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ABSTRACT: Let Z(F) be the number of solutions of a random k-satisfiability formula F with n
variables and clause density α. Assume that the probability that F is unsatisfiable is O(1/ log(n)1+δ)

for some δ > 0. We show that (possibly excluding a countable set of “exceptional” α’s) the number of
solutions concentrates, i.e., there exists a non-random function α �→ φs(α) such that, for any ε > 0,
we have Z(F) ∈ [2n(φs−ε), 2n(φs+ε)] with high probability. In particular, the assumption holds for all
α < 1, which proves the above concentration claim in the whole satisfiability regime of random
2-SAT. We also extend these results to a broad class of constraint satisfaction problems. © 2013 Wiley
Periodicals, Inc. Random Struct. Alg., 45, 362–382, 2014

Keywords: constraint satisfaction problems; satisfiability; counting; concentration; sharp threshold;
interpolation method

1. INTRODUCTION AND MAIN RESULTS

Over the last twenty years, a considerable effort has been devoted to understanding the typ-
ical properties of random k-satisfiability (k-SAT) instances. This line of work was initially
motivated by two surprising empirical discoveries. First of all, when the “clause density”
(number of clauses per variable) crosses a critical threshold, the probability that a random
instance is unsatisfiable increases sharply from 0 to 1. The critical clause density is usu-
ally referred to as the “satisfiability threshold” and depends of course on k. Second, the
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typical running time of standard solvers peaks in proximity of the satisfiability threshold.
A significant amount of work has been devoted to understanding and explaining these phe-
nomena. In particular, an important motivation has been the hope to develop better heuristics
to cope with empirically hard constraint satisfaction instances, that are generated via the
satisfiability threshold.

Significant progress has been made along this path. In particular, it was estabilished early
on by Friedgut that, indeed, the probability that a random instance is unsatisfiable has a
sharp threshold as the number of variables increases [14]. This phenomenon is referred to as
the “satisfiability phase transition.” A key question is however left unresolved by Friedgut’s
theorem, namely whether the critical density1 converges to a limit or not as the number of
variables increases. Numerical simulations as well as heuristic arguments strongly point
towards the first alternative [17, 21, 23]. In particular for 3-SAT, it is conjectured that the
critical threshold is approximately 4.2. Despite such consensus no real strategy has been
put forward to prove this outstanding conjecture. Upper and lower bounds are known to
match up to a term that is of relative order k 2−k as k increases [4]. Nevertheless, they are
still far for any given k, and pushing the same arguments is unlikely to lead to matching
upper and lower bounds. In particular, the “condensation” phenomenon studied in [18] is
suggestive of fundamental obstructions to the second moment method.

On the other hand, a significantly more detailed picture has been conjectured, building
on non-rigorous techniques from statistical physics such as the replica and cavity methods
[18,21–23]. In particular, not only an n-independent critical density is conjectured to exist,
but explicit values (depending on k) were computed in [22]. It is instructive to recall some
basic steps of this non-rigorous but highly sophisticated calculations. As usual in statistical
mechanics, the starting point consists in defining an appropriate partition function. For a
given formula F, and a truth assignment x ∈ {+1, −1}n, let U(x; F) count the number of
clauses in F that are not satisfied by assignment x. For β ≥ 0, the partition function is
defined as

Z(β; F) =
∑

x∈{+1,−1}n
exp{−β U(x; F)} . (1.1)

In particular if F is satisfiable Z(∞; F) ≡ Z(F) is well defined and counts the number of
satisfying assignments. Using the non-rigorous cavity method, the limit of (1/n) log Z(β; F)

as n → ∞ is then computed (for random formulas with a clause density α) and found to
be a non-random function �(α; β). In particular, it is found that there exists a threshold
density αs(k) such that φs(α) ≡ limβ→∞ �(α; β) remains finite for α < αs(k) and diverges
for α > αs(k). Since the number of satisfying assignments should be Z(F)

.= enφs , the value
αs(k) is identified with the satisfiability threshold.

Notice that the statistical mechanics approach is quite ambitious. Instead of establishing
the existence of a threshold independent of the number of variables, it aims of computing
exactly the exponential growth rate of the number of solutions. The present paper takes this
philosophy seriously and, focusing on the crucial case β = ∞, tackles a basic conjecture at
the heart of the statistical mechanics approach. To be precise, let F(n, α) denote a formula
on n variables with clause density α (each clause having k literals) and hence let Z(F(n, α))

be the number of solutions of F(n, α). The basic conjecture of the physics approach states

1This can be defined for instance as the density such that the probability that a random formula is satisfiable is
equal to 1/2.
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that Z(F(n, α)) concentrates on the exponential scale. Namely, for each α < αs(k) (the
satisfiability threshold), there exists φs = φs(α) non-random such that, for any ε > 0,
2n(φs−ε) ≤ Z(F(n, α)) < 2n(φs+ε) with high probability [18, 29]. In formula, there exists φs

such that for any ε > 0

lim
n→∞ P{2n(φs−ε) ≤ Z(F(n, α)) < 2n(φs+ε)} = 1 . (1.2)

Notice that this conjecture would imply in particular the existence of an n-independent
satisfiability threshold.

One fundamental difficulty in estabilishing (1.2) is that the concentration of log Z(F)

cannot be proved using standard martingale methods. Such an argument typically requires
to control the difference | log Z(F ′) − log Z(F)| for F and F ′ differing in a single clause
[20]. Unfortunately, adding a single clause can change the value of Z(F) from exponentially
large to Z(F ′) = 0 (we refer to the next section for further discussion on this point).

In this work, we prove the conjecture (1.2) for k = 2. Note that for k = 2, the satisfiability
threshold is known to be 1 as proven in [7, 10, 15]. For arbitrary k ≥ 3 we cannot establish
the conjecture for all α below the satisfiable threshold. On the other hand, we are able to
prove that (1.2) holds for any α such that P{Z(F(n, α)) = 0} (the unsatisfiability probability)
is upper bounded by 1/(log n)1+δ for some δ > 0 and all n large enough. In particular, this
establishes the conjecture for k ≥ 3 and α < 1, which represents only a minor portion of
the satisfiable phase since for random k-SAT the threshold grows like 2k log 2 − O(k) [5].
In fact, we expect that the condition on P{Z(F(n, α)) = 0} holds up to the satisfiability
threshold. Partial evidence on the basis of constructive satisfiability proofs is discussed
below.

Let us briefly sketch the main ideas in the proof.
The first remark is that conjecture (1.2) amounts to saying that the monotone property

En(α, φ) ≡ {Z(F(n, α)) ≤ 2nφ} undergoes a sharp threshold in φ. Namely, its probability
increases from close to 0 to close to 1 over a window in φ that shrinks to 0 as n goes to
infinity. On the other hand, Friedgut’s theorem implies quite straightfowardly that the same
property En(α, φ) undergoes a sharp threshold in α (with a critical density that might depend
on n); this was proved in [3], and in [25] for a generalized class of satisfiability models.

The real challenge to prove the conjecture is to show that this threshold phenomenon for
fixed φ and α varying implies a threshold phenomenon with fixed α and φ varying as in
Eq. (1.2). The difficulty originates from the limited control that Friedgut theorem implies
about the thresholds, and namely the fact that a priori, these need not to converge as n
increases. In this paper, we show that indeed the threshold (in α) for the property En(α, φ) ≡
{Z(F(n, α)) ≤ 2nφ} does converge, under the mentioned hypothesis on P{Z(F) = 0}.

To achieve this, we aim at showing that (1/n)E log(1 + Z(F)) converges in the limit
n → ∞. The limit value provides a candidate for the quantity φs entering Eq. (1.2).

A powerful tool to show similar convergence results in the context of spin glass theory
is the interpolation method first developed by Francesco Guerra and Fabio Toninelli [16].
This method is normally applied to expected log-partition functions. In our case a naive
application would make use of (1/n)E log(Z(F)). The interpolation method is then used
to show a superadditivity (or sub-additivity) property on the sequence of interest. Despite
its simplicity, the interpolation method appears to be surprisingly powerful and opened the
way to a solution of several open problems so far (we refer to the next section for a brief
overview).

In our context, the naive application fails, for an interesting reason. The difficulty is
related to the very fact that we are considering a random constraint satisfaction problem,
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and Z(F(n, α)) = 0 with positive probability. Hence the expected log-number of solutions
carries no information: (1/n)E log(Z(F(n, α))) = −∞. Our solution consists in consid-
ering the sequence (1/n)E log(1 + Z(F(n, α))). This allows to work with a well-defined
quantity but one has to pay a price for this apparently innocuous modification. The interpo-
lation method leads to a pseudo superadditivity property, namely E log(1 + Z(F(n, α))) ≥
E log(1 + Z(F(n1, α))Z(F(n2, α))), when n1 + n2 = n.

The last part of the proof aims at extracting the consequences of the pseudo super-
additivity property by controlling the effect of the “1+” term. In particular, we show
that the pseudo superadditivity property can still be used to conclude convergence of
(1/n)E log(1 + Z(F(n, α))), provided that P{Z(F(n, α)) = 0} decays fast enough, i.e.,
as O(1/ log(n)1+δ).

This probability decay condition holds for random 2-SAT, which concludes the proof
of conjecture (1.2) in this case. For other values of k, we obtain a conditional result. By
comparison with 2-SAT, we obtain that P{Z(F(n, α)) = 0} = O(1/n) for any k ≥ 2 and
α < 1. Analysis of search algorithms can be used to get estimates on the unsatisfiability
probability and extend the range of α’s for which the decay condition holds beyond the
interval [0, 1). In particular, [8] could be used for that purpose. The most general result
would be obtained by establishing a quantitative version of Friedgut’s theorem to verify the
decay condition.

Finally, we generalize in Section 4 the results obtained for k-SAT to a broad family
of constraint satisfaction problems, including hypergraph 2-colorability, NAE k-SAT and
k-XOR-SAT.

The rest of the paper is organized as follows. Section 2 discusses related work on the
subject. Sections 3 and 4 state our main results for –respectively– k-satisfiability and a
general class of constraint satisfaction problems. Proofs are presented in Sections 5 and 6.

2. RELATED WORK

From an algorithmic point of view, the problem of computing the number of solutions of a
k-satisfiability formula is well known to be #P-complete for any k ≥ 2; although 2-SAT is
not NP-complete, #2-SAT (the problem of counting solutions for 2-SAT formulas) is #P-
complete [28]. Even worse, there is no fully polynomial randomized approximation scheme
(FPRAS) to approximate the number of solutions unless NP = RP [9].

Estimating the typical number of solutions for random satisfiability formulae has not been
so far a major object of study within discrete mathematics. The only result in this direction
is the paper [26] which computes the limit of (1/n) log Z(β; F(n, α)) for all β < ∞ and
all α ≤ αpl(k) = (2k−1 log k)(1 + ok(1)). In the case of random 2-SAT, an unpublished
result of A. Sharell cited in [11] claims a partial concentration result, which shows that the
logarithm of the number of solutions concentrates around its expectation. However, it is
mentioned in [11] that Sharell’s result does not provide any information on the convergence
of this expectation as n → ∞.

On the other hand, as mentioned in the introduction, computing the log-partition function
is the first step in all statistical mechanics calculations. It is worth mentioning that statistical
mechanics analysis also lead to an intriguing picture of the geometry of the set of solutions
of a random satisfiability instance [18, 21, 22]. While only a small subset of these results
have been estabilished rigorously, they provided guidance and stimulus for exciting rigorous
developments [2, 3].

Random Structures and Algorithms DOI 10.1002/rsa
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A key tool in our analysis is the interpolation method first introduced in [16] for the
Sherrington-Kirkpatrick model. This is a model for a spin-glass (i.e. a spin model with
random couplings) on a complete graph. It was subsequently shown in [12, 13, 27] that the
same ideas can be generalized to models on random sparse graphs. In particular, these papers
prove2 the existence of the limit of (1/n)E log Z(β; F(n, α)) for any β < ∞. Denoting by
U∗(F) ≡ minx U(x; F) the minimum number of unsatisfied clauses in the formula F, this
also implies the existence of the limit limn→∞ U∗(F(n, α))/n by a standard argument.

The generalization to sparse random graphs opened the way to applications within coding
theory [19,24]. While the present paper was in preparation, applications of the interpolation
method to other combinatorial models were developed independently by Bayati, Gamarnik
and Tetali [6]. The two developments were concurrent.

Let us however stress that none of these papers deals with the key challenge posed by
constraint satisfaction problems, namely that the number of solutions Z(F(n, α)) vanishes
with positive probability and hence (1/n)E log Z(F(n, α)) = −∞. For instance in the case
of k-satisfiability, for any positive β < ∞, we have 2n ≥ Z(β; F(n, α)) ≥ 2n exp{−β(nα)}
(because 0 ≤ U(x; F) ≤ nα) and therefore

log 2 ≥ (1/n)E log Z(β; F(n, α)) ≥ log 2 − βα . (2.1)

Hence superadditivity can be proved directly for the log-partition function, which simplifies
the problem. Further, concentration on the exponential scale is immediate as well in those
cases via bounded martingale methods. Consider again as an example the partition function
(1.1). For the sake of simplicity, it is useful to consider the case in which a fixed number m
of clauses is drawn uniformly at random, and call F(n, m) the corresponding formula. It is
then sufficient to bound the martingale differences, which follows from bounding the effect
of adding one single clause. A simple calculation yields

log Z(β; F(n, m + 1)) − log Z(β; F(n, m))

= log{1 − (1 − e−β)Pm,β((m + 1)-th clause is not satisfied)} ,

where Pm,β denotes the probability distribution over truth assignments x ∈ {+1, −1}n

given by Pm,β(x) ∝ exp{−βU(x; F(n, m))}. From this it follows immediately that
| log Z(β; F(n, m + 1)) − log Z(β; F(n, m))| ≤ β, hence the concentration of log Z(β, F).
In our case, these expansions do not apply since β = ∞.

The fact that the difference | log Z(F(n, m + 1)) − log Z(F(n, m))| is unbounded is inti-
mately related to the structure of the set of solutions of F(n, m). Consider an extreme case.
If a fraction of all the variables takes the same value in all the solutions, then this quantity
can be infinite. Indeed, the new clause can constrain k variables of this type, and therefore
be violated by all solutions of F(n, m). This leads to Z(F(n, m + 1) = 0. This phenomenon
is only possible at the threshold for that formula. Notice however that a much more frequent
situation can lead to unbounded differences | log Z(F(n, m +1))− log Z(F(n, m))|. Indeed,
it is sufficient that the value of some variables is very biased when a solution is drawn
uniformly at random. This phenomenon occurs at any positive α. Applying the martingale
method would require controlling a priori the biases of all the variables, a task that is likely
to be quite challenging.

2These paper consider the case of k even, but it was noticed early on by Elitza Maneva that the proof applies
verbatimly to k odd as well.

Random Structures and Algorithms DOI 10.1002/rsa



SOLUTIONS OF RANDOM SATISFIABILITY FORMULAS 367

3. RANDOM K -SAT

Definition 1. A k-clause is a disjunction of k Boolean variables or their negations.
Let Ck(n) be the set of all N = (n

k

)
2k possible k-clauses on n Boolean variables. We denote

by Fk(n, α) a random formula which is formed by selecting independently each element
in Ck(n) with probability pk(n, α) = αn/N , and by taking the conjunction of the selected
clauses.

The number of clauses in the above model is a binomial random variable, which con-
centrates exponentially fast around its expectation αn. Some of our computations prove
to be simpler within slightly different models, whereby the number of clauses is either
Poisson or deterministic with the same mean αn. Standard monotonicity arguments can be
used to show the equivalence of these models for our purposes and we will hence switch
freely between these different models. Unless specified, the value of k will remain fixed
throughout the paper and the k subscript is dropped.

Definition 2. We denote by Z(F) the number of satisfying assignments (solutions) of
a Boolean formula F and by

Pn(α, φ) := P{Z(F(n, α)) < 2nφ} ,

the probability that a random formula has fewer than 2nφ satisfying assignments.

Definition 3. We define

α∗ := sup{ α : Pn(α, 0) = O(1/(log n)1+δ), for some fixed δ > 0} .

Note that Pn(α, 0) = P{Z(F(n, α)) = 0} is the probability that F(n, α) is unsatisfiable
(UNSAT).

Remark 1. We expect the forthcoming results to hold when defining α∗ to be sup{α :∑
n Pn(α, 0)/n < ∞}. However, the above definition simplifies the proofs without much

loss of generality.

Remark 2. For any k ≥ 2, we have α∗ ≥ 1. Indeed, considering the case of 2-SAT,
[7, 10, 15] show that, for α < 1, P{Z(F2(n, α)) = 0} = O(1/n) (cf. the last equality of
the proof of Theorem 2.7 page 475 in [15]). Since for any k ≥ 3, P{Z(Fk(n, α)) = 0} ≤
P{Z(F2(n, α)) = 0}, we conclude α∗ ≥ 1 for k ≥ 3 as well.

Unfortunately, the bounds on the satisfiability threshold based on the second moment
method [4] do not imply any quantitative estimate on the probability that Fk(n, α) is UNSAT.
It might be possible to prove such an estimate by a careful analysis of specific solution
algorithms. In particular, a careful analysis of the recent algorithm [8] might lead to a proof
of α∗ ≥ 2k(1 − δ) log k/k, for k large enough (Coja-Oghlan, personal communication). We
expect that α∗ does coincide with the satisfiability threshold.

Our main result estabilishes the conjecture (1.2) for α < α∗, apart possibly for countably
many values of α.

Random Structures and Algorithms DOI 10.1002/rsa
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Theorem 1. For every k ≥ 2, there exist a countable set C and a function φs : [0, α∗) →
[0, 1] where α∗ ≡ sup{ α : P{Z(Fk(n, α)) = 0} = O(1/(log n)1+δ), for some fixed δ > 0}
such that for every α ∈ [0, α∗) \ C and every ε > 0

lim
n→∞ P{Z(Fk(n, α)) < 2n(φs(α)−ε)} = 0,

lim
n→∞ P{Z(Fk(n, α)) < 2n(φs(α)+ε)} = 1.

The function φs is decreasing with φs(0) = 1 and its definition is given in Theorem 3
below. Hereafter, we will use the lighter notation introduced in Definition 2.

Remark 2 directly gives the following corollary.

Corollary 1. For k = 2, i.e., for random 2-SAT, there exists a function φs : [0, 1) → [0, 1]
such that for almost every α in the satisfiable phase [0, 1) and every ε > 0

lim
n→∞ Pn(α, φs(α) − ε) = 0,

lim
n→∞ Pn(α, φs(α) + ε) = 1.

Theorem 1 is proved in Section 5 as a result of the following sharp threshold result, with
a n-independent threshold.

Theorem 2. For every k ≥ 2, there exists a function φs : [0, α∗) → [0, 1] and a countable
set D such that for every φ ∈ φs([0, α∗)) \ D, there exists αs(φ) such that for every ε > 0

lim
n→∞ Pn(αs(φ) − ε, φ) = 0,

lim
n→∞ Pn(αs(φ) + ε, φ) = 1 .

This theorem, proved in Section 5, is based on the subsequent results. First, the following
sharp threshold result with a n-dependent threshold, which follows from Friedgut’s theorem.

Lemma 1. For every k ≥ 2, for every φ ∈ [0, 1), there exists {αn(φ)}n∈Z+ such that for
every ε > 0

lim
n→∞ Pn(αn(φ) − ε, φ) = 0,

lim
n→∞ Pn(αn(φ) + ε, φ) = 1 .

This lemma is proved in [3, Lemma 13]. An alternative proof is also available in [1].
Lemma 1 says that for any fixed φ ∈ [0, 1), the property {Z(F(n, α)) < 2nφ} has a sharp
threshold in α. As for the φ = 0 case, Lemma 1 is proved by showing that the monotone
property {Z(F(n, α)) < 2nφ} cannot be approximated by a “local property” in the sense of
Theorem 5.2 in [14], and hence must have a sharp threshold.

In order to prove Theorem 2 using Lemma 1, the key result is the following convergence
theorem.

Theorem 3. For every k ≥ 2, for every α < α∗, the sequence

ψn(α) := 1

n
E[log Z(F(n, α))|Z(F(n, α)) ≥ 1]

converges to a limit φs(α).

Random Structures and Algorithms DOI 10.1002/rsa
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To prove Theorem 3, which is done in Section 5, we first prove the following pseudo
superadditivity property.

Lemma 2. For every k ≥ 2, for every α ≥ 0, let Zn := Z(F(n, α)), we then have for any
n1, n2 ≥ 1

E log(1 + Zn1+n2) ≥ E log(1 + Zn1Zn2) ,

where on the right hand side Zn1 and Zn2 are understood to be the numbers of solutions of
two independent random formulae on respectively n1 and n2 variables.

Lemma 2 is a specific case of Lemma 6 presented in the next section and proved in
Section 6. It is based on the interpolation technique by Guerra and Toninelli [16], and
Franz-Leone [12]. However, while in those cases one obtains superadditivity of E log Z , in
the present case we get a weaker result because of the “1+” term. This problem comes from
the fact that Z = 0 with positive probability, and therefore E log Z is not defined. For α

in the satisfiable phase Zn is “typically” large, and one would expect that the effect of the
“1+” term is negligible so that the pseudo superadditivity property can be approximated by
a superadditivity property and hence imply a convergence result. This is made rigorous by
requiring a decay condition on the probability of being UNSAT and using a technical lemma
on the convergence of “approximately” superadditive sequences (Lemma 7 in Section 5).

4. A GENERAL FAMILY OF RANDOM CSP’S

In this section, we extend the results of the previous sections to a general family of random
constraint satisfaction problems (CSP) over binary variables. An ensemble in this family is
defined as follows (the definition is analogous to the one in [25]).

Definition 4. Let μ be a distribution over Boolean functions ϕ : {−1, +1}k → {0, 1},
which we call the clause type distribution. Let n be an integer and α ∈ R+. A random formula
from the ensemble Fk(n, α, μ) is drawn as follows. For each a ∈ {1, . . . , m = �αn} the a-th
clause is drawn independently from previous ones. For clause a, k indices i1(a), . . . , ik(a)

are drawn independently and uniformly at random in [n] (i.e., indices are picked with
replacement). Further ϕa : {−1, +1}k → {0, 1} is drawn under the distribution μ, producing
the clause ϕa(xi1(a), . . . , xik (a)).

An assignment x ∈ {+1, −1}n is said to satisfy the formula Fk(n, α, μ) if, for each
a ∈ [m], we have ϕa(xi1(a), . . . , xik (a)) = 1.

As in previous section, we will often drop the subscripts k in the following, Z(F) denotes
the number of satisfying assignments of formula F and we define

Pn(α, φ, μ) := P{Z(F(n, α, μ)) < 2nφ} .

Definition 5. Note that Pn(α, 0, μ) = P{Z(F(n, α, μ)) = 0} is the probability that
F(n, α, μ) is UNSAT. We define

α∗(μ) := sup{α : Pn(α, 0, μ) = O(1/(log n)1+δ) for some fixed δ > 0} .

Random Structures and Algorithms DOI 10.1002/rsa
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Definition 6. For ϕ : {−1, 1}k → {0, 1} and θ ∈ [−1, 1], let

‖ϕ‖2
θ ≡

∑
x∈{−1,1}k

ϕ(x)2vθ (x) and ‖ϕ‖ ≡ ‖ϕ‖0

where

vθ (x) ≡
k∏

i=1

1 + xiθ

2
.

Note that ‖ϕ‖2
θ is the probability that ϕ = 1 under the measure vθ , which assigns

probabilities (1 − θ)/2 and (1 + θ)/2 to −1 and +1 respectively.
Our CSP ensemble is specified by the distribution μ over clause types, we now describe

two set of hypotheses on this distribution.

H1. (a) Dominance of balanced assignments. For every θ ∈ [−1, 1], Eϕ log ‖ϕ‖θ ≤
Eϕ log ‖ϕ‖, with equality only if θ = 0. This condition implies that, in a typical ran-
dom instance, most solutions have almost as many 1’s as −1’s.
(b) Unsatisfiability of uniform assignments. For every s ∈ {−1, +1}, there is at least one
clause ϕ with μ(ϕ) > 0 such that ϕ(s, . . . , s) = 0.
(c) Balance property. The distribution μ is supported on Boolean functions such that
ϕ(x1, . . . , xk) = ϕ(−x1, . . . , −xk). This condition implies that the odd Fourier coefficients
of ϕ are zero.

Hypothesis (c) may not be necessary to establish the forthcoming results but is kept for
consistency with [25].

H2. Convexity of �l . Let M1({−1, 1}l) be the set of probability measures on {−1, 1}l and
for a given ν ∈ M1({−1, 1}l), let {Z (1)

i , . . . , Z (l)
i }k

i=1 be i.i.d. under ν. We say that μ satisfies
H2 if for a random clause type ϕ drawn under μ, the mapping

�l : M1({−1, 1}l) → R

defined by

�l(ν) := EϕP{ϕ(Z (r)) = 0, ∀1 ≤ r ≤ l} (4.1)

is convex for any l ≥ 1.
Notice that conditions H1.(a), H1.(b) and H1.(c) coincide respectively with conditions 4,

5 and 2 in [25]. Further, hypothesis H1.(a) and H1.(b) are satisfied by a number of interesting
random CSP ensembles. Such examples include

• k-NAE-SAT, where ϕ(x) = ϕs(x) = 1(x /∈ {−s, s}) and μ(ϕs) = 2−k for each
s ∈ {−1, 1}k;

• Hypergraph 2-coloring, where ϕ(x) = 1(x /∈ {−1; +1}) is the unique clause in the
support of μ, with −1 = (−1, . . . , −1) and +1 = (+1, . . . , +1);

• k-XOR-SAT, where ϕ(x) = ϕs(x) = 1(
∏k

i=1 xi = s) and μ(ϕs) = 1/2 for each
s ∈ {−1, 1};

• k-SAT, where ϕ(x) = ϕs(x) = 1(x �= s) and μ(ϕs) = 2−k for each s ∈ {−1, 1}k .

Random Structures and Algorithms DOI 10.1002/rsa
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For the first three examples above, it is verified in [25] that hypotheses H1.(a) and H1.(b)
are satisfied. Let us verify that this is also the case for k-SAT. Note that

Es‖ϕ‖2
θ = 1 − Es

k∏
i=1

1 − siθ

2
= 1 − 2−k = Es‖ϕ‖2,

hence

Es log ‖ϕ‖2
θ ≤ log Es‖ϕ‖2

θ = log Es‖ϕ‖2 = Es log ‖ϕ‖2.

This verifies condition H1.(a). Condition H1.(b) holds trivially. Condition H1.(c) holds for
the first three CSP ensembles above as shown in [25], but H1.(c) does not hold for random
k-SAT.

Hypothesis H2 is not straightforward to check, and it is not investigated in [25]. The next
definition provides a family of clause type distributions satisfying it.

Definition 7 (k-factorizing distributions). A clause type distribution μ is said to k-
factorize if it has the following structure. There exists an integer J ≥ 1, such that any
ϕ ∈ supp(μ) is of the form

ϕ(x) = 1(x /∈ {s(1), . . . , s(J)}), (4.2)

for some s(1), . . . , s(J) ∈ {−1, 1}k , and

μ(ϕ) =
k∏

i=1

μ̄(s(1)

i , . . . , s(J)

i ) (4.3)

where μ̄ is a probability distribution on {−1, 1}J . In other words, the vectors (s(1)

i , . . . , s(J)

i ),
for i = 1, . . . , k, can have correlated components but are mutually i.i.d. with distribution μ̄.

This definition can be generalized by letting J itself to be random, but we stick to the
above case for the sake of simplicity.

The class of k-factorizing clause type distributions includes, among other problems:

• k-NAE-SAT: ϕ(x) = 1(x /∈ {−s, s}) for s ∈ {−1, +1}k uniformly random. This is
k-factorizing with μ̄(−1, 1) = μ̄(1, −1) = 1/2;

• Hypergraph 2-coloring: ϕ(x) = 1(x /∈ {−1, +1}) with μ̄(−1, 1) = 1;
• k-SAT: ϕ(x) = 1(x /∈ {s}) with μ̄(1) = μ̄(−1) = 1/2.

Condition H2 is satisfied by k-factorizing distributions as stated formally below.

Lemma 3. If the clause type distribution k-factorizes, then the mapping �l is convex for
any l ≥ 1.

Note that k-XOR-SAT does not belong to this class of distributions, nevertheless,
condition H2 holds in this case as well when k is even, as stated below.

Lemma 4. The mapping �l is convex for any l ≥ 1 for k-XOR-SAT with k even.
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The proofs of Lemma 3 and Lemma 4 are differed to Section 6. We now state the
equivalent of Theorem 1 for this general class of CSPs.

Theorem 4. Assume μ to satisfy conditions H1 and H2. Then there exists a countable set
C and a function α �→ φs(α) such that, for every α ∈ [0, α∗(μ)) \ C and every ε > 0,

lim
n→∞ Pn(α, φs(α) − ε, μ) = 0,

lim
n→∞ Pn(α, φs(α) + ε, μ) = 1.

Remark 3. By the same argument in Remark 2, we have α∗ ≥ 1 for k-NAE-SAT. In fact,
for each NAE-SAT formula, we can construct an associated SAT formula by forbidding
only one of the two assignments s and −s in each clause. Hence, the UNSAT probability
for k-NAE-SAT is upper bounded by the UNSAT probability in k-SAT at the same value
of α.

Remark 4. It is proved in [30] that k-hypergraph 2-coloring is satisfiable with probablity
1 − O(n−1/2) provided α ≤ 2k/(50k) (cf. Theorem 1, and Claim 1). It follows that in this
case α∗ ≥ 2k/(50k).

As in previous section, the proof of this theorem relies on the following two results.

Lemma 5. For any μ satisfying H1 and φ ∈ [0, 1), there exists {αn(φ)}n∈Z+ such that for
every ε > 0,

lim
n→∞ Pn(αn(φ) − ε, φ, μ) = 0,

lim
n→∞ Pn(αn(φ) + ε, φ, μ) = 1.

This lemma is proved in [25, Lemma C.2].

Theorem 5. Let

ψn(α) := 1

n
E[log Z(F(n, α, μ))|Z(F(n, α, μ)) ≥ 1].

For any μ satisfying H2 and for any α < α∗(μ), ψn(α) converges to a limit φs(α).

The proof of this theorem is based on the following pseudo superadditivity lemma.

Lemma 6. For any α and μ satisfying H2, let Zn := Z(F(n, α, μ)). For any n1, n2 ≥ 1,

E log(1 + Zn1+n2) ≥ E log(1 + Zn1Zn2) ,

where on the right hand side Zn1 and Zn2 are understood to be the numbers of solutions of
two independent random formulas on respectively n1 and n2 variables.

The proof of Lemma 6 is differed to Section 6. The proofs of Theorem 5 and Theorem 4
follow the same analytical arguments as for the k-SAT case and hence we omit the details
here and refer to the proofs of Theorem 3 and Theorem 1.
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5. PROOFS OF THEOREM 1, THEOREM 2 AND THEOREM 3

We first need the following technical lemma.

Lemma 7. Let (n) = O(n/(log n)1+δ) for some δ > 0, and t(n) = o(n). Let f ( · ) be
positive, such that f (n)/n is bounded above and

f (n1 + n2) + (n1 + n2) ≥ f (n1) + f (n2), ∀n1, n2 ≥ t(n1 + n2).

Then f (n)/n converges.

Remark 5. We expect this lemma to hold if (n) is such that
∑

n
(n)

n2 < ∞.

Proof of Lemma 7. Let ε > 0. Since f (n)/n is bounded above, we have S :=
lim supn f (n)/n < ∞. Let n0 be large enough such that f (n)/n < S + ε for any n ≥ n0. Let
r be an integer (to be chosen at our convenience but to be fixed independently of n) and let
γ (n) be such that γ (n) ≥ t(n) and γ (n) = o(n). Define

m(n) = inf{m′ such that m′ = r2i for some i ∈ Z+ and m′ ≥ γ (n)}
and note that γ (n) ≤ m(n) ≤ max(2γ (n), r). For any n, we have

n = �n/m(n) − 1m(n) + q(n),

where q(n) ∈ [m(n), 2m(n)], with �n/m(n) − 1 ≥ 0 for n large enough. Hence, using the
property of f , we have

f (n) ≥ �n/m(n) − 1f (m(n)) + f (q(n)) −
�n/m(n)−1∑

i=1

(q(n) + im(n)),

and since f is positive,

f (n)

n
≥ m(n)

n
�n/m(n) − 1 f (m(n))

m(n)
− 1

n

�n/m(n)−1∑
i=1

(q(n) + im(n)). (5.1)

Since γ (n) = o(n), for n large enough, we have

m(n)

n
�n/m(n) − 1 > 1 − ε.

We now show that for n large enough, we also have f (m(n))

m(n)
> S − ε. First, note that we can

take r large enough such that r2i/2 ≥ γ (r2i) for all i ≥ 0, since γ (n) = o(n). Hence, using
the property of f , we have

f (r2i+1)

r2i+1
≥ f (r2i)

r2i
− 1

r2i+1
(r2i+1)

and by recursively using the last inequality

f (r2i)

r2i
≥ f (r)

r
−

i∑
j=1

1

r2j
(r2j). (5.2)
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Since we can pick r at our convenience, note that if r is a power of 2,

i∑
j=1

1

r2j
(r2j) =

log2 r+i∑
j=log2 r+1

1

2j
(2j),

which is, when r increases, tending to zero uniformly in i, provided that

∞∑
j=1

1

2j
(2j) < ∞.

As previous condition follows from our hypothesis on , and since we can always take r
large enough to ensure that f (r)/r > S − ε, we can take r large enough such that, from
(5.2), the following holds for any i

f (r2i)

r2i
≥ S − ε

and since m(n) is of the form r2i, for any n

f (m(n))

m(n)
≥ S − ε.

Finally, we need to show that the last term in (5.1) is vanishing, i.e., that

1

n

�n/m(n)−1∑
i=1

(q(n) + im(n))
n→∞−→ 0.

For this, we pick γ (n) to be large enough. For  = O(n/(log n)1+δ), we have3

1

n

�n/m(n)−1∑
i=1

(q(n) + im(n)) ≤ 1

n

n

m(n)
(n), (5.3)

and since m(n) ≥ γ (n), if γ (n) = O(n/(log n)1+ν) with ν > δ, we conclude the proof.

Proof of Theorem 3. The goal of the proof is to show that ψn(α) (or a related function)
satisfies the hypothesis of Lemma 7.

Let Fn = F(n, α). For an event A, we use the standard notation E[X, A] ≡ E[X1A].
Note that

E log(1 + Z(Fn)) = E[log(1 + Z(Fn)), Z(Fn) ≥ 1]
and

E[log(1 + Z(Fn)), Z(Fn) ≥ 1]
= E[log Z(Fn), Z(Fn) ≥ 1] + E[log(1 + Z(Fn)

−1), Z(Fn) ≥ 1].

3In greater generality, one has to pick γ (n) such that (n)/γ (n) = o(1).
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Let c > 0, we have

E[log(1 + Z(Fn)
−1), Z(Fn) ≥ 1] ≤ E[Z(Fn)

−1, Z(Fn) ≥ 1]
≤ E[Z(Fn)

−1, Z(Fn) ≥ 1, ZFV ≥ cn] + P{ZFV < cn, Z(Fn) ≥ 1}
where ZFV is the number of free variables in Fn (i.e. the number of variables that do not
appear in any clause in Fn). Therefore, E[Z(Fn)

−1, Z(Fn) ≥ 1, ZFV ≥ cn] ≤ 2−cn. We have
P{ZFV < cn, Z(Fn) ≥ 1} ≤ P{ZFV < cn}. Note that ZFV is distributed as the number of
empty bins when throwing nkα balls in n bins. Its expectation is E{ZFV } = ne−kα(1+o(1)).
By simple martingale bounds, for any c < e−kα , there exists c2 > 0 such that

P{ZFV < cn} ≤ 2−c2n.

Hence there exists ξ > 0 such that

τ(n) := E[log(1 + Z(Fn)
−1), Z(Fn) ≥ 1] = O(2−ξn). (5.4)

On the other hand, we have (denoting by Fn1 , Fn2 two independent formulas and letting
n = n1 + n2)

E log(1 + Z(Fn1)Z(Fn2)) = E[log(1 + Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1]
and

E[log(1 + Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1] ≥ E[log(Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1].
Hence, using Lemma 2, we get

E[log Z(Fn), Z(Fn) ≥ 1] + τ(n) ≥ E[log(Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1]
or equivalently

g(n) + τ(n) ≥ g(n1) + g(n2) − g(n1)ε(n2) − g(n2)ε(n1), ∀n1, n2 ≥ k (5.5)

where

g(n) = E[log Z(Fn), Z(Fn) ≥ 1],
ε(n) = P{Z(Fn) = 0}.

Note that 0 ≤ g(n) ≤ n. Therefore (5.5) implies

g(n) + τ(n) ≥ g(n1) + g(n2) − n1ε(n2) − n2ε(n1), ∀n1, n2 ≥ k. (5.6)

Since α < α∗, we have that ε(n) = O(1/(log n)1+δ), for some δ > 0. We then restrict
ourself to

n1, n2 ≥ t(n) := n/(log n)η, with η = ε/3.

This implies that n1−η ≤ n2 and (1 − η) log n ≤ log n2. So, for n1, n2 large enough, we have

n1 ≤ n2(log n2)
2η (5.7)

n2 ≤ n1(log n1)
2η. (5.8)
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Going back to (5.6), we get

g(n) + τ(n) ≥ g(n1) + g(n2) − n1(log n1)
2ηε(n1) − n2(log n2)

2ηε(n2), ∀n1, n2 ≥ n/(log n)η

or equivalently

f (n) + (n) ≥ f (n1) + f (n2), ∀n1, n2 ≥ t(n) (5.9)

where

f (n) = g(n) − n(log n)2ηε(n)

(n) = n(log n)2ηε(n) + τ(n)

t(n) = n/(log n)η.

Since ε − 2η = ε/3 > 0, we have

(n) ≤ O

(
n

(log n)1+ε/3

)
,

and by Lemma 7, f (n)/n converges, hence g(n)/n converges too.

Proof of Theorem 2. From Theorem 3, for every α < α∗, ψn(α) = 1
n E[log Z(F(n, α, μ))

|Z(F(n, α, μ)) ≥ 1] converges to a limit φs(α). Note that for α1, α2 ∈ [0, α∗) with α1 ≥ α2,
it must be (e.g., by a standard coupling argument) that ψn(α1) ≤ ψ(α2). Hence φs( · ) is
a non-increasing function on [0, α∗) and from Froda’s theorem it must have a countable
number of plateaus and discontinuities. Let α0 ∈ [0, α∗) and denote φ0 = φs(α0). If αn(φ0)

does not converge, define

α0 = lim inf
n→∞ αn(φ0),

ᾱ0 = lim sup
n→∞

αn(φ0),

and pick a sequence {ni}∞
i=1 such that ni ↗ ∞ and

lim
i→∞

αni(φ0) = α0,

and a sequence {mi}∞
i=1 such that mi ↗ ∞ and

lim
i→∞

αmi(φ0) = ᾱ0.

Then, for any α ∈ (α0, ᾱ0), there exists ε > 0 such that

Pmi(α, φ0) ≤ Pmi(αmi(φ0) − ε, φ0)
i↗∞→ 0 (5.10)

and

Pni(α, φ0) ≥ Pni(αni(φ0) + ε, φ0)
i↗∞→ 1 (5.11)

Moreover, if α < α∗,

Pni(α, φ0) = P

{
1

ni
log Z(F(ni, α)) < φ0|Z(F(ni, α)) ≥ 1

}
+ o(1),
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hence

lim
i→∞

E

[
1

ni
log Z(F(ni, α))|Z(F(ni, α)) ≥ 1

]
≤ φ0,

i.e., since ψn(α) converges to φs(α) from Theorem 3,

φs(α) ≤ φ0.

Similarly, we have

lim
i→∞

E

[
1

mi
log Z(F(mi, α))|Z(F(mi, α)) ≥ 1

]
≥ φ0,

and

φs(α) ≥ φ0.

Therefore, φ0 is a plateau of φs(·), and since φs(·) has countably many plateaus, there are
countably many φ0 ∈ φs([0, α∗)), for which αn(φ0) does not converge.

Proof of Theorem 1. From Theorem 3, there exists a function φs(·), such that for any
α ∈ [0, α∗), we have φs(α) = limn→∞ ψn(α), where ψn(·) is defined in Theorem 3. Let
I := φs([0, α∗)). From Theorem 2, there exists a countable set C ⊆ I and a function
A : I\C → [0, α∗) such that for any φ ∈ I\C, we can define the limit A(φ) = limn→∞ αn(φ).
Note that for any φ ∈ I \ C, Lemma 1 implies φs(A(φ)) = φ.

Now, for any α ∈ [0, α∗) which is not a discontinuity point of φs (this holds except
on a countable subset of [0, α∗)), and for any ε > 0, there exists ε′ < ε such that φ∗ :=
φs(α) − ε′ ∈ I \ C and hence αn(φ∗) tends to a limit A∗. Note that A∗ > α, since α is not a
discontinuity point of φs and since φs(A∗) = φ∗. Therefore, there exists δ > 0 such that

Pn(α, φs(α) − ε) ≤ Pn(α, φ∗) ≤ Pn(αn(φ∗) − δ, φ∗)

and we conclude by Lemma 1 that Pn(α, φs(α) − ε) → 0 when n → ∞. With a similar
argument, we conclude that Pn(α, φs(α) + ε) → 1 when n → ∞.

6. PROOFS OF LEMMA 3, LEMMA 4 AND LEMMA 6

Proof of Lemma 6. In this proof, we keep α fixed and split the n variables into two sets of
n1 and n2 = n − n1 variables, such as {1, . . . , n1} and {n1 + 1, . . . , n}. For convenience, we
now work with the interpolated Poisson model. We construct a random Boolean formula as
follows: we first draw independently the integers M, M1 and M2 under Poisson distributions
of parameters αnt, αn1(1 − t) and αn2(1 − t) respectively. We then draw independently
M clauses from the full system, by picking for each clause the indices of the variables
appearing in it independently and uniformly at random within the set of n variables and
by picking ϕ under μ. We also draw independently Mi clauses from each sub-systems,
by picking for each clause the indices of the variables appearing in it independently and
uniformly at random within the set of ni variables and by picking ϕi under μ. Finally, we
take the conjunction of all clauses to create the formula Fn(t).
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Note that the claim of the lemma is equivalent to

E log(1 + Z(Fn(1))) ≥ E log(1 + Z(Fn(0))), (6.1)

which is proved by showing that

∂

∂t
E log(1 + Z(Fn(t))) ≥ 0.

A straightforward calculation yields

∂

∂t

1

n
E log(1 + Z(Fn(t)))

= α
[
Eϕ,IE log(1 + Z(Fn(t) ∧ ϕ(xI))) − E log(1 + Z(Fn(t)))

]
− α

n1

n

[
Eϕ1,I1E log(1 + Z(Fn(t) ∧ ϕ1(xI1))) − E log(1 + Z(Fn(t)))

]
− α

n2

n

[
Eϕ2,I2E log(1 + Z(Fn(t) ∧ ϕ2(xI2))) − E log(1 + Z(Fn(t)))

]
,

where ϕ, ϕ1, ϕ2
iid∼μ, I ∼ Uk , I1 ∼ Uk

1 , I2 ∼ Uk
2 , all independent, and where Uk , respectively

Uk
i , denotes the k-th product measure of U, respectively Ui (where U, resp. Ui, denotes

the uniform measure on the n variables, resp. ni variables). Hence, xI = (xi1 , . . . , xik ) with
i1, . . . , ik i.i.d. uniform over the n variables.

We then have

Eϕ,IE log(1 + Z(Fn(t) ∧ ϕ(xI))) − E log(1 + Z(Fn(t))) = Eϕ,IE log〈ϕ(XI)〉
where X is uniformly drawn within the augmented solution space S(Fn∗(t)) = S(Fn(t))∪{∗},
where ∗ is an assignment which returns true on any Boolean functions, and 〈 · 〉 denotes the
expectation with respect to X . Note that

Eϕ,IE log〈ϕ(XI)〉 = −Eϕ,IE

∞∑
l=1

〈ϕ̃(XI)〉l

l
. (6.2)

where ϕ̃ = 1 − ϕ. We now introduce the “replicas” X (r), which are i.i.d. copies of X. We
then have

〈ϕ̃(XI)〉l =
〈

l∏
r=1

ϕ̃(X (r)
I )

〉
, ∀l ≥ 1.

We are done if we can show that for any realization of the X (r)’s and for any l ≥ 1,

Eϕ,I

l∏
r=1

ϕ̃(X (r)
I ) − n1

n
Eϕ,I1

l∏
r=1

ϕ̃(X (r)
I1

) − n2

n
Eϕ,I2

l∏
r=1

ϕ̃(X (r)
I2

) ≤ 0. (6.3)

Note that

Eϕ,I

l∏
r=1

ϕ̃(X (r)
I ) = EϕEP̂

l∏
r=1

ϕ̃(ξ (r)) (6.4)
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where ξ (1), . . . , ξ (l) iid∼P̂ and where P̂ is the empirical distribution of X (1)

I , . . . , X (l)
I , i.e. the

distribution on {−1, 1}kl given by

P̂(x(1)

1 , . . . , x(1)

k , . . . , x(l)
1 , . . . , x(l)

k ) =
k∏

i=1

P̄(x(1)

i , . . . , x(l)
i )

with

P̄(x(1)

i , . . . , x(l)
i ) = #{i ∈ {1, . . . , n} : (X (1)

i , . . . , X (l)
i ) = (x(1)

i , . . . , x(l)
i )}

n

and similarly

Eϕ,Is

l∏
r=1

ϕ̃(X (r)
Ii

) = EϕEP̂s

l∏
r=1

ϕ̃(ξ (r)
s ), s = 1, 2 (6.5)

where ξ (1)
s , . . . , ξ (l)

s

iid∼P̂s and where P̂s is the empirical distribution of X (1)

Is , . . . , X (l)
Is , i.e. the

distribution on {−1, 1}kl given by

P̂s(x
(1)

1 , . . . , x(1)

k , . . . , x(l)
1 , . . . , x(l)

k ) =
k∏

i=1

P̄s(x
(1)

i , . . . , x(l)
i ), s = 1, 2

with

P̄1(x
(1)

i , . . . , x(l)
i ) = #{i ∈ {1, . . . , n1} : (X (1)

i , . . . , X (l)
i ) = (x(1)

i , . . . , x(l)
i )}

n1
,

P̄2(x
(1)

i , . . . , x(l)
i ) = #{i ∈ {n1 + 1, . . . , n} : (X (1)

i , . . . , X (l)
i ) = (x(1)

i , . . . , x(l)
i )}

n2
.

Since

�l(ν) := EϕP{ϕ(Z (r)) = 0, ∀1 ≤ r ≤ l} = EϕEZ(r)

l∏
r=1

(1 − ϕ(Z (r))),

where Z (r) are Boolean random vectors of dimension k such that Zi = (Z (1)

i , . . . , Z (l)
i ),

i = 1, . . . , k, are i.i.d. under ν, we have that (6.3) is equivalent to

�l(P̄) − n1

n
�l(P̄1) − n2

n
�l(P̄2) ≤ 0,

which holds by convexity of �l (hypothesis H2), since

P̄ = n1

n
P̄1 + n2

n
P̄2.
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Proof of Lemma 3. We have

�l(ν) = EϕP{ϕ(Z (r)) = 0, ∀1 ≤ r ≤ l}

= Es(j)

∑
z(1) ,...,z(l)∈{s(1) ,...,s(J)}

k∏
i=1

ν((z(1))i, . . . , (z(l))i)

=
∑

i1,...,il∈{1,...,J}
[E

s
(j)
1

ν(s(i1)

1 , . . . , s
(il)
1 )]k

and �l is convex for any l ≥ 1.

Proof of Lemma 4. We need to check the convexity of

ν �→ EϕP{ϕ(Z (r)) = 0, ∀1 ≤ r ≤ l} (6.6)

where Z (r) are Boolean random vectors of dimension k such that Zi = (Z (1)

i , . . . , Z (l)
i ),

i = 1, . . . , k, are i.i.d. with distribution ν,

ϕs(x) = 1

(
k∏

i=1

xi = s

)

and

μ(ϕ1) = μ(ϕ−1) = 1/2.

Note that

P{ϕ(Z (r)) = 0, ∀1 ≤ r ≤ l} = P

{
k∏

i=1

Zi = −sl

}
(6.7)

where −sl denotes the vector (−s, . . . , −s) with l components and where
∏k

i=1 Zi denotes
the component-wise product of the vectors Zi. Since the Zi are i.i.d. under ν and valued
in {−1, 1}, and since we are interested in their product, we now work with their Fourier
transform. For any Q ⊆ {1, . . . , l}, let

f (Q) = fZ1(Q) = E

∏
r∈Q

Z (r)
1 .

Moreover

P{Z1 = 1l} =
∑

Q∈2[l]
f (Q)

and

P{Z1 = −1l} =
∑

Q∈2[l]
(−1)|Q|f (Q).

Moreover,

f∏k
i=1 Zi

(Q) = f (Q)k ,
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hence,

EsP

{
k∏

i=1

Zi = −sl

}
= 1/2

∑
Q∈2[l]

f (Q)k + 1/2
∑

Q∈2[l]
(−1)|Q|f (Q)k

=
∑

Q∈2[l]
|Q| even

f (Q)k .

Since f (Q) is linear in ν (it is the expectation of
∏

r∈Q Z (r)
1 where (Z (1)

1 , . . . , Z (l)
1 ) ∼ ν), the

above summation is clearly convex in ν if k is even.
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