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Most of the complex social, technological, and biological networks have a significant community structure.
Therefore the community structure of complex networks has to be considered as a universal property, together
with the much explored small-world and scale-free properties of these networks. Despite the large interest in
characterizing the community structures of real networks, not enough attention has been devoted to the detection
of universal mechanisms able to spontaneously generate networks with communities. Triadic closure is a natural
mechanism to make new connections, especially in social networks. Here we show that models of network growth
based on simple triadic closure naturally lead to the emergence of community structure, together with fat-tailed
distributions of node degree and high clustering coefficients. Communities emerge from the initial stochastic
heterogeneity in the concentration of links, followed by a cycle of growth and fragmentation. Communities are
the more pronounced, the sparser the graph, and disappear for high values of link density and randomness in the
attachment procedure. By introducing a fitness-based link attractivity for the nodes, we find a phase transition
where communities disappear for high heterogeneity of the fitness distribution, but a different mesoscopic
organization of the nodes emerges, with groups of nodes being shared between just a few superhubs, which
attract most of the links of the system.
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I. INTRODUCTION

Complex networks are characterized by a number of general
properties that link together systems of very diverse origin,
from nature, society, and technology [1–3]. The feature that
has received most attention in the literature is the distribution
of the number of neighbors of a node (degree), which is highly
skewed, with a tail that can be often well approximated by
a power law [4]. This property explains a number of striking
characteristics of complex networks, like their high resilience
to random failures [5] and the very rapid dynamics of diffu-
sion phenomena, like epidemic spreading [6]. The generally
accepted mechanism yielding broad degree distributions is
preferential attachment [7]: in a growing network, new nodes
set links with existing nodes with a probability proportional
to the degree of the latter. In this way the rate of accretion
of neighbors will be higher for nodes with more connections,
and the final degrees will be distributed according to a power
law. This basic mechanism, however, taken alone without
considering additional growing rules, generates networks with
very low values of the clustering coefficient, a relevant feature
of real networks [8]. Furthermore, these networks have no
community structure [9,10] either.

High clustering coefficients imply a high proportion of
triads (triangles) in the network. It has been pointed out
that there is a close relationship between a high density of
triads and the existence of community structure, especially in
social networks, where the density of triads is remarkably high
[11–15]. Indeed, if we stick to the usual concept of com-
munities as subgraphs with an appreciably higher density of
(internal) links than in the whole graph, one would expect
that triads are formed more frequently between nodes of the
same group than between nodes of different groups [16]. This
concept has been actually used to implement well-known
community finding methods [17,18]. Foster et al. [15] have
studied equilibrium graph ensembles obtained by rewiring

links of several real networks so as to preserve their degree
sequences and introduce tunable values of the average clus-
tering coefficient and degree assortativity. They found that the
modularity of the resulting networks is the more pronounced,
the larger the value of the clustering coefficient. Correlation,
however, does not imply causation, and the work does not
provide a dynamic mechanism explaining the emergence of
high clustering and community structure.

Triadic closure [19] is a strong candidate mechanism for the
creation of links in networks, especially social networks. Ac-
quaintances are frequently made via intermediate individuals
who know both us and the new friends. Besides, this process
has the additional advantage of not depending on the features
of the nodes that get attached. With preferential attachment, it
is the node’s degree that determines the probability of linking,
implying that each new node knows this information about
all other nodes, which is not realistic. Instead, triadic closure
induces an effective preferential attachment: getting linked
to a neighbor A of a node corresponds to choosing A with
a probability increasing with the degree kA of that node,
according to a linear or sublinear preferential attachment.
This principle is at the basis of several generative network
models [13,20–30], all yielding graphs with fat-tailed degree
distributions and high clustering coefficients, as desired.
Toivonen et al. have found that community structure emerges
as well [13].

Here we propose a systematic analysis of models based on
triadic closure, and demonstrate that this basic mechanism can
indeed endow the resulting graphs with all basic properties of
real networks, including a significant community structure.
These models can include or not an explicit preferential
attachment, they can even be temporal networks, but as long
as triadic closure is included, the networks are sufficiently
sparse, and the growth is random, a significant community
structure spontaneously emerges in the networks. In fact the
nodes of these networks are not assigned any a priori hidden
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variable that correlates with the community structure of the
networks.

We will first discuss a basic model including triadic closure
but not an explicit preferential attachment mechanism and we
will characterize the community formation and evolution as
a function of the main variables of the linking mechanism,
i.e., the relative importance of closing a triad versus random
attachment and the average degree of the graph. We find
that communities emerge when there is a high propensity for
triadic closure and when the network is sufficiently sparse (low
average degree). We will also consider further models existing
in the literature and including triadic closure, and we show that
results concerning the emergence of the community structure
are qualitatively the same, independently of the presence or
not of the explicit preferential attachment mechanism or of
the temporal dynamics of the links. Finally, we will introduce
a variant of the basic model, in which nodes have a fitness
and a propensity to attract new links depending on their
fitness. Here clusters are less pronounced and, when the fitness
distribution is sufficiently skewed, they disappear altogether,
while different peculiar aggregations of the nodes emerge,
where all nodes of each group are attached to a few superhubs.

II. THE BASIC MODEL INCLUDING TRIADIC CLOSURE

We begin with what is possibly the simplest model of
network growth based on triadic closure. The starting point
is a small connected network of n0 nodes and m0 � m links.
The basic model contains two ingredients:

Growth. At each time a new node is added to the network
with m links.

Proximity bias. The probability of attaching the new node
to node i depends on the order in which the links are added.

The first link of the new node is attached to a random node
i1 of the network. The probability that the new node is attached
to node i1 is then given by

�[0](i1) = 1

n0 + t
. (1)

The second link is attached to a random node of the network
with probability 1 − p, while with probability p it is attached
to a node chosen randomly among the neighbors of node i1.
Therefore in the first case the probability of attaching to a node
i2 �= i1 is given by

�[0](i2) =
(
1 − δi1,i2

)
n0 + t − 1

, (2)

where δi1,i2 indicates the Kronecker delta, while in the second
case the probability �[1](i2) that the new node links to node i2

is given by

�[1](i2) = ai1,i2

ki1

, (3)

where aij is the adjacency matrix of the network and ki1 is the
degree of node i1.

Further edges. For the model with m > 2, further edges are
added according to the “second-link” rule in the previous point.
With probability p, an edge is added to a random neighbor
without a link to the first node i1. With probability 1 − p, a
link is attached to a random node in the network without a link

neighbor of  j 

random 
link  

random 
link 

i 

j j 

i 

p 

(1-p) 

(a) (b)

FIG. 1. (Color online) Basic model. One link associated with a
new node i is attached to a randomly chosen node j , the other links
are attached to neighbors of j with probability p, closing triangles,
or to other randomly chosen nodes with probability 1 − p.

already. A total of m edges are added, 1 initial random edge
and m − 1 involving triadic closure or random attachment.

In Fig. 1 the attachment mechanism of the model is
schematically illustrated.

For simplicity we discuss here the case m = 2. In the basic
model the probability that a node i acquires a new link at time
t is given by

1

t

⎡
⎣(2 − p) + p

∑
j

aij

kj

⎤
⎦ . (4)

In an uncorrelated network, where the probability pij that a
node i is connected to a node j is pij = kikj

〈k〉n (n being the
number of nodes of the network), we might expect that the
proximity bias always induces a linear preferential attachment,
i.e., ∑

j

aij

kj

∝ ki, (5)

but for a correlated network this guess might not be correct.
Therefore, assuming, as supported by the simulation results
(see Fig. 2), that the proximity bias induces a linear or sublinear
preferential attachment, i.e.,

�i = p
∑

j

aij

kj

� ckθ
i , (6)

with θ = θ (p) � 1 and c = c(p), we can write the master
equation [31] for the average number nk(t) of nodes of degree
k at time t . From the simulation results it is found that
the function θ (p) is an increasing function of p for m = 2.
Moreover the exponent θ is also an increasing function of the
number of edges of the new node m. Assuming the scaling in
Eq. (6), the master equation for m = 2 reads

nk(t + 1) = nk(t) + 2 − p + c(k − 1)θ

t
nk−1(t)(1 − δk,2)

− 2 − p + ckθ

t
nk(t) + δk,2. (7)

In the limit of large values of t , we assume that the degree
distribution P (k) can be found as nk/t → P (k). So we find
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FIG. 2. (Color online) Scaling of � = 〈�i〉ki=k , the average of
�i , performed over nodes of degree ki = k, versus the degree k. This
scaling allows us to define the exponents θ = θ (p) defined by Eq. (6).
The figure is obtained by performing 100 realizations of networks of
size n = 100 000.

the solution for P (k),

P (k) = C
1

3 − p + ckθ

k−1∏
j=1

(
1 − 1

3 − p + cjθ

)
, (8)

where C is a normalization factor. This expression for θ < 1
can be approximated in the continuous limit by

P (k) � D
1

3 − p + ckθ
e−(k−1)G(k−1,θ,c), (9)

where D is the normalization constant and G(k,θ,c) is given
by

G(k,θ,c) = −θ 2F1

(
1,

1

θ
,1 + 1

θ
, − ckθ

3 − p

)

+ θ 2F1

(
1,

1

θ
,1 + 1

θ
, − ckθ

2 − p

)

+ ln

(
1 − 1

3 − p + ckθ

)
. (10)

In this case the distribution is broad but not power law. For
θ = 1, instead, the distribution can be approximated in the
continuous limit by a power law, given by

P (k) � D
1

(3 − p + ck)1/c+1
, (11)

where D is a normalization constant. Therefore we find that the
network is scale-free only for θ = 1, i.e., only in the absence of
degree correlations. In order to confirm the result of our theory,
we have extracted from the simulation results the values of the
exponents θ = θ (p) as a function of p. With these values
of the exponents θ = θ (p), which turn out to be all smaller
than 1, we have evaluated the theoretically expected degree
distribution P (k) given by Eq. (9) and we have compared it
with simulations (see Fig. 3), finding optimal agreement.
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FIG. 3. (Color online) Degree distributions of the basic model,
for different values of the parameter p. The continuous lines indicate
the theoretical predictions of Eq. (9), the symbols the distributions
obtained from numerical simulations of the model. The figure is
obtained by performing 100 realizations of networks of size n =
100 000.

We remark that this model has been already studied
in independent papers by Vazquez [22] and Jackson and
Rogers [24], who claimed that the model always yields power
law degree distributions. Our derivation for m = 2 shows that
this is not correct, in general, and in particular it is not correct
when the growing network exhibits degree correlations, in
which case we do not expect that the probability of reaching
a node of degree kA by following a link is proportional to kA.
When the network is correlated we always find θ < 1, i.e., the
effective link probability is sublinear in the degree of the target
node. We note, however, that the duplication model [25–28],
in which every new node is attached to a random node and to
each of its neighbors with probability p, displays at the same
time degree correlations and power-law degree distribution.

We also find that the model spontaneously generates
communities during the evolution of the system. To quantify
how pronounced communities are, we use a measure called
embeddedness, which estimates how strongly nodes are
attached to their own cluster. Embeddedness, which we shall
indicate with ξ , is defined as follows:

ξ = 1

nc

∑
c

kc
in

kc
tot

, (12)

where kc
in and kc

tot are the internal and the total degrees of
community c and the sum runs over all nc communities of
the network. If the community structure is strong, most of the
neighbors of each node in a cluster will be nodes of that cluster,
so kc

in will be close to kc
tot and ξ turns out to be close to 1; if there

is no community structure ξ is close to zero. However, one
could still get values of embeddedness which are not too small,
even in random graphs, which have no modular structure, as
kc

in might still be sizable there. To eliminate such borderline
cases, we introduce an additional variable, the node-based
embeddedness, which we shall indicate with ξn. It is based on
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the idea that for a node to be properly assigned to a cluster,
it must have more neighbors in that cluster than in any of the
others. This leads to the following definition:

ξn = 1

n

∑
i

ki,in − kmax
i,ext

ki

, (13)

where ki,in is the number of neighbors of node i in its cluster,
kmax
i,ext is the maximum number of neighbors of i in any one other

cluster, and ki is the total degree of i. The sum runs over all n

nodes of the graph. For a proper community assignment, the
difference ki,in − kmax

i,ext is expected to be positive, negative if
the node is misclassified. In a random graph, and for subgraphs
of approximately the same size, ξn would be around zero. In a
set of disconnected cliques (a clique being a subgraph where
all nodes are connected to each other), which is the paradigm
of perfect community structure, ξn would be 1.

In Fig. 4(a) we show a heat map for ξn as a function of
the two main variables of the model, the probability p and
the number of edges per node, m, which is half the average
degree. Communities were detected with nonhierarchical
INFOMAP [32] in all cases. Results obtained by applying the
Louvain algorithm [33] (taking the most granular level to
avoid artifacts caused by the resolution limit [34]) yield a
consistent picture. All networks are grown until n = 50 000
nodes. We see that large values of ξn are associated with
the bottom left portion of the diagram, corresponding to high
values of the probability of triadic closure and to low values
of degree. So a high density of triangles ensures the formation
of clusters, provided the network is sufficiently sparse. In
Fig. 4(b) we present an analogous heat map for the average
clustering coefficient C, which is defined [8] as

C = 1

n

∑
i

∑
j,k

aij ajkaki

ki(ki − 1)
, (14)

FIG. 4. (Color online) Heat map of node-based embeddedness
(a) and average clustering coefficient (b) as functions of p and m

for the basic model. Community structure (higher embeddedness and
clustering coefficient) is pronounced in the lower left region when m

is not too large (sparse graphs) and when the probability of triadic
closure p is very high. For each pair of parameter values we report
the average over 50 network realizations. The white area in the upper
right corresponds to systems where a single community, consisting of
the whole network, is found. Here one would get a maximum value
1 for ξn, but it is not meaningful, and hence we discard this portion
of the phase diagram, as well as in Figs. 7 and 8.

(a) (b) (c)

FIG. 5. (Color online) Schematic illustration of the formation
and evolution of communities. Initial inhomogeneities in the link
density make more likely the closure of triads in the denser parts,
which keep growing until they become themselves inhomogeneous,
leading to a split into smaller communities (different colors).

where aij is the element of the adjacency matrix of the graph
and ki is again the degree of node i. Figure 4(b) confirms that
C is largest when p is high and m is low, as expected.

The mechanism of formation and evolution of communities
is schematically illustrated in Fig. 5. When the first denser
clumps of the network are formed [Fig. 5(a)] out of random
fluctuations in the density of triangles, newly added nodes
are more likely to close triads within the protoclusters than
between them [Fig. 5(b)]. As more nodes and links are added,
the protoclusters become larger and larger and their internal
density of links becomes inhomogeneous, so there will be a
selective triadic closure within the denser parts, which yields
a separation into smaller clusters (c). This cycle of growing
and splitting plays repeatedly throughout the evolution of the
system.

In Fig. 6 we show the time evolution of the node-based
embeddedness ξn during the growth of the system, until 500
nodes are added to the network, m = 2. We consider the two
extreme situations p = 0, corresponding to the absence of
triadic closure, and p = 1, where both links close a triangle
every time and there is no additional noise. In the first case
(green line), after a transient, ξn settles to a low value,
with small fluctuations; in the case with pure triadic closure;

FIG. 6. (Color online) Evolution of node-based community em-
beddedness ξn throughout the growth of the network. The curves
refer to the extreme cases of absence of triadic closure (lower curve),
yielding a random graph without communities, and of systematic
triadic closure (upper curve), yielding a graph with pronounced
community structure. For the latter case, we magnify in the inset
the initial portion of the curve, to highlight the sudden drops of ξn,
indicated by the arrows, which correspond to the breakout of clusters
into smaller ones.
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instead, the equilibrium value is much higher, indicating strong
community structure, and fluctuations are modest. In contrast
with the random case, we recognize a characteristic pattern,
with ξn increasing steadily and then suddenly dropping.
The smooth increase of ξn signals that the communities are
growing, the rapid drop that a cluster splits into smaller
pieces: in the inset such breakouts are indicated by arrows.
Embeddedness drops when clusters break up because the
internal degrees ki,in of the nodes of the fragments in Eq. (13)
suddenly decrease, since some of the old internal neighbors
belong to a different community, while the values of kmax

i,ext are
typically unaffected.

III. PREFERENTIAL ATTACHMENT OR TEMPORAL
NETWORK MODELS INCLUDING TRIADIC CLOSURE

The scenario depicted in Sec. II is not limited to the basic
model we have investigated, but it is quite general. To show
this, we consider here two other models based on triadic
closure.

The model by Holme and Kim [20] is a variant of the
Barabási-Albert model of preferential attachment (BA model)
which generates scale-free networks with clustering. The new
node joining the network sets a link with an existing node,
chosen with a probability proportional to the degree of the
latter, just as in the BA model. The other m − 1 links coming
with the new node, however, are attached with a probability
Pt to a random neighbor of the node which received the most
recent preferentially attached link, closing a triangle, and with
a probability 1 − Pt to another node chosen with preferential
attachment. By varying Pt it is possible to tune the level of
clustering in the network, while the degree distribution is the
same as in the BA model, i.e., a power law with exponent −3,
for any value of Pt . In Fig. 7 we show the same heat map as
in Fig. 4 for this model, where we now report the probability
Pt on the y axis. Networks are again grown until n = 50 000
nodes. The picture is very similar to what we observe for the
basic model.

FIG. 7. (Color online) Heat map of node-based embeddedness
(a) and average clustering coefficient (b) as functions of Pt and m for
the model by Holme and Kim [20]. For each pair of parameter values
we report the average over 50 network realizations. The white area
in the upper right corresponds to systems where a single community,
consisting of the whole network, is found, which is not interesting.
The diagrams look qualitatively similar to that of the basic model
(Fig. 4), with highest embeddedness and clustering coefficient in the
lower left region.

FIG. 8. (Color online) Heat map of node-based embeddedness
(a) and average clustering coefficient (b) as functions of the rates λ

and ξM for the model by Marsili et al. [23] (η = 1). For each pair of
parameter values we report the average over 50 network realizations.
The white area in the upper right corresponds to systems where a
single community, consisting of the whole network, is found, which
is not interesting. These diagrams have better communities (higher
embeddedness and clustering coefficient) towards the upper right,
unlike those in Figs. 4 and 7, because of the different meaning and
effect of the parameters. However, there is a strong correspondence
between high clustering coefficient and strong community structure,
as in the other models.

The model by Marsili et al. [23], at variance with most
models of network formation, is not based on a growth process.
The model is a model for temporal networks [35], in which
the links are created and destroyed on a fast time scale while
the number of nodes remains constant. The starting point is a
random graph with n nodes. Then three processes take place,
at different rates:

(1) any existing link vanishes (rate λ);
(2) a new link is created between a pair of nodes, chosen at

random (rate η);
(3) a triangle is formed by joining a node with a random

neighbor of one of his neighbors, chosen at random (rate ξM ).
In our simulations we start from a random network of

n = 50 000 nodes with average degree 10. The three rates
λ, η, and ξM can be reduced to two independent parameters,
since what counts is their relative size. The number of links
deleted at each iteration is proportional to λM , where M is
the number of links of the network, while the numbers of
links created via the two other processes are proportional to
ηn and ξMn, respectively. The number of links M varies in
time but in order to get a nontrivial stationary state, one should
reach an equilibrium situation where the numbers of deleted
and created links match. A variety of scenarios are possible,
depending on the choices of the parameters. For instance, if
ξM is set equal to zero, there are no triads, and what one gets at
stationarity is a random graph with average degree 2η/λ. So,
if η � λ, the graph is fragmented into many small connected
components. In one introduces triadic closure, the clustering
coefficient grows with ξM if the network is fragmented, as
triangles concentrate in the connected components. Moreover
the model can display a veritable first-order phase transition
and in a region of the phase diagram displays two stable
phases: one corresponding to a connected network with large
average clustering coefficient and the other one corresponding
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to a disconnected network. Interestingly, if there is a dense
single component, the clustering coefficient decreases with
ξM . The degree distribution can follow different patterns too:
it is Poissonian in the diluted phase, where the system is
fragmented, and broad in the dense phase, where the system
consists of a single component with an appreciable density
of links. In Fig. 8 we show the analogous heat map as in
Figs. 4 and 7, for the two parameters λ and ξM . The third
parameter η = 1. We consider only configurations where the
giant component covers more than one-half of the nodes of
the network. The diagrams are now different because of the
different role of the parameters, but the picture is consistent
nevertheless. The clustering coefficient C is highest when the
ratio of λ and ξM lies within a narrow range, yielding a sparse
network with a giant component having a high density of
triangles and a corresponding presence of strong communities.

IV. THE BASIC MODEL INCLUDING TRIADIC CLOSURE
AND FITNESS OF THE NODES

In this section we introduce a variant of the basic model,
where the link attractivity depends on some intrinsic fitness of
the nodes. We will assume that the nodes are not all equal and
assign to each node i a fitness ηi representing the ability of a
node to attract new links. We have chosen to parametrize the
fitness with a parameter β > 0 by setting

ηi = e−βεi , (15)

with ε chosen from a distribution g(ε) and β representing a
tuning parameter of the model. We take

g(ε) = (1 + ν)εν, (16)

with ε ∈ (0,1). When β = 0 all the fitness values are the
same; when β is large small differences in the εi cause large
differences in fitness. For simplicity we assume that the fitness
values are quenched variables assigned once for all to the
nodes. As in the basic model without fitness, the starting point
is a small connected network of n0 nodes and m0 � m links.
The model contains two ingredients:

Growth. At time t a new node is added to the network with
m � 2 links.

Proximity and fitness bias. The probability of attaching the
new node to node i1 depends on the order in which links are
added.

The first link of the new node is attached to a random node
i1 of the network with probability proportional to its fitness.
The probability that the new node is attached to node i1 is then
given by

�[0](i1) = ηi1∑
j ηj

. (17)

For m = 2 the second link is attached to a node of the network
chosen according to its fitness, as above, with probability
1 − p, while with probability p it is attached to a node
chosen randomly between the neighbors of the node i1 with
probability proportional to its fitness. Therefore in the first
case the probability of attaching to a node i2 �= i1 is given by

�[0](i2) = ηi2

(
1 − δi1,i2

)
∑

j �=i1
ηj

, (18)
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FIG. 9. (Color online) Degree distribution of the model with
fitness, for three values of the parameter β, which indicates the
heterogeneity of the distribution of the fitness of the nodes. Symbols
stand for the results obtained by building the network via simulations,
continuous lines of our analytical derivations. The figure is obtained
by performing 100 realizations of networks of size n = 100 000 with
ν = 6.

with δi1,i2 indicating the Kronecker delta, while in the second
case the probability �[1](i2) that the new node links to node i2

is given by

�[1](i2) = ηi2ai1,i2∑
j ηjai1,j

, (19)

where aij indicates the matrix element (i,j ) of the adjacency
matrix of the network.

FIG. 10. (Color online) Heat map of node-based embeddedness
(a) and average clustering coefficient (b) as functions of the
probability of triadic closure p and the heterogeneity parameter β

of the fitness distribution of the nodes, for the model with fitness. The
number of new edges per node is m = 2. For each pair of parameter
values we report the average over 50 network realizations. When
β = 0 we recover the basic model, without fitness. We see the highest
values of embeddedness in the lower left, while highest values of the
clustering coefficient are in the lower right. When β increases, we
see a drastic change of structure in contrast to the previous pattern:
communities disappear, whereas the clustering coefficient gets higher.
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FIG. 11. (Color online) As Fig. 10, but for m = 5. The picture is
consistent with the case m = 2, but communities are less pronounced.

Further edges. For m > 2, further edges are added ac-
cording to the “second link” rule in the previous point. With
probability p an edge is added to a neighbor of the first node i1,
not already attached to the new node, according to the fitness
rule. With probability 1 − p, a link is set to any node in the
network, not already attached to the new node, according to
the fitness rule.

For simplicity we shall consider here the case m = 2. The
probability that a node i acquires a new link at time t is given
by

e−βεi

t

⎡
⎣(2 − p) + p

∑
j

aij∑
r ηrajr

⎤
⎦ . (20)

Similarly to the case without fitness, here we will assume,
supported by simulations, that

�i = p
∑

j

ηjaij∑
r ηrajr

� ck
θ(ε)
i , (21)

where, for every value of p, θ = θ (ε) � 1 and c = c(ε).

We can write the master equation for the average number
nk,ε(t) of nodes of degree k and energy ε at time t as

nk,ε(t + 1) = nk,ε(t)

+ e−βε[2 − p + c(ε)(k − 1)θ ]

t
nk−1,ε(t)(1 − δk,2)

− e−βε[2 − p + c(ε)kθ(ε)]

t
nk,ε(t) + δk,2g(ε).

(22)

In the limit of large values of t we assume that nk,ε/t → P ε(k),
and therefore we find that the solution for P ε(k) is given by

P ε(k) = C(ε)
1

1 + e−βε[2 − p + c(ε)kθ(ε)]

×
k−1∏
j=1

{
1 − 1

1 + e−βε[2 − p + c(ε)jθ(ε)]

}
, (23)

where C(ε) is the normalization factor. This expression for
θ (ε) < 1 can be approximated in the continuous limit by

P ε(k) � D(ε)
e−(k−1)G[k−1,ε,θ(ε),c(ε)]

1 + e−βε[2 − p + c(ε)kθ(ε)]
, (24)

where D(ε) is the normalization constant, and G(k,ε,θ,c) is
given by

G(k,ε,θ,c) = −θ 2F1

(
1,

1

θ
,1 + 1

θ
, − ckθ

2 − p + eβε

)

+ θ 2F1

(
1,

1

θ
,1 + 1

θ
, − ckθ

2 − p

)

+ ln

(
1 − 1

1 + eβε

2−p+ckθ

)
. (25)
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FIG. 12. (Color online) Probability distributions of the scaled link density ρ̃ (left) and node-based embeddedness ξn (right) of the
communities of the fitness model, for m = 2 and β = 0,6,20. For each β value we derived 100 network realizations, each with 100 000
nodes. We see that at β = 0, the detected communities satisfy the expectations of good communities, while at β = 20 they do not.
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FIG. 13. (Color online) Picture of a network with 2000 nodes generated by the fitness model, for p = 0.97, m = 2, and β = 0. Since β = 0
fitness does not play a role and we recover the results of the basic model. Colors indicate communities as detected by the nonhierarchical
INFOMAP algorithm [32].

When θ (ε) = 1, instead, we can approximate P ε(k) with a
power law, i.e.,

P ε(k) � D(ε){1 + e−βε[(2 − p + c(ε)k)]}−e−βε/c(ε)−1. (26)

Therefore, the degree distribution P (k) of the entire network
is a convolution of the degree distributions P ε(k) conditioned
on the value of ε, i.e.,

P (k) =
∫

dεP ε(k). (27)

As a result of this expression, we found that the degree
distribution can be a power law also if the network exhibits
degree correlations and θ (ε) < 1 for every value of ε. More-
over we observe that for large values of the parameter β the
distribution becomes broader and broader until a condensation
transition occurs at β = βc with the value of βc depending
on both the parameters ν and p of the model. For β > βc

successive nodes with maximum fitness (minimum value of

ε) become “superhubs,” attracting a finite fraction of all the
links, similarly to what happens in Ref. [36]. In Fig. 9 we see
the degree distribution of the model, obtained via numerical
simulations, for different values of β. The continuous lines,
illustrating the theoretical behavior, are well aligned with the
numerical results, as long as β < βc.

In Fig. 10 we show the heat map of ξn and C for the model,
as a function of the parameters p and β. The number of edges
per node is m = 2, and the networks consist of 50 000 nodes.
Everywhere in this work, we set the parameter ν = 6. For
β = 0 all nodes have identical fitness and the model is reduced
to the basic model. So we recover the previous results, with the
emergence of communities for sufficiently large values of the
probability of triadic closure p, following a large density of tri-
angles in the system. The situation changes dramatically when
β starts to increase, as we witness a progressive weakening of
community structure, while the clustering coefficient keeps
growing, which appears counterintuitive. In the analogous
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FIG. 14. (Color online) Picture of a network with 2000 nodes generated by the fitness model, for p = 0.97, m = 2, and β = 20. The
growing process is the same as in Fig. 13, but the addition of fitness changes the structural organization of the network. As seen in the inset,
node aggregations form around hub nodes with high fitness. Looking at the inset we see that such aggregations do not satisfy the typical
requirements for communities: they are internally treelike, and there are more external edges (blue or light gray) than internal (red or dark gray)
touching its nodes. In particular, internal edges go only from regular nodes to superhubs.

diagrams for m = 5 (Fig. 11), we see that this pattern holds,
although with a weaker overall community structure and lower
values of the clustering coefficient.

When β is sufficiently large, communities disappear, de-
spite the high density of triangles. To check what happens, we
compute the probability distribution of the scaled link density
ρ̃ and the node-based embeddedness ξn of the communities of
the networks obtained from 100 runs of the model, for three
different values of β: 0, 6, and 20. All networks are grown
to 100 000 nodes. The scaled link density ρ̃ of a cluster is
defined [37] as

ρ̃ = 2lc

nc − 1
, (28)

where lc and nc are the number of internal links and of nodes
of cluster c. If the cluster is treelike, ρ̃ ≈ 2, if it is cliquelike
ρ̃ ≈ nc, so it grows linearly with the size of the cluster. The
distributions of ξn and ρ̃ are shown in Fig. 12. They are peaked,
but the peaks undergo a rapid shift when β goes from 0 to 20.
The situation resembles what one usually observes in first-
order phase transitions. The embeddedness ends up peaking
at low values, quite distant from the maximum 1, while the
scaled link density eventually peaks sharply at 2, indicating
that the subgraphs are effectively treelike.

What kind of objects are we looking at? To answer
this question, in Figs. 13 and 14 we display two pictures
of networks obtained by the fitness model, for β = 0 and
β = 20, respectively. The number of nodes is 2000, and the
number of edges per node m = 2. The probability of triadic
closure is p = 0.97, as we want a very favorable scenario
for the emergence of structure. The subgraphs found by our
community detection method (nonhierarchical INFOMAP, but
the Louvain method yields a similar picture) are identified by
the different colors. The insets show an enlarged picture of
the subgraphs, which clarify the apparent puzzle delivered by
the previous diagrams. For the basic model β = 0 (Fig. 13),
the subgraphs are indeed communities, as they are cohesive
objects which are only loosely connected to the rest of the
graph. The situation remains similar for low values of β.
However, for sufficiently high β (Fig. 14), a phenomenon of
link condensation takes place, with a few superhubs attracting
most of the links of the network [36]. Most of the other nodes
are organized in groups which are “shared” between pairs (for
m = 2, or more generally m-ples) of superhubs (see Fig. 14).
The community embeddedness is low because there are always
many links flowing out of the subgraphs, towards superhubs.
Besides, since the superhubs are all linked to each other,
this generates high clustering coefficients for the subgraphs,
as observed in Figs. 10 and 11 . In fact, the clustering
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coefficient for the nonhubs attains the maximum possible value
of 1, as their neighbors are nodes which are all linked to
each other.

V. CONCLUSIONS

Triadic closure is a fundamental mechanism of link for-
mation, especially in social networks. We have shown that
this mechanism alone is capable of generating systems with
all the characteristic properties of complex networks, from
fat-tailed degree distributions to high clustering coefficients
and strong community structure. In particular, we have seen
that communities emerge naturally via triadic closure, which
tend to generate cohesive subgraphs around portions of the
system that happen to have higher density of links, due to
stochastic fluctuations. When clusters become sufficiently
large, their internal structure exhibits in turn link density
inhomogeneities, leading to a progressive differentiation and
eventual separation into smaller clusters (separation in the
sense that the density of links between the parts is appreciably
lower than within them). This occurs both in the basic version
of the network growth model based on triadic closure and in

more complex variants. The strength of community structure
is the higher, the sparser the network and the higher the
probability of triadic closure.

We have also introduced a variant, in which link attractivity
depends on some intrinsic appeal of the nodes, or fitness. Here
we have seen that, when the distribution of fitness is not too
heterogeneous, community structure still emerges, although
it is weaker than in the absence of fitness. By increasing the
heterogeneity of the fitness distribution, instead, we observe
a major change in the structural organization of the network:
communities disappear and are replaced by special subgraphs,
whose nodes are connected only to superhubs of the network,
i.e., nodes attracting most of the links. This structural phase
transition is associated with very high values of the clustering
coefficient.
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