the lag τ is therefore an indicator of the quality of the clus-
tering over the corresponding Markov time scale. The connection between
autocovariance and clustering is the main idea underpinning our measure.

The covariance of Xt can be rewritten as cov½Xt;Xtþτ � ¼ αTRτα, where α is
the vector of labels of the c communities and the matrix Rt is the clustered
autocovariance matrix of the graph:

Rt ¼ HTðΠMt − πTπÞH; [2]

a matrix that depends only on the topology of the graph and on the given
clustering. Rt describes the t-step dependence of the transfer probabilities
between clusters: each element ðRtÞij corresponds to the probability of
starting in a cluster i and being in another cluster j after t steps minus
the probability that two independent random walkers are in i and j, evalu-
ated at stationarity.

As stated above, a good partition over a given time scale should imply a
high likelihood of remaining within the starting community. In terms of the
clustered autocovariance matrix, the diagonal elements ðRtÞii , which measure
the probability of a random path of length t to start and end in the same
community, should be larger than the off-diagonal ones. This observation
leads to our definition of the stability of the clustering:

rðt;HÞ ¼ min
0≤s≤t∑

c

i¼1

ðRsÞii ¼ min
0≤s≤t

trace½Rs�: [3]

A good clustering over time t will have large stability, with a large trace of Rt

over such a time span. Note that our definition involves the minimum value
of the trace up to a time t, i.e., the stability is large only if its value is large for
all times up to t. In this way, we assign low stability to partitions where there
is a high probability of leaving the community and coming back to it later, as
in the case of almost bipartite graphs.

The stability [3] is the fundamental tool we propose to assess the quality of
different clusterings over time. For each candidate clustering,we can compute
the stability at all times and rank the possible partitions. Clearly, certain
partitions might only be optimal in particular time windows and different
partitions will be optimal at different times. For each Markov time t, we
seek the partition with the largest stability to obtain the stability curve of
the graph:

rðtÞ ¼ max
H

rðt;HÞ: [4]

The stability curve establishes a time hierarchy of partitions, from finer to
coarser as time grows, as exemplified in Fig. 1 for a social network. This curve
encapsulates the idea that partitions are better or worse depending on
the time of interest and it makes explicit the concept of the Markov time as
an intrinsic resolution parameter that establishes when a partition is good.

Fig. 1. (A) Largest connected component of a graph of scientific colla-
borations in network science (16). The vertices corresponding to N ¼ 379

researchers are color coded according to the 21-way partition obtained by
maximizing the stability [3] at t ¼ 1 (or equivalently, modularity). The list
of researcher names and groupings is available in the SI Appendix. (B) Sta-
bility curve [4] of this graph obtained with the divisive KVValgorithm and the
corresponding dendrogram of the hierarchy of partitions. Note the simplicity
of the dendrogram, which is not a binary tree, as compared with the many
branching points obtained by standard binary partition methods. Only two
clusterings are long-lived: the two-way split and the five-way partition
represented by areas shaded in different colors in (A).

12756 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0903215107 Delvenne et al.
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In this sense, one will consider that the most relevant partitions will be those
that are optimal over long time windows, because they serve as good repre-
sentations over extended time scales of the system. The stability curve can be
estimatednumerically using a variety of existingalgorithms, as shown in Fig. 2.

Relationship of Stability with Diversity Index, Modularity, Cut, Normalized Cut,
and Spectral Partitioning. An important feature of the stability [3] is that it
encompasses several of the criteria for clustering that have been proposed
in the literature and allows us to interpret those heuristics in terms of the
relevant Markov time scales of the graph. To explore the unifying power
of the framework, we study the autocovariance Rt and the stability rðtÞ in
different limits. An extended explanation of the following results and other
generalizations is given in more detail in the SI Appendix.

First, consider short times. At time t ¼ 0, the partition with the largest
stability is the finest possible clustering, a fact that follows from elementary
inequalities which show that rð0Þ ¼ 1 − ‖πH‖22 becomes maximal when each
vertex is in its own cluster. Interestingly, the quantity rð0Þ is the so-called
Simpson’s diversity index, often used by biologists to measure how equally
a population is divided among different species. The quantity rð0Þ is also
equivalent to other diversity measures such as the Hirschman-Herfindahl
index, used to quantify monopolies in economics, or the Rényi entropy of
order 2, used in information theory.

At time t ¼ 1, we recover modularity, a popular measure for community
detection (9): modularity is equal to the trace of R1, the autocovariance
matrix at t ¼ 1, as follows from [3]. Therefore, maximizing rð1Þ is equivalent
to modularity optimization. (See also ref. 16 for an alternative, nondynamical
take on this issue.) The stability at t ¼ 1 is also related to other measures in
the literature. Consider the cut size (Cut), defined as the number of intercom-
munity edges divided by the total number of edges of the graph. It is easy
to see that Cut ¼ rð0Þ − rð1Þ, from which it follows that Modularity ¼
Diversity Index − Cut. This equality is the reason why modularity optimiza-
tion tends to produce balanced partitions: minimizing cut favors few clusters,
possibly of very unequal sizes, while maximizing the Diversity Index tends to
favor many clusters of equal size. An alternative measure to modularity is the
so-called normalized cut size (NCut) (7). For the case of two communities,
NCut is the number of intercommunity edges multiplied by the sum of
the inverse of the number of edges in each community, which equals
NCut ¼ 1

2 ðρð0Þ − ρð1ÞÞ, where ρðtÞ is given by the same expression as the
stability rðtÞ replacing covariances by correlations.

The discussion above shows that modularity, Cut, and NCut are based on
the one-step behavior of the Markov process. However, stability provides a
measure at all times. In fact, the behavior of rðtÞ in the long time limit t → ∞
establishes a link with spectral clustering methods, the other standard
toolbox for graph partitioning. Spectral clustering is generally based on
the eigenvectors of the Laplacian matrix L ¼ D − A. Classic methods proceed
by partitioning the graph recursively into subgraphs according to the sign of
the components of the Fiedler eigenvector (17, 18), i.e., the eigenvector as-
sociated with the second smallest eigenvalue of L. More recently, it has been
proposed (19) that graph partitioning could be based on the Fiedler vector of
the normalized Laplacian L ¼ D−1∕2LD−1∕2, which has been shown to be a
heuristic for the optimal NCut two-way clustering (7).

The analysis of the definition of stability shows that spectral clustering is
not just a heuristic but an exact method to find the most stable partitions at
long time scales. This fact follows from the spectral decomposition of the nor-
malized Laplacian L, which is trivially related to that of M ¼ D1∕2MD−1∕2 ¼
∑N

i¼1 λiuiuT
i . Here the eigenvalues λi are ranked in decreasing order and the

corresponding eigenvectors ui are orthonormal. In particular, λ1 ¼ 1 and

u1 ¼ ð1∕ ffiffiffiffiffiffiffi
2m

p ÞD1∕21. If, as in most networks of interest, λ2 is nondegenerate
and dominates all eigenvalues except λ1, then we have the asymptotic
behavior

trace½Rt� ¼ ∑
N

i¼2

λti
2m

‖HTD1∕2ui‖2!t→∞ λt2
2m

‖HTD1∕2u2‖2; [5]

which is dominated by u2, the normalized Fiedler eigenvector. In this case, the
clustering with maximal stability at long times corresponds to the two-way
partition according to the signs of the components of u2. The optimality of
this partition follows from the fact that clustering vertices i and j together
induce a variation in [5] given by ðλt2∕mÞ ffiffiffiffiffiffiffiffiffi

didj

p
u2;iu2;j, which is only positive if

the components of u2 for nodes i and j have the same sign.
This asymptotic convergence is typical but there are some nongeneric

graphs for which the asymptotic limit is different. In those cases, stability also
provides a consistent interpretation. When λ2 is degenerate, the asymptotics
are dominated by the subspace spanned by the degenerate eigenvectors.
This degeneracy occurs in graphs with natural partitions into k > 2 groups
for which the stability will indicate that the k-partition is optimal (Fig. 3).
When jλN j > λ2, as is the case for (almost) bipartite graphs, the stability at
large times becomes negative for all clusterings except for the partition with
all nodes in one community, for which the stability is trivially zero at all times.
In this case, the dominant partition at long times is the one-way partition,
the expected outcome for bipartite graphs, which do not have a natural
two-way cut.

The overall picture that emerges from our analysis is that the sequence of
partitions with highest stability evolves generically from the finest possible
(each vertex by itself) at t ¼ 0, through the partition with optimal modularity
at t ¼ 1, onto a sequence of generally coarser partitions which contain fewer
and fewer clusters as the Markov time grows, typically towards the two-way
spectral clustering as t → ∞. It is important to remark that this asymptotic
convergence does not imply that the normalized Fiedler two-way partition
will be identified as a relevant community, since it can become asymptotically
dominant at values of stability that are negligibly small. An example of this
situation is shown in Fig. 3, which has an intrinsic fivefold symmetry in its
community structure. We have also checked that stability does not impose
the emergence of an artificial community structure when there is none, as
in the case of random graphs (see SI Appendix). It is also easy to see within
this framework that the modularity-optimal clustering might be too fine or
too coarse for particular examples, since it might correspond to transient
partitions (as in Fig. 3) or to time scales that are not relevant for the system.

Applications and Examples
We now show the applicability of the method by analyzing three
examples drawn from social interactions, hierarchical scale-free
graphs, and protein structural networks. Rather than being
exhaustive, our goal is to highlight through each example some
of the wider features of our approach.

Fig. 2. A comparison of the stability curves of the network of scientific col-
laborations in Fig. 1B obtained through four divisive algorithms: Shi-Malik
(7), KVV (8), Newman (without Kernighan-Lin) (16), and Newman-Girvan (9).

Fig. 3. Stability curve of a hierarchical, scale-free graph with N ¼ 125

vertices proposed in (24) (shown in the inset) calculated for times smaller
and larger than one. Note that the natural partitions into 25 and 5 commu-
nities persist over long time scales, while the modularity-optimal clustering
(at t ¼ 1) can be seen as a transient. As expected from the symmetry of
the graph, the five-way partition dominates for large times and the two-
way partition is not relevant.

Delvenne et al. PNAS ∣ July 20, 2010 ∣ vol. 107 ∣ no. 29 ∣ 12757
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Example 1—Time Hierarchy of Partitions, Optimization of Stability,
and Comparison of Clustering Algorithms. Our first example deals
with the graph of collaborations between researchers in network
science shown in Fig. 1A (16). Community structures are relevant
for social networks, where the identification of groups of people
with strong ties can help unravel underlying patterns of interde-
pendence (3). In Fig. 1B we show the time hierarchy of partitions
associated with the stability curve of the network. Our measure
[3] is used to rank partitions efficiently, since the stability of a
given clustering rðt;HÞ is directly computable in OðcmtÞ, or esti-
mated in OðKtÞ with accuracy Oðc∕ ffiffiffiffi

K
p Þ through K random walks

of length t. In order to obtain the stability curve, one needs to
maximize the stability over all partitions. Given that modularity
optimization is provably NP-hard (20), it is likely that no efficient
algorithm exists for the optimization of stability for arbitrary
graphs. However, for all practical applications, we can still obtain
sequences of partitions through the use of a number of heuristic
strategies, such as aggregative (i.e., unifying clusters from the
finest clustering) or divisive (i.e., splitting clusters from the
coarsest clustering). Fig. 1B is the result of the application of
Kannan, Vempala and Vetta’s (KVV) conductance spectral divi-
sive algorithm (8) to produce a sequence of partitions, which are
then ranked according to their stability to estimate the stability
curve rðtÞ. This curve is then translated into a nonbinary dendro-
gram representing the sequence of community structures with
maximal stability as a function of time. The dendrogram has
the advantage of being relatively simple, with fewer branching
points compared with the binary trees produced by most hierar-
chical community detection algorithms. In this case, the time
hierarchy of partitions indicates that the modularity-optimal clus-
tering into 21 communities is short lived whereas a coarser parti-
tion into five communities persists over a long time window. This
persistence suggests the relevance of this coarser meta-commu-
nity structure as indicative of the likelihood of information to flow
within the five subgroups of researchers. We use here the persis-
tence of the partitions across long time scales as a crude measure
of their relevance, although more sophisticated, but computa-
tionally costly, tools could be used (21, 22).

Stability can also be used to rank the sequences of partitions
obtained by different algorithmic strategies. Fig. 2 presents the
estimated stability curves from four algorithms chosen for their
simplicity and popularity and because they represent different
overall methodologies (see SI Appendix): the KVV method
(8), Shi-Malik’s recursive spectral method (7), Newman’s spectral
modularity optimization without the Kernighan-Lin step (16),
and the Newman-Girvan betweenness algorithm (9). In all cases,
we use a divisive strategy to produce a sequence of increasingly
finer partitions and we obtain an estimate of the stability curve
rðtÞ by choosing the best partition at each time. In this case,
Shi-Malik and KVV produce the partitions with highest stability
at all shown times (alternatively better in different time windows),
followed closely by the Newman-Girvan algorithm and Newman’s
spectral algorithm. At higher times (up to t ¼ 1;000 at least), the
KVV method slightly dominates Shi-Malik and Newman-
Girvan algorithms, while Newman’s clustering algorithm is worse
by a factor of two. These observations are no evidence of overall
superiority of one method over another, but an example of how to
compare and use the different partitioning algorithms on a given
network. Conversely, one can use a combination of optimization
methods to find the best possible partitions that maximize stabi-
lity at different time scales. Fig. 2 also shows that all algorithms
produce stability curves of similar magnitude with comparable
time dependence, a fact we have confirmed through the use of
the Louvain algorithm, based on a distinct agglomerative
heuristic (see SI Appendix) (23). Therefore, the NP-hard optimal
stability can be estimated robustly through heuristic algorithms.
This point is discussed further in the SI Appendix.

Example 2—Beyond the Resolution Limit of Modularity: the Small
Time Limit of Stability.Recently, it has been shown that modularity
optimization cannot produce partitions smaller than a certain re-
lative size. This effect, termed the resolution limit of modularity,
leads to partitions coarser then the expected “natural” commu-
nity structure (13). So far, our analysis has shown that the
modularity-optimal community structure corresponds to stability
at time t ¼ 1 while for t > 1, the most stable community structures
are coarser than those found by modularity optimization. Our fra-
mework also leads naturally to finer communities than modularity
(i.e., beyond the resolution limit) by considering stability at times
between zero and one. This regime can be studied through the
extension to the continuous-time version of [2] obtained by
substituting Mt by the matrix exponential exp½ðM − IÞt�, where
I is the identity matrix (23). The linearized stability for small
(continuous) times then gives:

rcðtÞ≃ ð1 − tÞrð0Þ þ trð1Þ; 0 ≤ t ≤ 1. [6]

Note that this linear interpolation recovers modularity at t ¼ 1
and the diversity index at time t ¼ 0. Eq. 6 also provides an inter-
pretation in terms of Markov time of the resolution parameter
proposed by Reichardt and Bornholdt (12) and is related to a
heuristic proposed by Arenas et al. (14) consisting of the addition
of weighted self loops to the graph. These connections are
discussed further in the SI Appendix.

As an example, Fig. 3 shows the stability curve extending to
t < 1 of a 125-vertex hierarchical scale-free graph recently
proposed by Ravász and Barabási (24). In this simple model,
the natural clustering is not found through modularity. Our meth-
od, on the other hand, finds that the natural partitions into 25 and
5 clusters have long windows of stability while the partition
obtained by modularity at t ¼ 1 is a transient with no extended
significance.

Example 3: Structural Graphs, Model Reduction, and Time Scales.Our
final example shows an application of our framework to graphs
derived from atomic-level protein structures and its relevance to
model reduction of biophysical systems. Recently, new methods
based on graphs of constraints have been proposed to simplify the
complex dynamics of large biomolecules such as proteins. The
idea is to obtain lower-dimensional descriptions of protein
dynamics in terms of a few relatively rigid parts connected by
flexible elements (4, 5, 25–28). Because coherent subunits are
likely to result from a tightly-knit network of chemical bonds
and chemical constraints, we expect that a reasonable approxima-
tion to the constrained flexibility of the protein will be revealed by
the multiscale partitions of the structural graph of the protein, in
which the atoms are vertices and edges correspond to bonds and
chemical constraints (25).

Fig. 4A shows the stability curve and the time hierarchy of par-
titions of a full-atom (N ¼ 2;085) structural graph of the protein
Adenylate Kinase (AK) in its open configuration obtained using
the Shi-Malik divisive algorithm. In this example, biophysical
considerations indicate that optimizing modularity overpartitions
the graph—the 31 communities obtained at t ¼ 1 split several
structural motifs such as β-sheets and α-helices. Some of the
optimal partitions at longer times (notably those into 18 and 4
communities) prevail over relatively long time scales and contain
significant biophysical features. To make this statement more
precise, we evaluate the relative variation of the intracommunity
positions of Cα carbons between two functional conformations of
AK (open vs. closed) for all partitions. Fig. 4B shows the
intracommunity stretching for all partitions obtained as follows:
calculate all pair distances between atoms within each community
in both configurations of the protein and obtain Δ, the average
square variation of those distances over all communities. If the
communities are completely rigid, the pair distances within com-

12758 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0903215107 Delvenne et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
85

.1
60

.1
13

.2
43

 o
n 

A
ug

us
t 3

0,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

18
5.

16
0.

11
3.

24
3.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0903215107/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0903215107/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0903215107/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0903215107/-/DCSupplemental/Appendix.pdf


munities will not change and Δ ¼ 0. The maximum value Δ ¼
37 Å2 is the average square variation for all atoms in the protein
(i.e, when we consider all of them in one community). As the
number of communities grows, one expects that Δ will decrease,
since the number of pair distances decreases. The key is to find
when the addition of a community does not result in a significant
decrease of Δ, thus implying that the new communities added are
not significantly rigid. This situation is observed in the plateaux in
Δ that follow the four-way and 18-way community structures and
is consistent with the extended time scales of prevalence for both
partitions in the stability curve. We deduce that the four-way and
18-way community structures are a reasonable compromise
between simplicity and predictive power for rigidity. We remark
for the application to protein structures that the “Markov time” is
defined as an abstract entity, not to be assigned an immediate link
with a physical quantity. The rigorous connection between the
Markov time and the biophysical time of protein motions is
the subject of current research.

Discussion and Future Work
In this work, we have introduced the stability [3] as a quality
measure of a graph partition based on dynamical concepts. The
stability of a partition, which is defined in terms of the clustered
autocovariance of a Markov process taking place on the graph, is
explicitly dependent on theMarkov time, an intrinsic time scale of
the network. We can therefore rank partitions and establish their
relevance over time scales. Although Markov chains (29–31) and
oscillator dynamics (27, 32, 33) have been used in relation to com-
munity detection, previous methods have not defined a quality
measure, nor have they considered paths of all lengths to evaluate
the quality of partitions across time scales.

Our measure can be used to obtain a sequence of partitions
with maximum stability as a function of time, from finer to
coarser as the Markov time grows. This time hierarchy can be
used to establish the most relevant partitions over significant time
scales. Hence, our method does not provide a unique, “optimal”
partition for the graph. Rather, we propose that obtaining distinct

partitions that are valid over different time windows and selecting
those partitions that are relevant over extended time scales may
be better suited for many applications. In particular, if a
network is defined by an underlying dynamical process with well
defined time scales, our analysis can suggest reduced representa-
tions valid over time windows of interest. On the other hand, if
the network under study does not have an obvious temporal
interpretation, the Markov time acts effectively as an intrinsic
resolution parameter for graph partitions.

An important feature of the stability is that it gives a unified
interpretation in terms of time scales of community detection
methodologies that have been hitherto considered separately.
We have shown that modularity, cut, and normalized cut can
be understood in relation to the stability at t ¼ 1, while spectral
clustering based on the normalized Fiedler vector is linked to sta-
bility as t → ∞. Additionally, the continuous version of stability
(23) can go beyond the resolution limit of modularity and its
linearization for small times can be linked to previously proposed
ad hoc multiresolution methods (12, 14). Stability can also be
connected with the concept of “anticlustering” and k-colorings
(34, 35) based on the existence of recurrence patterns in the
time-dependence of the trace of Rt, which become important
in (almost) bipartite graphs.

Complex systems, from protein dynamics to metabolic and
social interactions to the internet, are often described as net-
works. The methodology presented here, which extends seam-
lessly to both weighted and directed graphs, uses the intimate
connection between structure and dynamics to identify commu-
nities that can be revealing of the network structure. In some
cases, the original networks are static and our dynamical ap-
proach is a convenient construct to reveal the intrinsic resolution
scales of the problem. If, on the other hand, the network has a
dynamic origin, or indeed it can be related to a Markov process
(4, 28), the stability of the graph provides information about the
hierarchy of time scales of the underlying landscape of the system.
From this dynamic viewpoint, the presence of communities rele-
vant over particular time scales hints at a first step towards re-

Fig. 4. Analysis of the atomic-level structural graph of the open conformation of the protein AK with N ¼ 2;085 vertices (see the SI Appendix for a detailed
explanation of how this graph is obtained). (A) The optimal stability curve at each Markov time (solid curve) is estimated from partitions obtained by the
divisive Shi-Malik algorithm. The 31-way clustering with optimal modularity among the computed clusterings overpartitions the structure: it breaks β-sheets
and α-helices, which should belong to the same cluster. The four-way and 18-way partitions have relatively long windows of stability with a good balance
between over- and underpartitioning. (B) Evaluation of the validity of the partitions through a comparison of two experimental conformations of AK: open
and closed. Partitions obtained from the graph of the open configuration are evaluated in terms of the error of the experimental distortion when comparing to
the closed conformation by assuming rigidity of the predicted communities. The two plateaux in the error (from 4 to 10 and from 18 to 31 clusters) indicate that
the four-way and 18-way partitions, which also show persistence over long time windows in (A), represent a parsimonious compromise between predicted
rigidity and a small number of clusters. (C) Some of the partitions in the hierarchy that appear at different Markov time scales with structural communities
represented by adjacent regions of the same color.
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duced representations in which the communities can be lumped
into aggregate variables.
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