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Abstract The minimum dominating set (MDS) problem has wide applications in network
science and related fields. It aims at constructing a node set of smallest size such that any
node of the network is either in this set or is adjacent to at least one node of this set. Although
this optimization problem is generally very difficult, we show it can be exactly solved by
a generalized leaf-removal (GLR) process if the network contains no core. We present a
percolation theory to describe the GLR process on random networks, and solve a spin glass
model bymean fieldmethod to estimate theMDS size.We also implement amessage-passing
algorithm and a local heuristic algorithm that combines GLR with greedy node-removal to
obtain near-optimal solutions for single random networks. Our algorithms also perform well
on real-world network instances.

Keywords Dominating set · Spin glass · Core percolation · Leaf removal ·
Network coarse-graining · Belief propagation

1 Introduction

The minimum dominating set (MDS) problem [1] has fundamental importance in network
science. For example, to ensure the proper functioning of a complex networked system such as
a nation-wide power grid, it is often necessary to monitor the system’s microscopic dynamics
in real-time by placing sensors on the nodes. A sensor may have the capability of observing
the instantaneous states of the residing node and all its adjacent nodes in the network [2], so
they may not need to occupy all the nodes. We then have the MDS problem: How to place
sensors on as few nodes as possible to minimize costs but still ensure that each node is either
occupied or adjacent to at least one occupied node? As an example we show in Fig. 1b a
minimum dominating set (containing only three nodes) of a small network. A more stringent
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Fig. 1 An example of minimum dominating set. a a small network with N = 11 nodes and M = 18 links.
b Blue (dark gray) indicates a node being occupied, while cyan (light gray) indicates a node being empty
but observed. The three occupied nodes form a MDS �0 = {4, 7, 10} for this network. c A coarse-grained
representation of the network based on the MDS of (b) (Color figure online)

constraint, which is adopted in lattice glass models [3], is to require an empty node i to be
surrounded by at least li occupied nodes, with li being node-dependent. The MDS problem
corresponds to the case of li ≡ 1, while the other limiting case of li = di is just the vertex
cover (or independent set) problem [4,5], where di is node i’s degree (i.e., number of adjacent
nodes).

The MDS problem has wide practical applications, such as monitoring large-scale power
grids and other transportation systems [2], controlling the spreading of infectious diseases
and other network dynamical processes [6–9], efficient routing in wireless networks [10],
and network public goods games (e.g., resource allocation) [11]. Another application is to
build a coarse-grained representation for a complex network starting from a MDS. Such an
idea has already been applied to multi-document summarization in the field of information
extraction [12]. Each node i of the MDS can be regarded as a representative node for a local
domain of the network. We can take the subnetwork induced by node i and all its adjacent
nodes (except those in the MDS) as a coarse-grained node, and set up an coarse-grained link
between two coarse-grained nodes if the two corresponding subnetworks share at least one
node or are connected by at least one link in the original network (see Fig. 1c for an example).
If such a coarse-graining process is iterated we will then obtain a hierarchical representation
for the original network, which may be very useful for understanding the organization of a
complex system and for searching and information transmission in such a system.

Exactly solving the MDS problem, however, is extremely difficult in general, since it
is a nondeterministic polynomial-complete (NP-complete) optimization problem [1]. Even
the task of approximately solving the MDS problem is very hard. For a general network
of N nodes, so far the best polynomial algorithms can only guarantee to get dominating
sets with sizes not exceeding ln N times of the minimum size [13,14]. Many local-search
algorithms have been proposed to solve the MDS problem heuristically (see review [1] and
[2,6,7,9,15,16]), but theoretical results on the MDS sizes of random network ensembles are
still very rare.

In this work we bring several new theoretical and algorithmic contributions. We show in
Sect. 2 that a generalized leaf-removal (GLR) processmay cause a core percolation transition,
and propose a quantitative theory to describe this percolation. If the network contains no
core, GLR reaches an exact MDS; if an extensive core exists, we combine GLR with a local
greedy process in Sect. 3 to get an upper bound to the MDS size. We then introduce a spin
glass model in Sect. 4 and estimate the MDS size by a replica-symmetric (RS) mean field
theory, and implement amessage-passing algorithm in Sect. 5 to get near-optimal dominating
sets for single random network instances. Our algorithms also perform well on real-world
network instances. This work shall be useful both for network scientists who are interested in
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applying the MDS concept to practical problems, and for applied mathematicians who seek
better theoretical understanding on the random MDS problem.

2 Generalized Leaf-Removal and Core Percolation

Consider a simple network W formed by N nodes and M undirected links, each link con-
necting between two different nodes. Each node with index i ∈ {1, 2, . . . , N } is either empty
(indicated by the occupation state ci = 0) or occupied by sensors (ci = 1). A node i is
regarded as observed if it is occupied or it is empty but adjacent to one or more occupied
nodes, otherwise it is regarded as unobserved. We need to occupy a set � of nodes to make
all the N nodes be observed, and the objective is to make the dominating set � as small
as possible, i.e., to construct a minimum dominating set. It is easy to verify that the three
occupied nodes of Fig. 1b form a MDS for that small network. Notice a network may have
more than one MDS.

2.1 The GLR Process

Here we extend the leaf-removal idea of [17] (see also more recent work [6,18,19]) and
consider a generalized leaf-removal process. This dynamics is based on the following two
considerations: first, as pointed out in [6,17], if node i is an unobserved leaf node (which
has only a single neighbor, say j), then occupying j but leaving i empty must be an optimal
strategy; second, we notice that if i is an empty but observed node and at most one of its
adjacent nodes is unobserved, then it must be an optimal strategy not to occupy i . This second
point was not considered in the conventional leaf-removal process [6].

TheGLRprocess simplifies the input networkW at discrete evolution steps t = 0, 1, 2, . . ..
For the convenience of description, let us denote by Wt the simplified network at the start of
the t-th evolution step of GLR.W0 at the initial step t = 0 is identical to the original network
W , and all the nodes of W0 are unobserved. We prove that if GLR makes the whole input
network W be observed, then the set of nodes occupied during this process must be a MDS.
For this latter purpose, let us denote by �0 a MDS of the input network W (there must be at
least one such set). The essential idea is to demonstrate that during GLR, we can modify �0

in such a way that its size does not change but all the nodes i that are fixed to be occupied
(ci = 1) are in �0 while all the nodes j that are fixed to be unoccupied (c j = 0) are not in
�0. Starting from evolution step t = 0, let us perform GLR and modify �0 in the following
sequential order:

(0) As long as there is an isolated node i in network Wt , fix its occupation state to ci = 1
and delete it from Wt . All such fixed nodes i must also belong to �0.

(1) As long as there is a leaf node i in networkWt which is not yet observed, fix the occupation
state of its unique neighbor j to c j = 1 and fix that of i to ci = 0 so that j and all its
adjacent nodes (including i) are now observed, see Fig. 2 (left panel). We then delete
node j and all its connected links fromWt . If j belongs to�0 then node i must not belong
to it, because otherwise �0 could not have been a MDS. On the other hand, if node j
does not belong to �0 then node i must belong to it, and in this latter case we modify �0

by adding j to it and deleting i from it.
(2) Then as long as there is a node i which is itself observed and which has only a single

unobserved neighbor j , delete the link (i, j) from network Wt , see Fig. 2 (right panel).
We do not modify �0 if node i does not belong to it. If node i does belong to �0 then
node j must not belong to it, and in this latter case we add j to �0 and delete i from it.
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Fig. 2 The two basic operations
of the generalized leaf-removal
process. White circles denote
empty and unobserved nodes,
cyan (light gray) circles denote
empty but observed nodes, and
blue (dark gray) circles denote
occupied nodes. Left panel the
unique adjacent node j of an
unobserved leaf node i is
occupied, and all the neighbors of
j are observed. Right panel an
empty observed node i has only a
single unobserved neighbor j ,
then the link between i and j is
deleted (Color figure online)
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(3) Then as long as there is an observed node i which is not connected to any unobserved
node, fix its occupation state to ci = 0 and delete it and all its attached links from Wt .
Such a node i must not belong to �0, for otherwise �0 could not have been a MDS.

(4) If the resulting network Wt is empty or it contains no isolated node nor leaf node, the
GLR process stops. IfWt still contains at least one isolated or leaf node, then we increase
the evolution step from t to (t + 1) and initialize the network Wt+1 as identical to Wt . A
node i of Wt+1 is regarded as observed if and only if it is observed in network Wt . We
then repeat the above-mentioned operations (1)–(3).

If the final simplified network is non-empty, then there must be some nodes that are still
unobserved after the GLR process. The subnetwork induced by these unobserved nodes is
referred to as the core of the original network W . This core is connected only to observed
empty nodes but not to occupied nodes. We denote by ncore the fraction of nodes in this core
and by w the fraction of occupied nodes.

If the original network W has no core, then the set � of occupied nodes by the GLR
process must be identical to the final �0, which is a MDS modified from the original MDS.
We have therefore proven that GLR constructs a MDS for a network W if this network
contains no core. (All the above-mentioned modification operations on �0 are ignored in the
actual implementation of the GLR process. They are introduced here solely for proving that
GLR is able to construct a MDS if there is no core.) Furthermore, we notice that if the GLR
process finishes with some nodes remaining to be unobserved, the set of nodes occupied
during this process must be a MDS for the subnetwork of W induced by all the observed
nodes. This is because all these occupied nodes also belong to the modified MDS �0, while
all those nodes fixed to be unoccupied are outside of �0.

We generate many large instances of Erdös–Rényi (ER) and scale-free (SF) random net-
works and run the GLR process on them (details of the network sampling method are given
in Sects. 2.3, 2.4, and 2.5). Some representative results are shown in Fig. 3 for ER networks
[20,21], in Fig. 4 for SF networks generated through the static model [22], and in Fig. 5 for
pure SF networks [20,21]. A major observation is that there is no core in pure SF random
networks with minimum node degree dmin = 1, therefore a MDS for such a network can be
easily constructed by the GLR process. Another major observation is that there is a contin-
uous core percolation transition in ER networks and in SF networks generated through the
static model. This core percolation transition occurs at certain threshold value of the mean
node degree. For example, for ER networks with N = 106 nodes and M = (c/2)N links,
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Fig. 3 Generalized leaf-removal
on Erdös–Rényi random
networks. w and ncore are the
fractions of occupied and
unobserved nodes, respectively.
Cross symbols are results
obtained by running GLR on a
single ER network of size
N = 106 and mean degree c;
solid lines are the predictions of
the percolation theory for N = ∞
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Fig. 4 Generalized leaf-removal on scale-free random networks of decay exponent λ = 3.5, 3.0, 2.667, 2.5
(from left to right) generated through the static model [22]. w and ncore are the fractions of occupied and
unobserved nodes, respectively.Red dash-dotted lines are results obtained by runningGLR on a single network
instance of size N = 106 andmeandegree c, whileblue dashed lines are results obtained by the core percolation
theory using the degree profile of this network instance as input. Black solid lines are the predictions of the
percolation theory for N = ∞ (Color figure online)
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Fig. 5 Generalized leaf-removal on pure scale-free random networks with minimum degree d = 1. w is the
fraction of occupied nodes. The fraction ncore of unobserved nodes is simply ncore = 0. Red triangle symbols
are results obtained by running GLR on a single pure SF network of size N = 106 and decay exponent λ,
while blue cross symbols are results obtained by the percolation theory using the degree profile of this network
instance as input. The black solid line is obtained by the percolation theory at N = ∞ (Color figure online)

when the mean node degree c < 2.41 there is no core (ncore = 0), and GLR reaches a MDS
for the whole network (Fig. 3). The core emerges at c ≈ 2.41 and its relative size ncore then
increases with c continuously from zero. For c > 2.41, GLR constructs a MDS only for part
of the ER network and it leaves an extensive core of ncoreN unobserved nodes.

Notice the core percolation transition resulting from theGLRoptimization process is qual-
itatively different from the simpler observability transition discussed in [2], which considers
the appearance of a giant connected component of observed nodes resulting from an initial
set of randomly chosen occupied nodes. We now develop a percolation theory to thoroughly
understand the GLR dynamics on random networks.

2.2 The Core Percolation Theory

A random network is characterized by a degree distribution P(d), which gives the fraction
of nodes with degree d ≥ 0 [20]. We assume that there is no correlation between the degrees
of adjacent nodes, therefore the degree d of a node reached by following a randomly chosen
link obeys the distribution Q(d) of the form

Q(d) ≡ P(d)d

c
, (1)

where c ≡ ∑
d≥0 P(d)d is the mean node degree of the network. Consider a link (i, j) of

the network W . Let us neglect for the moment the constraint of node i to node j but only
consider the other adjacent nodes of j . If the constraint of node i is neglected, then what is
the probability αt that node j becomes an unobserved leaf node (i.e., it has no other adjacent
node except i) at the start of the t-th GLR evolution step? What is the probability βt that
j becomes newly occupied (c j = 1) at the t th GLR step? What is the probability γt that j
is observed but not occupied at the end of the t-th GLR step? And what is the probability
ηt that at the end of the t-th GLR step, node j is an observed and unoccupied node and it
has no unobserved adjacent node except i? For an uncorrelated random network these four
sets of probability parameters {α0, α1, . . .}, {β0, β1, . . .}, {γ0, γ1, . . .}, and {η0, η1, . . .} can
be computed by a set of iterative equations.
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The expressions of α0, β0, γ0, η0 for the initial evolution step t = 0 are

α0 = Q(1) , (2)

β0 = 1 −
∑

d≥1

Q(d)(1 − α0)
d−1 , (3)

γ0 =
∑

d≥1

Q(d)
[
(1 − α0)

d−1 − (1 − α0 − β0)
d−1] , (4)

η0 =
∑

d≥1

Q(d)
[
(β0 + γ0)

d−1 − γ d−1
0

]
. (5)

Equation (2) is trivial, it simply describes the situation that node j has only a single neighbor
(i.e., node i). Equation (3) describes the situation that node j is adjacent to at least one leaf
node (except i), which will guarantee j to be occupied at the t = 0 GLR step. A random
network has only very few short loops and therefore the local network structure around node
j is a tree. In the core percolation theory we therefore assume that the adjacent nodes of j
are completely independent of each other when j is still unobserved (such an assumption
was also exploited in our earlier percolation studies [23–25]). Based on this assumption,
the probability of all the adjacent nodes (except i) of j not being unobserved leaves is then
written in Eq. (3) as the product of the individual probability (1−α0) of an adjacent node not
being an unobserved leaf. Equation (4) expresses the fact that for node j to be an unoccupied
but observed node at the end of the t = 0 evolution step, it should not be adjacent to any
unobserved leaf node but at least one of its adjacent nodes (except i) should be occupied.

If node j is adjacent to one or more nodes that are occupied at the t = 0 evolution step
and all its other adjacent nodes (except i) are observed at this evolution step, then at the end
of this evolution step j is unoccupied but observed and it is not adjacent to any unobserved
node (except i). This then leads to the expression (5) for η0. Notice such an observed but
unoccupied node j will be deleted at the end of the t = 0 evolution step. After all such nodes
are deleted, some unobserved nodes in the remaining network may become isolated or be
connected to only a single node. If this is the case, these isolated or leaf nodes will trigger
the next (t = 1) evolution step.

Following the same line of theoretical considerations, we obtain the expressions of αt , βt ,
γt , and ηt for the t th GLR evolution step (t ≥ 1) as

αt =
{∑

d≥1 Q(d)(η0)
d−1 − Q(1) , (t = 1)

∑
d≥1 Q(d)

[(∑t−1
l=0 ηl

)d−1 − (∑t−2
l=0 ηl

)d−1
]

, (t ≥ 2)
(6)

βt =
∑

d≥1

Q(d)

⎡

⎣

(

1 −
t−1∑

l=0

αl

)d−1

−
(

1 −
t∑

l=0

αl

)d−1
⎤

⎦ , (7)

γt =
∑

d≥1

Q(d)

⎡

⎣

(

1 −
t∑

l=0

αl

)d−1

−
(

1 −
t∑

l=0

(αl + βl)

)d−1
⎤

⎦ , (8)

ηt =
∑

d≥1

Q(d)

⎡

⎣

(
t∑

l=0

βl + γt

)d−1

− (γt )
d−1

⎤

⎦ −
t−1∑

l=0

ηl . (9)

Let us denote by γlim the value of γt at the last evolution step t = tlim of the GLR process
(notice that the maximal evolution step tlim may approach infinity for a network with N = ∞
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nodes). Furthermore, we define the accumulated values of αt , βt , and ηt as

αcum ≡
∑

t≥0

αt , βcum ≡
∑

t≥0

βt , ηcum ≡
∑

t≥0

ηt .

There are the following relationships among αcum , βcum , ηcum and γlim :

αcum =
∑

d≥1

Q(d)(ηcum)d−1 , (10)

βcum = 1 −
∑

d≥1

Q(d)(1 − αcum)d−1 , (11)

γlim =
∑

d≥1

Q(d)
[
(1 − αcum)d−1 − (1 − αcum − βcum)d−1

]
, (12)

ηcum =
∑

d≥1

Q(d)
[
(βcum + γlim)d−1 − (γlim)d−1

]
. (13)

After all the probability parameters αt , βt , γt , ηt (for t = 0, 1, . . .) for a node j at the
end of a link (i, j) are determined by neglecting the constraint associated with node i , we
now ask the following two questions: If the constraint of node i to all its adjacent nodes are
considered, then what is the probability ncore of i to be unobserved after the whole GLR
process? And what is the probability It of node i to be occupied at the t-th GLR evolution
step? If node i remains to be unobserved during the whole GLR process, it must not be
adjacent to any unobserved leaf node nor to any occupied node, and it must have at least two
adjacent nodes after the whole GLR process. Therefore we obtain that

ncore =
∑

d≥2

P(d)

d−2∑

s=0

Cs
d(ηcum)s(1 − αcum − βcum − ηcum)d−s

=
∑

d≥1

P(d)
[
(1 − αcum − βcum)d − (ηcum)d

−d(ηcum)d−1(1 − αcum − βcum − ηcum)
]

, (14)

whereCs
d ≡ d!/[s!(d−s)!] is the binomial coefficient.Notice that if (αcum+βcum+ηcum) = 1

then we have ncore = 0.
It is easy to see that the probability I0 of a randomly chosen node i to be occupied at the

t = 0 GLR evolution step is

I0 = 1 − P(1)(1 − α0

2
) −

∑

d≥2

P(d)(1 − α0)
d . (15)

The coefficient 1/2 in the second term of the above expression reflects the fact that if node
i has only one neighbor j , then i has one-half probability to be occupied if j also has only
one neighbor (namely i).

If a randomly chosen node i is not occupied at the t = 0 evolution step, then the probability
I1 of it being occupied at the t = 1 evolution step is

I1 =
∑

d≥2

P(d)(η0)
d +

∑

d≥2

P(d)
[
(1 − α0)

d − (1 − α0 − α1)
d

−dα1
(
(β0 + γ0)

d−1 − (γ0)
d−1)

]
− 1

2

∑

d≥2

P(d)dα1(η0)
d−1. (16)
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All the adjacent nodes of i might haven been deleted at the end of the t = 0 evolution step.
If this is the case node i becomes isolated at the start of the t = 1 evolution step, which
leads to the first summation of Eq. (16). The second summation of Eq. (16) corresponds to
the other situation of node i not being occupied nor being deleted at the t = 0 evolution
step but it is adjacent to at least one node that becomes an unobserved leaf at the start of the
t = 1 evolution step. Notice if node i becomes an unobserved leaf node at the start of the
t = 1 evolution step with its unique neighbor also being such a leaf node, then i has only
one-half probability to be occupied at this evolution step. This last situation leads to the third
summation term of Eq. (16), which corrects the over-counted probability of occupation in
the second summation term.

Following the same line of theoretical considerations, we obtain the probability It of a
randomly chosen node i changing from being unoccupied to being occupied at the t th GLR
evolution step (t ≥ 2):

It =
∑

d≥2

P(d)

⎡

⎣

(
t−1∑

l=0

ηl

)d

−
(

t−2∑

l=0

ηl

)d

− dηt−1

(
t−2∑

l=0

ηl

)d−1⎤

⎦

+
∑

d≥2

P(d)

⎡

⎣

(

1 −
t−1∑

l=0

αl

)d

−
(

1 −
t∑

l=0

αl

)d
⎤

⎦

−
∑

d≥2

P(d)dαt

⎡

⎣

(
t−1∑

l=0

βl + γt−1

)d−1

− (γt−1)
d−1 +

(
t−2∑

l=0

ηl

)d−1⎤

⎦

−1

2

∑

d≥2

P(d)dαt

⎡

⎣

(
t−1∑

l=0

ηl

)d−1

−
(

t−2∑

l=0

ηl

)d−1⎤

⎦ . (17)

The probability w of a randomly chosen node i to be occupied during the GLR process is
then

w =
∑

t≥0

It (18)

= 1 − P(1)(1 − α0/2) −
∑

d≥2

P(k)
[
(1 − αcum)d − (ηcum)d

]

−
∑

t≥1

∑

d≥2

P(d)d

⎡

⎣ηt

(
t−1∑

l=0

ηl

)d−1

+ αt

(
t−1∑

l=0

βl + γt−1

)d−1

− αt (γt−1)
d−1

⎤

⎦

−1

2

∑

t≥2

∑

d≥2

P(d)dαt

⎡

⎣

(
t−1∑

l=0

ηl

)d−1

+
(

t−2∑

l=0

ηl

)d−1⎤

⎦

−1

2

∑

d≥2

P(d)dα1(η0)
d−1. (19)

Our core percolation theory can be applied both to single finite random network instances
and to random network ensembles at the thermodynamic limit N → ∞. For each t (starting
from t = 0), we first compute αt , then use αt as input to compute βt , then use αt and βt

as inputs to compute γt , and finally use αt , βt and γt as inputs to compute ηt . For a finite
random network of N nodes, the iteration stops if the evolution step t increases to a value
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tlim such that Itlim < 1/N . This is because if N It < 1 the number of newly occupied nodes
has a high probability to be zero and then GLR will be unable to continue. For the case of
N → ∞, the numerical iteration process can be carried out to a sufficiently large evolution
step t = tlim until αtlim ≈ 0.

2.3 Results on Erdös–Rényi Random Networks

We generate an ER random network W of N nodes and M = (c/2)N links by adding links
sequentially to an initial network of N isolated nodes. To add a link, we choose two different
nodes i and j uniformly at random from the whole node set and set up a link (i, j) between
them if this link has not been created before. The mean node degree of the resulting network
W is equal to c. When the number N of nodes is sufficiently large the degree distribution
P(d) of such a ER network obeys the Poisson distribution [20,21]

P(d) = cde−c

d! (d ≥ 0). (20)

For this network ensemble, the predicted results of ncore and w by our core percolation
theory are in perfect agreement with simulation results (see Fig. 3). Especially, at the thermo-
dynamic limit N → ∞, the theory predicts a continuous core percolation phase transition
at c ≈ 2.4102, which is slightly lower than the core percolation phase transition point of
c ≈ 2.7183 caused by the conventional leaf-removal process [17]. Before the GLR-induced
core percolation transition occurs, the occupation fraction w obtained by Eq. (19) is equal
to the ensemble-averaged MDS size (relative to N ), but it is only a lower bound to this size
when an extensive core emerges in the random network (ncore > 0).

2.4 Results on Scale-Free Random Networks Generated Through the Static Model

Now let us consider GLR-induced core percolation onmore heterogeneous randomnetworks.
We generate a scale-free network W of N nodes and M = (c/2)N links according to
the static model [22]. Each node i ∈ {1, 2, . . . , N } is first assigned a fitness value θi =
i−ξ /(

∑N
j=1 j−ξ ), where 0 ≤ ξ < 1 is a control parameter. Then we add links between pairs

of these N nodes in a sequential manner. To create a link, two nodes i and j are chosen
independently from the set of N nodes, and the probability that i and j being chosen is equal
to θiθ j ; if nodes i and j are different and the link (i, j) has not been created before, this link
is added to network. The final network W has a power-law degree distribution P(d) ∝ d−λ

for d 
 1, with degree decay exponent λ = 1 + 1/ξ . In the thermodynamic limit N → ∞,
an explicit expression for P(d) is obtained as [26]

P(d) = [c(1 − ξ)]d
d!ξ

∫ ∞

1
dxe−c(1−ξ)x xk−1−1/ξ (d ≥ 0). (21)

For N = ∞, a continuous core percolation phase transition is observed in such a SF
network, and this transition occurs at more and more larger value of the mean node degree c
as the decay exponentλ decreases (see Fig. 4 for λ = 3.5, 3.0, 8/3 ≈ 2.667, and 2.5 and Fig. 6
for 2 < λ ≤ 6). When the decay exponent λ is less then 3.0, theoretical predictions obtained
at N = ∞ are quantitatively different from theoretical and simulation results obtained on
finite (e.g., N = 106) network instances, with the deviations become more pronounced as λ

is closer to 2.0. Such a finite-size effect is mainly caused by the natural cutoff of maximum
node degree in finite networks (it was also observed in our earlier work [23] on another type
of percolation transitions). We emphasize that for a give finite value of N , the results of the
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Fig. 6 Core percolation phase transition in infinite (N = ∞) random scale-free networks generated through
the static model [22]. Horizontal axis is the degree decay exponent λ, while vertical axis is the value of the
mean node degree c at the phase transition point. Cross symbols are predictions of the core-percolation theory,
while the solid line is just a guide for the eye

core percolation theory agree with the simulation results of the actual GLR process very well,
especially if we average the theoretical and simulation results over many network instances
to reduce fluctuations.

For random SF networks generated through the static model with N = ∞ nodes, the core
percolation transition value of mean node degree c is very sensitive to the decay exponent
λ in the region of 2 < λ < 2.5, and it diverges as λ approaches 2.0 from above (Fig. 6).
At the other limit of λ → ∞, the mean node degree at the phase transition approaches the
value of c ≈ 2.4102, which is just the core percolation phase transition point of an infinite
ER random network.

2.5 Results on Pure Scale-Free Random Networks

When N = ∞, a pure scale-free random network has the following degree distribution

P(d) = 1
∑∞

k=1 k
−λ

d−λ (d ≥ 1) , (22)

with λ > 2 to ensure a finite value for the mean node degree c. For such a random SF network
our core percolation theory predicts that ncore = 0, namely there is no core percolation
transition and the GLR process will construct a MDS for the whole network. The fraction
w of occupied nodes (i.e., the size of a MDS relative to the node number N ) decreases with
the decreasing of the degree decay exponent λ (see Fig. 5), and it approaches zero as λ

approaches 2.0 from above.
We also generate a set of pure SF random networks of finite size N following the same

procedure as mentioned in [27] (see also the supplementary information of [23]). The min-
imum node degree of such a SF network is dmin = 1, while the maximum node degree
is dmax ≈ N 1/(λ−1) [27]. When we apply both the GLR process and the core percolation
theory on these finite network instances, we find the simulation results on the fraction ncore
of nodes in the core and the fraction w of occupied nodes are in perfect agreement with the
corresponding theoretical results (see Fig. 5). All these finite SF networks contain no core
(ncore = 0), and the MDS relative size w is an increasing function of λ.
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Figure 5 also demonstrates strong finite-size effect for pure SF random networks of λ <

3.0. This finite-size effect is again mainly caused by the cutoff of the maximum node degree
of finite networks, which makes the mean node degree of a finite network be smaller than that
of an infinite network. For example, at λ = 2.1 the mean node degree of an infinite network
is c ≈ 61.49, while that of a finite network of size N = 106 is reduced to c ≈ 5.134.

3 Hybrid Local Algorithm

There is a very simple greedy algorithm in the literature to solve the MDS problem approxi-
mately, which is based on the concept of node impact [1,7,16]). The impact of an unoccupied
node i equals to the number of nodes that will be observed by occupying i . For example,
if node i has 3 unobserved neighbors, its impact is 4 if i is itself unobserved and is 3 if i
is already adjacent to one or more occupied nodes. Starting from an input network W with
all the nodes unobserved, the greedy algorithm selects uniformly at random a node i from
the subset of nodes with the highest impact and fix its occupation state to ci = 1. All the
adjacent nodes of i are then observed. If there are still unobserved nodes in the network,
the impact value for each of the unoccupied nodes is updated and the greedy occupying
process is repeated until all the nodes are observed. This pure greedy algorithm is very easy
to implement and very fast, but we find that it usually fails to reach a true MDS even when
the input network contains no core.

Here we introduce an improved local algorithm by combining the GLR process with
the impact-based greedy process. We call this new algorithm the GLR-Impact hybrid
algorithm. Given an input network W with all the nodes unobserved, we first carry out the
GLR process to simplifyW as far as possible. If all the nodes are observed during this initial
GLR process, a MDS of network W is then constructed. For the nontrivial case of some
nodes being left unobserved after this GLR process, we first occupy a randomly chosen node
from the subset of highest-impact nodes and then perform the GLR process again to further
simplify the network as far as possible. We keep repeating such a occupying-followed-by-
GLR process until there is no unobserved node left in the network.

The GLR-Impact hybrid algorithm is also very easy to implement and very fast. Its
performance is demonstrated in Fig. 7 for single ER networks and regular random (RR)
networks. (All the nodes of a RR network have the same integer degree c but the network
is otherwise completely random [23]). This hybrid local algorithm outperforms the pure
greedy algorithm considerably for c ≤ 10, but it is still inferior to the belief-propagation-
guided decimation (BPD) algorithm of Sect. 5.

We also test the performance of the hybrid algorithm on single SF random networks
generated through the static model [22] (see Fig. 8). The GLR-Impact algorithm still
outperforms the pure greedy algorithm on these heterogeneous networks, and its performance
approaches that of the BPD algorithm as the network becomes more and more heterogeneous
(i.e., as the decay exponent λ approaches 2.0 from above).

Real-world networks are often very heterogenous, with a small fraction of highly con-
nected nodes [21]. As a test of the algorithms introduced in this work, we apply the GLR
process, the pure greedy algorithm, the hybrid algorithm, and the BPD algorithm to a set of
twelve real-world networks.Among these network instances, five are infrastructure networks:
European express road network (RoadEU [28]), road network of Texas (RoadTX [29]), power
grid of western US states (Grid [30]), and two Internet networks at the autonomous systems
level (IntNet1 and IntNet2 [31]); three are information networks: Google webpage network
(WebPage [29]), European email network (Email [32]), and research citation network (Cita-
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Fig. 7 Constructing dominating sets for Erdös–Rényi networks (left panel) and regular random networks
(right panel). The relative sizes w of dominating sets obtained by a single running of the pure greedy, the
hybrid, and the BPD algorithmwith x = 10 on 96 ER or RR network instances of N = 105 and (mean) degree
c are compared (fluctuations are of order 10−4 and are not shown). The ensemble-averaged MDS relative
sizes obtained by the replica-symmetric mean field theory are also shown (RS)
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Fig. 8 Constructing dominating sets for scale-free random networks generated through the static model [22].
The relative sizes w of dominating sets obtained by a single running of the pure greedy, the hybrid, and the
BPD algorithm with x = 10 on 96 SF network instances of N = 105 and (mean) degree c are compared
(fluctuations are of order 10−4 and are not shown). The degree decay exponent is λ = 3.5, 3.0, 2.667, and
2.5, respectively

tion [31]); three are social contact networks: collaboration network of condensed-matter
authors (Author [32]), peer-to-peer interaction network (P2P [33]),and on-line friendship
network (Friend [34]); the remaining one is the biological network of protein-protein inter-
actions (PPI [35]).
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Table 1 Results on twelve real-world network instances

Network N M dmax Core Greedy Hybrid BPD

RoadEU 1177 1417 10 306 428 389 387

PPI 2361 6646 64 17 550 539 539

Grid 4941 6594 19 603 1564 1485 1481

IntNet1 6474 12,572 1458 8 660 656 656

Author 23,133 93,439 279 9052 3686 3612 3604

Citation 34,546 420,877 846 11,178 3335 3168 3095

P2P 62,586 147,892 95 35 12,710 12,582 12,582

Friend 196,591 950,327 14,730 6097 42,536 41,633 41,672

Email 265,214 364,481 7636 470 18,183 18,181 18,181

WebPage 875,713 4,322,051 6332 162,439 81,288 79,928 80,769

RoadTX 1,379,917 1,921,660 12 560,582 477,729 437,503 425,774

IntNet2 1,696,415 11,095,298 35,455 211,244 187,592 183,516 183,248

N and M are, respectively, the total number of nodes and links in the network; dmax is the maximum node
degree of the network; the columnmarked by ‘Core’ records the number of nodes that are left unobserved after
the GLR process; the columns marked by ‘Greedy’, ‘Hybrid’, and ‘BPD’ record the sizes of the dominating
sets constructed by a single running of the pure greedy, the hybrid, and the BPD algorithm, respectively

The numerical results are summarized in Table 1. The GLR process is able to simplify
these networks considerably. After GLR, the remaining number of unobserved nodes is often
much smaller than the total number N of nodes in the original network. The BPD algorithm
performs slightly better than the GLR-Impact hybrid algorithm, and both BPD and the
hybrid algorithm outperform the pure greedy algorithm in all the twelve network instances.

4 Spin Glass Model and Replica-Symmetric Mean Field Theory

If a given network instance W contains an extensive core, the GLR process can only give a
lower bound to the MDS size. We now discuss the issue of estimating the MDS size by way
of a mean field theory. We introduce a partition function Z as

Z =
∑

c

∏

i∈W

{
e−xci

[
1 − (1 − ci )

∏

j∈∂i

(1 − c j )
]}

, (23)

where c ≡ (c1, c2, . . . , cN ) denotes one of the 2N possible occupation configurations, x > 0
is a re-weighting parameter, and ∂i denotes node i’s set of adjacent nodes. The constraint of
each node i leads to a multiplication term [1 − (1 − ci )

∏
j∈∂i (1 − c j )], which equals to 0

if i and all its adjacent nodes are empty and equals to 1 if otherwise. The partition function
therefore only takes into account all the dominating sets, and at x → ∞ it is contributed
exclusively by the MDS configurations.

4.1 Replica-Symmetric Mean Field Theory

We solve the spin glass model (23) by a RS mean field theory, which can be understood
from the angle of Bethe-Peierls approximation [36] or derived alternatively through partition
function expansion [37,38]. The marginal probability qci of node i’s occupation state being
c (∈ {0, 1}) is expressed as
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qci =
e−xc ∏

j∈∂i
∑

c j q
(c j ,c)
j→i − δc0

∏
j∈∂i q

(0,0)
j→i

∑
ci e

−xci
∏

j∈∂i
∑

c j q
(c j ,ci )
j→i − ∏

j∈∂i q
(0,0)
j→i

, (24)

where the Kronecker symbol δnm = 1 if m = n and δnm = 0 if otherwise. The quantity q
(c j ,ci )
j→i

is defined as the joint probability that node i is in occupation state ci and its adjacent node
j is in occupation state c j when the constraint of node i is not considered. This probability
can be evaluated through the following belief-propagation (BP) equation:

q
(c j ,ci )
j→i = e−xc j

∏
k∈∂ j\i

∑
ck q

(ck ,c j )
k→ j − δ

ci+c j
0

∏
k∈∂ j\i q

(0,0)
k→ j

∑
c′
i ,c

′
j
e−xc′

j
∏

k∈∂ j\i
∑

c′
k
q

(c′
k ,c

′
j )

k→ j − ∏
k∈∂ j\i q

(0,0)
k→ j

, (25)

where ∂ j\i denotes the subset obtained by deleting node i from set ∂ j .
The total free energy F is related to the partition function by F ≡ −(1/x) ln Z . According

to the RS mean field theory, its expression is

F =
∑

i∈W
fi −

∑

(i, j)∈W
f(i, j) , (26)

where fi and f(i, j) are the free energy contributions of a node i and a link (i, j) between
nodes i and j :

fi = − 1

x
ln

[∑

ci

e−xci
∏

j∈∂i

∑

c j

q
(c j ,ci )
j→i −

∏

j∈∂i

q(0,0)
j→i

]
, (27)

f(i, j) = − 1

x
ln

[∑

ci ,c j

q
(ci ,c j )
i→ j q

(c j ,ci )
j→i

]
. (28)

From Eqs. (26) and (24) we can compute the free energy density f ≡ F/N and the mean
occupation fraction w = (1/N )

∑
i∈W q+1

i . The entropy density of the system is then eval-
uated as s = (w − f )x .

4.2 Belief-Propagation Iterations

According to Eq. (25) each probability distribution q
(c j ,ci )
j→i has the property that q(1,1)

j→i =
q(1,0)
j→i . Therefore in the numerical computations q

(c j ,ci )
j→i can be represented by three non-

negative real numbers q(0,0)
j→i , q

(0,1)
j→i , and q(1,0)

j→i , which satisfy in addition the normalization
condition

q(0,0)
j→i + q(0,1)

j→i + 2q(1,0)
j→i = 1. (29)

We initialize q
(c j ,ci )
j→i and q

(ci ,c j )
i→ j for each link (i, j) of the network between two nodes

i and j , for example setting q(0,0)
j→i = q(0,1)

j→i = q(1,0)
j→i = 1/4. We then perform BP iteration

a number T of times at a given value of the re-weighting parameter x , until a fixed-point
solution of Eq. (25) is reached or T exceeds a pre-specified number (e.g., 1000). In each
BP iteration step we treat all the nodes of the network in a random order. When node j is

examined, the output messages q
(c j ,ci )
j→i to all its adjacent nodes i ∈ ∂ j are updated according

to Eq. (25). The difference � j→i (t) between an updated message q j→i (t) at the t-th BP step
and the old message q j→i (t − 1) at the (t − 1)-th BP step is defined as
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Fig. 9 Replica-symmetric (RS)mean field theory and belief-propagation (BP) results for ER randomnetworks
of mean degree c = 10. The RS results are obtained by population dynamics simulations, while the BP results
are obtained on a single ER network instance of N = 106 nodes. The BP iteration converges to a fixed point
only for x < 8.22. a Occupation fraction w. b Free energy density f . c Entropy density s. d Entropy density
s as a function of occupation fraction w

� j→i (t) ≡ |q(0,0)
j→i (t) − q(0,0)

j→i (t − 1)| + |q(0,1)
j→i (t) − q(0,1)

j→i (t − 1)|
+2|q(1,0)

j→i (t) − q(1,0)
j→i (t − 1)|. (30)

If the maximal value among the set of 2M difference values {� j→i (t)} is less than certain
pre-specified threshold value (e.g., 10−3 or even smaller), then BP iteration is regarded as
being converged. At a fixed point of Eq. (25) we then compute the free energy density f , the
mean occupation fraction w, and the entropy density s through the RS mean field theory. As
an example, we show in Fig. 9 the results obtained on a single ER random network of size
N = 106 and mean degree c = 10.

For ER networks with mean degree c > 2.41 and regular random networks with integer
degree c ≥ 3, we find that when the re-weighting parameter x is larger than certain threshold
value, BP iteration is unable to converge to a fixed point. Such a non-convergence phenom-
enon indicates that, when the random network system has an extensive core, it will be in a
spin glass phase at sufficiently large values of x . Systematic theoretical investigations on this
spin glass phase will be reported in another publication.

4.3 Ensemble-Averaged Properties

A random network ensemble is characterized by a degree distribution P(d). We perform
population dynamics simulations using Eqs. (25), (24) and (26) to obtain ensemble-averaged
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results. First, we create a long array A of N (e.g., 105) elements to store a set of messages,

each of which represents a probability distribution q
(c j ,ci )
j→i in the form of a three-dimensional

vector satisfyingEq. (29): q j→i ≡ (q(0,0)
j→i , q

(0,1)
j→i , q

(1,0)
j→i ).We then repeatedly update elements

of this array by the following procedure: (1) generate a random integer d ≥ 1 according to the
degree probability distribution Q(d); (2) draw (d−1) elements qk→ j from array A uniformly
at random, and then use these (d − 1) elements as input messages to Eq. (25) to compute a
newmessage q j→i ; (3) replace a randomly chosen element of array Awith this newmessage.
The message array A is expected to reach a steady state after it is updated a sufficient number
of times (e.g., after each element of this array is updated 10, 000 times on average).

We then keep updating the message array A and at the same time compute the thermody-
namic quantities f , w, and s. For example, the free energy density f is obtained by

f = fi − c

2
f(i, j) , (31)

where fi is the average of the free energy node contribution fi over all the nodes, and f(i, j)
is the average of the free energy link contribution f(i, j) over all the links. We generate many
samples of fi and f(i, j) to compute their averages fi and f(i, j). The procedure of obtaining a
sample of fi is the same as that of updating an element of the message A, the only difference
being that the degree di of node i should be generated according to the distribution P(d)

instead of Q(d). A sample of f(i, j) is obtained very easily through Eq. (28) by picking two
messages q j→i and qi→ j uniformly at random from the message array A.

For ER random networks with mean degree c = 10, we compare in Fig. 9 the results
obtained by this RS population dynamics with the results obtained by BP iteration on a
single network instance. The ensemble-averaged results are in perfect agreement with the
BP iteration results (provided the BP iteration is able to converge).

The entropy density s as a function of themean occupation fractionw can be obtained from
these RS population dynamics results (see for example Fig. 9d). In some random network
systems, the entropy density s become negative if w decreases below certain threshold value
w0, indicating that there is no dominating set with relative size below w0. We therefore take
the value w0 as the ensemble-averaged MDS relative size. For ER networks of c = 10, we
obtain from Fig. 9 that w0 ≈ 0.120 (the corresponding value of x is x ≈ 8.637). In some
other random network systems (e.g., ER random networks with c < 2.41, before the core
percolation transition), the entropy density s approaches a non-negative limiting value as w

approaches a limiting value w0 from above. For these latter cases, we simply take w0 as the
ensemble-averaged MDS relative size.

The ensemble-averaged results on the MDS sizes of ER and RR networks are shown
in Fig. 7. For ER networks with mean node degree c < 2.41 (before the core-percolation
transition), theRSmeanfield results coincidewith the results predicted by the core percolation
theory. When the random network contains an extensive core, the results obtained by the
pure greedy algorithm and the GLR-Impact algorithm are higher than the RS mean field
predictions, but the results obtained by the BPD algorithm of the next section are very close
to the RS mean field predictions.

5 Belief-Propagation-Guided Decimation Algorithm

For a given network W , the RS mean field theory gives an estimate for the occupation
probability q+1

i of each node i , see Eq. (24). Such information is exploited in aBPD algorithm
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to construct a near-optimal dominating set. (Such an algorithm and its extensions have already
been successfully applied to many other combinatorial optimization problems, e.g., the K -
satisfiability problem [39,40] and the vertex-cover problem [5]). At each round of the BPD
process, unoccupied nodes with the highest estimated occupation probabilities are added to
the dominating set, and the occupation probabilities for the remaining unoccupied nodes are
then updated.

If a node j is unobserved (it is empty and has no adjacent occupied node), the output

message q
(c j ,ci )
j→i on the link ( j, i) between j and node i is updated according to Eq. (25). On

the other hand, if node j is empty but observed (it has at least one adjacent occupied node),
this node then presents no restriction to the occupation states of all its unoccupied neighbors.

For such a node j , the output message q
(c j ,ci )
j→i on the link ( j, i) is then updated according to

the following equation:

q
(c j ,ci )
j→i = e−xc j

∏
k∈∂ j\i

∑
ck q

(ck ,c j )
k→ j

∑
c′
j ,c

′
i
e−xc′

j
∏

k∈∂ j\i
∑

c′
k
q

(c′
k ,c

′
j )

k→ j

. (32)

Similar to Eq. (32), the marginal probability distribution qcii for an observed empty node i is
evaluated according to

qcii =
e−xci

∏
j∈∂i

∑
c j q

(c j ,ci )
j→i

∑
c′
i
e−xc′

i
∏

j∈∂i
∑

c′
j
q

(c′
j ,c

′
i )

j→i

. (33)

It is easy to verify from Eq. (32) that q(0,0)
j→i = q(0,1)

j→i and q(1,0)
j→i = q(1,1)

j→i . Notice that if all

the nodes in the set ∂ j\i are observed, then we derive from Eq. (32) that q(0,0)
j→i = q(1,0)

j→i =
q(0,1)
j→i = q(1,1)

j→i = 1/4. Because of this property, we need only to consider the links between
unobserved nodes and the links between unobserved and observed nodes. All the other links
(which are between observed nodes) do not need to be considered in the BP iteration Eqs.
(25) and (32).

We implement the BPD algorithm as follows:

(0) Input the networkW , set all the nodes to be empty and unobserved and set all the proba-

bility distributions q
(c j ,ci )
j→i to be the uniform distribution. Set the re-weighting parameter

x to a sufficiently large value (e.g., x = 10). Then perform the BP iteration a number T0 of
rounds (e.g., T0 = 200). After these T0 iterations we compute the occupation probability
q+1
i of each node i using Eq. (24).

(1) Then occupy a small fraction r (e.g., r = 0.01) of the unoccupied nodes that having the
highest estimated occupation probabilities.

(2) Then simplify networkW by first deleting all the links between observed nodes, and then
deleting all the isolated observed nodes.

(3) If the resulting network W still contains unobserved nodes, we perform BP iteration for
a number of T1 rounds (e.g., T1 = 10). The output message of an node i is updated either
according to Eq. (24) or according to Eq. (33), depending on whether i is unobserved or
observed. We then repeat operations (1)–(3) until all the nodes are observed.

In addition, we may first carry out the GLR process to simplify the network W as far as
possible before running the BPD process. For real-world networks with some nodes being
highly connected, we find that such a GLR simplifying step reduces the BPD running time
considerably and also slightly reduces the size of the constructed dominating set.
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The results of the BPD algorithm for random networks and for real-world networks are
compared with the results obtained by the local heuristic algorithms in Figs. 7, 8, and
Table 1. For ER and RR random networks, the BPD algorithm considerably beats both
the pure greedy algorithm and the GLR-Impact hybrid algorithm; for very heterogeneous
(e.g., scale-free) networks, the BPD algorithm only slightly outperforms the GLR-Impact
algorithm.

6 Discussions

In this work, we proposed two heuristic algorithms (a GLR-Impact local algorithm and
a BPD message-passing algorithm) and presented a core percolation theory and a replica-
symmetric mean field theory for solving the network dominating set problem algorithmically
and theoretically. We found that the GLR process may lead to a core percolation transition
in the network (see Figs. 3 and 4). Our numerical results shown in Figs. 7, 8 and Table 1
suggested that the GLR-Impact algorithm and the BPD algorithm can construct near-
optimal dominating sets for random networks and real-world networks.

There are many theoretical issues remaining to be investigated. An easy extension of
the core percolation theory is to consider GLR with a subset of initially occupied nodes.
By optimizing this initial subset (e.g., following the methods of [41–43]), we may reach
an improved lower-bound to the MDS size. Core percolation on degree-correlated random
networks [44] and in themore general lattice glass problem [3] are also very interesting.When
the random network has an extensive core, we observed that the belief-propagation Eq. (25)
fails to converge at large values of the re-weighting parameter x (see Fig. 9), indicating a
spin glass phase transition. A systematic study of the spin glass phase will be carried out
using the first-step replica-symmetry-breaking mean field theory [40,45,46], which may in
addition offer an improved estimate on the ensemble-averaged MDS size. The possible deep
connections between core percolation and the complexity of the random MDS problem will
also be addressed by adapting the long-range frustration theory [24,25].

The methods of this work can be readily extended to the MDS problem of directed net-
works. Our theoretical and algorithmic results on the directed MDS problem will soon be
reported in an accompanying paper [47]. A more challenging problem is the connected dom-
inating set problem [48] which has the additional constraint that the nodes in the dominating
set should induce a connected subnetwork.Our presentworkmay stimulate further theoretical
studies on this hard problem.
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