Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web
Go here for SFXAbstract
A detailed and relatively evenly resolved food web of Little Rock Lake, Wisconsin, was constructed to evaluate the sensitivity of food—web patterns to the level of detail (degree of resolution) in food—web data. This study presents definitions (e.g., ecosystem food webs) and methods for constructing and reducing the resolution of food webs to provide relatively pragmatic and rigorous touchstones for consistency in future food—web studies. This analysis suggests that food—web patterns such as the scale—invariant links—per—species ratio, short chain lengths, and limited number of trophic levels are constrained by the resolution of food—web data rather than by ecological factors. Patterns less sensitive to changes in resolution such as directed connectance (the proportion of observed directed links to all possible directed links) may be robust food—web attributes. The food web of Little Rock Lake appears to be the first highly and evenly resolved food web of a large natural ecosystem originally documented for the purpose of examining quantitative food—web patterns. This ecosystem food web contains roughly twice as many species as the largest web to date. It also may provide the most credible portrait available of the detailed trophic structure of a whole ecosystem. The 93—trophic—species web of Little Rock Lake differs from previously published trophic—species webs by having more links per species (L/S = 11), longer chain lengths (average: ≥10, maximum: ≥16), species at higher trophic levels (maximum: = 12), higher fractions of intermediate species, and smaller fractions of top species and links to top species. The sensitivity of quantitative food—web patterns to changes in resolution was examined in several series of tropically aggregated Little Rock Lake webs. Each of the series starts with a highly and relatively evenly resolved web with 182 consumer, producer, and decomposer taxa and ends with low—resolution webs with 9 aggregates of taxa. Taxa were aggregated based on the proportion of predators and prey shared by the taxa. Different series of webs were generated using different criteria for linking aggregates to evaluate the sensitivity of food—web patterns to linkage criteria. The sensitivity analysis revealed that several, but not all, quantitative food—web patterns are very sensitive to systematic aggregation of the web. Sensitive patterns include number of links per species, linkage complexity, the distributions of chain lengths and species among trophic levels, and the proportions of top species and links to top species. Less—sensitive patterns include connectance, the ratio of predators to prey, the proportions of intermediate and basal species, and the proportions of links that are between intermediate and basal species. Directed connectance is the only pattern examined that is both very robust to trophic aggregation and generally comparable to other community webs. Quantitative food—web patterns in published community webs are generally similar to highly aggregated Little Rock Lake webs (versions with 9—40 aggregates). These findings suggest that previously described community food webs are severely aggregated versions of more elaborate webs similar to that of Little Rock Lake.
Number of times cited according to CrossRef: 344
- Kathrine E. Behn and Colden V. Baxter, The trophic ecology of a desert river fish assemblage: influence of season and hydrologic variability, Ecosphere, 10, 1, (2019).
- Elizabeth L. Clare, Aron J. Fazekas, Natalia V. Ivanova, Robin M. Floyd, Paul D. N. Hebert, Amanda M. Adams, Juliet Nagel, Rebecca Girton, Steven G. Newmaster and M. Brock Fenton, Approaches to integrating genetic data into ecological networks, Molecular Ecology, 28, 2, (503-519), (2018).
- Antoine Allard and Laurent Hébert-Dufresne, Percolation and the Effective Structure of Complex Networks, Physical Review X, 10.1103/PhysRevX.9.011023, 9, 1, (2019).
- Jolynn L. Haney, Reconceptualizing Autism: An Alternative Paradigm for Social Work Practice, Journal of Progressive Human Services, 29, 1, (61), (2018).
- Angelo Barbosa Monteiro and Lucas Del Bianco Faria, Matching consumer feeding behaviours and resource traits: a fourth‐corner problem in food‐web theory, Ecology Letters, 21, 8, (1237-1243), (2018).
- Dr Gavin M Abernethy, Dr Mark McCartney and Dr David H Glass, The Robustness, Link-species Relationship and Network Properties of Model Food Webs, Communications in Nonlinear Science and Numerical Simulation, 10.1016/j.cnsns.2018.09.002, (2018).
- Corrie Jacobien Carstens, Annabell Berger and Giovanni Strona, A unifying framework for fast randomization of ecological networks with fixed (node) degrees, MethodsX, 10.1016/j.mex.2018.06.018, 5, (773-780), (2018).
- V Mendonça and C Vinagre, Short food chains, high connectance and a high rate of cannibalism in food web networks of small intermittent estuaries, Marine Ecology Progress Series, 587, (17), (2018).
- A. D. Canning, R. G. Death and E. M. Gardner, The effect of forest canopy and flood disturbance on New Zealand stream food web structure and robustness, Austral Ecology, 43, 3, (352-358), (2017).
- Murray S. A. Thompson, Stephen J. Brooks, Carl D. Sayer, Guy Woodward, Jan C. Axmacher, Daniel M. Perkins and Clare Gray, Large woody debris “rewilding” rapidly restores biodiversity in riverine food webs, Journal of Applied Ecology, 55, 2, (895-904), (2017).
- Thiago A. P. Barbosa, Daniela C. O. Rosa, Bruno E. Soares, Christophe H. A. Costa, Maria C. Esposito and Luciano F. A. Montag, Effect of flood pulses on the trophic ecology of four piscivorous fishes from the eastern Amazon, Journal of Fish Biology, 93, 1, (30-39), (2018).
- Paolo Barucca, Guido Caldarelli and Tiziano Squartini, Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index, Journal of Statistical Physics, 10.1007/s10955-018-2076-z, 173, 3-4, (1028-1044), (2018).
- Adam Douglas Canning and Russell George Death, Relative ascendency predicts food web robustness, Ecological Research, 33, 5, (873-878), (2018).
- Malbor Asllani, Renaud Lambiotte and Timoteo Carletti, Structure and dynamical behavior of non-normal networks, Science Advances, 10.1126/sciadv.aau9403, 4, 12, (eaau9403), (2018).
- Ernesto Estrada, Lucia Valentina Gambuzza and Mattia Frasca, Long-Range Interactions and Network Synchronization, SIAM Journal on Applied Dynamical Systems, 10.1137/17M1124310, 17, 1, (672-693), (2018).
- Pierre Olivier and Benjamin Planque, Complexity and structural properties of food webs in the Barents Sea, Oikos, 126, 9, (1339-1346), (2017).
- Daniela N. Lopez, Patricio A. Camus, Nelson Valdivia and Sergio A. Estay, High temporal variability in the occurrence of consumer–resource interactions in ecological networks, Oikos, 126, 12, (1699-1707), (2017).
- Eric Harvey, Isabelle Gounand, Colette L. Ward and Florian Altermatt, Bridging ecology and conservation: from ecological networks to ecosystem function, Journal of Applied Ecology, 54, 2, (371-379), (2016).
- Ulrich Brose, Julia L. Blanchard, Anna Eklöf, Nuria Galiana, Martin Hartvig, Myriam R. Hirt, Gregor Kalinkat, Marie C. Nordström, Eoin J. O'Gorman, Björn C. Rall, Florian D. Schneider, Elisa Thébault and Ute Jacob, Predicting the consequences of species loss using size‐structured biodiversity approaches, Biological Reviews, 92, 2, (684-697), (2016).
- Lauren M. Smith‐Ramesh, Alexandria C. Moore and Oswald J. Schmitz, Global synthesis suggests that food web connectance correlates to invasion resistance, Global Change Biology, 23, 2, (465-473), (2016).
- Marie C. Nordström and Erik Bonsdorff, Organic enrichment simplifies marine benthic food web structure, Limnology and Oceanography, 62, 5, (2179-2188), (2017).
- Ya‐Nan Bai, Lei Wang, Michael Z. Q. Chen and Ning Huang, Controllability emerging from conditional path reachability in complex networks, International Journal of Robust and Nonlinear Control, 27, 18, (4919-4930), (2017).
- Phoebe L. Zarnetske, Benjamin Baiser, Angela Strecker, Sydne Record, Jonathan Belmaker and Mao-Ning Tuanmu, The Interplay Between Landscape Structure and Biotic Interactions, Current Landscape Ecology Reports, 10.1007/s40823-017-0021-5, 2, 1, (12-29), (2017).
- Gang Yan, Neo D. Martinez and Yang-Yu Liu, Degree heterogeneity and stability of ecological networks, Journal of The Royal Society Interface, 14, 131, (20170189), (2017).
- György Barabás, Matthew J. Michalska-Smith and Stefano Allesina, Self-regulation and the stability of large ecological networks, Nature Ecology & Evolution, 1, 12, (1870), (2017).
- Afroza Shirin, Isaac S. Klickstein and Francesco Sorrentino, Optimal control of complex networks: Balancing accuracy and energy of the control action, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 4, (041103), (2017).
- Jan O. Haerter, Namiko Mitarai and Kim Sneppen, Existence and construction of large stable food webs, Physical Review E, 96, 3, (2017).
- Janis Klaise and Samuel Johnson, The origin of motif families in food webs, Scientific Reports, 7, 1, (2017).
- Alfonso Allen-Perkins, Juan Manuel Pastor and Ernesto Estrada, Two-walks degree assortativity in graphs and networks, Applied Mathematics and Computation, 311, (262), (2017).
- Ernesto Estrada, Alhanouf Ali Alhomaidhi and Fawzi Al-Thukair, Exploring the “Middle Earth” of network spectra via a Gaussian matrix function, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 2, (023109), (2017).
- Tiziano Squartini and Diego Garlaschelli, Pattern Detection, Maximum-Entropy Networks, 10.1007/978-3-319-69438-2_3, (33-62), (2017).
- T.N. Romanuk, Y. Zhou, F.S. Valdovinos and N.D. Martinez, Robustness Trade-Offs in Model Food Webs, Networks of Invasion: A Synthesis of Concepts, 10.1016/bs.aecr.2016.11.001, (263-291), (2017).
- Katalin Patonai and Ferenc Jordán, Aggregation of incomplete food web data may help to suggest sampling strategies, Ecological Modelling, 352, (77), (2017).
- Ginestra Bianconi, Fluctuations in percolation of sparse complex networks, Physical Review E, 96, 1, (2017).
- Patrizia E. Vannucchi, Ignacio Peralta-Maraver, J. Manuel Tierno de Figueroa and Manuel J. López-Rodríguez, Dynamics of the macroinvertebrate community and food web of a Mediterranean stream, Journal of Freshwater Ecology, 32, 1, (229), (2017).
- Shaopeng Pang and Fei Hao, Optimizing controllability of edge dynamics in complex networks by perturbing network structure, Physica A: Statistical Mechanics and its Applications, 470, (217), (2017).
- Peter J.S. Fleming, Huw Nolan, Stephen M. Jackson, Guy-Anthony Ballard, Andrew Bengsen, Wendy Y. Brown, Paul D. Meek, Gregory Mifsud, Sunil K. Pal and Jessica Sparkes, Roles for the Canidae in food webs reviewed: Where do they fit?, Food Webs, 10.1016/j.fooweb.2017.03.001, 12, (14-34), (2017).
- Shao-Peng Pang and Fei Hao, Controllable subspace of edge dynamics in complex networks, Physica A: Statistical Mechanics and its Applications, 481, (209), (2017).
- Delin Xu, Ying Cai, Hao Jiang, Xiaoqing Wu, Xin Leng and Shuqing An, Variations of Food Web Structure and Energy Availability of Shallow Lake with Long‐Term Eutrophication: A Case Study from Lake Taihu, China, CLEAN – Soil, Air, Water, 44, 10, (1306-1314), (2016).
- Pedro Jordano, Sampling networks of ecological interactions, Functional Ecology, 30, 12, (1883-1893), (2016).
- Jenny M. Schmid‐Araya, Peter E. Schmid, Steven P. Tod and Genoveva F. Esteban, Trophic positioning of meiofauna revealed by stable isotopes and food web analyses, Ecology, 97, 11, (3099-3109), (2016).
- Wen-Yao Zhang, Zong-Wen Wei, Bing-Hong Wang and Xiao-Pu Han, Measuring mixing patterns in complex networks by Spearman rank correlation coefficient, Physica A: Statistical Mechanics and its Applications, 451, (440), (2016).
- C. Aldebert, D. Nerini, M. Gauduchon and J.C. Poggiale, Does structural sensitivity alter complexity–stability relationships?, Ecological Complexity, 28, (104), (2016).
- Shao-Peng Pang, Fei Hao and Wen-Xu Wang, Robustness of controlling edge dynamics in complex networks against node failure, Physical Review E, 94, 5, (2016).
- Jacopo Grilli, Tim Rogers and Stefano Allesina, Modularity and stability in ecological communities, Nature Communications, 7, (12031), (2016).
- Sen Nie, Xu-Wen Wang, Bing-Hong Wang and Luo-Luo Jiang, Effect of correlations on controllability transition in network control, Scientific Reports, 6, 1, (2016).
- Yoshiaki Nakagawa, Masayuki Yokozawa and Toshihiko Hara, Complex network analysis reveals novel essential properties of competition among individuals in an even-aged plant population, Ecological Complexity, 10.1016/j.ecocom.2016.03.005, 26, (95-116), (2016).
- Javier Sánchez-Hernández, Do age-related changes in feeding habits of brown trout alter structural properties of food webs?, Aquatic Ecology, 10.1007/s10452-016-9586-z, 50, 4, (685-695), (2016).
- Justin G.D. Byrne and Jonathan W. Pitchford, Species reintroduction and community-level consequences in dynamically simulated ecosystems, Bioscience Horizons, 9, (hzw009), (2016).
- Tomas Roslin and Sanna Majaneva, The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!, Genome, 10.1139/gen-2015-0229, 59, 9, (603-628), (2016).
- Virginia Domínguez-García, Samuel Johnson and Miguel A. Muñoz, Intervality and coherence in complex networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26, 6, (065308), (2016).
- Cassandra van Altena, Lia Hemerik and Peter C. de Ruiter, Food web stability and weighted connectance: the complexity-stability debate revisited, Theoretical Ecology, 9, 1, (49), (2016).
- Andrés Felipe Navia, Víctor Hugo Cruz-Escalona, Alan Giraldo and Alberto Barausse, The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management, Ecological Modelling, 328, (23), (2016).
- Jin Ding, Ping Tan and Yong-Zai Lu, Optimizing the controllability index of directed networks with the fixed number of control nodes, Neurocomputing, 171, (1524), (2016).
- Jan O. Haerter, Namiko Mitarai, Kim Sneppen and Stefano Allesina, Food Web Assembly Rules for Generalized Lotka-Volterra Equations, PLOS Computational Biology, 12, 2, (e1004727), (2016).
- S. Lozano, A. Mateos and J. Rodríguez, Exploring paleo food-webs in the European Early and Middle Pleistocene: A network analysis, Quaternary International, 10.1016/j.quaint.2015.10.068, 413, (44-54), (2016).
- C. Gray, A.G. Hildrew, X. Lu, A. Ma, D. McElroy, D. Monteith, E. O’Gorman, E. Shilland and G. Woodward, Recovery and Nonrecovery of Freshwater Food Webs from the Effects of Acidification, Large-Scale Ecology: Model Systems to Global Perspectives, 10.1016/bs.aecr.2016.08.009, (475-534), (2016).
- Zhe-Ming Lu, Xin-Feng Li and Wen-Bo Du, Attack Vulnerability of Network Controllability, PLOS ONE, 11, 9, (e0162289), (2016).
- Alyssa R. Cirtwill and Daniel B. Stouffer, Concomitant predation on parasites is highly variable but constrains the ways in which parasites contribute to food web structure, Journal of Animal Ecology, 84, 3, (734-744), (2015).
- Jonathan J. Borrelli, Selection against instability: stable subgraphs are most frequent in empirical food webs, Oikos, 124, 12, (1583-1588), (2015).
- Spencer A. Wood, Roly Russell, Dieta Hanson, Richard J. Williams and Jennifer A. Dunne, Effects of spatial scale of sampling on food web structure, Ecology and Evolution, 5, 17, (3769-3782), (2015).
- Helena K. Wirta, Eero J. Vesterinen, Peter A. Hambäck, Elisabeth Weingartner, Claus Rasmussen, Jeroen Reneerkens, Niels M. Schmidt, Olivier Gilg and Tomas Roslin, Exposing the structure of an Arctic food web, Ecology and Evolution, 5, 17, (3842-3856), (2015).
- Thomas R. Barnum, John M. Drake, Checo Colón-Gaud, Amanda T. Rugenski, Therese C. Frauendorf, Scott Connelly, Susan S. Kilham, Matt R. Whiles, Karen R. Lips and Catherine M. Pringle, Evidence for the persistence of food web structure after amphibian extirpation in a Neotropical stream, Ecology, 96, 8, (2106-2116), (2015).
- Sonia Kéfi, Eric L. Berlow, Evie A. Wieters, Lucas N. Joppa, Spencer A. Wood, Ulrich Brose and Sergio A. Navarrete, Network structure beyond food webs: mapping non‐trophic and trophic interactions on Chilean rocky shores, Ecology, 96, 1, (291-303), (2015). 2015 34th Chinese Control Conference (CCC) Hangzhou, China 2015 34th Chinese Control Conference (CCC) IEEE , (2015). 978-9-8815-6389-7 Pang Shaopeng and Hao Fei Driver edges analysis for network controllability , (2015). 7291 7296 7260795 , 10.1109/ChiCC.2015.7260795 http://ieeexplore.ieee.org/document/7260795/
- B. Gauzens, E. Thebault, G. Lacroix and S. Legendre, Trophic groups and modules: two levels of group detection in food webs, Journal of The Royal Society Interface, 12, 106, (20141176), (2015).
- Jes Hines, Wim H. van der Putten, Gerlinde B. De Deyn, Cameron Wagg, Winfried Voigt, Christian Mulder, Wolfgang W. Weisser, Jan Engel, Carlos Melian, Stefan Scheu, Klaus Birkhofer, Anne Ebeling, Christoph Scherber and Nico Eisenhauer, Towards an Integration of Biodiversity–Ecosystem Functioning and Food Web Theory to Evaluate Relationships between Multiple Ecosystem Services, Ecosystem Services - From Biodiversity to Society, Part 1, 10.1016/bs.aecr.2015.09.001, (161-199), (2015).
- M. Saigo, F. L. Zilli, M. R. Marchese and D. Demonte, Trophic level, food chain length and omnivory in the Paraná River: a food web model approach in a floodplain river system, Ecological Research, 30, 5, (843-852), (2015).
- Toshiyuki Namba, Multi‐faceted approaches toward unravelling complex ecological networks, Population Ecology, 57, 1, (3-19), (2015).
- Ernesto Estrada and Francesca Arrigo, Predicting Triadic Closure in Networks Using Communicability Distance Functions, SIAM Journal on Applied Mathematics, 75, 4, (1725), (2015).
- Alyssa R. Cirtwill, Daniel B. Stouffer and Tamara N. Romanuk, Latitudinal gradients in biotic niche breadth vary across ecosystem types, Proceedings of the Royal Society B: Biological Sciences, 282, 1819, (20151589), (2015).
- Timothy J. Bartley, Heather E. Braid, Kevin S. McCann, Nigel P. Lester, Brian J. Shuter, Brian J. Shuter and Robert H. Hanner, DNA barcoding increases resolution and changes structure in Canadian boreal shield lake food webs, DNA Barcodes, 3, 1, (2015).
- Pradumn Kumar Pandey and Bibhas Adhikari, Context dependent preferential attachment model for complex networks, Physica A: Statistical Mechanics and its Applications, 436, (499), (2015).
- Giorgio Mancinelli and Christian Mulder, Detrital Dynamics and Cascading Effects on Supporting Ecosystem Services, Ecosystem Services - From Biodiversity to Society, Part 1, 10.1016/bs.aecr.2015.10.001, (97-160), (2015).
- Zachery G. Driscoll, Harvey A. Bootsma and Elizabeth Christiansen, Zooplankton trophic structure in Lake Michigan as revealed by stable carbon and nitrogen isotopes, Journal of Great Lakes Research, 10.1016/j.jglr.2015.04.012, 41, (104-114), (2015).
- Jin Ding and Yong-Zai Lu, Control backbone: An index for quantifying a node׳s importance for the network controllability, Neurocomputing, 153, (309), (2015).
- Ignacio Morales-Castilla, Miguel G. Matias, Dominique Gravel and Miguel B. Araújo, Inferring biotic interactions from proxies, Trends in Ecology & Evolution, 30, 6, (347), (2015).
- Ute Jacob, Tomas Jonsson, Sofia Berg, Thomas Brey, Anna Eklöf, Katja Mintenbeck, Christian Möllmann, Lyne Morissette, Andrea Rau and Owen Petchey, Valuing Biodiversity and Ecosystem Services in a Complex Marine Ecosystem, Aquatic Functional Biodiversity, 10.1016/B978-0-12-417015-5.00008-6, (189-207), (2015).
- Ernesto Estrada, Eusebio Vargas-Estrada and Hiroyasu Ando, Communicability angles reveal critical edges for network consensus dynamics, Physical Review E, 92, 5, (2015).
- Javier Sánchez-Hernández, Fernando Cobo, Per-Arne Amundsen and Juan Carlos Molinero, Food Web Topology in High Mountain Lakes, PLOS ONE, 10, 11, (e0143016), (2015).
- Hélène Morlon, Sonia Kefi and Neo D. Martinez, Effects of trophic similarity on community composition, Ecology Letters, 17, 12, (1495-1506), (2014).
- Elizabeth M. Wolkovich, Stefano Allesina, Kathryn L. Cottingham, John C. Moore, Stuart A. Sandin and Claire de Mazancourt, Linking the green and brown worlds: the prevalence and effect of multichannel feeding in food webs, Ecology, 95, 12, (3376-3386), (2014).
- R. L. France, Rebuilding and comparing pyramids of numbers (Elton) and energy (Lindeman) with selected global δ15N data, Hydrobiologia, 722, 1, (1), (2014).
- Yonatan Rosen and Yoram Louzoun, Directionality of real world networks as predicted by path length in directed and undirected graphs, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2014.01.005, 401, (118-129), (2014).
- J. Podani, F. Jordan and D. Schmera, A new approach to exploring architecture of bipartite (interaction) ecological networks, Journal of Complex Networks, 2, 2, (168), (2014).
- O.Y. Buzhdygan, S.S. Rudenko, B.C. Patten and S.S. Kostyshyn, Food-web topology of Ukrainian mountain grasslands: Comparative properties and relations to ecosystem parameters, Ecological Modelling, 293, (128), (2014).
- Daniel L. Preston, Abigail Z. Jacobs, Sarah A. Orlofske and Pieter T. J. Johnson, Complex life cycles in a pond food web: effects of life stage structure and parasites on network properties, trophic positions and the fit of a probabilistic niche model, Oecologia, 10.1007/s00442-013-2806-5, 174, 3, (953-965), (2013).
- Éva E. Plagányi and Timothy E. Essington, When the SURFs up, forage fish are key, Fisheries Research, 159, (68), (2014).
- Jenny W. Oakley, James Simons and Gregory W. Stunz, Spatial and Habitat-Mediated Food Web Dynamics in An Oyster-Dominated Estuary, Journal of Shellfish Research, 33, 3, (841), (2014).
- Jin Ding, Yong-Zai Lu and Jian Chu, Recovering the Controllability of Complex Networks, IFAC Proceedings Volumes, 47, 3, (10894), (2014).
- Pratha Sah, Lisa O Singh, Aaron Clauset and Shweta Bansal, Exploring community structure in biological networks with random graphs, BMC Bioinformatics, 15, 1, (220), (2014).
- Xizhe Zhang, Tianyang Lv, XueYing Yang, Bin Zhang and Sergio Gómez, Structural Controllability of Complex Networks Based on Preferential Matching, PLoS ONE, 9, 11, (e112039), (2014).
- Stuart R. Borrett, James Moody and Achim Edelmann, The rise of Network Ecology: Maps of the topic diversity and scientific collaboration, Ecological Modelling, 293, (111), (2014).
- Sen Nie, Xuwen Wang, Haifeng Zhang, Qilang Li, Binghong Wang and Satoru Hayasaka, Robustness of Controllability for Networks Based on Edge-Attack, PLoS ONE, 9, 2, (e89066), (2014).
- Benjamin Baiser, Hannah L. Buckley, Nicholas J. Gotelli and Aaron M. Ellison, Predicting food‐web structure with metacommunity models, Oikos, 122, 4, (492-506), (2012).
- Benoît Gauzens, Stéphane Legendre, Xavier Lazzaro and Gérard Lacroix, Food‐web aggregation, methodological and functional issues, Oikos, 122, 11, (1606-1615), (2013).
- María Miranda, Francesca Parrini and Fredrik Dalerum, A categorization of recent network approaches to analyse trophic interactions, Methods in Ecology and Evolution, 4, 10, (897-905), (2013).
- , Bibliography, Food Webs and Biodiversity, (349-363), (2013).
- Tao Jia and Albert-László Barabási, Control Capacity and A Random Sampling Method in Exploring Controllability of Complex Networks, Scientific Reports, 3, 1, (2013).
- Wayne Rossiter, Current opinions: Zeros in host–parasite food webs: Are they real?, International Journal for Parasitology: Parasites and Wildlife, 2, (228), (2013).
- Michele Bellingeri, Davide Cassi and Simone Vincenzi, Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs, Ecological Modelling, 251, (1), (2013).
- Gesa Angelika Böhme, Emergence and persistence of diversity in complex networks, The European Physical Journal Special Topics, 222, 12, (3089), (2013).
- José A. Capitán, Alex Arenas and Roger Guimerà, Degree of intervality of food webs: From body-size data to models, Journal of Theoretical Biology, 334, (35), (2013).
- M. Scotti, F. Ciocchetta and F. Jordan, Social and landscape effects on food webs: a multi-level network simulation model, Journal of Complex Networks, 10.1093/comnet/cnt013, 1, 2, (160-182), (2013). 2013 International Conference on Social Intelligence and Technology (SOCIETY) State College, PA 2013 International Conference on Social Intelligence and Technology IEEE , (2013). 978-0-7695-4998-9 978-1-4799-0045-9 Zheng Gao, Zaixin Lu, Weidong Chen, Jiaofei Zhong and Yuanjun Bi The Maximum Community Partition Problem in Networks , (2013). 28 36 6545962 , 10.1109/SOCIETY.2013.10 http://ieeexplore.ieee.org/document/6545962/
- Enys Mones, Hierarchy in directed random networks, Physical Review E, 87, 2, (2013).
- Maria Daniela Torres-Alruiz and Diego J. Rodríguez, A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes, Ecological Modelling, 250, (363), (2013).
- CN de Santana, AF Rozenfeld, PA Marquet and CM Duarte, Topological properties of polar food webs, Marine Ecology Progress Series, 474, (15), (2013).
- Órla B. McLaughlin, Mark C. Emmerson and Eoin J. O’Gorman, Habitat Isolation Reduces the Temporal Stability of Island Ecosystems in the Face of Flood Disturbance, Global Change in Multispecies Systems: Part 3, 10.1016/B978-0-12-417199-2.00004-5, (225-284), (2013).
- H. Aufderheide, L. Rudolf, T. Gross and K. D. Lafferty, How to predict community responses to perturbations in the face of imperfect knowledge and network complexity, Proceedings of the Royal Society B: Biological Sciences, 280, 1773, (20132355), (2013).
- Leandro Bergamino, Julio Gómez, Francisco R. Barboza and Diego Lercari, Major food web properties of two sandy beaches with contrasting morphodynamics, and effects on the stability, Aquatic Ecology, 47, 3, (253), (2013).
- Pavel Kratina, Robin M. LeCraw, Travis Ingram and Bradley R. Anholt, Stability and persistence of food webs with omnivory: Is there a general pattern?, Ecosphere, 3, 6, (1-18), (2012).
- ROSS M. THOMPSON, JENNIFER A. DUNNE and GUY WOODWARD, Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics, Freshwater Biology, 57, 7, (1329-1341), (2012).
- ROBERT L. FRANCE, Omnivory, vertical food‐web structure and system productivity: stable isotope analysis of freshwater planktonic food webs, Freshwater Biology, 57, 4, (787-794), (2012).
- Ferenc Jordán, Carmen Maria Livi and Paola Lecca, Structural and Dynamical Heterogeneity in Ecological Networks, Systemic Approaches in Bioinformatics and Computational Systems Biology, 10.4018/978-1-61350-435-2.ch007, (141-162)
- JENNY M. SCHMID‐ARAYA, DAVID FIGUEROA HERNANDEZ, PETER E. SCHMID and CATHERINE DROUOT, Algivory in food webs of three temperate Andean rivers, Austral Ecology, 37, 4, (440-451), (2011).
- M. Ceneviva-Bastos, L. Casatti and V. Uieda, Can seasonal differences influence food web structure on preserved habitats? Responses from two Brazilian streams, Community Ecology, 13, 2, (243), (2012).
- Marion Twomey, Ute Jacob and Mark C. Emmerson, Perturbing a Marine Food Web: Consequences for Food Web Structure and Trivariate Patterns, Global Change in Multispecies Systems Part 2, 10.1016/B978-0-12-398315-2.00005-3, (349-409), (2012).
- R. Sánchez-Carmona, L. Encina, A. Rodríguez-Ruiz, M. V. Rodríguez-Sánchez and C. Granado-Lorencio, Food web structure in Mediterranean streams: exploring stabilizing forces in these ecosystems, Aquatic Ecology, 46, 3, (311), (2012).
- S. Petrovskii and N. Petrovskaya, Computational ecology as an emerging science, Interface Focus, 2, 2, (241), (2012).
- Wen-Xu Wang, Xuan Ni, Ying-Cheng Lai and Celso Grebogi, Optimizing controllability of complex networks by minimum structural perturbations, Physical Review E, 85, 2, (2012).
- A. Eklof, M. R. Helmus, M. Moore and S. Allesina, Relevance of evolutionary history for food web structure, Proceedings of the Royal Society B: Biological Sciences, 279, 1733, (1588), (2012).
- Christian Mulder, Alice Boit, Shigeta Mori, J. Arie Vonk, Scott D. Dyer, Leslie Faggiano, Stefan Geisen, Angélica L. González, Michael Kaspari, Sandra Lavorel, Pablo A. Marquet, Axel G. Rossberg, Robert W. Sterner, Winfried Voigt and Diana H. Wall, Distributional (In)Congruence of Biodiversity–Ecosystem Functioning, Global Change in Multispecies Systems Part 1, 10.1016/B978-0-12-396992-7.00001-0, (1-88), (2012).
- Enys Mones, Lilla Vicsek, Tamás Vicsek and Stefano Boccaletti, Hierarchy Measure for Complex Networks, PLoS ONE, 7, 3, (e33799), (2012).
- Ferenc Jordán, Nerta Gjata, Shu Mei, Catherine M. Yule and Tamara Natasha Romanuk, Simulating Food Web Dynamics along a Gradient: Quantifying Human Influence, PLoS ONE, 7, 7, (e40280), (2012).
- Oksana Y. Buzhdygan, Bernard C. Patten and Svitlana S. Rudenko, Trophic Network Analysis, Models of the Ecological Hierarchy - From Molecules to the Ecosphere, 10.1016/B978-0-444-59396-2.00012-2, (181-199), (2012).
- Michael VK Sukhdeo, Where are the parasites in food webs?, Parasites & Vectors, 5, 1, (239), (2012).
- D. B. Stouffer, M. Sales-Pardo, M. I. Sirer and J. Bascompte, Evolutionary Conservation of Species' Roles in Food Webs, Science, 335, 6075, (1489), (2012).
- Wayne Rossiter and Michael V. K. Sukhdeo, Exploitation of asymmetric predator–prey interactions by trophically transmitted parasites, Oikos, 120, 4, (607-614), (2010).
- Daniel B. Stouffer, Enrico L. Rezende and Luís A. Nunes Amaral, The role of body mass in diet contiguity and food‐web structure, Journal of Animal Ecology, 80, 3, (632-639), (2011).
- Dominique Gravel, François Massol, Elsa Canard, David Mouillot and Nicolas Mouquet, Trophic theory of island biogeography, Ecology Letters, 14, 10, (1010-1016), (2011). 2011 International Conference on Management and Service Science, (2011).Jun gai Tian and Hong jun Xu110.1109/ICMSS.2011.5999230
- E. J. O'Gorman, J. M. Yearsley, T. P. Crowe, M. C. Emmerson, U. Jacob and O. L. Petchey, Loss of functionally unique species may gradually undermine ecosystems, Proceedings of the Royal Society B: Biological Sciences, 278, 1713, (1886), (2011).
- Katrin Layer, Alan G. Hildrew, Gareth B. Jenkins, Jens O. Riede, Stephen J. Rossiter, Colin R. Townsend and Guy Woodward, Long-Term Dynamics of a Well-Characterised Food Web, , 10.1016/B978-0-12-374794-5.00002-X, (69-117), (2011).
- Tiziano Squartini and Diego Garlaschelli, Analytical maximum-likelihood method to detect patterns in real networks, New Journal of Physics, 13, 8, (083001), (2011).
- Paul J. Laurienti, Karen E. Joyce, Qawi K. Telesford, Jonathan H. Burdette and Satoru Hayasaka, Universal fractal scaling of self-organized networks, Physica A: Statistical Mechanics and its Applications, 390, 20, (3608), (2011).
- Carmen Maria Livi, Ferenc Jordán, Paola Lecca and Thomas A. Okey, Identifying key species in ecosystems with stochastic sensitivity analysis, Ecological Modelling, 222, 14, (2542), (2011).
- Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen L. Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs, The Role of Body Size in Multispecies Systems, 10.1016/B978-0-12-386475-8.00005-8, (181-223), (2011).
- Éder A. Gubiani, Ronaldo Angelini, Ludgero C.G. Vieira, Luiz C. Gomes and Angelo A. Agostinho, Trophic models in Neotropical reservoirs: Testing hypotheses on the relationship between aging and maturity, Ecological Modelling, 222, 23-24, (3838), (2011).
- Dominique Gravel, Elsa Canard, Frédéric Guichard, Nicolas Mouquet and Andrew Hector, Persistence Increases with Diversity and Connectance in Trophic Metacommunities, PLoS ONE, 6, 5, (e19374), (2011).
- Carlos J. Melián, César Vilas, Francisco Baldó, Enrique González-Ortegón, Pilar Drake and Richard J. Williams, Eco-evolutionary Dynamics of Individual-Based Food Webs, The Role of Body Size in Multispecies Systems, 10.1016/B978-0-12-386475-8.00006-X, (225-268), (2011).
- Dario Ottonello and Antonio Romano, Ostracoda and Amphibia in temporary ponds: who is the prey? Unexpected trophic relation in a mediterranean freshwater habitat, Aquatic Ecology, 45, 1, (55), (2011).
- A. G. Rossberg, K. D. Farnsworth, K. Satoh and J. K. Pinnegar, Universal power-law diet partitioning by marine fish and squid with surprising stability-diversity implications, Proceedings of the Royal Society B: Biological Sciences, 278, 1712, (1617), (2011).
- Jacobo Aguirre, Javier M. Buldú, Michael Stich, Susanna C. Manrubia and Yamir Moreno, Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks, PLoS ONE, 6, 10, (e26324), (2011).
- Nicole Carlson, Dong-Hee Kim and Adilson E. Motter, Sample-to-sample fluctuations in real-network ensembles, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21, 2, (025105), (2011).
- Peter J. Morin, References, Community Ecology, (353-383), (2011).
- Lee E. Brown, Francois K. Edwards, Alexander M. Milner, Guy Woodward and Mark E. Ledger, Food web complexity and allometric scaling relationships in stream mesocosms: implications for experimentation, Journal of Animal Ecology, 80, 4, (884-895), (2011).
- Yuanzhe Cai and Sharma Chakravarthy, Pairwise Similarity Calculation of Information Networks, Data Warehousing and Knowledge Discovery, 10.1007/978-3-642-23544-3_24, (316-329), (2011).
- R. Guimerà, D. B. Stouffer, M. Sales-Pardo, E. A. Leicht, M. E. J. Newman and L. A. N. Amaral, Origin of compartmentalization in food webs, Ecology, 91, 10, (2941-2951), (2010).
- Michio Kondoh, Satoshi Kato and Yoshikuni Sakato, Food webs are built up with nested subwebs, Ecology, 91, 11, (3123-3130), (2010).
- Eoin J. O’Gorman, Ute Jacob, Tomas Jonsson and Mark C. Emmerson, Interaction strength, food web topology and the relative importance of species in food webs, Journal of Animal Ecology, 79, 3, (682-692), (2010).
- Benjamin Baiser, Gareth J. Russell and Julie L. Lockwood, Connectance determines invasion success via trophic interactions in model food webs, Oikos, 119, 12, (1970-1976), (2010).
- Phillip P. A. Staniczenko, Owen T. Lewis, Nick S. Jones and Felix Reed‐Tsochas, Structural dynamics and robustness of food webs, Ecology Letters, 13, 7, (891-899), (2010).
- Nicolas Loeuille, Influence of evolution on the stability of ecological communities, Ecology Letters, 13, 12, (1536-1545), (2010).
- MERRILL NICOLAS and BRUCE S. RUBIDGE, Changes in Permo‐Triassic terrestrial tetrapod ecological representation in the Beaufort Group (Karoo Supergroup) of South Africa, Lethaia, 43, 1, (45-59), (2009).
- KATRIN LAYER, ALAN HILDREW, DON MONTEITH and GUY WOODWARD, Long‐term variation in the littoral food web of an acidified mountain lake, Global Change Biology, 16, 11, (3133-3143), (2010).
- Órla B. McLaughlin, Tomas Jonsson and Mark C. Emmerson, Temporal Variability in Predator–Prey Relationships of a Forest Floor Food Web, Ecological Networks, 10.1016/B978-0-12-381363-3.00004-6, (171-264), (2010).
- Eoin J. O'Gorman and Mark C. Emmerson, Manipulating Interaction Strengths and the Consequences for Trivariate Patterns in a Marine Food Web, Ecological Networks, 10.1016/B978-0-12-381363-3.00006-X, (301-419), (2010).
- R. POULIN and T. L. F. LEUNG, Taxonomic resolution in parasite community studies: are things getting worse?, Parasitology, 137, 13, (1967), (2010).
- Jeffrey M. Dambacher, Jock W. Young, Robert J. Olson, Valérie Allain, Felipe Galván-Magaña, Matthew J. Lansdell, Noemí Bocanegra-Castillo, Vanessa Alatorre-Ramírez, Scott P. Cooper and Leanne M. Duffy, Analyzing pelagic food webs leading to top predators in the Pacific Ocean: A graph-theoretic approach, Progress in Oceanography, 10.1016/j.pocean.2010.04.011, 86, 1-2, (152-165), (2010).
- , References, Freshwater Ecology, 10.1016/B978-0-12-374724-2.00030-1, (719-786), (2010).
- Muhittin Mungan and José J Ramasco, Stability of maximum-likelihood-based clustering methods: exploring the backbone of classifications, Journal of Statistical Mechanics: Theory and Experiment, 2010, 04, (P04028), (2010).
- Harold Soh, Sonja Lim, Tianyou Zhang, Xiuju Fu, Gary Kee Khoon Lee, Terence Gih Guang Hung, Pan Di, Silvester Prakasam and Limsoon Wong, Weighted complex network analysis of travel routes on the Singapore public transportation system, Physica A: Statistical Mechanics and its Applications, 389, 24, (5852), (2010).
- Jens O. Riede, Björn C. Rall, Carolin Banasek-Richter, Sergio A. Navarrete, Evie A. Wieters, Mark C. Emmerson, Ute Jacob and Ulrich Brose, Scaling of Food-Web Properties with Diversity and Complexity Across Ecosystems, Ecological Networks, 10.1016/B978-0-12-381363-3.00003-4, (139-170), (2010).
- Katrin Layer, Jens O. Riede, Alan G. Hildrew and Guy Woodward, Food Web Structure and Stability in 20 Streams Across a Wide pH Gradient, Ecological Networks, 10.1016/B978-0-12-381363-3.00005-8, (265-299), (2010).
- Guy Woodward, Julia Blanchard, Rasmus B. Lauridsen, Francois K. Edwards, J. Iwan Jones, David Figueroa, Philip H. Warren and Owen L. Petchey, Individual-Based Food Webs, Integrative Ecology: From Molecules to Ecosystems, 10.1016/B978-0-12-385005-8.00006-X, (211-266), (2010).
- J. G. Foster, D. V. Foster, P. Grassberger and M. Paczuski, Edge direction and the structure of networks, Proceedings of the National Academy of Sciences, 107, 24, (10815), (2010).
- Ferenc Jordán, Gabriella Baranyi and Federica Ciocchetta, A Hierarchy of Networks Spanning from Individual Organisms to Ecological Landscapes, Network Science, 10.1007/978-1-84996-396-1_8, (165-183), (2010).
- Jan E. Vermaat, Jennifer A. Dunne and Alison J. Gilbert, Major dimensions in food‐web structure properties, Ecology, 90, 1, (278-282), (2009).
- Per‐Arne Amundsen, Kevin D. Lafferty, Rune Knudsen, Raul Primicerio, Anders Klemetsen and Armand M. Kuris, Food web topology and parasites in the pelagic zone of a subarctic lake, Journal of Animal Ecology, 78, 3, (563-572), (2009).
- Ann E. Krause, Ken A. Frank, Michael L. Jones, Thomas F. Nalepa, Richard P. Barbiero, Charles P. Madenjian, Megan Agy, Marlene S. Evans, William W. Taylor, Doran M. Mason and Nancy J. Leonard, Adaptations in a hierarchical food web of southeastern Lake Michigan, Ecological Modelling, 220, 22, (3147), (2009).
- Bernard A. Megrey and Kerim Y. Aydin, A macrodescriptor perspective of ecological attributes for the Bering and Barents Seas, Deep Sea Research Part II: Topical Studies in Oceanography, 56, 21-22, (2132), (2009).
- Alison J. Gilbert, Connectance indicates the robustness of food webs when subjected to species loss, Ecological Indicators, 9, 1, (72), (2009).
- Tamara N. Romanuk, Yun Zhou, Ulrich Brose, Eric L. Berlow, Richard J. Williams and Neo D. Martinez, Predicting invasion success in complex ecological networks, Philosophical Transactions of the Royal Society B: Biological Sciences, 10.1098/rstb.2008.0286, 364, 1524, (1743-1754), (2009).
- Kevin Shear McCann and Neil Rooney, The more food webs change, the more they stay the same, Philosophical Transactions of the Royal Society B: Biological Sciences, 10.1098/rstb.2008.0273, 364, 1524, (1789-1801), (2009).
- Stefano Allesina, Antonio Bodini and Mercedes Pascual, Functional links and robustness in food webs, Philosophical Transactions of the Royal Society B: Biological Sciences, 10.1098/rstb.2008.0214, 364, 1524, (1701-1709), (2009).
- Kátya Abrantes and Marcus Sheaves, Food web structure in a near-pristine mangrove area of the Australian Wet Tropics, Estuarine, Coastal and Shelf Science, 82, 4, (597), (2009).
- Sarah Gaichas, Georg Skaret, Jannike Falk-Petersen, Jason S. Link, William Overholtz, Bernard A. Megrey, Harald Gjøsæter, William T. Stockhausen, Are Dommasnes, Kevin D. Friedland and Kerim Aydin, A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics, Progress in Oceanography, 10.1016/j.pocean.2009.04.005, 81, 1-4, (47-62), (2009).
- Daniel C. Reuman, Joel E. Cohen and Christian Mulder, Chapter 2 Human and Environmental Factors Influence Soil Faunal Abundance–Mass Allometry and Structure, , 10.1016/S0065-2504(09)00402-4, (45-85), (2009).
- Ferenc Jordán and Györgyi Osváth, The sensitivity of food web topology to temporal data aggregation, Ecological Modelling, 220, 22, (3141), (2009).
- Jennifer A. Dunne and Richard J. Williams, Cascading extinctions and community collapse in model food webs, Philosophical Transactions of the Royal Society B: Biological Sciences, 10.1098/rstb.2008.0219, 364, 1524, (1711-1723), (2009).
- Shweta Bansal, Shashank Khandelwal and Lauren Ancel Meyers, Exploring biological network structure with clustered random networks, BMC Bioinformatics, 10.1186/1471-2105-10-405, 10, 1, (2009).
- Kristy L. Hogsden, Marguerite A. Xenopoulos and James A. Rusak, Asymmetrical food web responses in trophic-level richness, biomass, and function following lake acidification, Aquatic Ecology, 10.1007/s10452-008-9169-8, 43, 2, (591-606), (2008).
- Emma Norling, Craig R. Powell and Bruce Edmonds, Cross-Disciplinary Views on Modelling Complex Systems, Multi-Agent-Based Simulation IX, 10.1007/978-3-642-01991-3_14, (183-194), (2009).
- Kevin D. Lafferty, Stefano Allesina, Matias Arim, Cherie J. Briggs, Giulio De Leo, Andrew P. Dobson, Jennifer A. Dunne, Pieter T. J. Johnson, Armand M. Kuris, David J. Marcogliese, Neo D. Martinez, Jane Memmott, Pablo A. Marquet, John P. McLaughlin, Erin A. Mordecai, Mercedes Pascual, Robert Poulin and David W. Thieltges, Parasites in food webs: the ultimate missing links, Ecology Letters, 11, 6, (533-546), (2008).
- Denise A. Piechnik, Sharon P. Lawler and Neo D. Martinez, Food‐web assembly during a classic biogeographic study: species’“trophic breadth” corresponds to colonization order, Oikos, 117, 5, (665-674), (2008).
- Guy Woodward, Georgia Papantoniou, François Edwards and Rasmus B. Lauridsen, Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes, Oikos, 117, 5, (683-692), (2008).
- Elisa Thébault and Colin Fontaine, Does asymmetric specialization differ between mutualistic and trophic networks?, Oikos, 117, 4, (555-563), (2008).
- David Mouillot, Boris R. Krasnov, Georgy I. Shenbrot and Robert Poulin, Connectance and parasite diet breadth in flea‐mammal webs, Ecography, 31, 1, (16-20), (2007).
- MATTHEW R. HELMUS and GREG G. SASS, The rapid effects of a whole‐lake reduction of coarse woody debris on fish and benthic macroinvertebrates, Freshwater Biology, 53, 7, (1423-1433), (2008).
- E. Chassot, T. Rouyer, V. M. Trenkel and D. Gascuel, Investigating trophic‐level variability in Celtic Sea fish predators, Journal of Fish Biology, 73, 4, (763-781), (2008).
- Neil Rooney, Kevin S. McCann and John C. Moore, A landscape theory for food web architecture, Ecology Letters, 11, 8, (867-881), (2008).
- Louis-Félix Bersier and Patrik Kehrli, The signature of phylogenetic constraints on food-web structure, Ecological Complexity, 5, 2, (132), (2008).
- Richard J. Williams and Neo D. Martinez, Success and its limits among structural models of complex food webs, Journal of Animal Ecology, 77, 3, (512-519), (2008).
- Mark D. Humphries, Kevin Gurney and Olaf Sporns, Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence, PLoS ONE, 3, 4, (e0002051), (2008).
- Katsuhiko Yoshida, The relationship between the duration of food web evolution and the vulnerability to biological invasion, Ecological Complexity, 10.1016/j.ecocom.2008.02.002, 5, 2, (86-98), (2008).
- Elisa Thébault and Colin Fontaine, Does asymmetric specialization differ between mutualistic and trophic networks?, Oikos, 0, 0, (080227085440234), (2008).
- Nadiah P. Kristensen, Permanence Does Not Predict the Commonly Measured Food Web Structural Attributes, The American Naturalist, 10.1086/524953, 171, 2, (202-213), (2008).
- Ying Huang, Yunjun Yan and Xiaoyu Li, Food Web Structure of Benthic Macrolnvertebrates in a Second Order Stream of the Hanjiang River Basin in Middle China, Journal of Freshwater Ecology, 23, 3, (421), (2008).
- Katsuhiko Yoshida, Evolutionary cause of the vulnerability of insular communities, Ecological Modelling, 210, 4, (403), (2008).
- A. Ma'ayan, G. A. Cecchi, J. Wagner, A. R. Rao, R. Iyengar and G. Stolovitzky, Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks, Proceedings of the National Academy of Sciences, 105, 49, (19235), (2008).
- Denise A. Piechnik, Sharon P. Lawler and Neo D. Martinez, Food-web assembly during a classic biogeographic study: species’ "trophic breadth" corresponds to colonization order, Oikos, 0, 0, (080211051304426), (2008).
- Alexander D. Hernandez and Michael V. K. Sukhdeo, Parasites alter the topology of a stream food web across seasons, Oecologia, 10.1007/s00442-008-0999-9, 156, 3, (613-624), (2008).
- Marta Coll, Heike K. Lotze and Tamara N. Romanuk, Structural Degradation in Mediterranean Sea Food Webs: Testing Ecological Hypotheses Using Stochastic and Mass-Balance Modelling, Ecosystems, 10.1007/s10021-008-9171-y, 11, 6, (939-960), (2008).
- R. Motta and V. Uieda, Independent and interactive effects of a top and an intermediate fish species on the food web structure of a tropical stream, Community Ecology, 10.1556/ComEc.9.2008.1.9, 9, 1, (73-82), (2008).
- M. Jake Vander Zanden and William W. Fetzer, Global patterns of aquatic food chain length, Oikos, 116, 8, (1378-1388), (2007).
- Matty P. Berg and Janne Bengtsson, Temporal and spatial variability in soil food web structure, Oikos, 116, 11, (1789-1804), (2007).
- Ross M. Thompson, Martin Hemberg, Brian M. Starzomski and Jonathan B. Shurin, TROPHIC LEVELS AND TROPHIC TANGLES: THE PREVALENCE OF OMNIVORY IN REAL FOOD WEBS, Ecology, 88, 3, (612-617), (2007).
- Ken Arii, Raphaëlle Derome and Lael Parrott, Examining the potential effects of species aggregation on the network structure of food webs, Bulletin of Mathematical Biology, 10.1007/s11538-006-9065-0, 69, 1, (119-133), (2006).
- Gaku Takimoto, Takeshi Miki and Maiko Kagami, Intraguild predation promotes complex alternative states along a productivity gradient, Theoretical Population Biology, 72, 2, (264), (2007). 2007 5th IEEE International Conference on Industrial Informatics Vienna, Austria 2007 5th IEEE International Conference on Industrial Informatics IEEE , (2007). 978-1-4244-0850-4 978-1-4244-0851-1 1935-4576 Mihaela Ulieru and Stefan Grobbelaar Engineering Industrial Ecosystems in a Networked World , (2007). 1 7 4384717 , 10.1109/INDIN.2007.4384717 http://ieeexplore.ieee.org/document/4384717/
- Marco Scotti, János Podani and Ferenc Jordán, Weighting, scale dependence and indirect effects in ecological networks: A comparative study, Ecological Complexity, 4, 3, (148), (2007).
- G Bell, The evolution of trophic structure, Heredity, 99, 5, (494), (2007).
- Ernesto Estrada, Characterization of topological keystone species, Ecological Complexity, 4, 1-2, (48), (2007).
- Stuart R. Borrett, Brian D. Fath and Bernard C. Patten, Functional integration of ecological networks through pathway proliferation, Journal of Theoretical Biology, 245, 1, (98), (2007).
- M.E.J. Newman, Course 8 Complex networks, Complex Systems, 10.1016/S0924-8099(07)80015-1, (309-342), (2007).
- Per Arne Rikvold and Volkan Sevim, Individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure, Physical Review E, 75, 5, (2007).
- Daniel B Stouffer, Juan Camacho, Wenxin Jiang and Luís A Nunes Amaral, Evidence for the existence of a robust pattern of prey selection in food webs, Proceedings of the Royal Society B: Biological Sciences, 10.1098/rspb.2007.0571, 274, 1621, (1931-1940), (2007).
- , Literature Cited, Ecological Understanding, 10.1016/B978-012554522-8.50012-1, (207-223), (2007).
- J. Camacho, D.B. Stouffer and L.A.N. Amaral, Quantitative analysis of the local structure of food webs, Journal of Theoretical Biology, 246, 2, (260), (2007). 2007 International Symposium on Applications and the Internet Hiroshima, Japan 2007 International Symposium on Applications and the Internet IEEE , (2007). Yutaka Nakano, Motonori Nakamura and Yasuo Okabe Analysis for Topological Properties of the Network Feeding Usenet News , (2007). 14 14 4090050 , 10.1109/SAINT.2007.9 http://ieeexplore.ieee.org/document/4090050/
- Ernesto Estrada, Food webs robustness to biodiversity loss: The roles of connectance, expansibility and degree distribution, Journal of Theoretical Biology, 244, 2, (296), (2007).
- Sofia Gamito, MODELING POSSIBLE IMPACTS OF TERRORIST ATTACKS IN COASTAL LAGOON ECOSYSTEMS WITH STELLA, Assessment of the Fate and Effects of Toxic Agents on Water Resources, 10.1007/978-1-4020-5528-7_12, (259-277), (2007).
- Emma Norling, Contrasting a System Dynamics Model and an Agent-Based Model of Food Web Evolution, Multi-Agent-Based Simulation VII, 10.1007/978-3-540-76539-4_5, (57-68), (2007).
- A.G. Rossberg, H. Matsuda, T. Amemiya and K. Itoh, Some properties of the speciation model for food-web structure—Mechanisms for degree distributions and intervality, Journal of Theoretical Biology, 238, 2, (401), (2006).
- A.G. Rossberg, K. Yanagi, T. Amemiya and K. Itoh, Estimating trophic link density from quantitative but incomplete diet data, Journal of Theoretical Biology, 243, 2, (261), (2006).
- Kei Tokita, Statistical mechanics of relative species abundance, Ecological Informatics, 1, 3, (315), (2006).
- L. A. Barbosa, A. Castro e Silva and J. Kamphorst Leal da Silva, Scaling relations in food webs, Physical Review E, 73, 4, (2006).
- A. P. Beckerman, O. L. Petchey and P. H. Warren, Foraging biology predicts food web complexity, Proceedings of the National Academy of Sciences, 103, 37, (13745), (2006).
- S. Akin and K. O. Winemiller, Seasonal variation in food web composition and structure in a temperate tidal estuary, Estuaries and Coasts, 10.1007/BF02784282, 29, 4, (552-567), (2006).
- Donald L. Deangelis, Community Food Webs , Encyclopedia of Environmetrics, (2013).
- GARY A. POLIS, Food webs, trophic cascades and community structure, Australian Journal of Ecology, 19, 2, (121), (2006).
- A.G. Rossberg, H. Matsuda, T. Amemiya and K. Itoh, Food webs: Experts consuming families of experts, Journal of Theoretical Biology, 241, 3, (552), (2006).
- Petter Holme, Detecting degree symmetries in networks, Physical Review E, 74, 3, (2006).
- F. Jordán, I. Scheuring, V. Vasas and J. Podani, Architectural classes of aquatic food webs based on link distribution, Community Ecology, 10.1556/ComEc.7.2006.1.8, 7, 1, (81-90), (2006).
- U. Jacob, T. Brey, I. Fetzer, S. Kaehler, K. Mintenbeck, K. Dunton, K. Beyer, U. Struck, E.A. Pakhomov and W.E. Arntz, Towards the trophic structure of the Bouvet Island marine ecosystem, Polar Biology, 10.1007/s00300-005-0071-8, 29, 2, (106-113), (2005).
- Jordi Bascompte and Carlos J. Melián, SIMPLE TROPHIC MODULES FOR COMPLEX FOOD WEBS, Ecology, 86, 11, (2868-2873), (2005).
- D. B. Stouffer, J. Camacho, R. Guimerà, C. A. Ng and L. A. Nunes Amaral, QUANTITATIVE PATTERNS IN THE STRUCTURE OF MODEL AND EMPIRICAL FOOD WEBS, Ecology, 86, 5, (1301-1311), (2005).
- Carlos Roberto Fonseca, Paulo I. Prado, Mário Almeida‐Neto, Umberto Kubota and Thomas M. Lewinsohn, Flower‐heads, herbivores, and their parasitoids: food web structure along a fertility gradient, Ecological Entomology, 30, 1, (36-46), (2005).
- Ross M. Thompson and Colin R. Townsend, FOOD‐WEB TOPOLOGY VARIES WITH SPATIAL SCALE IN A PATCHY ENVIRONMENT, Ecology, 86, 7, (1916-1925), (2005).
- Rosinês L. Motta and Virginia S. Uieda, Food web structure in a tropical stream ecosystem, Austral Ecology, 30, 1, (58-73), (2005).
- Christopher Quince, Paul G. Higgs and Alan J. McKane, Topological structure and interaction strengths in model food webs, Ecological Modelling, 187, 4, (389), (2005).
- , REFERENCES, Dynamic Food Webs, 10.1016/B978-012088458-2/50044-8, (471-540), (2005).
- Tomas Jonsson, Joel E. Cohen and Stephen R. Carpenter, Food Webs, Body Size, and Species Abundance in Ecological Community Description, Food Webs: From Connectivity to Energetics, 10.1016/S0065-2504(05)36001-6, (1-84), (2005).
- A.G. Rossberg, H. Matsuda, T. Amemiya and K. Itoh, An explanatory model for food-web structure and evolution, Ecological Complexity, 2, 3, (312), (2005).
- Daniel C. Reuman and Joel E. Cohen, Estimating Relative Energy Fluxes Using the Food Web, Species Abundance, and Body Size, Food Webs: From Connectivity to Energetics, 10.1016/S0065-2504(05)36003-X, (137-182), (2005).
- John K. Pinnegar, Julia L. Blanchard, Steve Mackinson, Robert D. Scott and Daniel E. Duplisea, Aggregation and removal of weak-links in food-web models: system stability and recovery from disturbance, Ecological Modelling, 184, 2-4, (229), (2005).
- Guy Woodward, Dougie C. Speirs and Alan G. Hildrew, Quantification and Resolution of a Complex, Size-Structured Food Web, Food Webs: From Connectivity to Energetics, 10.1016/S0065-2504(05)36002-8, (85-135), (2005).
- Emmanuel Chassot, Didier Gascuel and Audrey Colomb, Impact of trophic interactions on production functions and on the ecosystem response to fishing: A simulation approach, Aquatic Living Resources, 18, 1, (1), (2005).
- Petter Holme, Core-periphery organization of complex networks, Physical Review E, 72, 4, (2005).
- Ronaldo Angelini and Angelo Antonio Agostinho, Food web model of the Upper Paraná River Floodplain: description and aggregation effects, Ecological Modelling, 181, 2-3, (109), (2005).
- Ugo Bastolla, Michael Lässig, Susanna C. Manrubia and Angelo Valleriani, Biodiversity in model ecosystems, II: species assembly and food web structure, Journal of Theoretical Biology, 235, 4, (531), (2005).
- Stefano Allesina, Cristina Bondavalli and Ursula M. Scharler, The consequences of the aggregation of detritus pools in ecological networks, Ecological Modelling, 189, 1-2, (221), (2005).
- ROSINÊS L. MOTTA and VIRGINIA S. UIEDA, Food web structure in a tropical stream ecosystem, Austral Ecology, 10.1111/j.1442-9993.2005.tb00366.x, 30, 1, (58-73), (2008).
- Owen L. Petchey, Amy L. Downing, Gary G. Mittelbach, Lennart Persson, Christopher F. Steiner, Philip H. Warren and Guy Woodward, Species loss and the structure and functioning of multitrophic aquatic systems, Oikos, 104, 3, (467-478), (2004).
- Ian D. Hodkinson and Stephen J. Coulson, Are high Arctic terrestrial food chains really that simple? – The Bear Island food web revisited, Oikos, 106, 2, (427-431), (2004).
- V. Thomas Parker, The community of an individual: implications for the community concept, Oikos, 104, 1, (27-34), (2004).
- PAULO INÁCIO PRADO and THOMAS MICHAEL LEWINSOHN, Compartments in insect–plant associations and their consequences for community structure, Journal of Animal Ecology, 73, 6, (1168-1178), (2004).
- Carlos J. Melián and Jordi Bascompte, FOOD WEB COHESION, Ecology, 85, 2, (352-358), (2004).
- John C. Moore, Eric L. Berlow, David C. Coleman, Peter C. Ruiter, Quan Dong, Alan Hastings, Nancy Collins Johnson, Kevin S. McCann, Kim Melville, Peter J. Morin, Knute Nadelhoffer, Amy D. Rosemond, David M. Post, John L. Sabo, Kate M. Scow, Michael J. Vanni and Diana H. Wall, Detritus, trophic dynamics and biodiversity, Ecology Letters, 7, 7, (584-600), (2004).
- Carolin Banašek-Richter, Marie-France Cattin and Louis-Félix Bersier, Sampling effects and the robustness of quantitative and qualitative food-web descriptors, Journal of Theoretical Biology, 226, 1, (23), (2004).
- Ferenc Jordán and István Scheuring, Network ecology: topological constraints on ecosystem dynamics, Physics of Life Reviews, 1, 3, (139), (2004).
- K. Arii and L. Parrott, Emergence of non-random structure in local food webs generated from randomly structured regional webs, Journal of Theoretical Biology, 227, 3, (327), (2004).
- Marie-France Cattin, Louis-Félix Bersier, Carolin Banašek-Richter, Richard Baltensperger and Jean-Pierre Gabriel, Phylogenetic constraints and adaptation explain food-web structure, Nature, 10.1038/nature02327, 427, 6977, (835-839), (2004).
- Richard J. Williams and Neo D. Martinez, Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data, The American Naturalist, 163, 3, (458), (2004).
- Gábor Szabó, Mikko Alava and János Kertész, Clustering in Complex Networks, Complex Networks, 10.1007/978-3-540-44485-5_7, (139-162), (2004).
- Jose M. Montoya and Ricard V. Solé, Topological properties of food webs: from real data to community assembly models, Oikos, 102, 3, (614-622), (2003).
- J. M. Ottino, Complex systems, AIChE Journal, 49, 2, (292-299), (2004).
- David R. Chalcraft and William J. Resetarits, PREDATOR IDENTITY AND ECOLOGICAL IMPACTS: FUNCTIONAL REDUNDANCY OR FUNCTIONAL DIVERSITY?, Ecology, 84, 9, (2407-2418), (2003).
- J. Bascompte, P. Jordano, C. J. Melian and J. M. Olesen, The nested assembly of plant-animal mutualistic networks, Proceedings of the National Academy of Sciences, 100, 16, (9383), (2003).
- M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Review, 45, 2, (167), (2003).
- M. E. J. Newman and Juyong Park, Why social networks are different from other types of networks, Physical Review E, 68, 3, (2003).
- Diego Garlaschelli, Guido Caldarelli and Luciano Pietronero, Universal scaling relations in food webs, Nature, 423, 6936, (165), (2003).
- M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67, 2, (2003).
- Ann E. Krause, Kenneth A. Frank, Doran M. Mason, Robert E. Ulanowicz and William W. Taylor, Compartments revealed in food-web structure, Nature, 10.1038/nature02115, 426, 6964, (282-285), (2003).
- Carlos J. Melián and Jordi Bascompte, Complex networks: two ways to be robust?, Ecology Letters, 5, 6, (705-708), (2002).
- Jennifer A. Dunne, Richard J. Williams and Neo D. Martinez, Network structure and biodiversity loss in food webs: robustness increases with connectance, Ecology Letters, 5, 4, (558-567), (2002).
- Louis-Félix Bersier, Carolin Banašek-Richter and Marie-France Cattin, QUANTITATIVE DESCRIPTORS OF FOOD‐WEB MATRICES, Ecology, 83, 9, (2394-2407), (2002).
- Jeremy W. Fox and Jill McGrady‐Steed, Stability and complexity in microcosm communities, Journal of Animal Ecology, 71, 5, (749-756), (2002).
- Jenny M. Schmid‐Araya, Peter E. Schmid, Anne Robertson, Julie Winterbottom, Charlotte Gjerløv and Alan G. Hildrew, Connectance in stream food webs, Journal of Animal Ecology, 71, 6, (1056-1062), (2002).
- J. M. Schmid-Araya, A. G. Hildrew, A. Robertson, P. E. Schmid and J. Winterbottom, THE IMPORTANCE OF MEIOFAUNA IN FOOD WEBS: EVIDENCE FROM AN ACID STREAM, Ecology, 83, 5, (1271-1285), (2002).
- Jens M. Olesen and Pedro Jordano, GEOGRAPHIC PATTERNS IN PLANT–POLLINATOR MUTUALISTIC NETWORKS, Ecology, 83, 9, (2416-2424), (2002).
- Rebecca Leaper and Mark Huxham, Size constraints in a real food web: predator, parasite and prey body‐size relationships, Oikos, 99, 3, (443-456), (2003).
- F. Jordán and I. Scheuring, Searching for keystones in ecological networks, Oikos, 99, 3, (607-612), (2003).
- Elizabeth T. Borer, Kurt Anderson, Carol A. Blanchette, Bernardo Broitman, Scott D. Cooper, Benjamin S. Halpern, Eric W. Seabloom and Jonathan B. Shurin, Topological approaches to food web analyses: a few modifications may improve our insights, Oikos, 99, 2, (397-401), (2002).
- , References, Freshwater Ecology, 10.1016/B978-012219135-0/50027-1, (503-551), (2002).
- R. J. Williams, E. L. Berlow, J. A. Dunne, A.-L. Barabasi and N. D. Martinez, Two degrees of separation in complex food webs, Proceedings of the National Academy of Sciences, 99, 20, (12913), (2002).
- JOSE M. MONTOYA and RICARD V. SOLÉ, Small World Patterns in Food Webs, Journal of Theoretical Biology, 214, 3, (405), (2002).
- J. A. Dunne, R. J. Williams and N. D. Martinez, Food-web structure and network theory: The role of connectance and size, Proceedings of the National Academy of Sciences, 99, 20, (12917), (2002).
- Juan Camacho, Roger Guimerà and Luís A. Nunes Amaral, Robust Patterns in Food Web Structure, Physical Review Letters, 88, 22, (2002).
- M.A. CHANGIZI, M.A. MCDANNALD and D. WIDDERS, Scaling of Differentiation in Networks: Nervous Systems, Organisms, Ant Colonies, Ecosystems, Businesses, Universities, Cities, Electronic Circuits, and Legos, Journal of Theoretical Biology, 218, 2, (215), (2002).
- M. E. J. Newman, Assortative Mixing in Networks, Physical Review Letters, 89, 20, (2002).
- Amy L. Downing and Mathew A. Leibold, Ecosystem consequences of species richness and composition in pond food webs, Nature, 10.1038/416837a, 416, 6883, (837-841), (2002).
- Guy Woodward and Alan G. Hildrew, Invasion of a stream food web by a new top predator, Journal of Animal Ecology, 70, 2, (273-288), (2008).
- Masakazu Hori and Takashi Noda, Spatio‐temporal variation of avian foraging in the rocky intertidal food web, Journal of Animal Ecology, 70, 1, (122-137), (2008).
- Kirk O. Winemiller, Eric R. Pianka, Laurie J. Vitt and Anthony Joern, Food Web Laws or Niche Theory? Six Independent Empirical Tests, The American Naturalist, 158, 2, (193), (2001).
- Masakazu Hori and Takashi Noda, Spatio-temporal variation of avian foraging in the rocky intertidal food web, Journal of Animal Ecology, 10.1046/j.1365-2656.2001.00467.x, 70, 1, (122-137), (2001).
- X. Chen, X. Chen, J. E. Cohen and J. E. Cohen, Support of the hyperbolic connectance hypothesis by qualitative stability of model food webs, Community Ecology, 1, 2, (215), (2001).
- F. Jordán and F. Jordán, Is the role of trophic control larger in a stressed ecosystem?, Community Ecology, 1, 2, (139), (2001).
- Guy Woodward and Alan G. Hildrew, Invasion of a stream food web by a new top predator, Journal of Animal Ecology, 10.1046/j.1365-2656.2001.00497.x, 70, 2, (273-288), (2001).
- Ricard V. Solé and M. Montoya, Complexity and fragility in ecological networks, Proceedings of the Royal Society of London. Series B: Biological Sciences, 10.1098/rspb.2001.1767, 268, 1480, (2039-2045), (2001).
- J. M. Schmid‐Araya and P. E. Schmid, Trophic relationships: integrating meiofauna into a realistic benthic food web, Freshwater Biology, 44, 1, (149-163), (2001).
- Cristina Bondavalli, Robert E. Ulanowicz and Antonio Bodini, Insights into the processing of carbon in the South Florida Cypress Wetlands: a whole‐ecosystem approach using network analysis, Journal of Biogeography, 27, 3, (697-710), (2001).
- Robert O. Hall, J. Bruce Wallace and Susan L. Eggert, ORGANIC MATTER FLOW IN STREAM FOOD WEBS WITH REDUCED DETRITAL RESOURCE BASE, Ecology, 81, 12, (3445-3463), (2000).
- Ross M. Thompson and Colin R. Townsend, Is resolution the solution?: the effect of taxonomic resolution on the calculated properties of three stream food webs, Freshwater Biology, 44, 3, (413-422), (2008).
- J. Memmott, N.D. Martinez and J.E. Cohen, Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web, Journal of Animal Ecology, 69, 1, (1-15), (2001).
- Richard J. Williams and Neo D. Martinez, Simple rules yield complex food webs, Nature, 10.1038/35004572, 404, 6774, (180-183), (2000).
- Neo D. Martinez, Bradford A. Hawkins, Hassan Ali Dawah and Brian P. Feifarek, EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD‐WEB STRUCTURE, Ecology, 80, 3, (1044-1055), (1999).
- C. B. MULler, I. C. T. Adriaanse, R. Belshaw and H. C. J. Godfray, The structure of an aphid–parasitoid community, Journal of Animal Ecology, 68, 2, (346-370), (2004).
- M. Jake Vander Zanden, Brian J. Shuter, Nigel Lester and Joseph B. Rasmussen, Patterns of Food Chain Length in Lakes: A Stable Isotope Study, The American Naturalist, 154, 4, (406), (1999).
- G.P. Closs, S.R. Balcombe and M.J. Shirley, Generalist Predators, Interaction Strength and Food-web Stability, , 10.1016/S0065-2504(08)60030-6, (93-126), (1999).
- H. C. J. Godfray, O. T. Lewis and J. Memmott, Studying insect diversity in the tropics, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 10.1098/rstb.1999.0523, 354, 1391, (1811-1824), (1999).
- Stuart J. Whipple, Analysis of ecosystem structure and function: extended path and flow analysis of a steady-state oyster reef model, Ecological Modelling, 114, 2-3, (251), (1999).
- Leaper and Raffaelli, Defining the abundance body‐size constraint space: data from a real food web, Ecology Letters, 2, 3, (191-199), (2001).
- Louis‐Félix Bersier, Paul Dixon and George Sugihara, Scale‐Invariant or Scale‐Dependent Behavior of the Link Density Property in Food Webs: A Matter of Sampling Effort?, The American Naturalist, 153, 6, (676), (1999).
- Robert D. Holt, John H. Lawton, Gary A. Polis and Neo D. Martinez, TROPHIC RANK AND THE SPECIES–AREA RELATIONSHIP, Ecology, 80, 5, (1495-1504), (1999).
- Andrew R. Solow and Andrew R. Beet, ON LUMPING SPECIES IN FOOD WEBS, Ecology, 79, 6, (2013-2018), (1998).
- N. G. Jaarsma, S. M. de Boer, C. R. Townsend, R. M. Thompson and E. D. Edwards, Characterising food‐webs in two New Zealand streams, New Zealand Journal of Marine and Freshwater Research, 32, 2, (271), (1998).
- Townsend, Thompson, McIntosh, Kilroy, Edwards and Scarsbrook, Disturbance, resource supply, and food‐web architecture in streams, Ecology Letters, 1, 3, (200-209), (2002).
- Jürgen A. Boy, Möglichkeiten und Grenzen einer Ökosystem-Rekonstruktion am Beispiel des spätpaläozoischen lakustrinen Paläo-Ökosystems. 1. Theoretische und methodische Grundlagen, Paläontologische Zeitschrift, 72, 1-2, (207), (1998).
- Richard S Stemberger and Celia Y Chen, Fish tissue metals and zooplankton assemblages of northeastern U.S. lakes, Canadian Journal of Fisheries and Aquatic Sciences, 55, 2, (339), (1998).
- Arthur C. Benke and J. Bruce Wallace, TROPHIC BASIS OF PRODUCTION AMONG RIVERINE CADDISFLIES: IMPLICATIONS FOR FOOD WEB ANALYSIS, Ecology, 78, 4, (1132-1145), (1997).
- Lloyd Goldwasser and Jonathan Roughgarden, SAMPLING EFFECTS AND THE ESTIMATION OF FOOD‐WEB PROPERTIES, Ecology, 78, 1, (41-54), (1997).
- J. Timothy Wootton, ESTIMATES AND TESTS OF PER CAPITA INTERACTION STRENGTH: DIET, ABUNDANCE, AND IMPACT OF INTERTIDALLY FORAGING BIRDS, Ecological Monographs, 67, 1, (45-64), (1997).
- Robert L. France, δ15N examination of the Lindeman‐Hutchinson‐Peters theory of increasin omnivory with trophic height in aquatic foodwebs, Population Ecology, 39, 2, (121-125), (2018).
- L.-F. Bersier and G. Sugihara, Scaling regions for food web properties, Proceedings of the National Academy of Sciences, 94, 4, (1247), (1997).
- Bradford A. Hawkins, Neo D. Martinez and Francis Gilbert, Source food webs as estimators of community web structure, Acta Oecologica, 18, 5, (575), (1997).
- Timothy H. Keitt, Stability and complexity on a lattice: coexistence of species in an individual-based food web model, Ecological Modelling, 102, 2-3, (243), (1997).
- R. France, K. Westcott, P. Giorgio, G. Klein and J. Kalff, Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes, Population Ecology, 38, 2, (283-287), (2018).
- Hiroyuki Matsuda, Michio Hori and Peter A. Abrams, Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level communities, Evolutionary Ecology, 10.1007/BF01239343, 10, 1, (13-28), (1996).
- PHILIP H. WARREN, Estimating morphologically determined connectance and structure for food webs of freshwater invertebrates, Freshwater Biology, 33, 2, (213-221), (2006).
- Philip H. Warren, Making connections in food webs, Trends in Ecology & Evolution, 9, 4, (136), (1994).
- , Literature Cited, Ecological Understanding, 10.1016/B978-0-08-050497-1.50014-6, (187-201), (1994).
- R. R. Christian, Aggregation and disaggregation of microbial food webs, Microbial Ecology, 10.1007/BF00166824, 28, 2, (327-329), (1994).
- Hiroyuki Matsuda, Michio Hori and Peter A. Abrams, Effects of predator-specific defence on community complexity, Evolutionary Ecology, 10.1007/BF01237846, 8, 6, (628-638), (1994).
- Karl E. Havens, Pelagic Food Web Structure in Adirondack Mountain, USA, Lakes of Varying Acidity, Canadian Journal of Fisheries and Aquatic Sciences, 50, 1, (149), (1993).
- S.J. Hall and D.G. Raffaelli, Food Webs: Theory and Reality, Advances in Ecological Research Volume 24, 10.1016/S0065-2504(08)60043-4, (187-239), (1993).
- Masahiko Higashi, Bernard C. Patten and Thomas P. Burns, Network trophic dynamics: the modes of energy utilization in ecosystems, Ecological Modelling, 66, 1-2, (1), (1993).
- Karl E. Havens, Pelagic Food Web Structure in Acidic Adirondack Mountain, New York, Lakes of Varying Humic Content, Canadian Journal of Fisheries and Aquatic Sciences, 50, 12, (2688), (1993).
- Karen E. Joyce, Paul J. Laurienti, Jonathan H. Burdette and Satoru Hayasaka, A New Measure of Centrality for Brain Networks, PLoS ONE, 10.1371/journal.pone.0012200, 5, 8, (e12200), (2010).
- Jennifer A. Dunne, Kevin D. Lafferty, Andrew P. Dobson, Ryan F. Hechinger, Armand M. Kuris, Neo D. Martinez, John P. McLaughlin, Kim N. Mouritsen, Robert Poulin, Karsten Reise, Daniel B. Stouffer, David W. Thieltges, Richard J. Williams and Claus Dieter Zander, Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity, PLoS Biology, 10.1371/journal.pbio.1001579, 11, 6, (e1001579), (2013).
- Tao Jia, Yang-Yu Liu, Endre Csóka, Márton Pósfai, Jean-Jacques Slotine and Albert-László Barabási, Emergence of bimodality in controlling complex networks, Nature Communications, 10.1038/ncomms3002, 4, (2013).
- Ferenc Jordán, Anett Endrédi, Wei-chung Liu and Domenico D’Alelio, Aggregating a Plankton Food Web: Mathematical versus Biological Approaches, Mathematics, 10.3390/math6120336, 6, 12, (336), (2018).
- Erfan Nozari, Fabio Pasqualetti and Jorge Cortés, Heterogeneity of central nodes explains the benefits of time-varying control scheduling in complex dynamical networks, Journal of Complex Networks, 10.1093/comnet/cnz001, (2019).