
ar
X

iv
:1

90
8.

08
48

4v
1 

 [
st

at
.M

E
] 

 2
1 

A
ug

 2
01

9

Minimum Description Length Revisited

Peter Grünwald∗

CWI

P.O. Box 94079, 1090 GB Amsterdam The Netherlands

Teemu Roos†

University of Helsinki

P.O. Box 68, FI-000014 Finland

August 23, 2019

Abstract

This is an up-to-date introduction to and overview of the Minimum Description Length
(MDL) Principle, a theory of inductive inference that can be applied to general prob-
lems in statistics, machine learning and pattern recognition. While MDL was originally
based on data compression ideas, this introduction can be read without any knowledge
thereof. It takes into account all major developments since 2007, the last time an exten-
sive overview was written. These include new methods for model selection and averaging
and hypothesis testing, as well as the first completely general definition of MDL estima-
tors. Incorporating these developments, MDL can be seen as a powerful extension of both
penalized likelihood and Bayesian approaches, in which penalization functions and prior
distributions are replaced by more general luckiness functions, average-case methodol-
ogy is replaced by a more robust worst-case approach, and in which methods classically
viewed as highly distinct, such as AIC vs BIC and cross-validation vs Bayes can, to a
large extent, be viewed from a unified perspective.

1 Introduction

The Minimum Description Length (MDL) Principle [Rissanen, 1978, 1989, Barron et al.,
1998, Grünwald, 2007] is a theory of inductive inference that can be applied to general
problems in statistics, machine learning and pattern recognition. Broadly speaking, it
states that the best explanation for a given set of data is provided by the shortest de-
scription of that data. In 2007, one of us published the book The Minimum Description
Length Principle (Grünwald [2007], G07 from now on), giving a detailed account of most
work in the MDL area that had been done until then. During the last 10 years, several
new practical MDL methods have been designed, and there have been exciting theoret-
ical developments as well. It therefore seemed time to present an up-to-date combined
introduction and review.

∗Also affiliated with Leiden University, The Netherlands.
†Also affiliated with HIIT (Helsinki Insitute of Information Technology), Helsinki, Finland.

1

http://arxiv.org/abs/1908.08484v1


Why Read this Overview? While the MDL idea has been shown to be very pow-
erful in theory, and there have been a fair number of successful practical implementations,
massive deployment has been hindered by two issues: first, in order to apply MDL, one
needs to have basic knowledge of both statistics and information theory. To remedy this
situation, here we present, for the first time, the MDL Principle without resorting to
information theory: all the material can be understood without any knowledge of data
compression, which should make it a much easier read for statisticians and machine learn-
ing researchers novel to MDL. A second issue is that many classical MDL procedures are
either computationally highly intensive (for example, MDL variable selection as in Exam-
ple 4 below) and hence less suited for our big data age, or they seem to require somewhat
arbitrary restrictions of parameter spaces (e.g. NML with v ≡ 1 as in Section 2). Yet,
over the last 10 years, there have been exciting developments — some of them very recent
— which mostly resolve these issues. Incorporating these developments, MDL can be seen
as a powerful extension of both penalized likelihood and Bayesian approaches, in which
penalization functions and prior distributions are replaced by more general luckiness func-
tions, average-case methodology is replaced by a more robust worst-case approach, and
in which methods classically viewed as highly distinct, such as AIC vs BIC and cross-
validation vs Bayes can, to some extent, be viewed from a unified perspective; as such,
this paper should also be of interest to researchers working on the foundations of statistics
and machine learning.

History of the Field, Recent Advances and Overview of this Paper MDL
was introduced in 1978 by Jorma Rissanen in his paper Modeling by the Shortest Data
Description. The paper coined the term MDL and introduced and analyzed the two-part
code for parametric models. The two-part code is the simplest instance of a universal
code or, equivalently, universal probability distribution, the cornerstone concept of MDL
theory. MDL theory was greatly extended in the 1980s, when Rissanen published a se-
quence of ground-breaking papers at a remarkable pace, several of which introduced new
types of universal distributions. It came to full blossom in the 1990s, with further major
contributions from, primarily, Jorma Rissanen, Andrew Barron and Bin Yu, culminating
in their overview paper [Barron et al., 1998] and the collection Grünwald et al. [2005]
with additional chapters by other essential contributors such as Kenji Yamanishi. The
book G07 provides a more exhaustive treatment of this early work, including discussion
of important precursors/alternatives to MDL such as MML [Wallace and Boulton, 1968],
‘ideal’, Kolmogorov complexity based MDL [Vitányi and Li, 2000] and Solomonoff’s the-
ory of induction [Sterkenburg, 2018]. Universal distributions are still central to MDL.
We introduce them in a concise yet self-contained way, including substantial underlying
motivation, in Section 2, incorporating the extensions to and new insights into these ba-
sic building blocks that have been gathered over the last 10 years. These include more
general formulations of arguably the most fundamental universal code, the Normalized
Likelihood (NML) Distribution, including faster ways to calculate it as well. We devote
a separate section to new universal codes, with quite pleasant properties for practical
use, most notably the switch distribution (Section 3.1), which can be used for model
selection combining almost the best of AIC and BIC; and the RIPr-universal code (Sec-
tion 3.3) specially geared to hypothesis testing with composite null hypotheses, leading
to several advantages over classical Neyman-Pearson tests. In Section 4 we review re-
cent developments on fast calculation of NML-type distributions for model selection for
graphical models (Bayesian networks and the like), leading to methods which appear to
be more robust in practice than the standard Bayesian ones. Recent extensions of MDL
theory and practical implementations to latent variable and irregular models are treated
in Section 5. Then, in Section 6 we review developments relating to consistency and
convergence properties of MDL methods. First, while originally MDL estimation was for-
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mulated solely in terms of discretized estimators (reflecting the fact that coding always
requires discretization), it has gradually become clear that a much larger class of esti-
mators (including maximum likelihood for ‘simple’ models, and, in some circumstances,
the Lasso — see Example 4) can be viewed from an MDL perspective, and this becomes
clearest if one investigates asymptotic convergence theorems relating to MDL. Second,
it was found that MDL (and Bayes), without modification, can behave sub-optimally
under misspecification, i.e. when all models under consideration are wrong, but some are
useful — see Section 6.3. Third, very recently, it was shown how some of the surprising
phenomena underlying the deep learning revolution in machine learning can be explained
from an MDL-related perspective; we briefly review these developments in Section 6.4.
Finally, we note that G07 presented many explicit open problems, most of which have
been resolved — we mention throughout the text whenever a new development solved an
old open problem, deferring some of the most technical issues to Appendix A.

Notational Preliminaries We shall mainly be concerned with statistical models
(families of probability distributions) of the form M = {pθ : θ ∈ Θ} parameterized by
some set Θ which is usually but not always a subset of Euclidean space; and families
of models {Mγ : γ ∈ Γ}, where each Mγ = {pθ : θ ∈ Θγ} is a statistical model,
used to model data zn := (z1, . . . , zn) with each zi ∈ Z, for some outcome space Z.
Each pθ represents a probability density function (pdf) or probability mass function,
defined on sequences of arbitrary length. With slight abuse of notation we also denote
the corresponding probability distribution by pθ (rather than the more common Pθ). In
the simple case that the data are i.i.d. according to each pθ under consideration, we have
pθ(z

n) =
∏n

i=1 pθ(zi).
We denote the ML (maximum likelihood) estimator given model M = {pθ : θ ∈ Θ} by

θ̂ml, whenever it exists and is unique; the ML estimator relative to model Mγ is denoted
θ̂ml|γ . We shall, purely for simplicity, generally assume its existence and uniqueness,
although nearly all results can be generalized to the case where it does not. We use θ̆ to
denote more general estimators, and θ̂v to denote what we call the MDL estimator with
luckiness function v, see (5).

2 The Fundamental Concept: Universal Modeling

MDL is best explained by starting with one of its prime applications, model comparison —
we will generalize to prediction and estimation later, in Section 2.3 and 2.4. Assume then
that we are given a finite or countably infinite collection of statistical models M1,M2, . . .,
each consisting of a set of probability distributions. The fundamental idea of MDL is to
associate each Mγ with a single distribution p̄γ , often called a universal distribution
relative to Mγ . We call the minus-log-likelihood − log p̄γ(Z

n) the code length of data Zn

under universal code p̄γ . This terminology, and how MDL is related to coding (lossless
compression of data), is briefly reviewed in Section 2.3 and Section 2.4; but a crucial
observation at this point is that the main MDL ideas can be understood abstractly,
without resorting to the code length interpretation. We also equip the model indices
Γ := {1, 2, . . . , γmax} (where we allow |Γ| = γmax = ∞) with a distribution, say π; if
the number of models to be compared is small (e.g. bounded independently of n or at
most a small polynomial in n), we can take π to be uniform distribution — for large
(exponential in n) and infinite Γ, see Section 2.3 and Example 4. We then take, as our
best explanation of the given data zn, the model Mγ minimizing

− log π(γ)− log p̄γ(z
n), (1)

or, equivalently, we maximize π(γ)p̄γ(z
n); when π is uniform this simply amounts to pick-

ing the γ maximizing p̄γ(z
n). (1) will later be generalized to π that are not distributions
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but rather more general ‘luckiness functions’ — see Section 2.3.

1. The Bayesian Universal Distribution The reader may recognize this as
being formally equivalent to the standard Bayesian way of model selection, the Bayes
factor method [Kass and Raftery, 1995] as long as the γ are defined as Bayesian marginal
distributions, i.e. for each γ, we set p̄γ = pbayes

wγ
, where

pbayes
wγ

(zn) :=

∫

pθ(z
n)wγ(θ)dθ, (2)

for some prior probability density wγ on the parameters in Θγ , which has to be supplied
by the user. When wγ is clear from the context, we shall write p̄bayes

γ rather than pbayes
wγ

.
Using Bayesian marginal distributions p̄bayes is indeed one possible way to instantiate
MDL model selection, but it is not the only way: MDL can also be based on other
distributions such as p̄nml = pnml

v (depending on a function v) , p̄preq = ppreq

θ̆
(depending

on an estimator θ̆) and others; in general we add a bar to such distributions if the
‘parameter’ w, v or θ̆ is clear from the context. Before we continue with these other
instantiations of p̄γ we proceed with an example:

Example 1 [Bernoulli] Let M = {pθ : θ ∈ [0, 1]} represent the Bernoulli model,
extended to n outcomes by independence. We then have for each zn ∈ {0, 1}n that
pθ(z

n) = θn1(1 − θ)n0 , where n1 =
∑n

i=1 zi and n0 = n − n1. Most standard prior
distributions one encounters in the literature are beta priors, for which w(θ) ∝ θα(1−θ)β ,
so that pbayes

w (zn) ∝
∫

θn1+α(1 − θ)n0+βdθ. Note that pbayes
w is not itself an element of

the Bernoulli model. One could use pbayes
w to compare the Bernoulli model, via (1),

to, for example, a first order Markov model, with Bayesian marginal likelihoods defined
analogously. We shall say a lot more about the choice of prior below. �

Example 2 [Gauss and general improper priors] A second example is the Gaussian
location family Mgauss with fixed variance (say 1), in which Z = R, and pθ(z

n) ∝
exp(

∑n
i=1(zi − θ)2/2). A standard prior for such a model is the uniform prior, w(θ) = 1,

which is improper (it does not integrate, hence does not define a probability distribution).
Improper priors cannot be directly used in (2), and hence they cannot be directly used
for model comparison as in (1) either. Still, we can use them in an indirect manner, as
long as we are guaranteed that, for all Mγ under consideration, after some initial number
of m observations, the Bayesian posterior wγ(θ | zm) is proper. We can then replace
pbayes
wγ

(zn) in (2) by pbayes
wγ

(zm+1, . . . , zn | zm) :=
∫

pθ(zm+1, . . . , zn)wγ(θ | zm)dθ. We
extend all these conditional universal distributions to distributions on Zn by defining
pbayes
wγ

(z1, . . . , zn) := pbayes
wγ

(zm+1, . . . , zn | zm)p0(z
m) for some distribution p0 on Zm

that is taken to be the same for all models Mγ under consideration. We can now use (1)
again for model selection based on the pbayes

wγ
(z1, . . . , zn), where we note that the choice

of p0 plays no role in the minimization, which is equivalent to minimizing − log π(γ) −
log pbayes

wγ
(zm+1, . . . , zn | zm). �

Now comes the crux of the story, which makes MDL, in the end, quite different from
Bayes: defining the p̄γ as in (2) is just one particular way to define an MDL universal
distribution — but it is by no means the only one. There are several other ways, and
some of them are sometimes preferable to the Bayesian choice. Here we list the most
important ones:

2. NML (Normalized Maximum Likelihood) or Shtarkov [1987] distri-
bution, and MDL estimators This is perhaps the most fundamental universal
distribution, leading also to the definition of an MDL estimator. In its general form,
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the NML distribution and ‘MDL estimators’ depend on a function v : Θ → R+
0 . The

definition is then given by

pnml
v (zn) :=

maxθ∈Θ pθ(z
n)v(θ)

∫

maxθ∈Θ pθ(zn)v(θ)dzn
(if v constant)

=
pθ̂ml(zn)(z

n)
∫

pθ̂ml(zn)(z
n)dzn

, (3)

which is defined whenever the normalizing integral is finite. The logarithm of this integral
is called the model complexity and is thus given by

comp(M; v) := log

∫

max
θ∈Θ

(pθ(z
n)v(θ))dzn

(if v constant)
= log

∫

pθ̂ml(zn)(z
n)dzn. (4)

Here the integral is replaced by a sum for discrete data, and max is replaced by sup if
necessary. This means that any function v : Θ → R+

0 such that (7) is finite is allowed; we
call any such v a luckiness function, a terminology we explain later. Note that v is not
necessarily a probability density — it does not have to be integrable. For any luckiness
function v, we define the MDL estimator based on v as

θ̂v := argmax
θ∈Θ

pθ(z
n)v(θ) = argmin

θ∈Θ
− log pθ − [− log v(θ)] (5)

The v-MDL estimator is a penalized ML estimator, which coincides with the Bayes MAP
estimator based on prior v whenever v is a probability density. Although this has only
become clear gradually over the last 10 years, estimators of form (5) are the prime way
of using MDL for estimation; there is, however, a second, ‘improper’ way for estimating
distributions within MDL though, see Section 2.4. In practice, we will choose v that are
sufficiently smooth so that, if the number of parameters is small relative to n, θ̂v will
usually be almost indistinguishable from the ML estimator θ̂ml. comp indeed measures
something one could call a ‘complexity’ — this is easiest to see if v ≡ 1, for then, if
M contains just a single distribution, we must have comp(M, v) = 0, and the more
distributions we add to M, the larger M gets — this is explored further in Section 2.2.

Now suppose we have a collection of models Mγ indexed by finite Γ and we have
specified luckiness functions vγ on Θγ for each γ ∈ Γ, and we pick a uniform distribution
π on Γ. As can be seen from the above, if we base our model choice on NML, we pick
the model minimizing

− log pθ̂vγ (zn)(z
n)− log vγ(θ̂vγ (z

n)) + comp(Mγ ; vγ), (6)

over γ, where comp(Mγ is given by

comp(Mγ ; vγ) = log

∫

max
θ∈Θγ

(pθ(z
n)vγ(θ))dz

n = log

∫

pθ̂vγ (zn)(z
n)dzn. (7)

Thus, by (6), MDL incorporates a trade-off between goodness-of-fit and model complex-
ity as measured by comp. Although the n-fold integral inside comp looks daunting,
Suzuki and Yamanishi [2018] show that in many cases (e.g. normal, Weibull, Laplace
models) it can be evaluated explicitly with appropriate choice of v.

Originally, the NML distribution was defined by Shtarkov [1987] for the special case
with v ≡ 1, leading to the rightmost definition in (3), and hence the term NML (in the
modern version, perhaps ‘normalized penalized ML’ would be more apt). This is also
the version that Rissanen [1996] advocated as embodying the purest form of the MDL
Principle. However, the integral in (3) is ill-defined for just about every parametric model
defined on unbounded outcome spaces (such as N,R or R+), including the simple normal
location family. Using nonuniform v allows one to deal with such cases in a principled
manner after all, see Section 2.5. For finite outcome spaces though, v ≡ 1 usually ‘works’,
and (3) is well defined, as we illustrate for the Bernoulli model (see Section 4 for more
examples):
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Example 3 [Example 1, Cont.] For the Bernoulli model, θ̂ml(z
n) = n1/n and

comp(M, v) as in (7) with v ≡ 1 can be rewritten as log
∑n

n1=0

(

n
n1

)

(n1/n)
n1(n0/n)

n0 ,
which, as we shall see in Section 2.2, is within a constant of (1/2) logn. As reviewed
in that section, the resulting pnml

v is asymptotically (essentially) indistinguishable from
pbayes
wJ

where the latter is equipped with Jeffreys’ prior, defined as wJ(θ) ∝
√

|I(θ) =

θ−1/2(1− θ)−1/2, I(θ) being the Fisher information at θ. �

3. The two-part (sub-) distribution [Rissanen, 1978]. Here one first discretizes
Θ to some countable subset Θ̈ which one equips with a probability mass function w; in
contrast to the v above, this function must sum to 1. One then considers

pnml
w (zn) :=

maxθ̈∈Θ̈ pθ̈(z
n)w(θ̈)

∫

maxθ̈∈Θ̈ pθ̈(z
n)w(θ̈)dzn

, (8)

which is just a special case of (3). But since

∫

max
θ̈∈Θ̈

pθ̈(z
n)w(θ̈)dzn ≤

∫

∑

θ̈∈Θ̈

pθ̈(z
n)w(θ̈)dzn =

∑

θ∈Θ̈

w(θ)

(∫

pθ(z
n)dzn

)

= 1, (9)

we can approximate pnml
w by the sub-distribution p2-p

w (zn) := maxθ̈∈Θ̈ pθ̈(z
n)w(θ̈). This

‘distribution’ adds or integrates to something smaller than 1. This can be incorporated
into the general story by imagining that p2-p

w puts its remaining mass on a special out-
come, say ‘⋄’, which in reality will never occur (while sub-distributions are thus ‘al-
lowed’, measures that add up to something larger than 1 have no place in MDL). The
two-part distribution p2-p

w is historically the oldest universal distribution. The fact that
it can be considered a special case of NML has only become fully clear very recently
[Grünwald and Mehta, 2019]; in that same paper, an even more general formulation of
(3) is given that has all Bayesian, two-part and NML distributions as special cases. De-
spite its age, the two-part code is still important in practice, as we explain in Section 2.3.

4. The prequential plug-in distribution [Rissanen, 1984, Dawid, 1984]. Here,
one first takes any reasonable estimator θ̆ for the given model M. One then defines

ppreq

θ̆
(zn) :=

n
∏

i=1

pθ̆(zi−1)(zi | z
i−1), (10)

where for i.i.d. models, the probability inside the product simplifies to pθ̆(zi−1)(zi).
For the normal location family, one could simply use the ML estimator:
θ̆(zm) := θ̂ml(z

m) =
∑m

j=1 zj/m. With discrete data though, the ML estimator
should be avoided, since then one of the factors in (10) could easily become 0, making
the product 0, so that the model for which ppreq

θ̆
is defined can never ‘win’ the model

selection contest even if most other factors in the product (10) are close to 1. Instead,
one can use a slightly ‘smoothed’ ML estimate (a natural choice for θ̆ is to take an MDL
estimator for some v as in (5), but this is not required). For example, in the Bernoulli
model, one might take θ̆(zm) = (m1 + (1/2))/(m+ 1), where m1 =

∑m
i=1 zi. With this

particular choice, ppreq

θ̆
turns out to coincide exactly with pbayes

wJ
with Jeffreys’ prior

wJ. Such a precise correspondence between p̄preq and p̄bayes is a special property of the
Bernoulli and multinomial models though; with other models, the two distributions can
usually be made to behave similarly, but not identically. The rationale for using p̄preq is
described in Section 2.4. In Section 3.2.1 we will say a bit more about hybrids between
prequential plug-in and Bayes (the flattened leader distribution) and between prequential
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and NML (sequential NML).

Except for the just mentioned ‘hybrids’, these first four universal distributions
were all brought into MDL theory by Rissanen; they are extensively treated by Grünwald
[2007], who devoted one chapter to each, and to which we refer for details. The following
two are much more recent:

5. The switch distribution p̄switch [Van Erven et al., 2007]. In a particular type
of nested model selection, this universal distribution behaves arguably better than the
other ones. It will be treated in detail in Section 3.1.

6. Universal distributions p̄ripr based on the Reverse Information Pro-
jection (RIPr) These universal distributions [Grünwald et al., 2019] lead to improved
error bounds and optional stopping behaviour in hypothesis testing and allow one to forge
a connection with group invariant Bayes factor methods; see Section 3.3.

2.1 Motivation

We first give a very high-level motivation that avoids direct use of data compression
arguments. For readers interested in data compression, Section 2.3 does make a high-
level connection, but for more extensive material we refer to G07. We do, in Section 2.4,
give a more detailed motivation in predictive terms, and, in Section 6, we shall review
mathematical results indicating that MDL methods are typically consistent and enjoy
fast rates of convergence, providing an additional motivation in itself.

Consider then models Mγ , where for simplicity we assume discrete data, and let θ̂ml|γ

be the maximum likelihood estimator within Mγ . Define ‘the fit of the model to the
data’ in the standard way, as Fγ(z

n) := pθ̂ml|γ(zn)(z
n), the likelihood assigned to the

data by the best-fitting distribution within model. Now if we enlarge the model Mγ , i.e.
by adding several distributions to it, Fγ(z

n) can only increase; and if we make Mγ big
enough such that for each zn, it contains a distribution p with p(zn) = 1, we can even
have Fγ(z

n) = 1 on all data. If we simply picked the γ maximizing Fγ(z
n) we would

be prone to severe overfitting. For example, if models are nested, then, except for very
special data, we would automatically pick the largest one.

As we have seen, a central MDL idea is to instead associate each model Mγ with
a single corresponding distribution p̄γ , i.e. we set Fγ(z

n) := p̄γ(z
n). Then the total

probability mass on all potential outcomes zn cannot be larger than 1, which makes it
impossible to assign overly high fit Fγ(z

n) to overly many data sequences: no matter what
distribution p̄γ we chose, we must now have

∑

zn Fγ(z
n) = 1, so a good fit on some zn

necessarily implies a worse fit on others, and we will not select a model simply because it
accidentally contained some distribution that fitted our data very well – thus, measuring
fit by a distribution p̄γ instead of Fγ inherently prevents overfitting. This argument to
measure fit relative to a model with a single p̄ is similar to Bayesian Occam’s Razor
arguments [Rasmussen and Ghahramani, 2000] used to motivate the Bayes factor; the
crucial difference is that we do not restrict ourselves to p̄γ of the form (2); inspecting
the “Bayesian” Occam argument, there is, indeed nothing in there which forces us to use
distributions of Bayesian form.

The next step is thus to decide which p̄ are best associated with a given M. To this
end, we define the fitness ratio for data zn as

FR(p̄, zn) :=
p̄(zn)

maxθ∈Θ pθ(zn)v(θ)
, (11)
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where v : Θ → R+
0 is a nonnegative function. To get a feeling for (11), it is best to first

focus on the case with v(θ) ≡ 1; it then reduces to

FR(p̄, zn) =
p̄(zn)

pθ̂ml(zn)(z
n)

. (12)

We next postulate that a good choice for p̄ relative to the given model is one in which
FR(p̄, n) tends to be as large as possible. The rationale is that, overfitting having already
been taken care of by picking some p̄ that is a probability measure (integrates to 1),
it makes sense to take a p̄ whose fit to data (as measured in terms of likelihood) is
proportional to the fit to data of the best-fitting distribution in M: whenever some
distribution in the model M fits the data zn well, the likelihood p̄(zn) should be high as
well. One way to make ‘FR tends to be large’ precise is by requiring it to be as large as
possible in the worst-case, i.e., we want to pick the p̄ achieving

max
p̄

min
zn∈Zn

FR(p̄, zn), (13)

where the maximum is over all probability distributions over samples of length n. It turns
out that this maximin problem has a solution if and only if the complexity (4) is finite;
and if it is fine, the unique solution is given by setting p̄ = p̄nml, with p̄nml given by (3).
The NML distribution thus has a special status as the most robust choice of universal p̄ —
even though p̄ is itself a probability distribution, it meaningfully assesses fit in the worst-
case over all possible distributions, and its interpretation does not require one to assume
that the model M is ‘true’ in any sense. The nicest sub-case is the one with v(θ) ≡ 1,
since then all distributions within the model M are treated on exactly the same footing;
no data or distribution is intrinsically preferred over any other one. Unfortunately, for
most popular models with infinite Z, when taking v(θ) ≡ 1, (13) usually has no solution
since the integral

∫

pθ̂ml(zn)(z
n)dzn diverges for such models, making the complexity (4)

infinite. For all sufficiently ‘regular’ models (curved exponential families, see below), this
problem can invariably be solved by restricting Θ to a bounded subset of its own interior
- one can show that the complexity (4 is finite with v ≡ 1, and thus (13) has a solution
given by (3) if θ̂ml is restricted to a suitably bounded set. Yet, restricting Θ to a bounded
subset of itself is not satisfactory, since it is unclear where exactly to put the boundaries.
It is more natural to introduce a nonuniform v, which can invariably be chosen so that
the complexity (4) is finite and thus (13) has a solution — more on choosing v at the end
of Section 2.4.

A few remarks concerning this high-level motivation of MDL procedures are in order:

1. It is clear that, by requiring FR to add to 1, we will be less prone to overfitting
than by setting it simply to pθ̂ml(zn)(z

n); whether the requirement to add (at most)
to 1, making FR essentially a probability density function, is a clever way to avoid
overfitting (leading to good results in practice) is not clear yet. For this, we need
additional arguments, which we very briefly review. First, the sum-to-1 requirement
is the only choice for which the procedure can be interpreted as selecting the model
which minimizes code length of the data (the original interpretation of MDL); sec-
ond, it is the only choice which has a predictive interpretation, which we review
in Section 2.4 below; third, it is the only choice under which time-tested Bayesian
methods fit into the picture, and fourth, with this choice we get desirable frequentist
statistical properties such as consistency and convergence rates, see Section 6.

2. The motivation above only applies to the NML universal distributions. How about
the other five types? Originally, in the pure MDL approach mainly due to Rissanen,
the NML was viewed as the optimal choice per se; other p̄ should be used only for
pragmatic reasons, such as them being easier to calculate. One would then design
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them so as to be as close as possible to the NML distributions in terms of the fitness
ratio they achieve. In the following subsection we show that all six of them satisfy
the same MDL/BIC asymptotics, meaning that their fitness ratio is never smaller
than a constant factor of the NML one, either again in the worst-case over all zn or
in some weaker expectation sense. Thus, they are all ‘kind of o.k.’ in a rather weak
sense, and in practice one would simply revert to the one that is closest to NML
and still usable in practice; with the Bayesian p̄bayes, as we shall see, one can even
get arbitrarily close to NML as n gets larger. This classical story notwithstanding,
it has become more and more apparent that in practice one sometimes wants or
needs properties of model selection methods that are not guaranteed by NML –
such as near-optimal predictions of future data or strong frequentist Type-I error
guarantees. This translates itself into universal codes p̄switch and p̄ripr that, for some
special sequences achieve much higher fitness ratio than p̄nml, while for all sequences
having only very slightly smaller fitness ratio. This more recent and pragmatic way
of MDL is briefly reviewed in Section 3.1 and 3.3. This raises the question how we
should define a universal distribution: what choices for p̄γ are still ‘universal’ (and
define an MDL method) and what choices are not? Informally, every distribution
p̄γ that for no zn ∈ Zn has p̄γ(z

n) ≪ p̄nml
γ (zn) is ‘universal’ relative to Mγ . For

parametric models such as exponential families, the ‘≪’ is partially formalized by
requiring that at the very least, they should satisfy (14) below (G07 is much more
precise on this).

3. Third, we have not yet said how one should choose the ‘luckiness function’ v — and
one needs to make a choice to apply MDL in practice. The interpretation of v is
closely tied to the predictive interpretation of MDL, and hence we postpone this
issue to the end of Section 2.4.

4. Fourth, the motivation so far is incomplete — we still need to explain why and how
to incorporate the distribution π on model index γ. This is done in Section 2.3
below.

2.2 Asymptotic Expansions

Now let p̄ be defined relative to a single parametric model M. It turns out that all
universal codes we mentioned have in common that, for ‘sufficiently regular’ k-dimensional
parametric models, the log-likelihood for given data zn satisfies the following celebrated
asymptotics, often called the MDL or BIC expansion: for all ‘sufficiently regular’ data
sequences z1, z2, . . ., there exists a constant C ∈ R independent of n such that for all n:

− log p̄(zn) ≤ − log pθ̂ml(zn)(z
n) +

k

2
logn+ C. (14)

For p̄nml and p̄bayes, this holds for any choice of luckiness function v and prior w that is
continuous and strictly positive on the parameter space Θ. For p̄2-p

w , this holds for clever
choices of the discretization Θ̈ and the probability mass function w; for ppreq

θ̆
, this holds

in a weaker expectation sense (see Section 3.2.1), as long as θ̆ is a suitably smoothed
version of the ML estimator. Essentially, ‘sufficiently regular’ parametric models are all
exponential families (such as Bernoulli, multinomial, normal, gamma, beta, Poisson,...)
and curved exponential families; corresponding results also hold for regression with (gen-
eralized) linear models. ‘Sufficiently regular data’ are all sequences for which there is an
INECCSI subset Θ0 of the parameter space Θ such that, for all large n, the ML esti-
mator of the sequence lies within Θ0. Here INECCSI stands fo a set whose Interior is
Non-Empty and whose C losure is a Compact Subset of the Interior of Θ. Essentially,
this is any bounded subset of the same dimensionality as Θ that does not touch the
boundaries of Θ itself; in the Bernoulli example, it would be any set of the form [ǫ, 1− ǫ]
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for ǫ > 0. For all universal distributions considered except p̄preq, as long as appropriate
priors/estimators/luckiness functions are used, (14) will hold uniformly for all sequences
in any INECSSI subset Θ0, but the constant C may grow larger if we replace Θ0 by a
strictly larger INECCSI subset Θ′

0 with Θ0 ( Θ′
0 ( Θ. (for p̄preq see Section 3.2.1). For

the first four universal distributions, the inequality is actually equality up to a constant —
(14) also holds with ≤ replaced by ≥, for a different constant. For the switch distribution
p̄switch however, the left-hand side will be significantly smaller for a small but important
subset of possible data sequences. Finally, since (14) thus also holds with p̄ = p̄nml and ≤
replaced by ≥, exponentiating (14), we see that, if one restricts the minimum in (13) to all
such ‘sufficiently regular’ zn, FR(p̄u(zn)) is guaranteed to be within a constant (indepen-
dent of n) factor of the optimal FR(p̄nml, zn), for u ∈ {bayes, 2-p, preq, switch,ripr}.

The NML/comp Expansion and the Jeffreys (Fisher Information) In-
tegral For the case that the model M = {pθ : θ ∈ Θ} is a k-dimensional exponential
family and p̄ is the NML or Bayes distribution, we can be significantly more precise and
evaluate the constant C in (14) up to o(1): we get, under some weak additional regularity
conditions on M and v:

comp(M; v) ≡ − log pnml
v (zn)− [− log pθ̂v(zn) − log v(θ̂v(z

n))]

= − log pnml
v (zn)− [− log pθ̂ml(zn) − log v(θ̂ml(z

n))] + o(1)

=
k

2
log

n

2π
+

∫

Θ

v(θ) ·
√

|I(θ)|dθ + o(1), (15)

where k is the dimension of the model, |I(θ)| is the determinant of the k × k Fisher
information matrix at parameter θ, the integral is over the parameter space Θ, and the
remainder term o(1) vanishes as the sample size grows unbounded. This was first shown
(essentially) by Rissanen [1996], for the case that Θ is restricted to an INECCSI subset
of the full parameter space (so that p̄nml with v ≡ 1 is defined), and v ≡ 1. For this
uniform v case, Myung et al. [2000] gave a differential geometric interpretation of the
Fisher information term, relating it to an intrinsic ‘volume’ of the parameter space. The
general result for nonuniform v, and without INECCSI restrictions, was very recently
shown in a breakthrough paper by Suzuki and Yamanishi [2018], solving Open Problem
Nr. 6 from G07.

Analogously to p̄nml (in fact much easier mathematically), we can expand p̄bayes using
a classical Laplace approximation; under the same conditions as before, with now the
additional restriction that there exists an arbitrary INECCSI subset Θ0 of Θ such that
for all large n, the data have ML estimator within Θ0, we find that

−log pbayes
w (zn) = − log pθ̂ml(zn)(z

n)+
k

2
log

n

2π
+
1

2
log |I(θ̂ml(z

n))|−logw(θ̂ml(z
n))+o(1).

(16)
From (15) and (16) we see that, if the generalized Jeffreys integral

∫

v(θ) ·
√

|I(θ)|dθ is
finite (see Appendix A), then there is a special choice of prior w, the generalized Jef-
freys prior , with w(θ) = v(θ)

√

|I(θ)|/
∫

v(θ)
√

|I(θ)|dθ, under which − log p̄nml(zn) and
− log p̄bayes(zn) do not just coincide up to O(1), but become asymptotically indistin-
guishable. If v ≡ 1, this w coincides with the well-known Jeffreys’ prior wJ popular in
Bayesian inference; the special case of this prior for the Bernoulli model was encountered
in Example 1. Thus, the Bayesian universal distribution with the (generalized) Jeffreys’
prior can be a very good alternative of pnml

v .

2.3 Unifying Model Selection and Estimation

Suppose we are given a countable collection of models {Mγ : γ ∈ Γ}. Recall that the
basic idea above was to associate each individual model Mγ with a single distribution
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p̄γ . It seems reasonable to do the same at the level of ‘meta-parameters’ γ: we set
M := {p̄γ : γ ∈ Γ} and in complete analogy to (3), we define the meta- universal
distribution

pnml
π (zn) :=

maxγ∈Γ p̄γ(z
n)π(γ)

∫

zn maxγ∈Γ p̄γ(z
n)π(γ)dzn

(17)

for some nonnegative weight function π on Γ. It then makes sense to postulate that the
best sub-model Mγ for the given data zn is given by the γ achieving the maximum in
(17). Note that for determining this maximum, the denominator in (17) plays no role.

Let us assume that all p̄γ have already been defined. Then we can use any π such
that the overarching pnml

π in (17) exists. We can now formulate a general MDL Principle
for model selection: we start with a (potentially huge) set of candidate distributions
Mfull. We next carve up Mfull into interesting sub-models Mγ with γ ∈ Γ, so that
⋃

γ∈ΓMγ = Mfull. We then associate each Mγ with a universal distribution p̄γ , and we
equip M as defined above with luckiness function π (note that Mfull, a countable union
of (usually) uncountable sets, consists of all distributions under consideration, while M
is a countable set). We then base the selection of a sub-model Mγ on (17). What we
earlier called the ‘general MDL Principle’ underneath (1) was the special case in which
∑

π(γ) = 1, i.e. π is a probability mass function. Via (9) we see that for any such
probability mass function π, the denominator in (17) is well-defined, hence π is a valid
luckiness function.

Now consider the special case in which every p̄γ is chosen to be an NML distribution
pnml
vγ for some luckiness functions vγ . We take some function π′ : Γ → R+

0 (which we
will relate to the π above later on) and we set, for θ ∈ Θγ , vfull(γ, θ) := π′(γ)vγ(θ).
We can use pnml

vfull for parameter estimation on the joint parameters (γ, θ) just as we did

earlier for parametric models, by using the MDL estimator (̂γ, θγ)vfull picking the (γ, θγ)
minimizing, over γ ∈ Γ, θγ ∈ Θγ ,

− log pθγ (z
n)− log vfull(γ, θγ) + comp(Mfull, vfull) =

− log pθγ (z
n)− log vγ(θ)− log π′(γ) + comp(Mfull, vfull) (18)

where again comp(Mfull, vfull) plays no role in the minimization. This MDL estimator
really combines model selection (estimation of γ) and parametric estimation (estimation
of θγ). If we now define π(γ) := π′(γ)/ exp(comp(Mγ , vγ)), we find that pnml

π defined
relative to model M as in (17) is equal to pnml

vfull defined relative to the full union of models
Mfull, and the γ achieving the maximum in (17) coincides with the γ minimizing (18).
This indicates that model selection and estimation is really the same thing with MDL: if
we are given a single parametric model Mγ with luckiness vγ , we pick the θ minimizing
the first two terms in (18) for fixed γ; if we are interested in both θ and γ, we minimize
over all terms; and if we are only interested in γ, we pick the γ achieving the maximum
in (17), which, by construction, will give us the same γ as the joint minimization over
(18).

Two-Part vs. One-Part Codes: the Role of Data Compression In the
oldest [1978] version of MDL, only two-part codes on countable sets were used: the
minimum over θ ∈ Θγ was taken over a discretized grid Θ̈γ and vγ was a probability mass
function over this grid; then for all γ, comp(Mγ , vγ) ≤ 0 and comp(M, v) ≤ 0 (see (9))
and they were both approximated by 0. From the Kraft inequality [Cover and Thomas,
1991] we see where the name ‘2-part code’ comes from: this inequality says that for every
probability mass function π on a countable set A, there exists a lossless code such that for
all a ∈ A, the number of bits needed to encode a, is given by − log π(a). Thus the resulting
method can be interpreted as picking the (θ̈, γ̈) minimizing the two-stage code length of
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the data, where first the parameters (θ, γ) are encoded using − log π(γ) − log vγ(θ) bits,
and then zn is encoded ‘with the help of γ’, using − log pθγ (z

n) bits (in fact, the encoding
of (γ, θ) itself has two sub-stages here so we really have a two-part code where the first
part itself has two parts as well).

The discretization involved in using a probability mass function/code for continuous-
valued θ makes things (unnecessarily, as was gradually discovered over the last 30 years)
very complicated in general. Also, if one combines choice of θ with choice of γ, the
approximation of comp(Mγ , vγ) as 0 introduces some suboptimalities. Thus, one would
like to code the data in a way that avoids these two issues. It turns out that this can be
achieved by replacing 2-part by 1-part codes for the data, namely, to use codes with length
− log pnml

v (zn): assuming for simplicity that data are discrete, the same Kraft inequality
implies that there must also be a code, directly defined on zn, which achieves code length
for each zn given by − log p̄nml(zn). Thus, even though for general luckiness functions
v this code length cannot be decomposed into two sub-code lengths, it remains a valid
code length and the name MDL for the resulting procedure remains, we feel, justified. In
the past, it was sometimes thought by some MDL fans that 2-part codes on countable
sets would somehow lead to inherently better estimates θ̂w than estimators θ̂v for general
luckiness functions as in (5). However, after 30 years it turned out there is nothing either
conceptually or mathematically that indicates the need for 2-part codes and countable
sets: for any luckiness function v, the resulting procedure has a code length interpretation,
and (Grünwald and Mehta [2019] show that all consistency and convergence results that
hold for 2-part estimators also hold for general MDL estimators (Section 6.1) — thus
invalidating the conjecture in Open Problem 13 of G07 that postulated a special status
for luckiness functions v that are probability mass functions on countable sets. For the
luckiness function π on the discrete structure Γ however, it is quite reasonable to choose
a probability mass function: no probability mass is wasted (since the denominator in
(17) plays no role in choosing γ), and designing π by thinking about the code lengths
− log π(γ) comes very naturally, as the following example illustrates: .

Example 4 [Variable Selection - L1 vs L0-penalties] Suppose that each data point
Zi = (Xi, Yi) where Yi denotes the variable to be predicted and Xi = (Xi1, . . . , Xim) ∈
Rm is a vector of covariates or ‘features’ that may or may not help for predicting Yi. We
consider a linear model M = {pβ : β ∈ Rm}, decomposed into sub-models Mγ expressing

Yi =

m
∑

j=1

γjβjXij + ǫi,

where ǫ1, ǫ2, . . . represents 0-mean i.i.d. N(0, σ2) normally distributed noise and γ =
(γ1, . . . , γm) ∈ {0, 1}m is a binary vector indicating which variables are helpful for pre-
dicting the Zi. Thus, if γ has k 0-components than Mγ is effectively an m−k dimensional
model. Our task is to learn, from the data, the vector γ∗ indicating which variables are
truly relevant, and/or such that predictions of new Y given new X based on Mγ∗ are as
good as possible.

In light of the above, a straightforward way to use MDL here is to pick the γ minimizing

− log pnml
vγ (yn | xn)− log π(γ), (19)

where we refer to G07, Figure 14.2 for an explanation why we can condition on xn here.
vγ in (19) is an appropriately chosen luckiness function and π is really a probability mass
function, such that Lπ(γ) := − log π(γ) can be interpreted as the number of bits needed
to encode γ using a particular code. In terms of coding, a natural choice for such a code
would be to first encode the number of nonzero components kγ in γ using a uniform code
(that assigns equal code length to all possibilities). Since 0 ≤ kγ ≤ m, there are m + 1
possibilities, so this takes log2(m + 1) bits. In a second stage, one encodes the location
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of these components. There are
(

m
kγ

)

possibilities here, so this takes log2
(

m
kγ

)

bits using a
uniform code. All in all, one needs

log(m+ 1) + log

(

m

kγ

)

(20)

‘nits’ (bits re-expressed in terms of natural logarithm log) to encode γ. Then (20) can be
written as − log π(γ), with π(γ) = 1/((m + 1) ·

(

m
kγ

)

), which, as predicted by the Kraft
inequality, sums to 1 over γ ∈ {0, 1}m.

As to the left part of the code length (19), if the variance σ2 is known, a natural
luckiness function vγ to use is a m− kγ-dimensional Gaussian with mean 0 and variance
σ2Σ for some (usually diagonal) covariance matrix Σγ . This gives (see Chapter 12 of
G07)

− log pnml
vγ (yn | xn) =

1

2σ2

n
∑

i=1



yi −

m
∑

j=1

β̂ml|jγjxi





2

+
n

2
log 2πσ2 +

1

2
log

∣

∣X
T
X+Σ−1

∣

∣+
1

2
log |Σ| , (21)

where X = (X1, . . . , Xn) and | · | stands for determinant. We thus end up finding the
γ minimizing the sum of (21) and (20). If, as here, the noise is normal with fixed
variance, then for this choice of luckiness function, pnml

vγ (yn | xn) actually coincides with
pbayes
wγ

(yn | xn) for a particular prior wγ , thus one has a Bayesian interpretation as well
(Bartlett et al. [2013] show that such a precise correspondence between NML and Bayes
only holds in quite special cases, see Appendix A). If the variance σ2 is unknown, one
can treat it as a nuisance parameter and equip it with the improper Haar prior, leading
to a modification of the formula above; see Example 6. Even if the noise is not known
to be normally distributed, one can often still use the above method — pretending the
noise to be normally distributed and accepting that one is misspecified — by varying the
learning rate, as briefly explored in Section 6.3.

Note that the code/prior we used here induces sparsity: if there exists a γ with
mostly 0 components that already fits the data quite well, we will tend to select it, since,
for k ≪ n, log

(

n
k

)

increases approximately linearly in k. That does not mean that we
necessarily believe that the ‘truth’ is sparse — it just expresses that we hope that we can
already make reasonably good predictions with a small number of features.

An alternative, and very popular, approach to this problem is the celebrated Lasso
[Hastie et al., 2001], in which we consider only the full model M = M(1,1,...,1) and we
pick the β ∈ Rm minimizing

1

2σ2

n
∑

i=1



zi −
m
∑

j=1

βjγjxi





2

+
λ

2σ2

m
∑

j=1

|βj | (22)

for some regularization parameter λ > 0; it is known this will tend to select β with many
zero-components, thus also inducing sparsity, and it can be implemented computationally
much more efficiently than the two-part approach sketched above, effectively replacing
L0 by L1-penalties. With our ‘modern’ view of MDL, this can be thought of as a form of
MDL too, where we simply impose the luckiness function v(β) = exp(−(λ/σ2)

∑m
j=1 |βj |)

and use the estimator θ̂v given by (5). The luckiness function v depends on λ; the optimal
choice of λ is then once again related to the optimal learning rate; see Section 6.3. Finally,
we note that there exists a third MDL approach one can use here: one starts out with an
NML approach similar to (19) but then performs a continuous relaxation of the resulting
optimization problem; the resulting ‘relaxed’ NML criterion is then once again tractable
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and similar to an L1-optimization problem such as (22); this approach has been described
by Miyaguchi and Yamanishi [2018] who extend the idea to group lasso and other settings.
�

2.4 Log-Loss Prediction and Universal Distributions

Now consider the simple case again with a finite set of models {Mγ : γ ∈ Γ} where Γ is
small compared to n and we use the uniform prior π, picking the γ maximizing p̄γ . It
was the fundamental insight of Rissanen [1984] and Dawid [1984] that such model choice
by maximizing p̄γ(z

n) for a single distribution p̄γ can be motivated in a different way as
well — in essence, it selects the model with the best predictive performance on unseen
data. This approach shows that MDL is quite similar in spirit to cross-validation, the
main difference with leave-one-out cross validation being that the cross in cross-validation
is replaced by a forward and that the loss function used to measure prediction error is
restricted to be the logarithmic score, also commonly known as log loss (which, however,
is often used in cross-validation as well).

Formally, the log loss of predicting a single outcome z ∈ Z with a distribution p
is defined as − log p(z): the larger the probability density, the smaller the loss. If one
predicts a sequence of n outcomes zn = (z1, . . . , zn) with n predictions p1, p2, . . . , pn, then
the cumulative log loss is defined as the sum of the individual losses:

∑n
i=1 − log pi(zi).

Now, if we adopt a probabilistic world view and represent our beliefs about zn by
a probability distribution p̄, then the obvious way to make sequential predictions is to
set pi := p̄(Zi = · | zi−1), so that − log pi(zi) = − log p̄(zi | zi−1). For arbitrary
probability distributions, we have, by the formula for conditional probability: for all
zn ∈ Zn, p(zn) =

∏n
i=1 p(zi | z

i−1). Taking logarithms gives:

n
∑

i=1

− log p̄(zi | z
i−1) = − log p̄(zn). (23)

In words, for every possible sequence, the cumulative log loss obtained by sequentially
predicting zi based on the previously observed data zi−1 is equal to the minus log-likelihood.

Conversely, if we are given an arbitrary sequential prediction strategy s̄ which, when
input a sequence zi−1 of arbitrary length i−1 outputs a prediction for the next outcome zi
in the form of a probability distribution s̄zi−1 on Z, we can define p̄(zi | z

i−1) := s̄zi−1(zi)
and then further define p̄(zn) :=

∏n
i=1 p̄(zi | z

i−1). A simple calculation shows that we
must have

∫

zn∈Zn p̄(zn)dzn = 1, so we have constructed a probability distribution p̄
which once again satisfies (23). The fundamental insight here is that, when the log loss is
used, every probability distribution defines a sequential prediction strategy and — perhaps
more surprisingly — vice versa, every sequential prediction strategy defines a probability
distribution, such that on all sequences of outcomes, the minus log likelihood is equal to
the cumulative loss.

Example 5 Consider again the Bernoulli model M = {pθ : θ ∈ [0, 1]}. Each element
pθ ∈ M defines a prediction strategy which, no matter what happened in the past,
predicts that the probability that the next outcome Zi = 1 is equal to θ. It incurs
cumulative loss, on sequence zn with n1 ones and n0 = n−n1 zeros, given by n1(− log θ)+
n0(− log(1 − θ)). The Bayesian universal distribution pbayes

wJ
with Jeffreys’ prior that we

considered in Example 1 satisfies, as was already mentioned, pbayes
wJ

(Zm+1 = 1 | zm) =
(m1 + (1/2))/(m + 1), so it ‘learns’ the probability of 1 based on past data and does
not treat the data as i.i.d. any more. The asymptotic expansion (2) then shows that its
cumulative loss is of order

min
θ∈[0,1]

− log pθ̂ml(zn)(z
n)+

1

2
logn+O(1) = −n1 log(n1/n)−n0(log(n0/n)+

1

2
logn+O(1).
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We may now ask: given a parametric model M, what distribution (i.e. prediction strat-
egy) in M leads to the best predictions of data z1, . . . , zn? For simplicity we will assume
that data are i.i.d. according to all pθ ∈ M. We have to distinguish between the best
sequential prediction strategy with hindsight and the best prediction strategy that can be
formulated before actually seeing the data. The former is given by the pθ ∈ M achieving

min
θ∈Θ

n
∑

i=1

− log pθ(zi | z
i−1) = min

θ∈Θ
− log pθ(z

n) = − log pθ̂ml(zn)(z
n),

i.e. the best predictions with hindsight are given by the ML distribution θ̂ml(z
n). How-

ever, θ̂ml(z
n) is only knowable after seeing all the data zn, whereas in reality, we have,

at each time i, to make a prediction p̄(Zi | z
i−1) relying only on the previously seen data

zi−1. We might thus aim for a prediction strategy (distribution) p̄ which will tend to
have a small regret (additional prediction error)

REG(p̄, zn) =

n
∑

i=1

− log p̄(zi | z
i−1)−

[

min
θ∈Θ

n
∑

i=1

− log pθ(zi | z
i−1)

]

= − log p̄(zn) + log pθ̂ml(zn)(z
n). (24)

But what does ‘tend’ mean here? One strict way to implement the idea is to require (24)
to be small in the worst case — one looks for the distribution p̄ achieving

min
p̄

max
zn∈Zn

REG(p̄, zn), (25)

where the minimum is over all probability distributions on Zn. But comparing (24) and
(25) with (13), using that − log is strictly decreasing, we see that the p̄ achieving (25) is
just the NML distribution with v ≡ 1, which was already our ‘favourite’ distribution to
use in MDL model comparison any way! And, just like before, if (25) has no solution,
we may add a − log v luckiness term to (24) so as to regularize the problem, and then
the optimal prediction strategy will be given by pnml

v . We also see that with v ≡ 1,
comp(M, v) is equal to the minimax regret (25); and with nonuniform v, comp(M) will
become equal to the minimax luckiness regret, i.e. (24) with a − log v term added.

We now also see where the idea to use the prequential plug-in distribution p̄preq

instead of p̄nml comes from: if calculating pnml
v is too difficult, or if the horizon n (which

is needed to calculate pnml
v ) is unknown, we might simply pick any estimator θ̆ which

we think is ‘reasonable’ and replace our prediction pnml
v (Zi | z

i−1) by pθ̆(zi−1)(Zi) — if
the estimator was chosen cleverly, we can expect the resulting cumulative regret to be
small. Reconsidering (14), we see that all the universal distributions, viewed as prediction
strategies, with the right choice of luckiness functions, priors and/or estimates, can be
made to achieve a logarithmic (in n) worst-case regret — since the cumulative log-loss
achieved by the best predictor in hindsight usually grows linearly in n, a logarithmic regret
is quite satisfactory. Returning to our Bernoulli example, we see that the cumulative log
loss obtained by θ̂ml, the best with hindsight, is equal to nH(n1/n) = nH(θ̂ml(z

n)), where
H(θ) is the binary entropy, H(θ) := −θ log θ − (1− θ) log(1− θ). Note that, in line with
the above discussion, nH(θ̂ml) is linear in n unless θ̂ml tends to 0 or 1, but the regret of
p̄bayes with Jeffreys’ prior is logarithmic in n.

We thus get a novel interpretation of MDL: it associates each model Mγ with a
sequential prediction strategy p̄γ that is designed to achieve small regret compared to the
hindsight-optimal prediction strategy within Mγ ; it then picks the model for which the
corresponding prediction strategy achieves the smallest cumulative loss on the data.
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Related Work Dawid (see [Dawid, 1984] and many subsequent works) suggests to
use this prequential model choice also with respect to loss functions other than the loga-
rithmic loss; minimax optimal cumulative prediction strategies without making stochastic
assumptions about the data, with log loss but (mainly) with other loss functions, are one
of the main topics in machine learning theory; see for example Cesa-Bianchi and Lugosi
[2006]; but there they are generally not used for model comparison or selection.

Why the logarithmic score? Why does it make sense to minimize cumulative log
loss? Outside of the MDL world, the log loss is often used for two reasons: first, it is
(essentially) the only local proper scoring rule [Dawid, 2007]. Second, it has an interpreta-
tion in terms of money: for every sequential prediction strategy, there is a corresponding
‘sequential investment’ strategy such that, the smaller the cumulative log-loss, the larger
the monetary gains made with this strategy (‘Kelly Gambling’, [Cover and Thomas, 1991,
Grünwald et al., 2019]).

Within the MDL field however, the use of the log loss comes from the Kraft inequality,
which directly relates it to lossless data compression. As we already saw before Example 4,
for any sequential prediction strategy, i.e. every distribution p on sequences of length n,
there is a lossless code C such that, for all sequences of length n,

− log2 p(z
n) = nr. of bits needed to code the data zn using code C.

Conversely, for any code C, there is a corresponding distribution p such that the above
holds (see Chapter 3 of G07 for a very extensive explanation). Thus, the original MDL
idea to ‘take the model that compresses the data most’ is first made more formal by
replacing it by ‘associate each model with a code that compresses well whenever some
distribution in this model compresses well’, and this turns out to be equivalent to ‘asso-
ciate each model Mγ with a distribution p̄γ that assigns high likelihood whenever some
distribution in the model assigns high likelihood’.

MDL Prediction and ‘Improper’ Estimation As is clear from the prequential
interpretation of MDL given above, once a universal distribution p̄p has been fixed, one can
use it to predict Zi given zi−1 by p̄(Zi | z

i−1). At least for i.i.d. data, we can estimate the
underlying ‘true’ distribution p∗ based on such predictions directly, by simply interpreting
p̄(Zi | zi−1) as an estimate of p∗! This is different from the previous form of MDL
estimation described in Section 2.3, which was based on MDL (penalized ML) estimators
θ̂v. Note that this standard MDL estimator is ‘in-model’ or proper (to use machine
learning terminology [Shalev-Shwartz and Ben-David, 2014]), whereas p̄(Zi | z

i−1) is out-
model or improper : in general, there may be no p ∈ M such that p̄(· | zi−1) = p. For
example, with Bayes universal distributions, pbayes

w
Zi|z

i−1
will be a mixture of distributions

in M rather than a single element; see G07 for more discussion.

2.5 The Luckiness Function

The choice of a luckiness function is somewhat akin to the choice of a prior in Bayesian
statistics, yet — as explained at length in Chapter 17 of G07 — there are very important
differences, both technically (luckiness functions are not always integrable) and philo-
sophically. Basically, a luckiness function just determines for what type of data one will
be “lucky” (v(θ̂v(zn)) large) and get small cumulative regret based on small samples (and
presumably, good model selection results as well), and for what data one will be less
lucky and get good results only when the data set grows much larger — v may thus be
chosen for purely pragmatic reasons. For example, as in Example 4 (see the italicized
text there), if one assigns a large value π(γ) to some model Mγ within large a collection
of models {Mγ : γ ∈ Γ} where γ is sparse, one may do this because one hopes that this
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sub-model will already lead to reasonable predictions of future data, even though one feels
that, at the same time, when more data becomes available, a model Mγ′ with a much
larger number of nonzero parameters may at some point almost certainly become better
(Example 4). Such an interpretation is not possible with a Bayesian prior π, where a large
value of π(γ) indicates a strong belief that Mγ is true, or at least, that predictions based
on acting as if it will be true will be optimal — a Bayesian with high prior on γ consid-
ers Mγ likely rather than just useful – a distinction worked out in detail by Grünwald
[2018]. Nevertheless, just like a Bayesian prior, the luckiness function has to be chosen
by the user/statistician, and often contains a subjective element. Still, in contrast to
Bayesian priors, since we invariably take a worst-case log-loss stance in MDL, there often
is a uniquely preferable choice of luckiness function v for parametric models M. First, if
comp(M, v) < ∞ with uniform v and no clear prior knowledge or preference is available,
then uniform v is usually preferable over other v, since it achieves the worst-case optimal
prediction performance. Second, if comp(Mγ , v) = ∞ with uniform v for some γ ∈ Γ
we can often still set the first few, say m, outcomes aside and pick a luckiness function
vγ(θ) := pθ(z1, . . . , zm) for θ ∈ Θγ . The corresponding estimator (for fixed γ) θ̂vγ based
on data zm+1, . . . , zn as given by (5) will then be equal to the ML estimator based on the
full data, θ̂vγ (z

n
m+1) = θ̂ml|γ(z

n), and by choosing m large enough, one can often get that
comp(Mγ , vγ) is finite after all for all γ ∈ Γ and one may then compare models by pick-
ing the γ maximizing pnml

vγ (zm+1, . . . , zn). Thus, the luckiness function is now determined
by the first few ‘start-up’ data points, and one uses NML based on the remaining data
points with an estimator that coincides with the ML estimator based on the full data.
G07 argues why this data-driven luckiness function is the best default choice available;
note that it is analogous to our use of improper Bayes priors as described in Example 2.

3 Novel Universal Distributions

3.1 The Switch Distribution and the AIC-BIC Dilemma

The AIC-BIC dilemma (see for example [Yang, 2005] and the many citations therein) is
a classic conundrum in the area of statistical model selection: if one compares a finite
number of models, the two standard benchmark methods, with (different) asymptotic
justifications, are AIC and BIC. Suppose one first selects a model using AIC or BIC.
One then predicts a future data point based on, e.g., maximum likelihood estimation,
or by adopting the Bayes/MDL predictive distribution, within the chosen model. If one
compares a finite number of models, then AIC tends to select the one which is optimal for
prediction (compared to BIC, the predictions converge faster, by a factor of order logn, to
the optimal ones). On the other hand, BIC is consistent: with probability 1, it selects the
smallest model containing the true distribution, for all large n; the probability that AIC
selects an overly large model does not go to 0 for large n. Both the predictive optimality
and the consistency propertiy are desirable, but, like AIC and BIC, common methods all
fail on one of the two. For example, MDL, with each of the four classical distributions,
and Bayes factor model selection will behave like BIC for large n and be consistent but
prediction-suboptimal; for any fixed k, leave-k-out and k-fold cross-validation will tend
to behave like AIC and have the reverse behaviour. Yang [2005] shows that, in general,
this dilemma cannot be solved: every consistent method has to be slightly prediction
suboptimal in some situations; he also shows that prediction by model averaging cannot
solve this dilemma either.

Nevertheless, as first shown by Van Erven et al. [2007] (who thereby solved Open
Problem 8 and 17 of G17), one can design universal distributions that ‘almost’ get the
best of both worlds: basing MDL model selection on them using (1) one gets a criterion
which is strongly consistent while at the same time losing only an exceedingly small
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order log logn factor in terms of prediction quality compared to the AIC-type methods.
Although it can be applied to arbitrarily large model collections, the idea of this so-called
switch distribution p̄switch is best explained by considering the simplest case with just
two nested models M0 ⊂ M1: one starts with two standard universal distributions (say,
Bayesian or luckiness-NML) p̄0 for M0 and p̄1 for M1. For every i > 0, p̄1 defines a
conditional distribution p̄1(zi, . . . , zn | zi−1). One now picks a ‘prior’ distribution π on
the integers (typically one that decreases polynomially, e.g. π(i) = 1/(i(i+ 1))), and one
defines a new universal distribution for M1 by:

p̄switch(zn) :=
n
∑

i=1

π(i)p̄1(zi, . . . , zn | zi−1) · p̄0(z
i).

This distribution is best understood from the prequential interpretation of MDL (Sec-
tion 2.4). It will satisfy

n
∑

i=1

− log p̄switch(zi | z
i−1) = − log p̄switch(zn) = − log

n
∑

i=1

π(i)p̄1(zi, . . . , zn | zi−1) · p̄0(z
i)

≤ min
i∈{1,...,n}

− logπ(i)p̄1(zi, . . . , zn | zi−1) · p̄0(z
i)

≤ min
i

− log p̄1(zi, . . . , zn | zi−1)− log p̄0(z
i) + 2 logn.

In words, the cumulative log loss achieved by p̄switch is ‘almost’ (within an order logn
term) as small as that of the strategy that first predicts by p̄0 and then switches from p̄0
to p̄1 at the switching point i that is optimal with hindsight. By clever choice of the prior
π, one can get the extra term down to order log logn. In cases where the data are actually
sampled from a distribution in M1 that is ‘close’ (defined suitably) to M0, the predictions
based on p̄switch will, with high probability, be substantially better than those based on
p̄1 — a dramatic example (that makes very clear why this happens) is given in the first
figure of Van Erven et al. [2012]. If the data come from a distribution that is ‘far’ from
M0, they will tend to be worse than those based on p̄1 by a negligible amount. Working
out the math shows that associating M1 with p̄switch and M0 with p̄0 indeed gives a
strongly consistent model selection criterion that is almost (to within an O(log logn)
factor) prediction optimal, thus almost solving the AIC-BIC dilemma. Van Erven et al.
[2012] describes in great detail why the standard NML or Bayesian universal model p̄1
does not lead to the optimal cumulative log-loss if data come from a distribution close
to, but not in, M0.

In case the number of models on the list is larger than two or even infinite, one has to
associate each model with a separate switch distribution. The technique for doing so is
described by Van Erven et al. [2012] who also give an efficient implementation and prove
consistency and prediction optimality of the switch distribution in a weak, cumulative
sense for both finite and infinite numbers of models. Van der Pas and Grünwald [2018]
mathematically show the ‘almost’ prediction optimality for a finite number of models.

3.2 Hybrids Between NML, Bayes and Prequential Plug-In

A Problem for NML: unknown horizon Bayesian universal distributions with
fixed priors have the property that the probability assigned to any initial sequence zn

′

,
where n′ < n, is independent of the total length of the sequence. For other universal
models, such as NML, this is not always the case. Take for example the Bernoulli model
extended to sequences by independence: For sequence length n = 2, the normalizing
term in the NML equals 1 + (1/2)

2
+ (1/2)

2
+ 1 = 5/2. For sequence length n = 3, the

normalizing term equals 2+6× (1/3) (2/3)
2
= 78/27. For n = 2, the NML probability of
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the sequence 00 is 1/(5/2) = 0.4. However, for sequence length is n = 3, the probability
of the initial sequence 00 is obtained as the sum of the probabilities of the sequences
000 and 001, which becomes 1/(78/27) + (4/27)/(78/27) ≈ 0.397 < 0.4. As shown by
Bartlett et al. [2013] (see also Barron et al. [2014]), there do exist cases in which NML
is, like Bayes, horizon-independent, but these are very rare — see Appendix A.

The above discrepancy between the initial sequence probabilities for different sequence
lengths may be a problem in situations where we need to obtain predictions without
necessarily knowing the total length of the sequence, or the horizon. Another related issue
is that even if the total sequence length was given, it can be computationally expensive
to obtain marginal and conditional probabilities along the initial sequences. One possible
solution would be to restrict to Bayesian universal distributions. However, while these
solve the horizon issue, they are (a) still often computationally inefficient, and (b) they
lack NML-style worst-case regret interpretations. This has spurned research into universal
codes that can be calculated without knowing the horizon in advance and that behave
better as regards to (a) or (b), which we now review.

3.2.1 Prequential Plug-In and the (k/2) log n-formula

The most straightforward way to deal with issue (a) is to use the prequential p̄preq

which, by construction, is horizon-independent. However, for the prequential p̄preq (10)
the BIC asymptotics (14) only hold in expectation if the data are sampled from one
of the distributions in the model M. This makes the result much weaker than for the
other five universal distributions considered, for which the asymptotics hold for every
individual sequence in some large set, i.e. without making any stochastic assumptions at
all. One might thus wonder what happens for general data. Extending earlier work by
Takeuchi and Barron [1998], Kotłowski et al. [2010] show that, if data are sampled from
a distribution p, and pθ̃ is the distribution in M that is closest in KL divergence to p,
then (14) holds in expectation, with a correction term involving the variances of both
distributions; for 1-dimensional models, we get

varp(Z)

varpθ̃
(Z)

·
1

2
logn, (26)

a formula that can be extended to multidimensional models and individual sequence
settings. Solving Open Problem 2 from G07, Grünwald and Kotłowski [2010] show that,
essentially, there exists no ‘in-model’ estimator that can achieve the standard asymptotics
in general; a correction such as (26) is always needed, whatever estimator one tries. Here
an ‘in-model’ estimator (or ‘proper’ estimator, see end of Section 2.4) is an estimator that
always outputs a distribution inside the model M; the ML and Bayes MAP estimators
are in-model, but the Bayes predictive distribution is not in-model, since it is a mixture
distribution over all distributions in M.

Solving Open Problem nr. 3 from G07, Kotłowski et al. [2010] also provide a new
universal distribution, in which for any given estimator θ̆, ppreq

θ̆
(Zi+1 | zi) = pθ̆(zi)(Zi+1)

is turned into a slightly ‘flattened’ version ppreq∗

θ̆
(Zi+1 | zi), which is not in M any more

(it is not an in-model estimator), but it does achieve the standard (k/2) logn asymptotics
without correction. For example, in case of the normal location family with fixed variance
σ2, it coincides with a Bayesian predictive distribution based on a standard conjugate
prior, which in this case is a normal with mean µ̆ (the Bayes MAP estimate) but variance
σ2 + O(1/n). More generally, ppreq∗

θ̆
(Zi+1 | zi) becomes a hybrid between the estimator

θ̆ and a Bayes predictive distribution, but it has the advantage over the latter that it can
be calculated without performing an integral over the parameter space. It thus provides
an alternative to the NML distribution that is horizon-free and that is often faster to
compute than p̄bayes.
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Roos and Rissanen [2008] and Rissanen et al. [2010] developed other prequential,
horizon-free universal codes that are non-Bayesian, yet remain more closely to NML
in spirit than ppreq∗

θ̆
. They work out the details for discrete models including

Bernoulli as well as linear regression models. For Bernoulli models, the resulting
universal code coincides with the so called one-step lookahead mode proposed earlier
by Takimoto and Warmuth [2000]. For linear regression models the asymptotic con-
sistency of the resulting model selection criterion was studied by Määttä et al. [2016]
and Määttä and Roos [2016]. Relatedly, Watanabe and Roos [2015] show that no horizon-
independent strategy can be asymptotically minimax in the multinomial case and pro-
pose simple Bayesian universal models with a horizon-dependent Dirichlet prior that
achieve asymptotic minimaxity and simplify earlier proposals. Among the proposed pri-
ors is Dir(α, . . . , α) with α = 1/2 − ln 2/2 lnn which converges to the Jeffreys’ prior
Dir(1/2, . . . , 1/2) but has a mild dependency on the horizon n.

3.3 Hypothesis Testing: Universal Distributions based on the

Reverse Information Projection

Suppose we compare just two models, M0 and M1, as explanations for data zn, a situ-
ation similar to classical null hypothesis testing, the standard method for evaluating new
treatments in the medical sciences and scientific hypotheses in most applied sciences such
as psychology, biology and the like: we can think of M0 and M1 as two hypotheses,
where, usually, M0 represents the status quo (‘treatment not effective’, ‘coin unbiased’).
In case1 M0 = {P0} represents a simple (singleton) hypothesis, there is a strong addi-
tional motivation for using MDL as a hypothesis testing method, and in particular, for
quantifying the evidence against M0 in terms of

D(zn) = − log p̄1(z
n)− [− log p0(z

n)],

the codelength or cumulative-log-loss difference (see Section 2.4) between encoding (or
sequentially predicting) the data with p0 and with p̄1. This additional motivation is
given by the no hyper-compression inequality (G07), a mathematical result stating that,
no matter how p̄1 is defined, as long as it is a probability distribution, we have for all
K > 0, and 0 ≤ α ≤ 1

P0(D(Zn) ≤ −K) ≤ 2−K , i.e. P0

(

p0(Z
n)

p̄1(Z
n)

≤ α

)

≤ α. (27)

This expresses, in terms of sequential log-loss prediction (compression), that, if P0 is
true, then the probability that one can predict data better, by K or more loss units, by
predictions based on p̄1 rather than p0, is exponentially small in K — and this holds
independently of the sequence length n. In terms of more classical quantities, it states
that, no matter how we chose p̄1, if P0 holds true then the likelihood ratio is a p-value.
In fact it is a conservative p-value, giving usually somewhat less evidence against M0

than a standard p-value, for which the rightmost inequality in (27) is an equality. The
inequality (27) goes in the right direction to retain the cornerstone of classical Neyman-
Pearson testing: if one sets significance level α before seeing the data and one chooses
M1 whenever D(Zn) ≤ − logα, i.e. p0(Z

n)/p̄1(Z
n) ≤ α, then the probability, under

the null P0, of making a false decision is bounded by α. But the fact that the rightmost
inequality in (27) is usually strict has pleasant practical repercussions: as explored by
[Grünwald et al., 2019], the Type-I error guarantees are retained under optional contin-
uation. This is the (common) practice to decide, on the basis of an initial sample zn,

1In this subsection we view, for notational convenience, the elements of Mj as probability distributions Pθ

with densities or mass functions pθ.
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whether or not to gather new data and do a second test. One may for example decide to
gather new data if the result based on zn was hopeful yet not conclusive. This is highly
problematic for standard, strict p-value based hypothesis testing, but with MDL testing
with a simple M0, one can simply multiply the likelihood ratios of the two (or more)
tests performed, or equivalently, add the code length differences for each test performed.
The resulting code length difference/likelihood ratio will still lead to valid Type-I error
bounds [Grünwald et al., 2019].

But: all this holds only for simple M0. Yet the tests most used in practice, such
as the t-test and contingency table tests, all involve composite M0 = {Pθ : θ ∈ Θ0}.
For composite M0, the no-hypercompression inequality (27) usually only holds for some
P0 ∈ M0, but for Type I error guarantees and the like we would want to have it hold for
all Pθ with θ ∈ Θ0. That is, we would like to employ universal distributions p̄1 and p̄0
such that we have:

For all θ ∈ Θ0 : Pθ (D(Zn) ≤ −K) ≤ 2−K , i.e. Pθ

(

p̄0(Z
n)

p̄1(Z
n)

≤ α

)

≤ α. (28)

In general, this will not hold for standard choices (NML, Bayes, prequential plug-in...) of
p̄1 and p̄0. However, Grünwald et al. [2019] show that, for any given (arbitrary) p̄1, one
can, under very mild conditions, construct a p̄0 such that (28) holds, thereby solving Open
Problems 9 and 19 of G07. This p̄0 is the Reverse Information Projection (RIPr) [Li,
1999, Li and Barron, 2000] of p̄1 onto Pbayes(M0), where Pbayes is the set of densities p̄0
for zn that can be written as Bayes marginal distributions p̄bayes

0 (zn) =
∫

pθ(z
n)w0(θ)dθ

for some prior w0 on Θ0 — for every prior w0, Pbayes(M0) contains a separate distri-
bution on Zn. The RIPr is defined as the density achieving minp̄

0
∈P0

D(p̄1‖p0), where
D(·‖·) is the Kullback-Leibler divergence. Thus, one constructs a p̄0 with the desired
no-hypercompression property, and at the same time, it will minimize KL divergence to
p̄1, which implies that if data were sampled from p̄1, it would yield optimal log-loss pre-
dictions. This, in turn, implies that the p̄0 constructed this way will satisfy the standard
asymptotics (14) as long as the p̄1 on which it is based does. Based on the likelihood
ratio between p̄1 and its RIPr p̄0, one is also allowed to do optional continuation while re-
taining Type I Error guarantees. Thus, even if one is an adherent of classical, frequentist
testing theory, there are strong reasons for MDL-style testing based on the RIPr universal
distribution. Grünwald et al. [2019] further extend the reasoning to give guidelines how
p̄1 can be chosen to get further good frequentist properties.

Example 6 [Right Haar Priors and the Bayesian t-test] In a series of papers
(highlights include [Berger et al., 1998, Dass and Berger, 2003]), Berger and collaborators
established Bayes factor testing methods for composite M0 = {Pθ : θ ∈ Θ0} where the
only free parameters in Θ0 are ‘nuisance’ parameters that are shared by Θ1 and are
governed by a group structure. A prime example is the unknown variance in the t-test.
Berger uses a special type of improper prior, the so-called right-Haar prior, which can
be defined for every such type of nuisance parameter. While Bayes factors usually don’t
combine well with improper priors, the Bayes factors for group invariance parameters
equipped with the right-Haar prior behave remarkably well. Grünwald et al. [2019] show
that, even though the right Haar priors are usually improper, they can also be understood
from a purely MDL perspective: if p̄bayes

1 and p̄bayes
0 are equipped with the right Haar

prior on the nuisance parameters, and the prior on the additional parameters in p̄bayes
1

satisfies some additional requirements, then both p̄bayes
1 and p̄bayes

0 can be interpreted as
sequential prediction strategies, and the log of the Bayes factor can be interpreted as the
code length/cumulative log loss difference. Moreover, p̄bayes

0 is (essentially) the RIPr for
p̄bayes
1 and the no-hypercompression inequality (28) that is so desirable from a frequentist

perspective holds uniformly for all θ0 ∈ Θ0.
Let us consider the one-sample Bayesian t-test as an example. Here M0 = {p0,σ : σ >
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0} is the set of all normal distributions with mean 0; the variance σ2 is a free parameter.
M1 = {pµ,σ : µ ∈ R, σ > 0} is the set of all normal distributions with as free parameters
µ and σ. The question of interest is to establish whether µ = 0 or not; σ is an unknown
‘nuisance’ parameter — it determines the scale of the data but is not itself of intrinsic
interest. In the Bayesian t-test one equips both M0 and M1 with the improper right-
Haar prior, w(σ) = 1/σ. To complete the definition of p̄bayes

1 , M1 is equipped with a
conditional prior density (given σ) on the effect size δ := µ/σ. This second density has
to be symmetric around 0 and proper (this is what we called the ‘additional requirement
on the prior on Θ1’, instantiated to the case where the nuisance parameter is a variance).
One now proceeds by testing using the Bayes factor p̄bayes

0 /p̄bayes
1 . In this special case, the

procedure was already suggested by Jeffreys [Ly et al., 2016], and the right-Haar prior
coincides with Jeffreys’ prior on the variance. Berger et al. extend the method to general
group invariant parameter vectors such as the joint mean and variance in the two-sample
t-test, testing a Weibull against a log-normal and many other scenarios. �

4 Graphical Models

Graphical models are a framework for representing multivariate probabilistic models in
a way that encompasses a wide range of well-known model families, such as Markov
chains, Markov random fields, and Bayesian networks; for a comprehensive overview,
see Koller and Friedman [2009]. A key property of a graphical model is parsimony, which
can mean, for instance, a low-order Markov chain or more generally a sparse dependency
graph that encodes conditional independence assumptions. Choosing the right level of
parsimony in graphical models is an ideal problem for MDL model selection.

In Bayesian network model selection the prevailing paradigm is, unsurprisingly, the
Bayesian one. Especially the work of Geiger and Heckerman [1995], Heckerman et al.
[1995] has been extremely influential. The main workhorse of this approach is the so
called Bayesian Dirichlet (BD) family of scores which is applicable in the discrete case
where the variables being modelled are categorical. Given a data sample, such scores
assign a goodness value to each model structure. Exhaustive search for the highest scoring
structure is possible when the problem instance (characterized by the number of random
variables) is of limited size, but heuristic search techniques such as variants of local search
or “hill-climbing” can be used for larger problem.

Different forms of the BD score imply different Dirichlet priors (different hyper-
parameters) for the local multinomial distributions that comprise the joint distribution.
For example, in the commonly used BDeu score, the priors are determined by a single
hyper-parameter, α. For a variable Xi with r distinct values and parents Pai that can take
q possible combinations of values (configurations), the BDeu prior is Dir(α/rq, . . . , α/rq).
One of the main motivations for adopting this prior is that it leads likelihood equivalence,
i.e., it assigns equal scores to all network structures that encode the same conditional
independence assumptions. In light of the fact that Bayesian model selection embodies a
particular form/variation of MDL, these method fit, at least to some extent, in the MDL
framework as well. However, there also exist more ‘pure’, non-Bayesian MDL methods for
model selection in Bayesian networks; we mention Lam and Bacchus [1994] and Bouckaert
[2005] as early representative examples. These early methods are almost invariably based
on the two-part coding framework. More recently, several studies have proposed new
model selection criteria that exploit the NML distribution. One approach is a continuous
relaxation of NML-type complexities proposed by Miyaguchi et al. [2017] in which the
model selection problem takes on a tractable Lasso-type L1-minimization form (see also
Example 4). In other approaches, NML (or usually, approximations (but not relaxations)
thereof) are used directly for encoding parts of the model; we now describe these latter
approaches in a bit more detail.
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4.1 Factorized NML and variants

Silander et al. [2010] propose the factorized NML (fNML) score for Bayesian network
model selection which was designed to be decomposable meaning that it can be expressed
as a sum that includes a term for each variable in the network. This property facilitates
efficient search among the super-exponential number of possible model structures; see,
e.g., Heckerman et al. [1995]. The fNML score factors the joint likelihood not only in
terms of the variables but also in terms of distinct configurations of the parent configura-
tions. Each factor in the product is given by a multinomial NML probability, for which
a linear-time algorithm by Kontkanen and Myllymäki [2007] can be used.

A similar idea where a Bayesian network model selection criterion is constructed
by piecing together multiple NML models under the multinomial model was proposed
recently by Silander et al. [2018]. In the proposed quotient NML (qNML) score, the local
scores corresponding to each variable in the network are defined as log-quotients of the
form

log
NMLfull(Xi ∪ Pai)

NMLfull(Pai)
,

where NMLfull refers to an NML distribution defined by using a fully connected net-
work to model the variable Xi and its parents Pai in the numerator and the same thing
for the parent set Pai in the denominator. Technically, this amounts to collapsing the
configurations of the variables into distinct values of a single categorical variable. Even
though the resulting categorical variable may have a huge number of possible values, the
linear time algorithm [Kontkanen and Myllymäki, 2007] or efficient approximations (see
the next subsection) can be used to implement the computations. A notable property of
the qNML score is that, unlike the fNML score, it is likelihood equivalent (see above).

Eggeling et al. [2014] apply similar ideas to a different model class, namely parsimo-
nious Markov chains. There too, the likelihood is decomposed into factors depending on
the configurations of other variables, and each part in the partitioning is modelled inde-
pendently using the multinomial NML formula. The authors demonstrate that the fNML-
style criterion they propose leads to parsimonious models with good predictive accuracy
for a wide range of different scenarios, whereas the corresponding Bayesian scores are sen-
sitive to the choice of the prior hyperparameters, which is important in the application
where parsimonious Markov chains are used to model DNA binding sites [Eggeling et al.,
2015].

In all these papers, both simulated and real-world data experiments suggest that the
MDL-based criteria are quite robust with respect to the parameters in the underlying
data source. In particular, the commonly used Bayesian methods (such as the BDeu
criterion) that are being used as benchmarks are much more sensitive and fail when the
assumed prior is a poor match to the data-generating model, whereas the MDL methods
are invariably very close to the Bayesian methods with the prior adapted to fit the data.
This poses interesting questions concerning the proper choice of priors in the Bayesian
paradigm.

In fact, the prevalence of the Bayesian paradigm and the commonly used BD scores is
challenged by two recent observations: First, Silander et al. [2010] show that the Dirichlet
prior with hyperparameters (1/2, . . . , 1/2), which is the invariant Jeffreys prior for the
multinomial model, but not likelihood equivalent when used in the BD score, is very
close to the fNML model and consequently, enjoys better robustness properties than the
BDeu score which is the likelihood equivalent BD score variant. Second, Suzuki [2016]
shows that the BDeu criterion is irregular, i.e., prone to extreme overfitting behavior
in situations where a deterministic relationship between one variable and a set of other
variables holds in the data sample. The MDL scores discussed above are regular in this
respect and their robustness properties seem to be better than those of the BD scores,
see [Silander et al., 2018].
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4.2 Asymptotic expansions for graphical models

Asymptotic results concerning MDL-based criteria in graphical models are interesting for
several reasons. For one, they lead to efficient scores that can be evaluated for thousands
of different model structures. Secondly, asymptotic expansions can lead to insights about
the relative complexity of different model structures.

Various asymptotic forms exist for the point-wise and the expected regret depending
on the model class in question. For convenience we repeat the classical expansion of
the NML (as well as the Bayesian marginal likelihood with Jeffreys’ prior) regret/model
complexity that applies for regular model classes M = {pθ : θ ∈ Θ} for which comp(M, v)
is finite with uniform v (see Section 2.2 above):

comp(M, v) =
k

2
log

n

2π
+

∫

Θ

√

|I(θ)|dθ + o(1), (29)

where k is the dimension of the model, |I(θ)| is the determinant of the Fisher information
matrix at parameter θ, the integral is over the parameter space Θ, and the remainder
term o(1) vanishes as the sample size tends to infinity.

For discrete data scenarios, by far the most interesting case is the multinomial model
(extension of the Bernoulli distribution to an i.i.d. sequence of r-valued categorical
random variables) since it is a building block of a number of MDL-criteria such as
fNML and qNML (see above). There are many asymptotic expansions for the NML
regret under the multinomial model. Probably the most useful is the one proposed
by Szpankowski and Weinberger [2012]:

n

(

logα+ (α+ 2) logCα −
1

Cα

)

−
1

2
log

(

Cα +
2

α

)

, (30)

where n is the sample size, α = r
n , and Cα = 1

2 + 1
2

√

1 + 4
α . This simple formula is

remarkably accurate over a wide range of finite values of n and r (see Silander et al.
[2018]). Note that the leading term is proportional to n (rather than logn as usual)
because the formula is derived for the regime r = Θ(n) where the alphabet size grows
proportionally to the sample size. If r grows slower than n or not at all, the leading
term tends to the classical form (29), where the leading term is k

2 logn. In practice, the
approximation (30) is applicable for a wide range of r/n ratios.

Roos [2008] and Zou and Roos [2017] studied the third term in the expansion of
Eq. (29), namely the Fisher information integral, under Markov chains and Bayesian
networks using Monte Carlo sampling techniques. This approach reveals systematic dif-
ferences between the complexities of models even if they have the same number of pa-
rameters.

5 Latent Variable and Irregular Models

Although thus far we have highlighted exponential family and regression applications,
NML and other universal distributions can of course be used for model selection and
estimation in complete generality — and many practical applications are in fact based
on highly irregular models. Often, ‘classical’ 2-part distributions (based on discretized
models) are used, since NML distributions often pose computational difficulties. However,
Yamanishi and collaborators have managed to come up with tractacble approximations
of NML-type distributions for some of the most important irregular (i.e. non-exponential
family) models such as hierarchical latent variable models [Wu et al., 2017], and the
related Gaussian mixture models Hirai and Yamanishi [2017, 2013]. Suzuki et al. [2016]
provides an NML approach to nonnegative matrix factorization. Two-part codes (and
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corresponding MDL estimators) for mixture families that come close to achieving the
minimax regret were considered very recently by Myamoto et al. [2019].

When it comes to asymptotic approximations for codelengths/log-likelihoods based on
NML and other universal distributions — all approximations so far (in Section 2.2 were
derived essentially assuming that the model under consideration is an exponential family.
Extensions to curved exponential families and generalized linear models are relatively
straightforward (see G07 for details). For more irregular models, Sumio Watanabe has
proposed the widely applicable information criterion (WAIC) and the widely applicable
Bayesian information criterion (WBIC), see [Watanabe, 2010, 2013], where the latter can
be viewed as an asymptotic expansion of the log likelihood based on a Bayesian universal
distribution. It coincides with BIC when applied to regular models but is applicable even
for singular (irregular) models. The asymptotic form of WBIC is

WBIC(M) = − log pθ0(z
n) + λ logn+Op(

√

logn), (31)

where θ0 is the parameter value minimizing the Kullback-Leibler divergence from the
true model to the model pθ0 , and λ > 0 is a rational number called the real log canonical
threshold (see [Watanabe, 2013]), which can be interpreted as the effective number of
parameters (times two).

6 Frequentist Convergence of MDL and Its Implica-

tions

Rissanen first formulated the MDL Principle as — indeed — a Principle: one can simply
start by assuming, as an axiom, that model ing by data compression (or, equivalently,
sequential predictive log loss minimization) is the right thing to do. One can also take
a more conventional, frequentist approach, and check whether MDL procedures behave
desirably under standard frequentist assumptions. We now review results that show
that, in general, they do — thus providing a frequentist justification of MDL ideas:
with some interesting caveats, MDL model selection is typically consistent (the smallest
model containing the true distribution is eventually chosen, with probability one) and
MDL prediction and estimation achieves good rates of convergence (the Hellinger distance
between the estimated and the true density goes to 0, with high probability, quite fast). In
this section we review the most important convergence results. In particular, Section 6.1
shows that the link between data compression and consistent estimation is in fact very
strong; and Section 6.4 shows that, by taking MDL as a principle, one can get useful
intuitions about deep questions concerning deep learning; and the intuitions can then, as
a second step, be once again validated by frequentist results.

Thus, let us assume, as is standard in frequentist statistics, that data are drawn from a
distribution in one of the models under Mγ under consideration. We consider consistency
and convergence properties of the main MDL procedures in their main applications: model
selection, prediction and estimation.

Model Selection For model selection between a finite number of models, all univer-
sal codes mentioned here are consistent in wide generality; for example, this has been
explicitly proven if the data are i.i.d. and all models on the list are exponential families,
but results for more complex models with dependent data have also been known for a
long time; see G07 for an overview of results. If the collection of models is countably
infinite, then results based on associating each Mγ with p̄bayes

γ have also been known
for a long time; such results typically hold for ‘almost all’ (suitable defined) distribu-
tions in all Mγ ; again, see G07 for a discussion of the (nontrivial) ‘almost all’ require-
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ment. These countable-Γ consistency results were extended to the switch distribution by
Van Erven et al. [2012].

Prediction and ‘Improper’ Estimation As to sequential prediction (Sec-
tion 2.4): rate of convergence results are very easy to show (see Chapter 15 of G07),
but these typically only demonstrate that the cumulative log-loss prediction error of se-
quentially predicting with a universal distribution p̄ behaves well as n increases. Thus,
since the sum of prediction errors is small, say (for parametric models) of order logn, for
most t the individual prediction error at the t-th sample point must be of order 1/t, since
∑n

t=1 1/t − log t = O(1). Still, it remains an open question how to prove for individual
t what exactly the expected prediction error is at that specific n. Since one can view
each prediction as an ‘improper’ estimate (end of Section 2.4), the convergence rates of
the resulting estimators, which estimate the underlying distribution based on a sample
of size t as p̄(Zt+1 | zt), usually also behave well in a cumulative sense, but again it
is very hard to say anything about individual t. The asymptotic expansions (15) and
(16) imply that, for fixed parametric models Mγ , p̄bayes

γ and p̄nml
γ achieve optimal cu-

mulative prediction and estimation errors. If, however, they are defined relative to a full
model class M =

⋃

γ∈ΓMγ consisting of at least two nested models, then they may fail
to achieve optimal rates by a logn factor. Van Erven et al. [2012] show that sequential
prediction/estimation based on the switch distribution achieves the minimax optimal cu-
mulative prediction/estimation error rates even in such cases. Van der Pas and Grünwald
[2018] show that, if only two models are compared, then the optimal obtainable rate for
individual n for any consistent procedure is achieved as well.

6.1 Frequentist Convergence of MDL Estimation

Very strong results exist concerning the convergence of MDL estimation based on an MDL
estimator θ̂v as given by (5). A first, classical result was already stated by the ground-
breaking [Barron and Cover, 1991], establishing that consistency and good convergence
rates can be obtained for the special case of a two-part-code estimator θ̂w based on a
probability mass function w, as long as w satisfies

∑

θ∈Θ̈w(θ)η < ∞ for some η < 1 and
w puts sufficient prior mass in a KL neighborhood of the true theta. These results were
greatly extended by Zhang [2006a,b] and further, very recently, by Grünwald and Mehta
[2019]. The latter consider θ̂v for general v. Let M = {Pθ : θ ∈ Θ} be a statistical model
and suppose data are i.i.d. ∼ p with p = pθ∗ ∈ M. They find that a sufficient condition
for consistency is that v(θ∗) < ∞ and that for some η < 1, the following generalized
model complexity

compη(M, v) := comp(Mη, v) = log

∫

p(zn)1−η ·

(

pθ̂v (z
n)
)η

v(θ̂v(z
n))

(

∫

p(z)1−η
(

pθ̂v(zn)(z)
)η

dz
)n dz

n

(32)
is bounded and o(n), i.e. it grows slower than linear (the slower it grows, the faster the
MDL estimator converges to the true distribution in Hellinger distance). This condition
strictly and significantly weakens the Barron-Cover requirement. The result holds without
any further conditions; for example, M may be a countable union of parametric models
or even a huge nonparametric model. Note that comp1(M, v) is the model complexity
that we have encountered before in (7). Ironically, for any η < 1, slow-growth (o(n))) of
compη(M) is sufficient for consistency of θ̂v, but for η = 1, which would be more fully
in line with the MDL ideas, it is not.
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6.2 From MDL to Lasso

As illustrated in Example 4, when used for high-dimensional variable selection, the orig-
inal MDL approach would be to use a mixed two-part/one-part code as in (1) with a
− log π(γ) term to account for the model index γ ∈ Γ. In such settings, there may well
be p > n variables of interest, each of which may or may not be included in the model,
so that the minimization over Γ requires trying out 2p ≫ 2n choices — which is prac-
tically infeasible. For this reason, in practice people have strongly preferred the Lasso
and related methods based on L1-penalties, which take linear rather than exponential
time in p (note that the classic MDL essentially penalizes by an L0-penalty). However,
Barron and Luo [2008], Barron et al. [2008] showed that, under some conditions on the
true distribution (such as Gaussian noise), the Lasso method can be re-interpreted in
terms of code-length minimization after all; see also [Chatterjee and Barron, 2014], and,
for further extensions, Kawakita and Takeuchi [2016], Brinda and Klusowski [2018]. For
a different approach to unify model selection with very high-dimensional models with the
luckiness NML, see Miyaguchi and Yamanishi [2018].

Although some of the details may differ, it seems that most of these works are sub-
sumed by the aforementioned result of Grünwald and Mehta [2019] who show that general
penalized estimators can be re-interpreted as minimizing a 1-part codelength as long as
comp1(M, v) is bounded, and can be proven consistent under the (still quite weak) con-
dition that compη as in (32) is bounded for some η < 1. Thus, the connection between
MDL and general (including Lasso and other L1, but also with entirely different penalties)
penalization methods is substantially stronger than it seemed before these developments
took place.

Importantly, all the works mentioned here except Grünwald and Mehta [2019] cannot
show convergence under misspecification — for example, when applied to the Lasso, they
would require an assumption of normal noise (corresponding to the squared error used in
the Lasso fit, which is equivalent to the log loss under a normal distribution for the noise).
In practice though, the Lasso (with the squared error) is often used in cases in which one
cannot assume normally distributed errors. Grünwald and Mehta [2019] contains results
that can still be used in such cases (although the formula for compη(M, v) changes),
based on ideas which we will now sketch.

6.3 Misspecification

As beautifully explained by Rissanen [1991], one of the main original motivations for
MDL-type methods is that they have a clear interpretation independent of whether any
of the models under consideration is ‘true’ in the sense that it generates the data: one
chooses a model minimizing a code length, i.e. a prediction error on unseen data, which
is meaningful and presumably might give something useful irrespective of whether the
model is true (Rissanen even argues that the whole notion of a ‘true model’ is misguided).
This model-free paradigm also leads one to define the NML distribution as minimizing
prediction error in a stringent worst-case-over-all data sense (Eq. (13)) rather than a
stochastic sense. Nevertheless, it is of interest to see what happens if one samples data
from a distribution for which all models under consideration are wrong, but some are
quite useful in the sense that they lead to pretty good predictions. Doing this leads to
rather unpleasant surprises: as first noted by Grünwald and Langford [2007], MDL (and
Bayesian inference) can become inconsistent: one can give examples of {Mγ : γ ∈ Γ}
with countably infinite Γ and a ’true’ data generating distribution P0 such that, when
data are sampled i.i.d. from P0, MDL will tend to select a suboptimal model for all large
n — while all sub-models Mγ are wrong, one of them, Mγ̃ is optimal in several intuitive
respects (closest in KL divergence to P0, leading to best predictions under a number
of loss functions), yet it will not be selected for large n. While the models considered
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by Grünwald and Langford [2007] were quite artificial, Grünwald and van Ommen [2017]
showed that the same can happen in a more natural linear regression setting; moreover,
they also showed that even if Γ is finite, although then eventually MDL will select the best
sub-model, for even relatively large n it may select arbitrarily bad sub-models. De Heide
[2016] shows that the problem also occurs with MDL and Bayesian regression with some
real-world data sets.

It turns out that the root of the problem is related to the no-hypercompression prop-
erty (27). If the collection of models M =

⋃

γ∈ΓMγ contain the density p0 of the ‘true’
distribution P0, then any distribution p ∈

⋃

γ∈ΓMγ will satisfy no-hypercompression
relative to the true p0:

P0

(

p0(Z
n)

p(Zn)
≤ α

)

≤ α. (33)

This property underlies the proof of all MDL consistency and rate-of-convergence results,
such as those by Barron and Cover [1991], Zhang [2006a], Grünwald and Mehta [2019].
However, if the model class M does not contain the true p0, then, in order to prove
consistency, one needs (33) to hold with the P0 outside the brackets unchanged, but the
p0 inside the brackets replaced by p̃, the distribution/density in M that is closest to
P0 in KL (Kullback-Leibler) divergence (why it should be KL is explained at length by
Grünwald and van Ommen [2017]). Unfortunately though, (33) does not necessarily hold
with p0 replaced by p̃. If it does not, MDL (and Bayesian methods, whose consistency
relies on similar properties) may become inconsistent. Grünwald and van Ommen [2017],
based on earlier ideas in [Grünwald, 1999, Grünwald, 2012], propose a solution that works
for Bayesian universal distributions: it replaces the likelihoods pθ(z

n) for every p = pθ
with p ∈ M by the generalized likelihood pηθ(z

n) for some η > 0; usually η < 1 — this η
has the same mathematical function as the η appearing in (32). It turns out that with
such a modification, if η is chosen small enough, a version of the no-hypercompression
inequality (33) holds after all. Grünwald and van Ommen [2017], Grünwald [2012] also
provide a method for learning η from the data, the ‘Safe Bayesian’ algorithm (note that
η cannot be learned from the data by standard MDL or Bayesian methods). The re-
cent work of Grünwald and Mehta [2019] suggests that the modification of likelihoods by
exponentiating with η should work for general MDL methods as well.

6.4 PAC-MDL Bounds and Deep Learning

One of the great mysteries of modern deep learning methods in machine learning is the
following [Zhou et al., 2018]: deep learning is based on neural network models which can
have many millions of parameters. Although typically run on very large training samples
zn, n is usally still so small that the data can be fit perfectly, with 0 error on the training
error. Still, the trained models often perform very well on future test sets of data. How is
this possible? At first sight this contradicts the tenet, shared by MDL and just about any
other method of statistics, that good generalization requires the models to be ‘small’ or
‘simple’ (small comp(M) in MDL analyses, small VC dimension or small entropy numbers
in statistical learning analyses) relative to the sample size. One of several explanations
(which presumably all form a piece of the puzzle) is that the local minimum of the error
function found by the training method is often very broad — if one moves around in
parameter space near the minimum, the fit hardly changes. Hochreiter and Schmidhuber
(1997) already observed that describing weights in sharp minima requires high precision
in order to not incur nontrivial excess error on the data, whereas flat minima can be
described with substantially lower precision, thus forging a connection to the MDL idea;
in fact related ideas already appear in [Hinton and Van Camp, 1993]. In these papers, the
MDL Principle is used in a manner that is less direct than what was done thus far in this
paper: we (and, usually, Barron, and Rissanen) directly hunt for the shortest description
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of the data. In contrast, the aforementioned authors simply note that, no matter how a
vector of parameters for a model was obtained, if, with the obtained vector of parameters,
the data can be compressed substantially, for example by coding first the parameters and
then the data with the help of the parameters, then, if we believe the MDL principle, with
these parameters the model (network) should generalize well to future data. In modern
practice, neural networks are often trained with SGD (stochastic gradient descent), and it
has been empirically found that networks that generalize well do tend to have parameters
lying in very flat minima.

While this use of the MDL Principle seems less precise than what we reviewed earlier
in this paper, it can once again be given a frequentist justification, and this justification
is mathematically precise after all: the so-called PAC-Bayesian generalization bounds
[McAllester, 2003] show that the generalization performance of any classifier can be di-
rectly linked to a quantity that gets smaller as soon as one needs (a) less bits to describe
the parameter and as soon as one needs (b) less bits to describe the data given the param-
eters; both the results and their proofs are very similar to the MDL convergence results
by Barron and Cover [1991], Zhang [2006a,b], Grünwald and Mehta [2019]. Although in
general the formulation is not as straightforward as a simple sum of the two descrip-
tion lengths (a) and (b), the connections between both the two-part codelength and
the Bayesian codelength are quite strong, as was already noticed by Blum and Langford
[2003]. In particular, for discrete Θ, such PAC-Bayes bounds contain a term − logπ(θ)
which can be interpreted as the number of bits needed to encode θ using the codes based
on some distribution π; for general, uncountable Θ, this term gets replaced by a KL
divergence term that canstill be related to acodelength via a so-called ‘bits back argu-
ment’ pioneered by Hinton and Van Camp [1993]. Dziugaite and Roy [2017], Zhou et al.
[2018], inspired by earlier work by Langford and Caruana [2002], indeed show that, for
some real-world data sets, one can predict nontrivial generalization using deep neural
nets by looking at the number of bits needed to describe the parameters and applying
PAC-Bayesian bounds.

7 Concluding Remarks

We have given a self-contained introduction to MDL, incorporating and highlighting re-
cent developments. Of necessity, we had to make a choice as to what to cover in detail,
and there are many things we omitted. We would like to end with briefly mentioning three
additional developments. First, there has always been the question about how MDL re-
lates to other complexity notions such as those considered in the statistical learning theory
literature [Shalev-Shwartz and Ben-David, 2014]: Vapnik-Chervonkis dimension, entropy
numbers, Rademacher complexity and so on. A major step towards understanding the
relation was made by Grünwald and Mehta [2019] who show that for probability models
with members of the form pθ(z) ∝ exp(−ηlossθ(z)), where loss is an arbitrary bounded
loss function, the NML complexity can be precisely bounded in terms of the Rademacher
complexity defined relative to loss. Second, we should note that Rissanen’s own views
and research agenda have steered in a direction somewhat different from the develop-
ments we describe: Rissanen [2007] published Information and Complexity in Statistical
Modeling, which proposes foundations of statistics in which no underlying ‘true model’
is ever assumed to exist. As Rissanen writes, “even such a well-meaning statement as
‘all models are wrong, but some are useful’, is meaningless unless some model is ‘true’.
” Rissanen expands MDL and NML ideas in the direction of the Kolmogorov structure
function, taking the idea of distinguishable distributions underlying Myung et al. [2000]
as fundamental; while presumably compatible with the developments we describe here,
the emphasis of this work is quite different.

We end with a word about applications: since 2007, numerous applications of MDL
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and MDL-like techniques have been described in the literature; as discussed in Section 6.2,
highly popular methods such as Lasso and Bayes factor methods can often be seen as
‘MDL-like’. Even as to specific ‘pure’ MDL applications (such as based on NML and
two-part codes), the number and scope of applications is simply too large to give a suc-
cinct representative overview. However, there is one particular area which we would
like to mention specifically, since that area had hardly seen any MDL applications be-
fore 2007 whereas nowadays such applications are flourishing: this is the field of data
mining. Some representative publications are Vreeken et al. [2011], Koutra et al. [2015],
Budhathoki et al. [2018]. Most of this work centers on the use of two-part codes, but
sometimes NML and other sophisticated universal distributions/codes are used as well
[Tatti and Vreeken, 2008].
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A When the original (v ≡ 1) NML is undefined: De-

tails, Open Problems and their Solutions

The original NML distribution p̄nml with uniform v relies on the existence of the Shtarkov
integral

∫

zn∈Zn pθ̂ml(zn)(z
n)dzn; its asymptotic expansion (15) relies on the existence of

the Jeffreys integral
∫ √

|I(θ)dθ being finite, the latter being equivalent to the require-
ment that Jeffreys’ prior is proper. Both are quite strong requirements; for infinite sample
spaces Y, they ‘usually’ — that is, in most models one considers in practice, such as nor-
mal, exponential, Poisson ... — do not hold; but once one restricts the parameter space
to an INECCSI set, they generally do hold This may lead one to conjecture that the
Shtarkov integral is finite if and only if the corresponding Jeffreys integral is finite. Re-
solving this conjecture was posed as an open problem by G07; Grunwald and Harremoës
[2009], Bar-Lev et al. [2010] show that in general, the conjecture is wrong; though, for
exponential families, under a very mild additional condition, it holds true.

From a more practical perspective, one would of course like to know what universal
distribution to use if the standard MDL is undefined. Several proposals floated around in
the early 2000s; for an overview, see Chapter 11 of G07. By now, the dominant method
has become to factor in a nonuniform weight function v and calculate the luckiness NML
as in (11). This method was originally called luckiness NML-2 by G07, who (among
many other methods) identified several ’luckiness’ versions of NML that had been pro-
posed by various authors; luckiness NML-2 turned out both more practically useable
and mathematically analyzable than other methods, and in this text we simply call it
luckiness NML. In particular, Suzuki and Yamanishi [2018] show that, for exponential
family models, the n-dimensional integral in the luckiness NML can be replaced by a
2k-dimensional 1, and in many cases can be performed explicitly. As we indicated in
Section 2.5, one can sometimes set the first m examples aside as start-up data to define
a luckiness function, leading to conditional NML. Again, G07 defined different forms of
conditional NML, and again, conditional NML-2 (directly based on luckiness NML-2)
turned out to be the most natural one: Bartlett et al. [2013] show that for some impor-
tant classes of models, the NML distributions p̄nml and the Bayes marginal distributions
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p̄bayes with improper Jeffreys’ priorexactly, and not just asymptotically, coincide for each
n. Moreover, for the case of 1-dimensional families, they completely characterize the
class of models for which this holds: essentially, it holds for exponential families that are
also location or scale families, i.e. the normal and gamma distributions, and monotone
transformations thereof (such as e.g. the Rayleigh distributions); as well as for one curi-
ous additional family. This correspondence between objective Bayesian and conditional
NML-2 approaches notwithstanding, Kojima and Komaki [2016] show that ‘conditional
NML-3’, which G07 considered the most intuitive version, but at the same time, math-
ematically overly complicated for practical use, can be given a practical implementation
after all, thereby solving Open Problem No. 7 of G07.
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