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A substantial volume of research is devoted to studies of community structure in networks, but
communities are not the only possible form of large-scale network structure. Here, we describe a broad
extension of community structure that encompasses traditional communities but includes a wide range of
generalized structural patterns as well. We describe a principled method for detecting this generalized
structure in empirical network data and demonstrate with real-world examples how it can be used to learn
new things about the shape and meaning of networks.
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The detection and analysis of large-scale structure in
networks has been the subject of a vigorous research effort
in recent years, in part because of the highly successful
application of ideas drawn from statistical physics [1,2].
Particular energy has been devoted to the study of com-
munity structure, meaning the division of networks into
densely connected subgroups, a common and revealing
feature, especially in social and biological networks [3].
Community structure is, however, only one of many
possibilities where real-world networks are concerned. In
this Letter, we describe a broad generalization of commu-
nity structure that encompasses not only traditional com-
munities but also overlapping or fuzzy communities,
ranking or stratified structure, geometric networks, and a
range of other structural types, yet is easily and flexibly
detected using a fast, mathematically principled procedure
that we describe. We give demonstrative applications of our
approach to both computer-generated test networks and
real-world examples.
Community structure can be thought of as a division of

the nodes of a network into disjoint groups such that the
probability of an edge is higher between nodes in the same
group than between nodes in different groups. For instance,
one can generate artificial networks with community
structure using the stochastic block model, a mathematical
model that follows exactly this principle. In the stochastic
block model the nodes of a network are divided into
k groups, with a node being assigned to group r with some
probability γr for r ¼ 1;…; k, and then edges are placed
between node pairs independently with probabilities prs
where r and s are the groups the nodes fall in. If the
diagonal probabilities prr are larger than the off-diagonal
ones, we get traditional community structure.
Alternatively, however, one can also look at the stochas-

tic block model another way: imagine that we assign each
node a random node parameter x between 0 and 1 and
edges are placed between node pairs with a probability

ωðx; yÞ that is a function of the node parameters x and y of
the pair. If ωðx; yÞ is piecewise constant with k2 rectangular
regions of size γrγs and value prs, then this model is
precisely equivalent to the traditional block model. But
this prompts us to ask what is so special about piecewise
constant functions. It is certainly possible that some net-
works might contain structure that is better captured by
functions ωðx; yÞ of other forms. Why not let ωðx; yÞ take a
more general functional form, thereby creating a general-
ized type of community structure that includes the tradi-
tional type as a subset but can also capture other structures
as well? This is the fundamental idea behind the general-
ized structures of this Letter: edge probabilities are arbitrary
functions of continuous node parameters.
The idea is related to a number of threads of work in the

previous literature. One, in sociology and statistics, con-
cerns “latent space” models, in which nodes in a network
are located somewhere in a Euclidean space and are more
likely to be connected if they are spatially close than if
they are far apart [4]. Work within physics, mathematics,
and computer science on graph metrics and embeddings
addresses similar questions though with different methods
[5–7]. The other thread, in the mathematics literature,
concerns so-called “graphon” models and does not deal
with the analysis of empirical data but with the mathemati-
cal properties of models, showing in particular that models
of a kind similar to that described here are powerful enough
to capture the properties of any theoretical ensemble of
networks in the limit of large size, at least in the case where
the networks are dense [8,9].
In this Letter, we define a specific model of generalized

community structure and a method for fitting it to empirical
data using Bayesian inference. The fit places each node of
the network in the “latent space” of the node parameters x
and, simultaneously, gives us an estimate of the probability
function ωðx; yÞ. Between them, these two outputs tell us a
great deal about the structure a network possesses and the
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role each node plays within that structure. The method
is computationally efficient in practice, allowing for its
application to large networks, and provides significantly
more insight than the traditional community division into
discrete groups, or even recent generalizations to over-
lapping groups [10,11].
We begin by defining a model that generates networks

with the generalized community structure we are interested
in. The model follows the lines sketched above, but with
some crucial differences. We take n nodes and for each
node u we generate a node parameter xu uniformly at
random in the interval [0,1]. Then between each pair of
nodes u; v we place an undirected edge with probability

puv ¼
dudv
2m

ωðxu; xvÞ; ð1Þ

where du; dv are the degrees of the nodes, m ¼ 1
2

P
udu is

the total number of edges in the network, and ωðx; yÞ is a
function of our choosing, which we will call the edge
function. Note that ωðx; yÞ must be symmetric with respect
to its arguments for an undirected network such as this.
The inclusion of the degrees allows us to match the

expected degree distribution of the model network to
the distribution for the observed network [12]. Without
it, the model effectively assumes a Poisson degree distri-
bution, which is a poor fit to most networks [15,16] and
can cause the calculation to fail [17]. The factor dudv=2m is
the probability of an edge between nodes with degrees
du; dv if edges are placed at random [2]. Hence, ωðxu; xvÞ
parametrizes the variation of the probability relative to this
baseline level and is typically of order 1, making puv small
in the limit where m becomes large.
Given the model, we fit it to empirical network data

using the method of maximum likelihood. The probability
or likelihood PðA;xjωÞ that we generate a particular set of
node parameters x ¼ fxug and a particular network struc-
ture described by the adjacency matrix A ¼ fauvg is

PðA;xjωÞ ¼
Y
u<v

pauv
uv ð1 − puvÞ1−auv : ð2Þ

(Recall that the node parameters xu are chosen uniformly
on the interval [0,1], so their prior probability density is
simply 1.) To find the value of the edge function ωðx; yÞ
that best fits an observed network we want to maximize the
marginal likelihood

PðAjωÞ ¼
Z

PðA;xjωÞdnx; ð3Þ

or equivalently its logarithm, whose maximum falls in the
same place. Direct maximization leads to a set of implicit
equations that are hard to solve, even numerically, so
instead we employ the following trick.
For any positive-definite function fðxÞ, Jensen’s

inequality says that

log
Z

fðxÞdx ≥
Z

qðxÞ log fðxÞ
qðxÞ dx; ð4Þ

where qðxÞ is any probability distribution over x such thatR
qðxÞdx ¼ 1. Applying Eq. (4) to the log of the marginal

likelihood (3), we get

log
Z

PðA;xjωÞdnx ≥
Z

qðxÞ logPðA;xjωÞ
qðxÞ dnx; ð5Þ

where qðxÞ is any probability distribution over x. It is
straightforward to verify that the exact equality is recov-
ered, and hence that the right-hand side is maximized, when

qðxÞ ¼ PðA;xjωÞR
PðA;xjωÞdnx : ð6Þ

Further maximization with respect to ω then gives us the
maximum of the marginal likelihood, which is the result we
are looking for. Put another way, a double maximization
of the right-hand side of Eq. (5) with respect to both qðxÞ
and ω will achieve the desired result. And this double
maximization can be conveniently achieved by alternately
maximizing with respect to qðxÞ using Eq. (6) and with
respect to ω by differentiating.
This method, which is a standard one in statistics and

machine learning, is called an expectation–maximization
(EM) algorithm [18]. It involves simply iterating these
two operations from (for instance) a random initial con-
dition until convergence. The converged value of the
probability density qðxÞ has a straightforward physical
interpretation. Combining Eqs. (3) and (6), we have qðxÞ ¼
PðA;xjωÞ=PðAjωÞ ¼ PðxjA;ωÞ. In other words, qðxÞ is
the posterior probability distribution of the node parameters
x given the observed network and the edge function
ωðx; yÞ. It tells us the probability of any given assignment
x of parameters to nodes. It is this quantity that will in fact
be our primary object of interest here.
Substituting from Eqs. (1) and (2) into Eq. (5), keeping

terms to leading order in small quantities and dropping
overall constants, we can write the quantity to be maxi-
mized asZZ

1

0

X
uv

quvðx; yÞ
�
auv logωðx; yÞ −

dudvωðx; yÞ
2m

�
dxdy;

ð7Þ
where quvðx; yÞ ¼

R
qðxÞδðxu − xÞδðxv − yÞdnx is the

posterior marginal probability that nodes u; v have node
parameters x; y respectively. The obvious next step is to
maximize Eq. (7) by functional differentiation with respect
to ωðx; yÞ, but there is a problem. If we allow ω to take
any form at all then it has an infinite number of degrees
of freedom, which guarantees overfitting of the data. Put
another way, physical intuition suggests that ωðx; yÞ should
be smooth in some sense, and we need a way to impose that
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smoothness as a constraint on the optimization. There are a
number of ways we could achieve this, but a common one
is to express the function in terms of a finite set of basis
functions. For non-negative functions such as ω a conven-
ient basis is the Bernstein polynomials of degree N:

BkðxÞ ¼
�
N
k

�
xkð1 − xÞN−k; k ¼ 0;…; N: ð8Þ

The Bernstein polynomials form a complete basis for
polynomials of degree N and are non-negative in [0,1],
so a linear combination

P
N
k¼0 ckBkðxÞ is also non-negative

provided ck ≥ 0 for all k. Our edge function ωðx; yÞ is a
function of two variables, so we will write it as a double
expansion in Bernstein polynomials

ωðx; yÞ ¼
XN
j;k¼0

cjkBjðxÞBkðyÞ; ð9Þ

which again is non-negative for cjk ≥ 0. Bernstein poly-
nomials have excellent stability properties under fluctua-
tions of the values of the expansion coefficients, which
makes them ideal for statistical applications such as ours.
Note that since ωðx; yÞ is symmetric with respect to its
arguments we must have cjk ¼ ckj.
If ωðx; yÞ is constrained to take this form, then instead of

the unconstrained maximization of Eq. (7) we now want
to maximize with respect to the coefficients cjk. To do this,
we substitute from Eq. (9) into Eq. (7) and apply Jensen’s
inequality again, this time in its summation form
log

P
ifi ≥

P
iQi log fi=Qi. Then, by the same argument

as used previously, we find that the optimal coefficient
values are given by the double maximization with respect to
cjk and Qjkðx; yÞ of
ZZ

1

0

μðx; yÞ
X
jk

Qjkðx; yÞ log
cjkBjðxÞBkðyÞ

Qjkðx; yÞ
dxdy

−
ZZ

1

0

νðxÞνðyÞ
X
jk

cjkBjðxÞBkðyÞdxdy; ð10Þ

where

μðx; yÞ ¼ 1

2m

X
uv

auvquvðx; yÞ; νðxÞ ¼ 1

2m

X
u

duquðxÞ;

ð11Þ
and quðxÞ ¼ n−1

P
v

R
quvðx; yÞdy is the marginal proba-

bility that node u has node parameter x. The maximization
with respect to Qjkðx; yÞ is achieved by setting

Qjkðx; yÞ ¼
cjkBjðxÞBkðyÞP
jkcjkBjðxÞBkðyÞ

; ð12Þ

and the maximization with respect to cjk is achieved by
differentiating, which gives

cjk ¼
RR

μðx; yÞQjkðx; yÞdxdyR
νðxÞBjðxÞdx

R
νðyÞBkðyÞdy

: ð13Þ

Since all quantities on the right-hand side of this equation
are non-negative, cjk ≥ 0 for all j; k and hence ωðx; yÞ ≥ 0,
as required.
The calculation of the optimal values of cjk is a matter of

iterating Eqs. (12) and (13) to convergence, starting from
the best current estimate of the coefficients. Note that the
quantities μ and ν need be calculated only once each time
around the EM algorithm, and both can be calculated in
time linear in the size of the network in the common case
of a sparse network with m ∝ n. The integrals in Eq. (13)
we perform numerically, using standard Gauss–Legendre
quadrature.
This, in principle, describes a complete algorithm for

fitting the model to observed network data, but in practice
the procedure is cumbersome because of the denominator
of Eq. (6), which involves an n-dimensional integral,
where n is the number of nodes in the network, which
is typically large. The traditional solution to this problem is
to subsample the distribution qðxÞ approximately using
Monte Carlo importance sampling. Here, however, we use
a different approach proposed recently by Decelle et al.
[19], which employs belief propagation and returns good
results while being markedly faster than Monte Carlo
calculations. The method focuses on a function ηu→vðxÞ,
called the belief, which represents the probability that node
u has node parameter x if node v is removed from the
network. The removal of node v allows us to write a self-
consistent set of equations whose solution gives us the
beliefs. The equations are a straightforward generalization
to the present model of those given by Decelle et al.:

ηu→vðxÞ ¼
1

Zu→v
exp

�
−
X
w

dudw

Z
1

0

qwðyÞωðx; yÞdy
�

×
Y
wð≠vÞ
auw¼1

Z
1

0

ηw→uðyÞωðx; yÞdy; ð14Þ

where qwðyÞ is again the marginal posterior probability for
node w to have node parameter y and as before we have
dropped terms beyond leading order in small quantities.
The quantity Zu→v is a normalizing constant that ensures
that the beliefs integrate to unity:

Zu→v ¼
Z

1

0

exp

�
−
X
w

dudw

Z
1

0

qwðyÞωðx; yÞdy
�

×
Y
wð≠vÞ
auw¼1

Z
1

0

ηw→uðyÞωðx; yÞdydx: ð15Þ

The belief propagation method consists of the iteration of
these equations to convergence starting from a suitable
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initial condition (normally the current best estimate of the
beliefs). The equations are exact on networks that take the
form of trees, or on locally treelike networks in the limit of
large network size (where local neighborhoods of arbitrary
size are trees). On other networks, they are approximate
only, but in practice give excellent results.
Once we have the values of the beliefs, the crucial two-

node marginal probability quvðx; yÞ is given by

quvðx; yÞ ¼
ηu→vðxÞηv→uðyÞωðx; yÞRR

1
0 ηu→vðxÞηv→uðyÞωðx; yÞdxdy

: ð16Þ

Armed with these quantities for every node pair connected
by an edge, we can evaluate μðx; yÞ and νðxÞ from Eq. (11),
then iterate Eqs. (12) and (13) to compute new values of the
parameters cjk, and repeat. The final algorithm is efficient,
with each iteration of the belief propagation equations
running in time linear in the network size [12].
We give three example applications of our methods, one

to a computer-generated benchmark network and the others
to real-world networks displaying nontrivial latent-space
structure that is readily uncovered by our algorithm.
For our first example, we use a computer-generated test

network created using the standard stochastic block model,
with n ¼ 600 nodes divided into three equally sized groups
of 200 nodes each, with probabilities pin ¼ cin=n and
pout ¼ cout=n for edges between nodes in the same and
different groups, respectively, and cin ¼ 15, cout ¼ 3.
Figure 1(a) shows a density plot of the marginal probability
distributions quðxÞ of the node parameters calculated by
our algorithm using a degree-4 (quartic) polynomial rep-
resentation of the edge function ω. (We also used quartic
representations for the other examples below.) The plot
consists of 600 columns, one for each node, color coded to
show the value of quðxÞ for the corresponding node. As the
plot shows, the algorithm has found the three known groups
in the network, placing them at three widely spaced points
in the latent space of the node parameters. (In this case,
the first group is placed in the middle, the second at the top,
and the third at the bottom, but all orders are equivalent.)
We also show a plot of the inferred edge function ωðx; yÞ,
which in this case has a heavy band along the diagonal,
indicating “assortative” structure, in which nodes are
primarily connected to others in the same group.
Our second example is a real-world network, the neural

network of the nematode (roundworm) C. elegans, which
has been mapped in its entirety using electron microscopy
[20,21] and contains a total of 299 neurons. The worm
has a long tubular body, with neurons arranged not just
in its head but along its entire length. Neurons tend to be
connected to others near to them, so we expect spatial
position to play the role of a latent variable and our
algorithm should be able to infer the positions of neurons
by examining the structure of the network. Figure 1(b)
shows that indeed this is the case. The figure shows the

network as it appears within the body of the worm, with
nodes colored according to the mean values of the node
parameters found by the algorithm, and we can see a strong
correlation between node color and position. The largest
number of nodes is concentrated in the head, mostly
colored red in the figure; others along the body appear
in blue and green. If we did not know the physical positions
of the nodes in this case, or if we did not know the
correlation between position and network structure, we
could discover it using this analysis.
Our third example, shown in Fig. 1(c), is an analysis of

the network of interstate highways in the contiguous United
States. This network is embedded in geometric space, the
surface of Earth. Again, we would expect our algorithm to
find this embedding and indeed it does. The colors of the
nodes represent the mean values of their node parameters

ω x y(a) Group 2 Group 3Group 1

(b)

(c)

Tail
Head

FIG. 1 (color online). (a) Left: density plot of the posterior
marginal probability densities quðxÞ that node u has node
parameter x for an application of our algorithm to a 600-node
stochastic block model with three groups. Colors indicate the
probabilities and there are 600 columns, one for each node. Right:
density plot of the edge function ωðx; yÞ. (b) The neural network
of the worm C. elegans, drawn in real space, as it falls within
the body of the worm. Colors represent the average values of the
node parameters xu inferred for each neuron by our algorithm.
(c) Network representation of the interstate highways of the
contiguous United States. Again, node colors represent the
average node parameters xu.
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and there is a clear correspondence between node color and
position, with the inferred node parameters being lowest in
the northeast part of the country and increasing in all
directions from there. (Note that even though the portion of
the network colored in red and orange appears much larger
than the rest, it is in fact about the same size in terms of
number of nodes because of the higher density of nodes in
the Northeast.) The true underlying space in this case has
two dimensions, where our model has only one, and this
suggests a potential generalization to latent spaces with two
(or more) dimensions. It turns out that such a generalization
is possible and straightforward, but we leave the develop-
ments for future work.
To summarize, we have in this Letter described a

generalized form of community structure in networks in
which network nodes are placed at positions in a continu-
ous space and edge probabilities depend in a general
manner on those positions. We have given a computation-
ally efficient algorithm for inferring such structure from
empirical network data, based on a combination of an EM
algorithm and belief propagation, and find that it success-
fully uncovers nontrivial structural information about both
artificial and real networks in example applications.
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