Structural Inference of Hierarchies in Networks

368 Downloads 200 Citations 9 Comments
Download Book (7,220 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests. Download Chapter (524 KB)

Abstract

One property of networks that has received comparatively little attention is hierarchy, i.e., the property of having vertices that cluster together in groups, which then join to form groups of groups, and so forth, up through all levels of organization in the network. Here, we give a precise definition of hierarchical structure, give a generic model for generating arbitrary hierarchical structure in a random graph, and describe a statistically principled way to learn the set of hierarchical features that most plausibly explain a particular real-world network. By applying this approach to two example networks, we demonstrate its advantages for the interpretation of network data, the annotation of graphs with edge, vertex and community properties, and the generation of generic null models for further hypothesis testing.