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graphical model consists of 
a graph G5 1V, E 2  and a 

set of properties that 
determine a family of 
probability distribu-

tions. There are many different types of 
graphs and properties, each determining 
a family. It is common to be able to 
develop algorithms that work for all 
members of the family by considering 
only a graph and its properties. Thus, 
solving difficult problems (such as deriv-
ing an approximation to an NP-complete 
optimization problem) might become 
worthwhile only because a solution can 
be applied many times for different problem instances. 

Given a probability distribution p 1xV 2  over a set of random 
variables XV5 5Xv1

, Xv2
, c, XvN

6, where N5 |V |, one often 
wishes to compute quantities of the form p 1xS|xU 2  where 
S, U # V  are disjoint. Such computations are known as proba-
bilistic inference, or sometimes just inference. If it is known 
that p is a member of a graphical model’s family, and if we 
already have an algorithm for any member of this family, we 
then have a solution for p 1xS|xU 2 . Computing such probabilistic 
quantities is the core of many important statistical inference 
and machine learning algorithms and their applications. 

This article discusses a form of graphical model that is ame-
nable to sequential data, including speech and language strings, 

and biological and economic series. At 
the heart of  dynamic models lie “static” 
graphical models, so we will briefly 
review these first.

STATIC GRAPHICAL MODELS
Let p5 p 1x1, x2, c, xN 2  be a probabil-
ity distribution over N5 |V | random 
variables and let U be the set of all such 
distributions. A graphical model con-
sists of a graph G5 1V, E 2  and a set of 
properties M (often called Markov 
properties [16]) that together deter-
mine a subfamily F 1G, M 2 # U  of 
probability distributions. There are 

many types of graphical model [such as Markov random fields 
(MRFs) or Bayesian networks (BNs)]. The type of graphical 
model is determined by both the set of allowable graphs and 
the set of properties. 

One such simple graphical model is the MRF, where any 
undirected graph over N vertices is allowed (one vertex for each 
random variable), and p is a member of the family whenever p’s 
conditional independence properties obey the separation prop-
erties Msep in the graph. Given three sets of graph vertices 
A, B, C ( V 1G 2 , it is said that A is separated from B by C in G
if all paths (i.e., sequences of adjacent vertices) from any node 
in A to any node in B must intersect some node in C, and in 
such case C is called a separator. If C is such a separator, then 
f o r  a n y  p [ F 1G,Msep 2  w e  m u s t  h a v e  t h a t 
p 1xA, xB|xC 2 5 p 1xA|xC 2p 1xB|xC 2  for all values xA, xB, xC. This 
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conditional independence property is denoted XA'' XB  
|  XC. 

Any p [ F 1G, Msep 2  must satisfy the conditional indepen-
dence properties corresponding to all separation properties in 
G. Another way to characterize MRFs is via factorization prop-
erties Mfac [16]. We have that p [ F 1G, Mfac 2  if p factorizes 
with respect to a set of factors, 5f 1 # 26, known as potential 
functions, defined on the maximal cliques of G. A clique is a 
fully connected set of vertices, and with a maximal clique, the 
vertex set is no longer fully connected if any additional vertex 
is added. It is always the case that F 1G, Mfac 2 # F 1G, Msep 2  
but the reverse is true only for strictly positive p [16]. An exam-
ple of separation and factorization properties is depicted in 
Figure 1(a).

A BN is another type of graphical model, where G is always a 
directed and acyclic graph (DAG). All edges are said to point 
from parent to child. Like before, a BN corresponds to a family 
of probability distributions F 1G, Mbn 2  based on G and a set of 
properties Mbn specific to BNs. BN properties are a bit more 
complicated than those of MRFs but the essential concept is 
the same: if there is a form of separation encoded in the graph, 
then there must be a corresponding independence property. In 
the BN case, separation can be based on d-separation [23], 
[16]. There is also a corresponding directed factorization prop-
erty Mdfac, namely: if xi is a variable, and pi is the set of par-
ents of i, then if p [ F 1G, Mdfac 2 , we may factor p as 
p 1x2 5P i p 1xi  

|  xpi
2 . An example is depicted in Figure 1(b). 

A benefit of graphical models is that it is possible to auto-
matically develop algorithms that can compute probabilistic 
quantities of interest (exactly or approximately) based on knowl-
edge only of 1G, M 2  and without having knowledge of a 
 particular instance p [ F 1G, M 2 . Given such an algorithm, it 
is then applicable to any member of the family, thereby amor-
tizing the algorithm’s development cost over all p [ F 1G, M 2 . 
The algorithm can of course also be applied to any 
p [ F 1G r, M r 2  where F 1G r, M r 2 # F 1G, M 2 . One simple 
such algorithm for computing probabilistic quantities exactly is 
belief propagation and its generalization, the junction tree algo-

rithm. We give a brief overview of this algorithm here. First, the 
algorithm operates on MRFs rather than directly on BNs. 
Therefore, for any BN, it must be possible to find a MRF that 
includes all members of its family. That is, given that G is a 
directed graph, we need an operation [let’s call it m 1G 2] that 
transforms the BN G into an MRF m 1G 2  such that 
F 1G, Mbn 2 # F 1m 1G 2 , Msep 2  holds. Then, any inference 
algorithm developed for F 1m 1G 2 , Msep 2  will be valid for any 
member of F 1G, Mbn 2 . We also wish m 1G 2  to be minimal, in 
that performing inference for a member of F 1m 1G 2 , Msep 2  
should not be significantly more costly than inference for mem-
bers of F 1G, Mbn 2 . The operation m 1G 2  (called moralization) 
is a simple graph-theoretic operation of converting a DAG into 
an undirected graph: connect with an undirected edge the 
unconnected parents of any child, and then drop all remaining 
edge directions. Henceforth, we assume the graph is an MRF. 

If the graph G is a tree (meaning, all pairs of nodes are con-
nected by a unique path), then we are guaranteed that there are 
at least two random variables (i.e., leaf nodes) that have the 
property that they are involved in a factor with only one addi-
tional node. Such random variables can then be marginalized 
away (the corresponding nodes have been eliminated, and the 
graph-theoretic counterpart of belief propagation is known as 
the elimination algorithm). This leaves us with a residual graph 
that is still a tree, meaning that once again there must be at 
least two nodes with the desired leaf property. Performing such 
marginalizations repeatedly, but only on leaf nodes, ensures that 
computing any node marginal, or any marginal along two 
neighboring nodes connected by a tree edge, is computationally 
inexpensive. Each such marginalization can be seen as a mes-
sage passed between two nodes along a connecting edge. The 
message passing equations are summarized in Figure 2(a). Thus 
we can see that marginalizing away all nodes corresponds to 
sending messages starting at the leaves, and towards a designat-
ed root of the tree. In fact, these marginalization messages can 
be passed along both directions of each edge, and since there are 
N21 edges, after 2 1N21 2  messages the state of the tree will 
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Maximal Cliques: {X1, X2, X3} {X2, X3, X5}

{X1, X3, X4} {X3, X4, X5}

Factorization Requirements:

p (x1, x2, x3, x4, x5) ∝ φ (x1, x2, x3)φ (x2, x3, x5)

         φ(x1, x3, x4) φ (x3, x4, x5)

Factorization Requirements:

p(x1, x2, x3, x4, x5) = p(x2) p(x1 | x2) p(x3 | x1, x2)

         p(x5 | x3, x2) p(x4 | x1, x3, x5)
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X4
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X5 | {X2, X3, X4}X1
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Independence Requirements:

X4 | {X1, X3, X5}X2

X1 X5 | {X2, X3}

Independence Requirements:

[FIG1] (a) A four-cycle with an extra node. There are two separation (and thus conditional independence) properties. There are 
four maximal cliques and thus a minimum of four factors. Any p in the graph’s family must obey these independence properties, 
and must also validly factorize as shown. (b) The edges are now directed as in a BN. The required factorization properties, as well 
as the conditional independence properties, are shown. Notice how the required properties have changed relative to the 
undirected case in (a).
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reach the point where each node (and edge) holds the marginal 
distribution for that node (edge). This is sufficient for the major-
ity of probabilistic queries needed on a tree. 

If the graph G5 1V, E 2  is not a tree, then we can make use 
of a generalization of belief propagation known as the junc-
tion tree algorithm. A junction tree is a particular kind of tree 
in which the nodes are overlapping clusters of the original 
nodes V. Let T5 1C, E 2  be this tree, where for each C [ C, 
C # V. The edge set E is such that T  is a tree with subsets of 
V  as nodes. The tree of clusters can then be treated exactly 
like the tree of nodes discussed in our presentation of belief 
propagation, where we eliminate leaf nodes by marginalizing 
them away, thereby producing messages that are passed on the 
junction tree. In this case, however, marginalizing away a leaf 
node means summing over more than just one variable. In 
fact, multiple variables are summed over simultaneously. 
Essentially, the cluster of nodes C can be treated as a single 
node with a large enough domain size. That is, the variable, 
say Yu, can represent the set of variables XC if Yu has as many 
possible values as the Cartesian product 3c[C|DXc

| where DXv
 

is the domain of Xv and |DXv
| its size. 

A tree of cluster nodes is not a junction tree unless it pos-
sesses certain properties. Those properties are as follows: first, 
the original graph must be triangulated (see the next para-
graph). If the graph is not triangulated, then one must add 
edges until it is triangulated. Only the class of triangulated 
graphs can be clustered into a junction tree. Second, the tree of 
clusters must be such that each tree node cluster corresponds 
to a clique in the (triangulated) graph. Third, for every two clus-
ters in the tree, and for the necessarily unique path between 
these two clusters, the nodes that lie in the intersection of these 
extremal cliques must exist within every cluster along this path. 
This is called the running intersection property. If the above 

three properties are true, then eliminating leaf clusters one at a 
time will produce a correct inference algorithm for the original 
graph. We note, however, that the cost of marginalizing away 
the nodes in a cluster is exponential in the cluster’s size, so it is 
imperative to have as small a cluster size as possible. 

A graph is triangulated whenever any cycle in the graph has 
an edge connecting two nonconsecutive nodes in that cycle. 
Running the elimination algorithm on the original graph is one 
way to produce a triangulated graph. In this case, however, the 
elimination algorithm must be modified: to eliminate a node v 
with more than one neighbor, we first connect together all of v’s 
neighbors in the graph and then we remove v and its immedi-
ately adjacent edges from the graph. This step is called node 
elimination, and any new edges are called fill-in edges (see 
Figure 3). Given a graph G5 1V, E 2 , we can depict its triangula-
tion as Gtr5 1V, E h F 2  where F are the fill-in edges. To trian-
gulate the graph, one way is to eliminate all of the nodes, and 
then “reconstitute” all nodes along with any edges that were 
added along the way. Once done, we are guaranteed that the 
graph is triangulated. Since a triangulation can only add edges, 
F 1G, Msep 2 # F 1Gtr, Msep 2 , so any inference algorithm for all 
members of F 1Gtr, Msep 2  will work for any member of 
F 1G, Msep 2 . Any of the N! orders in which nodes might be elim-
inated (each known as an elimination order) will yield a triangu-
lated graph. The graphical elimination procedure corresponds to 
summing out a variable from a factored probability distribution. 

One very simple triangulated graph has all variables clus-
tered into a single large clique, but this is typically not useful 
since it entails a cost that is exponential in the number of vari-
ables N. In general, the goal is to find the triangulation that 
minimizes the size of the largest maximal clique. Unfortunately, 
this is itself an NP-complete optimization problem, so heuristics 
are often used [16], [10], [13], [11]. 

[FIG2] Standard belief propagation messages on a tree. (a) Each yellow arrow corresponds to a message, which is defined by the 
associated equation. (b) Messages sent on a clustered graph, where each cloud shape is a cluster of variables in the original graph, and 
the messages are in the Hugin  [10] style. The clique potentials cU and cW are initialized to the product of factors that are contained 
within cliques U and W respectively. The separator potential fS is initialized to unity. The messages are shown in data-flow fashion, so 
that the arrows show message dependency. Green arrows are message copies. Blue arrows are marginalization operations, and red 
arrows are message multiplies or divides. The cost of this process is exponential in the size of the cluster. More details may be found in 
[10], [13], and [11].
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Our focus in this article is on dynamic models and how 
inference methodology can be tailored for this subclass of mod-
els, to which we next turn our attention. 

DYNAMIC GRAPHICAL MODELS
A dynamic graphical model (DGM) consists of a graph 
G5 1V, E 2  template, a set of properties M, and an integer 
expansion parameter T $ 0. The family associated with a DGM 
expanded to length T  is denoted as F 1G, M, T 2 . Any 
p [ F 1G, M, T 2  must be a distribution over a set of random 
variables whose size is some function of T, and must obey all 
properties M when applied to G expanded by T. The complete 
family of distributions associated with a DGM considers all T, 
namely hT.0 F 1G, M, T 2 . 

Often, the template G is partitioned into three sections, a 
prologue G 

p5 1Vp, Ep 2 , a chunk G 
c5 1Vc, Ec 2  (which is to be 

repeated in time), and an epilogue G 
e5 1Ve, Ee 2 . Given an inte-

ger T . 0, an “unrolling” of the template T times is an instanti-
ation where G 

p appears once (on the left), G 
c appears T11 times 

in succession, and G 
e appears once (on the right). An unrolling 

consists of repeating the nodes of the chunk along with the 
edges connecting to the adjacent left and right chunks. Figure 4 
shows an example of a template and its unrolled expansion 
where there are three copies of the chunk.  

Each section within a template has connectivity rules. The 
prologue is a graph over nodes in Vp but also may contain edges 
to nodes in Vc. It may not contain edges to nodes in Ve. The 
chunk is a graph over nodes in Vc but can also in some cases 
include edges to nodes in either Vp or Ve or both. Symmetrically 
mirroring the prologue, the epilogue is a graph over variable in 
Ve and may also include edges to variables in Vc but may not 
include edges to variables in Vp. These rules ensure that any 
expansion leads to a valid graphical model and also ensure the 
existence of a temporal independence property, i.e., some notion 
of the present renders some notion of the future, and of the 
past, independent. For example, this property in a first-order 
Markov chain Q1:T means that each Qt renders Q1:t21 and Qt11:T 
independent. In a DGM, since each chunk cannot reach indefi-
nitely into the past or future, there will always be some version 
of this property as well. Given the above definition of a chunk, 
the temporal independence property can be generalized so that 
one must condition on more than a single time slice to ensure 
conditional independence of past and future. 

The template and connectivity rules also mean that for any 
expansion, the model still has a finite-length description. That 
is, the number of parameters in the model is on the order of the 
size of the template G, not the length T. This is similar to a time 
homogeneity assumption in a Markov chain. The number of 
parameters not increasing with T means that different factors 
must share the same parameters. 

DGMs generalize dynamic BNs (DBNs) [3], dynamic (or 
temporal) Markov random fields (DMRFs) (both of which 
themselves generalize hidden Markov models (HMMs) and hier-
archical HMMs [6]), Boltzmann chains [27], sequential seg-
mental models [7], dynamic conditional random fields (CRFs) 
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[FIG3] (a) A graph with seven nodes is eliminated in node order 
(x1, x2, c) to produce (b) the triangulated graph with fill-in 
edges (dotted red) and cliques (shaded blue). (c) The resulting 
junction tree. 

I: Increment

C: Count

Δ: Change State

S: State

O: Observation

Prologue Chunk Epilogue Prologue Chunk Chunk EpilogueChunk
(a) (b) (c)

[FIG4] (a) A DBN template that consists of a prologue, chunk, and epilogue, and that forms a simple segment model useful in 
bioinformatics [24]. (b) The moralized template where fill-in edges are shown as red. (c) The template unrolled two times.
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[15], and segmental CRFs. If the template and all expanded 
graphs are BNs, then the DGM corresponds to a DBN. If the 
template and its expansions always produce an MRF, then we 
have a DMRF. If the expanded template corresponds to a condi-
tional distribution, the DGM corresponds to a CRF or its gener-
alizations. Any type of static graphical model, in fact, including 
factor graphs [14] and chain graphs [16] has a dynamic coun-
terpart. In this article, we concentrate on only DBNs and 
DMRFs but the methods apply to any type of DGM. 

In practice, DGMs have a quite different general shape than 
their static cohorts. Since DGMs are sequential, the expanded 
graphs are typically much wider than higher since T can be arbi-
trarily large. It is clear, therefore, that probabilistic inference 
should follow a form similar to the standard forward-backward 
inference algorithm in HMMs. However, unlike with an HMM, 
the state space is structured, and this structure offers some 
unique opportunities for performing inference not available to 
the HMM. Moreover, in many domains (such as speech recogni-
tion) the state space at each time point can be quite large (in the 
tens of millions). 

EXAMPLE: SEGMENT MODELING IN BIOINFORMATICS
Bioinformatics is an important research area involving learning 
and reasoning about biological molecules (e.g., DNA and pro-
teins). For example, one might wish to predict the three-dimen-
sional structure of a protein using only the sequence of 
constituent amino acids, or given a DNA sequence the goal 
might be to decide which subsegments code for currently undis-
covered proteins and to determine how one can automatically 
infer their ultimate function. DGMs are quite appropriate for 
this domain, and there have already been many successful 
instances of HMMs and its variants in bioinformatics [11]. 

We next give an example DGM that is useful in sequential 
modeling of segments. The DGM (which is actually a DBN; see 
Figure 4) corresponds to a modular reusable DBN component 
that allows for nongeometric state duration distributions. Each 
state, represented by variable St, may have its own state dura-
tion and determines the distribution over observations Ot like 
an HMM. Unlike an HMM, however, this model has quite differ-
ent state duration behavior. A state change is triggered by a 
binary state change indicator variable D; that is, St 5 St21 when 
Dt2150, but when Dt2151, then St is chosen randomly based on 
P 1St 

| St21 2 . The actual duration distributions of each state are 
determined by variables S, I, and C, and may be one of the fol-
lowing: 1) a fixed length distribution; 2) an arbitrary multino-
mial distribution, and 3) a state-dependent negative binomial 
distribution. To implement a fixed (nonprobabilistic) duration, 
when Dt2151, then Ct gets set to the desired length and it dec-
rements  deterministically (i.e., Ct5 Ct2121 with probability 1) 
until Ct5 0 at which point it triggers a state transition. In this 
case, Ct ignores It. To produce an arbitrary multinomial dura-
tion distribution, rather than deterministically assigning Ct to a 
length, Ct gets a random length based on a multinomial distri-
bution p 1Ct|St, Dt2151 2 . Ct then decrements as in the first case 
until it reaches zero. To produce a negative binomial distribu-

tion corresponding to the sum of k geometric distributions, Ct 
is deterministically set to k, but then Ct decrements only when 
It (a state-dependent binary indicator variable) is unity. Of 
course if k5 1, then we recover the standard HMM geometric 
duration, which would also be an option for some states. As can 
be seen, by explicitly encoding the various length distributions 
within the structure of the DBN, there is considerable flexibility 
for duration modeling. 

The above example is a modified and simplified version of a 
DBN used as a method to predict the topology of transmem-
brane proteins [24]. Transmembrane protein prediction is a 
sequential labeling task, where each amino acid of a protein is 
labeled as belonging to one of the following four classes: cyto-
plasmic loops, membrane-spanning segments, noncytoplasmic 
loops, and signal peptides. Different classes have very different 
duration properties. 

HMMS AND GRAPHICAL MODELS
An HMM is a well-known instance of a DGM that, for an instance 
of length T, consists of 2T variables: a sequence of T discrete state 
variables Q1:T organized as a first-order Markov chain, and a set of 
T observed variables X1:T each conditionally independent of every-
thing else when conditioned on the corresponding state variable 
[see Figure 5(a)]. It is also well known that for a time signal of 
length T, and with an HMM that has N states, the time complexi-
ty of HMM inference is O 1N 

2T 2  and the memory complexity is 
O 1NT 2 . We briefly review the inference procedures in HMMs that 
lead to these complexities to compare to their analogues in the 
DGM case. We also describe the junction tree and inference algo-
rithm for HMMs, and how it compares to several standard meth-
ods of HMM inference (namely synchronous and asynchronous 
decoding), and this will allow us, later in the article, to describe 
how these approaches relate to DGM triangulation. 

An HMM is a joint distribution with the following factoriza-
tion properties 

 p 1x1:T :, q1:T 2  ~  q
T

t51
f 1xt,  qt 2  q

T

t52
f 1qt21, qt 2 . (1)

This factorization property is also conveyed in Figure 5(a). 
The observation variables xt only contribute multiplicatively 
to the HMM scores and not to its state space or complexity. 
It is  therefore possible to simplify the HMM by defining fac-
tors f r 1qt21, qt 2 ! f 1qt21, qt 2f 1xt, qt 2  yielding factorization 
p 1x1:T:, q1:T 2 ~ wT

t51 f r 1qt21, qt 2 . This is shown in Figure 5(b). 
The junction tree for this graphical model is shown in 
Figure 5(c), and we see that the tree is just a sequential chain of 
repeated cliques and separators. In the junction tree, each clique 
has two variables and there are T such cliques leading to the 
time complexity O 1N 

2T 2  of HMMs. On the other hand, the 
memory complexity is only O 1NT 2  so this must mean that the 
cliques are never stored. Indeed, consider the standard forward 
(or alpha) recursion for HMMs 

at 1q 2 ! p 1x1:t, Qt5 q2 5 p 1xt|q 2a
r

p 1Qt5 q|Qt215 r 2at21 1r 2 .

 (2)
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The forward recursion is often described using a rectangular 
trellis graph (not a graphical model) as shown in Figure 5(d). 
Each recursion 5at 1q 2 6q corresponds to a column of nodes in 
this graph—in the figure, the elements corresponding to a3 1q42  
and a4 1q9 2  are both marked with arrows. 

From the figure, we see that the separators in the junction 
tree correspond to the columns of the trellis, while the cliques 
in the junction tree correspond to two successive columns (i.e., 
the transitions between columns). The reason for the O 1NT 2  
memory usage is that the forward computation is only implicitly 
computing the cliques. Each set of computations for at 1q 2  over 
all q corresponds to a clique expansion (i.e., to an enumeration 
of all of the values of the variables in the clique) and then imme-
diate reduction. Since the cliques are never stored, it is not nec-
essary to use O 1N 

2 2  memory. Forward recursion thus 
corresponds to a form of message in the junction tree between 

successive separators. Of course, the computation is still 
O 1N 

2T 2  since each at 1q 2  requires O 1N 
2 2  steps. 

In general, in exact HMM inference, the goal is to “visit” 
each node in the HMM trellis, and this can be viewed as a form 
of search procedure [26]. The problem of “search” in artificial 
intelligence corresponds to expanding a very large space of 
possible elements as efficiently as possible. For example, given 
a factored function over variables indexed by set V, such as 
f 1xV 25wC f 1xC 2 , where each C ( V, the goal might be to 
identify a maximum element argmaxxV  f 1xV 2 . An alternative 
might be to sum f  for all values of xV. One can imagine doing 
either of these naively using a set of nested loops, where we 
first iterate over all values x1, and then x2, and so on, and at 
the deepest level, when all elements of xV are instantiated, we 
can evaluate f. In general, any partial or complete set of vari-
able assignments is called a “hypothesis” and along with each 
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[FIG5] (a) An HMM as a DGM. (b) The DGM for the effective state space of the HMM. (c) A junction tree corresponding to the HMM, 
where each clique has two random variables (shown as cloud shapes) and each separator has one random variable (shown as squares). 
(d) The trellis graph corresponding to the search space of the HMM, and also to the junction tree. The trellis is shown aligned so that 
the separators and cliques in the junction tree vertically line up with the columns or transitions of the trellis.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on May 25,2021 at 11:43:29 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [35]   NOVEMBER 2010

(partial) hypothesis is a (partial) score 
based on the set of factors that may cur-
rently be evaluated. There are many types 
of search, including standard depth, 
breadth, best first, and A* procedures, all 
of which are detailed in [26]. These algo-
rithms can, in general, perform much 
better than naive nested loops, and they 
do so by making decisions based on 
scores of partial hypotheses. 

The use of search methods in speech 
recognition in fact has a long history 
[21], [9]. Most search methods are 
applied to domains where the search 
space expands exponentially with the 
depth of the search, so the search expan-
sion takes the form of a tree. With an 
HMM, however, the search space has 
quite a different general shape, one that 
is more akin to a very wide parallelo-
gram (see Figure 6). When t (which is 
the time variable, but acts also as the 
depth variable when considering HMM 
inference as search) is small, the state 
space can (in general) expand exponen-
tially in t but at some critical point, the 
state space saturates. After this point, 
the number of states per time step is fixed at N  and this con-
tinues until t is close to T. At that point, the search space 
essentially contracts since there are only a few states that are 
allowed to end the search (e.g., in speech recognition, one 
must end the search at the end but not in the middle of a 
word). Another difference from standard search is that with 
an HMM, the depth T is very large. 

Search in HMMs can, for the most part, be broken down 
into one of two approaches: synchronous versus asynchro-
nous. In synchronous (also called Viterbi) search, hypothe-
ses are expanded in temporal lock-step, where partial 
hypotheses that end at time t are expanded one at a time so 
that new partial hypotheses end at time t1 1. This contin-
ues for all t so that at any given time there are never extant 
partial hypotheses with end points at more than two succes-
sive time points. This is essentially breadth-first search and 
is shown in Figure 6(a) and (b). 

Asynchronous search, on the other hand, is such that the 
end points of partial hypotheses can be at arbitrarily different 
time locations. Each partial hypothesis h has its own end point 
consisting of a time and state pair, and its own current score s. 
The hypotheses may be expanded without needing to abide by 
any temporal constraint [see Figure 6(c) and (d)]. Asynchronous 
search is also called stack decoding, the reason being that one 
often keeps a priority-queue (implemented as a stack) of hypoth-
eses and the hypotheses expansion occurs in a best-first order. It 
is also useful in stack decoding to have a form of continuation 
heuristic (a value that estimates the score of continuing from 

the current point to the end of the utterance) so that the best-
first decisions are based on the combined current hypothesis 
score and its continuation. If the continuation heuristic is 
 optimistic (e.g., it is an upper bound of the true probability), 
then it is “admissible,” and we have an A*-search procedure 
[22], [8]. 

Both synchronous and asynchronous search procedures have 
been widely used in automatic speech recognition in the past. 
Synchronous procedures have, for the most part, bested their 
asynchronous brethren perhaps due to their overall efficiency, 
simplicity, and performance [9]. One of the advantages of syn-
chronous search is that pruning (which is a form of approxi-
mate inference) is quite simple, both conceptually and to 
implement. Assuming that Mt is the maximum score of a set of 
states at time t, two simple widely used pruning strategies [21] 
are as follows: with beam pruning, we remove all partial hypoth-
eses that are some fraction below Mt, and with K-state pruning 
(sometimes called histogram pruning), only the top K states are 
allowed to proceed. K-state pruning is particularly attractive 
since it can be efficiently implemented using either a histogram 
[21], or by using a fast quick-sort like algorithm to select in 
O 1N 2  time the top K , N out of N entries. Another reason for 
the popularity of synchronous search is that, when the state 
space is very “deep,” as shown in Figure 6, it can be a challenge 
to find good continuation heuristics. Much research has gone 
into mitigating these problems, such as fast-match heuristics 
[8] (where a simpler structure is used to obtain continuation 
scores that are then applied to complex structures), and 
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[FIG6] The parallelogram search space of HMMs. Parts (a) and (b) show asynchronous 
search: (a) All states up to and including but nothing beyond time t have been 
expanded. (b) All states at time t 1 1 are expanded synchronously. Parts (c) and (d) show 
asynchronous search. Much like best first or A* search, arbitrary partial hypotheses may 
be expanded at any given time. In (c), we are one step from the final expansion, which is 
shown to occur in (d).
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 coarse-to fine-based dynamic programming (where coarse-
grained version of the problem is solved first and then refined). 
It is challenging for such heuristics to perform well, perhaps 
because they need to make inferences and decisions based on 
events that are quite distant in the future. In general, A* search 
seems to work better for short and fat search problems than for 
long and thin search problems. 

DGM INFERENCE
In its most general form, performing inference in a graphical 
model corresponds to computing marginal probabilities for all 
cliques in the graph given the evidence. Concretely, let C be the 
set of all maximal cliques in the triangulated graph, so that for 
each C [ C, we have that C # V. The set of random variables is 
X1, X2, c, XN, where N5 |V | and some subset E ( V  have 
known values, meaning that they are “evidence” nodes. The 
joint distribution then becomes p 1xV \ E, xE 2  which is a function 
only of the nonevidence nodes V \ E. The goal of inference is to 
produce clique marginal probabilities p 1xC \ E, xE 2  for all C [ C. 
In the case of an HMM, the goal is to produce p 1Qt21, Qt, x1:T 2  
for all t since pairs of successive state variables constitute all 
maximal cliques (see Figure 5). Computing these clique poten-
tials is needed both for parameter estimation, and for finding 
the most likely assignments to the hidden variables. Now the 
belief propagation algorithm, mentioned earlier in this article, 
when applied to a junction tree will indeed produce all maximal 
clique marginals. But we are interested in aspects of this algo-
rithm that are unique to the DGM case. 

A key goal is to deduce an inference algorithm for any 
p [ hT.0 F 1G, M, T 2  using the information only in the tem-
plate F 1G, M, 0 2 . That is, the template alone should be suffi-
cient to deduce the computational properties and inference 
procedure for any amount of unrolling. Hence, the cost of 
deducing such an inference algorithm is amortized over the use 
of 1G, M 2 . Given a DGM template G, for any fixed T, any 
p [ F 1G, M, T 2  factors with respect to a fixed graphical 
model, namely G unrolled T times. One option is to unroll the 
graph for each desired T $ 0 and treat them as static graphical 
models, and then deduce a separate inference procedure (using, 
say, belief propagation) for each unrolling without any sharing 
of information with other unrolled models. This naive approach, 
however, does not achieve the aforementioned goal. We will 
show, however, using only F 1G, M, T r 2  for T r5 0, how to 

deduce an inference algorithm for F 1G, M, T 2  with T . 0. We 
consider unrolling a small and constant number of times, 
T r, k, a reasonable step in deducing inference properties for all 
T .50. We need not unroll for all T. 

If the DGM is a BN template (i.e., the model is a DBN), the 
first step is a template moralization step [as in Figure 4(b)], so 
that any factor in the BN template can find a containing clique 
in the resulting undirected model. We henceforth assume that 
all DGMs are undirected and that we are working with the 
family of MRFs (this assumption does not make the proce-
dures any less applicable to other families of models, such as 
temporal CRFs). 

The following techniques generalize those mentioned in 
the section “HMMs and Graphical Models” and consist of two 
phases. The first phase is graph-theoretic and organizational 
and allows the DGM to be turned into portions of a junction 
tree in which inference can be performed. More importantly, 
these subjunction trees can be spliced together in time to 
allow for any length of temporal signal. This can be done 
with no loss of optimality relative to the optimal exact DGM 
inference algorithm. The next phase is a form of message 
passing that also generalizes HMMs. It is a hybrid synchro-
nous/asynchronous algorithm where the degree of asynchro-
ny is dependent on the triangulation and underlying junction 
tree. The message passing algorithm, moreover, is formulated 
so that the many approximate beam-pruning options that 
have been highly successful in HMM inference can be applied 
here as well. 

UNROLL AND COMPUTE
Since it is not viable to unroll the graph for each T and then re-
deduce an inference algorithm, we describe a way to deduce an 
inference strategy based on only the template. 

Consider first the DGM from Figure 4(b) that has been 
unrolled a large number of times, as shown in Figure 7. While 
this will not lead directly to an inference algorithm, it intro-
duces a number of ideas that will be beneficial later. Also, the 
observations have been removed since they do not contribute 
to the state space, and the factors containing the observations 
can be absorbed into any of the factors containing the state 
variable S (as we did in Figure 5). There are four variables per 
frame and 12 frames in the figure. For easy naming of vari-
ables, the nodes now have a column name (the integer frame 
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[FIG7] The MRF from Figure 4(b) unrolled to 12 frames.
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number) and a row name (A, B, C, or D). If we consider the 
elimination algorithm applied to this graph (seen as a static 
graphical model), there will be 48! < 1061 different possible 
elimination orders. As mentioned above, the goal of elimina-
tion is to produce the smallest clique in the reconstituted tri-
angulated graph. With a dynamic graph we can rule out a 
number of elimination orders immediately. For example, con-
sider starting the elimination at node D(6). That will immedi-
ately couple together its neighbors D(5), C(5), B(5), A(6), 
B(6), C(6), and D(7), leading to a clique of size eight. If we 
were to next eliminate C(6), that would yield yet another size-
eight clique. Given that a naive triangulation and junction 
tree consisting of a chain of cliques of the form B 1 t 2 , C 1t 2 , D
1t 2 , A 1t11 2 , B 1t11 2 , C 1t11 2 , D 1t11 2  has a maximum clique 
of size seven, eliminating node D(6) first is a poor initial 
choice. If we instead were to first eliminate A(6), this would 
yield the clique A(6), B(5), C(5), D(6), B(6) of size five, but 
then if we next eliminated B(6) that would lead to a clique of 
size eight, and if we next eliminated D(6), it would lead to a 
clique of size seven. 

The model above only has 12 frames, but an unrolled graph 
can have orders of magnitude more frames. It seems intuitive, 
therefore, that some form of left-to-right inference procedure 
is most promising. This means that variables should be elimi-
nated starting at the left and moving to the right (forward in 
time), or alternatively starting from the right and moving to 
the left. For example, if we were to eliminate all variables in 
frame one in Figure 7, then no matter what the order, the larg-
est clique will be no more than size seven. If moreover we were 
smarter about the elimination order, we could do much bet-
ter—consider the following elimination order: A(1), D(1), B(1), 
C(1), A(2), D(2), B(2), C(2), A(3), p , where the largest clique is 
of size five. Eliminating in right-to-left order as follows: A(12), 
C(12), B(12), D(12), A(11), C(11), B(11), D(11), p  also results 

in a size-five maximum clique size. In both cases, we see a peri-
odic pattern in the elimination ordering. In the left-to-right 
case, we eliminate nodes in slice t in order A, D, B, C before 
eliminating any nodes in slice t11. In the right-to-left case, we 
eliminate nodes in slice t in order A, C, B, D before eliminating 
any nodes in slice t21. 

From the above example, it might seem like we can thus 
constrain the elimination order such that it always eliminates 
one slice of variables before the next one—the example shows 
that if we are performing a left-to-right elimination, we can 
optimally eliminate all variables in time t before we eliminate 
any in time t1 1 (and analogously in the right-to-left case). 
But this need not be the case, as shown in Figure 8. Here, no 
matter what the ordering, if we eliminate nodes at time frame 
t before starting to eliminate nodes in time t1 1 (or eliminat-
ing at slice t1 1 before slice t) the smallest maximum clique 
size will be of size five. If the elimination order is allowed a bit 
more flexibility, the smallest maximum clique size is four—
consider the elimination order (C(1), A(1), B(1), E(1), D(1), 
C(2), A(2), F(1), B(2), E(2), D(2), C(3), A(3), F(2), p ). It can be 
shown that this corresponds to the best possible elimination 
order achievable in this graph. Note that after we eliminated 
the first two nodes C(1) and A(1), the pattern B 1t 2 , E 1t 2 , D 1t 2 , 
C 1t1 1 2 , A 1t1 1 2 , F 1t 2  repeats. In this case, the periodic pat-
tern did not appear until we eliminated a few “burn in” nodes 
at the left of the graph. Moreover, we allowed a less restrictive 
elimination order (a few later variables are eliminated before 
an earlier one). 

Of course, our goal is to produce an inference procedure 
based on the template, rather than unrolling and then finding 
some elimination order in the unrolled graph. Moreover, we 
want a more systematic way to identify the periodicity in the 
ordering, and one can then use this periodicity to form a chunk 
of junction tree, which itself can be unrolled to any length. 
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[FIG8] A DGM where eliminating one slice before the next (in either left-to-right or the right-to-left order) is not optimal. Part (a) is the 
DGM template and (b) is the template unrolled to eight frames. If we use only the left interface method or only the right interface 
method, the largest clique size in the optimal triangulation is five. If, on the other hand, we find the optimal interface separator using 
the max-flow based vertex-cut procedure mentioned in the text, then the size of the largest clique in the optimal triangulation reduces 
to four.
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Also, like in the HMM case where computational cost is 
O 1N 

2 T 2  and memory cost is O 1NT 2 , we wish to achieve good 
computational and memory performance. The next section 
shows how this can be done. 

FINDING PERIODICITY
Considering again Figure 7, we see that the unrolled graph will 
have a periodicity. For example, as we repeat copies of G 

c, then 
G 

c itself defines the beginning and end of a period—the vari-
ables in G 

c that connect to the left are the beginning, and the 
variables in G 

c that connect to the right are the end. As with 
any periodic signal, one has a choice as to where the beginning 
and ending of a period should be. Normally these choices are 
arbitrary. Moreover, any periodic signal with period T  is also 
periodic with period kT  for any positive integer k. Normally, we 
wish to use the smallest integer k leading to what is known in 
the signal processing literature as the fundamental period. In 
the case of DGM inference, however, the choice of the location 
of the start and end of a period, and the use of periods other 
than the fundamental period can have significant consequences 
for inference. 

As demonstrated in the previous section, like the DGM itself, 
the elimination orders were periodic, and this was true even for 
an elimination order that was not strictly left-to-right. This sug-
gests that whatever processing is done, it can be decided only 
once, within a periodic segment, and then reused for all repeat-
ed segments in an unrolling. The question is what periodic seg-
ment to use and how to find it. We can view the problem as 
excising a portion of the fully unrolled graph based on flanking 
splices, and we will call the portion of the graph that is excised 
in such a fashion the “modified chunk.” 

The processing that is done within a modified chunk can 
typically be viewed as an elimination order (although there are 
important exceptions to this rule [2], and see the section 
“Static Inference in the Resulting Chunk”). If the elimination 
corresponds strictly to a slice-by-slice left-to-right (or right-to-
left) elimination order, the modified chunk might as well be 
the original chunk. The reason is that, in this case, the elimi-
nation ordering corresponds to a permutation of the chunk 
nodes, so all decisions regarding within-period processing are 
made within a single chunk. On one hand, this might seem 
like a beneficial property since there are many fewer permuta-
tions of nodes in a single chunk than there are permutations 
of nodes in multiple chunks. On the other hand, there are 
unfortunately detrimental consequences, and this relates to 
how an elimination order adds edges to a graph. In a graphical 
model, it is the missing edges that provide the “structural” 
property in the family of distributions, and that allow for effi-
cient inference schemes to be derived. When elimination is 
performed, it can only add edges which in turn can only 
reduce structure. Unfortunately, when performing such elimi-
nation, any underlying structure can be lost. This follows from 
an important theorem by Rose (Lemma 4 in [25]) that states 
the following: Let G5 1V, E 2  be an undirected graph with a 
given elimination ordering that maps G to G r5 1V, E r 2  where 

E r5 E h F, and where F are the fill-in edges added during 
elimination. Then uv [ E r is an edge in G r if there is a path 
with endpoints u and v, and where all nodes on the path other 
than u and v are eliminated before u and v. Thus, if there is a 
path between two nodes u, v [ Vt where all the path nodes 
(except the end points u and v) lie entirely earlier in time, and 
if all such earlier nodes are eliminated, then u and v will be 
connected. This will couple together variables that otherwise 
might have nicely factored. 

When all nodes earlier than chunk t1 1 are eliminated and 
when there is one connected component per chunk, there will 
be a set of nodes that are forcibly completed in chunk t1 1, 
namely, those nodes entirely in chunk t1 1 that have neighbors 
in chunk t. In a DBN, those nodes have been called the interface 
[12], [4], backward interface [28], or the incoming interface 
[19]. We will call this simply the “left interface.” The left inter-
face is shown in Figure 9(a), where nodes A 1t 2 , B 1t 2 , and D 1t 2  
for all t are necessarily completed when doing a slice-by-slice 
left-to-right elimination ordering. Now, it might seem that this 
would not matter since it can be seen in the graph that these 
nodes are already connected. However, it is often not the case 
that the interface nodes are already complete (consider, for 
example, the graph given in Figure 8). Therefore, such unneces-
sary adding of edges can significantly increase the state space of 
the resulting junction tree. 

Moreover, even if the nodes are already completed, a poor 
interface can have a detrimental effect on the memory com-
plexity. Recall the junction tree for the HMM in Figure 5. 
Inference, corresponding to this junction tree, has memory 
complexity O 1NT 2  and this is determined by the separator size 
(which is one). The separators, moreover, separate two junc-
tion tree sections that each consist only of a clique of size two. 
The separator in the HMM junction tree corresponds precisely 
to the interface in the DGM junction tree. In fact, the inter-
face is a separator in the underlying MRF, rendering those 
variables on the left and right conditionally independent, 
analogous to the way in which a state variable in an HMM 
renders the left and right conditionally independent. In the 
sequel, we will sometimes use the phrases interface separator 
or just interface interchangeably. In Figure 9(a), the size of 
the corresponding separator between two junction tree seg-
ments is three, but we can plainly see within the junction tree 
that if we were to define periodicity starting from a different 
clique, we could find another interface separator that would 
be of size two. Thus, memory complexity could be reduced 
from O 1N 

3T 2  to O 1N 
2T 2 . The question is how to identify this 

separator automatically. 
One option is to make sure that all nodes later than chunk t 

are eliminated before those in chunk t. Here, certain nodes in 
chunk t will be completed, again by Rose’s theorem. These are 
the nodes in slice t that have neighbors in slice t1 1, and have 
been called the forward interface [28], [4] or outgoing interface 
[19]. We will call this simply the “right interface,” and it is again 
a separator in the DGM rendering its leftward and rightward 
variables conditionally independent. This is shown in 
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Figure 9(b). However, we see once again that the size of the sep-
arator between two successive junction tree segments is still of 
size three. Moreover, if we were to try this strategy on Figure 8, 
it would still produce excessive additional edges thereby increas-
ing the state space of the model. 

Many more options than this are available [3]. As we can 
see from Figure 9(a) or (b), the interior (i.e., noninterface) 
separators of the junction trees are only of size two while the 
interface separators are of size three. If we define a modified 
chunk as shown in Figure 9(c), then the resulting junction 
tree is separated by its neighboring junction tree by interfaces 
of only size two, thereby achieving the desired O 1N 

2 T 2  memo-
ry cost. Figure 9(d) shows another example with the same 
interface cost (size two) but with a very different junction tree 
consisting of only one clique with all variables. This is akin to 
the junction tree for the HMM shown in Figure 5 except that 
rather than one variable in the separator and two variables in 
the clique, we have two variables in the separator and six vari-
ables in the clique. 

Now, the highest-quality such separator might only exist 
if it were allowed to span multiple, say M, of the original 
DGM chunks. In the above examples, M51 sufficed but we 
may allow any M $ 1. Consider next forming a sequence of 
M chunks G1

c, G2
c, c, GM

c  and assume also there exist a virtu-
al left chunk G0

c and right chunk GM11
c . Note that M never 

needs to be larger than the number of variables in a given 
original chunk although the resulting best separator might 
span many fewer than M chunks. Thus, M # |Vc|. Let the ini-
tial left interface Il be the nodes in G1

c that connect to nodes in 
G0

c (i.e., Il5 5u [ V 1G1
c 2  : Ev [ V 1G0

c 2  with 1u, v 2 [ E 1G 2 6 
where V 1G 2 5 V  and E 1G 2 5 E when G5 1V, E 2  is a graph). 
Let the initial right interface Ir be the nodes in GM

c  that con-
nect to a node in GM11

c  (with an analogous mathematical def-
inition). The problem of finding the best separator is then to 
find the minimum cost 1Il, Ir 2  separator in the graph 
1G1

c, G2
c, c, GM

c 2 . Assuming that S is this minimum separa-
tor, then the memory cost of exact inference on a sequence 
of T  chunks becomes O 1Twv  v[S | DXv 

| 2 . Moreover, if a new 
chunk that lies between two successive separators, say St and 
St11 is now Gcrt  then the time complexity is at most 
O 1Twv[V 1Gcr

t 2 |DXv
| 2 . Therefore, our goal should be to find an 

interface separator that minimizes wv[s |DXv
| (to reduce 

memory requirements) and wv[V 1Gcr
t 2 |DXv

| (to reduce an 
upper bound on computational demands). 

The first problem, minimizing memory usage, corresponds 
to the HMM’s memory complexity discussed in the section 
“HMMs and Graphical Models.” In the more general DGM case, 
however, the optimal separator must be discovered, and solv-
ing this problem depends on how we measure the cost of the 
separator. If the separator cost is measured as the number of 
nodes in the separator, or as the weight of the separator (i.e., 
log state space logwv[S |DXv

|), then the problem can be solved 
optimally in polynomial time using a max-flow algorithm. The 
approach is to transform the graph 1G1

c, G2
c,c, GM

c 2  into a 
flow network by adding two nodes 1s, t 2  and where s is 

 connected to all nodes in Il, and t is connected to all nodes in 
Ir. All edges in the graph are set to have infinite capacity and 
then we solve the max-flow problem in a transformed network 
where the nodes may have a cost (achieved by duplicating each 
node and connecting them with an edge corresponding to the 
node cost), also known as the vertex cut problem [20]. None of 
the resulting edges from the original graphical model, there-
fore, will be selected as part of the cut since they have infinite 
capacity, and the cut will consist only of edges corresponding 
to the separator with the minimal cost and minimal memory 
requirements, as desired. 

At this point, our modified chunk renders the future and 
the past independent, as does the modified interface separators 
between chunks. Since the separator was optimized, the 
notion of the left or right interface [12], [4], [28], [19], [3] is 
no longer relevant since after the aforementioned max-flow 
optimization they are identical. Therefore, we are free to con-
sider next only a modified chunk that contains its left and 
right interface separators that (due to Rose’s theorem) have 
been completed and that are minimal.

STATIC INFERENCE IN THE RESULTING CHUNK
The resulting DGM chunk is like any normal static graphical 
model: it consists of a set of nodes and edges. Any inference 
method that can be used for a static graphical model therefore 
can be used for the chunk. For example, an exact inference 
procedure that forms a triangulation of the chunk and a resul-
tant junction tree can be used—since the separators produced 
via the results of the section “Finding Periodicity” are com-
plete, and since any triangulation of the chunk will not be 
capable of reaching beyond the boundaries of a chunk, the 
DGM separation property will still hold regardless of the trian-
gulation used. Alternatively, approximate schemes for infer-
ence can be used [11], [13]. 

This is where the notion that from the template one can infer 
an upper bound on the cost of inference (as mentioned in the sec-
tion “DGM Inference”) comes into play. The chunk can be triangu-
lated using any off-line triangulation scheme [25], [2], and the 
resulting maximum clique size of the triangulation then provides 
an upper bound on the cost of inference. That is, analogous to the 
static case, if the resultant maximum clique size of the chunk is 
v 1 1 then the time cost of inference will become O 1TNv11 2 . 
Moreover, the up-front cost spent triangulating the chunk is 
amortized over the life of the DGM, since the computational prop-
erties of the triangulation will hold for any T. 

The above approach of first finding the optimal separator 
and then triangulating the modified chunk has the potential to 
find the optimal inference procedure for any DGM. The reason 
can be seen by considering the alternative, unrolling for a 
fixed T and then finding the optimal inference procedure in 
that unrolled graph for the given T. Since T  can grow 
unboundedly, it makes sense only to eliminate nodes in some 
(roughly) left-to-right order, but as mentioned above, it need 
not be the case that one chunk Gc should be fully eliminated 
before moving onto the next chunk. However, there would 
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never be a utility in a succession 
of more than |V 1Gc 2 | partially 
eliminated chunks since at that 
point the benefit of eliminating 
the latest node could be applied 
to one of the earlier ones. When 
the search for the best separator, 
as mentioned above, is found in a sequence of no more than M 
chunks, this would allow for an optimal elimination scheme in 
a preunrolled graph. And since the elimination scheme also 
corresponds to a triangulation, finding first the separator and 
then triangulating has exactly the same potential to discover 
the optimal inference procedure. 

CLIQUE-BASED LIMITED EXTENT ASYNCHRONY
In the section “HMMs and Graphical Models,” we discussed syn-
chronous versus asynchronous decoding for HMMs. In this sec-
tion, we discuss how there can be hybrid approaches that straddle 
the fence between these two extremes. For example, a constraint 
can be placed on the maximum temporal distance between the 
end point of any two partial hypotheses. This, in fact, is something 
a junction tree can easily do. Normally in a junction tree, the form 
of message passing is based either on the Hugin or the Shenoy-
Schafer architectures [18]. The Hugin style message passing is 
summarized in Figure 2(b). Each of these approaches, however, 
assume that the cost of a single message is itself tractable, which is 
often not the case in speech recognition due to the very large 
number of possible random variable values (e.g., the typical vocab-
ulary size of a large vocabulary system might be more than 
250,000). Therefore, even individual exact messages in a junction 
tree might be computationally infeasible, and this is where search 
methods become useful. 

We consider the case where a search procedure is used to com-
pute the junction tree message by expanding the clique. The 
expansion is constrained to occur only within the clique so that 
the decoding is “synchronous” but only between maximal cliques 
(we are not allowed to expand a clique Ct11 until clique Ct has 
been expanded). Within a maximal clique, however, the expansion 
can occur in any variable order, much like an asynchronous decod-
ing procedure. The cliques in the junction tree may effectively 
limit the extent of the hypothesis expansion. For example, consider 
the junction tree for the HMM given in Figure 5, where each 
clique consists only of successive variables 5Qt, Qt116. If we were 
to perform constrained asynchronous search in such a junction 
tree, where cliques are expanded one after another but expansion 
may be asynchronous within a clique, then we have recovered syn-
chronous search in HMMs. 

Cliques can consist of any number of random variables, howev-
er, and even span over short stretches of more than two time steps 
[3]. For example, consider the alternative junction tree for an 
HMM, shown in Figure 10. In this case, each clique consists of 
three, rather than two, random variables. In the triangulated 
graph corresponding to this junction tree, the triangulation is no 
longer minimal (meaning that some of the fill-in edges may be 
removed and the triangulation property still holds). In some cases, 

however, nonminimal triangula-
tions can be useful [2]. In this case, 
in fact, the nonminimal triangula-
tion is used to restrict the degree of 
asynchrony in an HMM expansion. 
By forming various triangulations 
(and corresponding junction trees), 

we can experiment with an even wider variety of different search 
expansion constraints for an HMM. 

Such flexibility is even more prevalent in the general DGM 
case, especially where the M parameter mentioned in the previous 
section is greater than one. We will explain this using Figure 9(d). 
As given, the standard way to perform such a message would be to 
execute the following computation: 

 f 1b4, d4 25 a
b3, c3, d3, a4, b4, d4

f 1b3, d3 2c 1b3, c3, d3 2c 1c3, d3, d4 2

 3 c 1b3, c3, a4, b4, d4 2 , (3)

where f 1b3, d3 2  is the initial incoming and f 1b4, d4 2  is the final 
outgoing interface factor, and where c 1b3, c3, d3 2 , c 1c3, d3, d4 2 , 
and c 1b3, c3, a4, b4, d4 2  are functions corresponding to the cliques 
of the modified chunk. Such an approach can be wasteful, howev-
er, since it is oblivious to any sparsity that might exist in the fac-
tors and moreover it is not amenable to approximation. 

The way a search procedure would approach the problem 
would be to perform a tree-expansion of the variables B(3), C(3), 
D(3), A(4), B(4), and D(4), and the factors f 1b3, d3 2 , c 1b3, c3, d3 2 , 
c 1c3, d3, d4 2 , and c 1b3, c3, a4, b4, d4 2  would act as soft con-
straints to produce partial hypothesis scores. Now the traditional 
notion of synchrony would mean that the variables a4, b4, and d4 
are not expanded until variables b3, c3, and d3 are instantiated. A 
clique-based limited-extent asynchronous approach would allow 
the variables to expand in any order and could even be value spe-
cific [26], [5], [1], [17]. This means that the order that the vari-
ables are expanded might depend on the values of earlier 
instantiated variables. This can sometimes yield enormous speed-
ups during a search. 

What turns this into a form of search-based message is the fol-
lowing: at the leaf nodes of the search tree, all variables are 
expanded. Rather than computing the max, or summing the 
resulting scores, the set of values is used as an index into the 

Q1

Q1

Q1Q2Q3 Q3Q4Q5 Q5Q6Q7 QT–2QT–1QT

Q3 Q5
QT

Q2 Q3 Q4 Q5 QT...

...

(a)

(b)

[FIG10] (a) The DGM for the effective state space of the HMM. 
(b) A junction tree corresponding to the HMM, where each 
clique has three random variables. 

INTELLIGENT HEURISTICS CAN BE 
USED TO GET LARGE REAL-WORLD 

PROBLEMS TO RUN IN A QUITE 
REASONABLE AMOUNT OF TIME.
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 outgoing interface separator and the resultant score is accumulat-
ed into that indexed entry. For example, with variables 
b3, c3, d3, a4, b4, d4 instantiated with score s, we would accumu-
late f 1b4, d4 2 d f 1b4, d4 2 1 s. This would occur at each leaf 
node visitation. 

As can be imagined, the clique may span multiple time 
slices, and if this happens, so may the degree of asynchrony. 
The clique might span multiple time frames if M . 1 and the 
interface separator also spans multiple time slices. Alter -
natively, the clique might just correspond to a grouping of 
more than one modified chunk—consider, as an example, 
Figure 9(d), but where the clique in the junction tree con-
tains 12, rather than six random variables, namely: 
ht[53,46 5B 1t 2 , C 1t 2 , D 1t 2 , A 1t1 1 2 , B 1t1 1 2 , D 1t1 1 2 6.  The 
limiting case is when the clique expands to the entire length 
of the sequence, and we have recovered the fully asynchro-
nous search procedures mentioned in the section “HMMs and 
Graphical Models.” 

DISCUSSION
We have described how a DGM can be spliced into repeatable 
segments and how one can deduce a DGM inference algo-
rithm by applying to these segments methods developed for 
static graphical models. As the previous pages have shown, 
there are many ways to deduce a final algorithm, including 
options for choosing the interface separators, triangulating 
the resulting modified chunk, organizing the separators, 
organizing search within cliques, limiting the temporal 
extent of each clique, and deciding the approximations that 
become necessary when the clique state space gets large. 
Variations of these options can lead to significant real-world 
differences in the computational properties of the resulting 
inference algorithm, but finding the optimal set of options is 
itself intractable. In practice, intelligent heuristics can be 
used to get large real-world problems to run in a quite rea-
sonable amount of time.
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