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Abstract: Stock markets are complex systems exhibiting collective phenomena and particular
features such as synchronization, fluctuations distributed as power-laws, non-random struc-
tures and similarity to neural networks. Such specific properties suggest that markets operate
at a very special point. Financial markets are believed to be critical by analogy to physical sys-
tems but few statistically based evidence have been given. Through a data-based methodology
and comparison to simulations inspired by statistical physics of complex systems, we show that
the Dow Jones and indices sets are not rigorously critical. However, financial systems are closer
to criticality in the crash neighbourhood.
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1 Introduction

A hundred years ago, the Italian economist Pareto introduced the notion of a power-law de-
scribing wealth distribution. This is a major concept related to the notion of scale invariance
which is widely used in finance and economics (fractional Brownian motion, detrended fluc-
tuations analysis, volatility modelling, etc.). Scale invariance is crucial in finance because large
absolute returns are power-law distributed [1]. This lack of any characteristic scale is surprising
at first glance but finds its foundation in the theory of complex systems. As complex systems
composed of many correlated entities, financial markets exhibit collective behaviours like syn-
chronization or non-random structure, propensity to self-arrange in large correlated structures
as highlighted in [2, 3, 4], large fluctuations [5] and power-laws [1]. Moreover it has been shown
that financial networks share common properties with neural networks [6]. One recovers those
features in a class of models belonging to statistical physics, pairwise maximum entropy mod-
els which are particulary suited to capture collective behaviours. One knows that the market
may exhibit some of the former features at a critical state, defined in a precise sense [7] and that
maximum entropy models may describe collective behaviours observed in neural networks [8]
and in financial markets [4]. It is therefore tempting to think that financial markets are critical
[9] (in statistical physics sense) as it seems to be for neural networks [10, 11, 12]. It is not ob-
vious how to validate empirically the presence of a critical state. Criticality was proposed for
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the approach of log-periodicity [13]. The phenomenological comparison to critical phenomena
was done by substituting the temperature by the time which becomes therefore the control pa-
rameter [14] but it is merely an analogy, log-periodicity should be understood as a dynamical
feature rather than a second order phase transition. Indeed, several dynamical mechanisms
generate log-periodicity [15]. Criticality was also proposed for agent-based models exhibiting
power-laws and volatility clustering at this particular state [16, 17, 18, 19, 20, 21]. However dif-
ferent rules and models lead to the same qualitative stylized facts. There is still ambiguity since
there are non-critical mechanisms which generate stylized facts [22]. Furthermore, detecting the
criticality is not the same task as modelling complex systems, even if relations obviously exist.
A rigourous approach of criticality detecting is the inverse (or data-based) approach. A transi-
tion between scale dependence and scale invariance is highlighted [23] in this way. Here, we
also follow an inverse (starting from the data without initial assumptions) procedure described
in [24] and applied in [25]. This procedure is also inspired by statistical physics and provides
several statistical tests of criticality.

We find that the considered financial systems are not strictly critical even if some signatures
are observed. It is more likely that financial systems do not stay in the same regime and are
closer to the criticality when the system gets closer to a crash. The critical scaling parameter
(see hereafter) reaches its maximal value in the vicinity of the beginning of the crash. Namely,
the response function to a shock (a shock can be a modification of exogenous variables or of the
level of stochasticity) has a peak and its position scales with system size towards the operating
point (at which the probability distribution is the empirical one) for European market places.
The operating point of the Dow Jones is far from the critical one but the criticality could be
reached if the size of the index is large enough. The distribution of rank of configurations is
not a power-law if the system is well sampled and the entropy is not a linear function of the
log-likelihood. Moreover, we use a pairwise maximum entropy model [26, 4] to check that the
variance of the log-likelihood and the variance of the overlap parameter reach their maximum
at x-axis coordinates in line with the empirical ones. We compare empirical results to simula-
tions of a multivariate GARCH process and a Monte Carlo Markov Chain. They corroborate the
empirical findings. Last, we give an interpretation of criticality in financial markets. These find-
ings can be important in portfolio optimization which relies on the market structure (through
the correlation matrix, for instance) and to figure out how market processes information which
may eventually lead to a crash.

2 Signatures of criticality

A critical state can be thought as a state where the system lies at the threshold between order
and disorder. If there is no uncertainty, markets are perfectly ordered and thus homogeneous
(either positive or negative). In the opposite situation where uncertainty is maximal, markets
are completely random and uncorrelated; the probability to observe a positive or negative re-
turn is equal to 1/2 whatever the returns (positive or negative) of other market exchanges. A
critical state is halfway these extreme states, letting markets on the edge of disorder and highly
heterogenous.

Strictly, a critical state can be achieved only for infinite size systems. For finite systems, one
will not observe divergences but we will still say critical through the misuse of language and we
should compare the empirical results to a finite version of a model which may actually reach
the criticality (the nearest neighbour Ising model in two dimensions for instance) as proposed
in [25].

Statistical physics provides several tests of criticality. The signatures detailed in [24] will be
briefly recalled. First, we define a financial system as a set of stocks (or indices). Relative stock
returns are taken as random variable rt and can be rewritten as rt = sgn(rt)|rt|. Signs of stock
returns are sometimes considered as uncorrelated and attract less attention. However correla-
tions may appear in complicated (non-linear) fashion as synchronization during crises [27]. It
is interesting to study orientation (sign of returns) changes since Ising-like models are suited to
describe collective behaviours. Moreover the nature of the relative return sign is more subtle
than the one of simple independent random variables and can render the particular structure
of financial markets [26, 4]. The net orientation is defined as m(t) = N−1 ∑i si,t, if m(t) > 0
the market trend is positive for the period t. In order to study orientation changes, we consider
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a set of N market indices or N stocks described by binary variables si ≡ sgn(ri) (si = ±1 for
all i = 1, · · · , N). A system configuration will be described by a vector s = (s1, · · · , sN). The
binary variable will be equal to one if the trend of the associated stock is positive and equal to
−1 if not. A configuration (s1, · · · , sN) may also be thought as a binary version of the returns.

One can formally write the probability P(s) of finding the system in state s as a Gibbs distri-

bution P(s) = Z−1eU (s) and without loss of generality set Z to 1 which leads to the definition
of the utility function (or energy H = −U , potential, etc.) as the log-likelihood: U (s) = log P(s).
The rank r(s) of a given configuration s is defined as the number of configurations with a higher
utility (more frequent) than the value associated to s.

A power-law − log P(s) = α log r(s) + Cst is a strong signature of criticality. In this frame-
work, it is possible to obtain these quantities directly from a large enough sample and test the
validity of Zipf’s law. Another consequence of this law is the linearity of the Shannon entropy
[25], which measures the average surprise or average log-likelihood, expressed in term of an util-
ity function [24]. A weaker signature is the divergence of the variance of the likelihood at the
operating point (in the limit of infinite number of entities). For finite systems, the variance of
the likelihood should peak near the operating point if the system is in a critical state. This fea-
ture can also be checked directly from the data. The empirical relative frequencies are scaled as
PT(s) = P(s)1/T/ ∑ P(s)1/T; the operating point corresponds to T = 1. We note that for such a
Gibbs distribution we have the identity

RU = −∂〈U〉
∂T

= T−2
[

〈U 2〉 − 〈U〉2
]

= T
∂S
∂T

(1)

where S(T) is the Shannon entropy −∑{s} PT(s) log PT(s) of the rescaled distribution and the

brackets stand for the average with respect to PT(s). In a statistical point of view, this ex-
tremum is the point where the deviation to equiprobability of events is the largest. Operating
at this point involves that the variance of the log-likelihood reaches its largest value whereas
for equiprobable events, the variance of the log-likelihood is equal to zero. A large variance
of the log-likelihood also implies a large deviation from its mean value, the entropy, and thus
large structural changes. The rescaling parameter T can be thought as a randomness measure,
changing this parameter leads to a reweighting of the empirical distribution. For T > 1, the
distribution will be flattened and closer to the uniform distribution as illustrated in Fig-1. The
entropy of the remaining distribution will thus be larger than the original one: the closer to the
uniform distribution, the larger the entropy. We note that the expression T∂S/∂T is useful when
direct sampling of probability distribution is feasible and the expression T−2

[

〈U 2〉 − 〈U〉2
]

al-
lows estimation through a Monte Carlo simulation even if direct sampling is unfeasible. When

direct sampling is feasible, one can estimate the empirical distribution as P(s) = M−1 ∑
M
i=1 δsi,s

where M is the sample length, compute the scaled distribution PT(s) for any value of T and
then use the relation T∂S/∂T for the empirical derivation of the response function.

−1 −0.5 0 0.5 1

0

0.5

1

1.5

net orientation

p
d
f

Figure 1: Schematic illustration of the rescaling of a bimodal distribution as encountered in the
Landau phenomenological theory of phase transition. The original probability density is illus-
trated by the full line at an arbitrary temperature T∗; the rescaled distributions are illustrated
by the dashed line (at T = 0.25T∗) and the dotted line (at T = 10T∗).
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3 Sampling indices and stock exchanges

We observed opening and closing prices of 8 European indices (AEX, BEL, CAC, DAX, EU-
ROSTOXX, FTSE, IBEX, MIB), the sample length M is 2300 trading days (approximatively nine
trading years englobing two global crises, 2002-2011 period). We consider European stock ex-
changes because some issues (debt crisis, etc.) are specific to these market places and to ensure
the simultaneity of time series. We also observed the stocks of the Dow Jones index during
3 × 104 trading minutes and at daily sampling from 2002 to 2011. We consider two different
time-scales to explore the differences when the correlations decrease. According to the Epps
effect [28], we expect that systems sampled at low frequency (daily sampling) should be closer
to the criticality than the systems sampled at larger frequencies (minute sampling, for instance).
Positive returns are set to 1 and negative returns to −1. The first sample is ten times larger
than the number of possible configurations. Indeed, there are two possible values for each vari-
able si, thus they are 2N=8 = 256 configurations. The second sample is not large enough for
a satisfactory probability estimation (and thus a direct estimation of entropy). Since entities
may be strongly correlated, it is not obvious to know if the configurations are well sampled
or not. In case of strongly correlated entities, the relevant region in the configurations space is
narrow in comparison to independent entities. If the true configurations distribution is sharply
peaked, there are only few relevant states. In this situation, a small (M < 2N) sample is enough
to sample properly the configurations distribution. In the opposite case where entities are in-
dependent, every configuration has the same statistical weight and the sample size must be
large (M ≫ 2N). It is crucial to identify the maximum number entities one should consider to
avoid undersampling of the configurations distribution P[s] because power-laws occur sponta-
neously in the undersampling regime [29]. In particular, Zipf’s law is only a genuine feature
if P[s] is well sampled. To assess the maximum number of entities to consider in the analysis,
we follow the procedure described in [29]. The limit between proper sampling and undersam-
pling is defined by the coordinates of the maximum of H[K] in the plane {H[K], H[s]} where
H[s] is the entropy of the empirical configurations frequencies and H[K] is the entropy of the
random variable Ki = K(si) which is the number of times the configuration si is observed in
the sample. Beyond this point, H[K] decreases when H[s] increases which means that config-
urations are sampled (approximatively) the same number of times. Briefly, given a sample of
M independent configurations (s1, · · · , sM), the empirical distribution of the configurations is

p̂s ≡ P[si = s] = M−1 ∑
M
i=1 δsi,s. The distribution of the random variable Ki, corresponding to

the number of times the configuration si occurs in the sample, is written P[Ki = k] = k mk/M
where mk = ∑{s} δk,Mp̂s

is the number of configurations that are sampled exactly k times in the
sample. Their entropies are

H[s] = − ∑
{s}

p̂s log p̂s = −∑
k

k mk

M
log

k

M
(2)

H[K] = −∑
k

kmk

M
log

k mk

M
= H[s]− ∑

k

k mk

M
log mk (3)

These quantities can be evaluated to obtain the statistical significance of each data set. The
points in Fig-2 have been obtained by considering increasing system size. Each point is obtained
by this mean and by averaging over several sets of randomly chosen entities (see the caption).
Moreover, the theoretical limit is given by the most informative samples (full lines in Fig-2)
which are those maximizing H[K] with respect to {mk, k > 0} and satisfying the constraints
H[s] ≤ N, ∑k k mk = M and H[K] ≤ H[s] since the random variable K is a function of s (see [29]
for the complete discussion and derivation).

The statistical significance is illustrated in Fig-2 for each data set and for artificial data simu-
lated by fitting a pairwise maximum entropy model (see D). We simulate also a time series of a
Sherrington-Kirkpatrick (SK) spin glass of size N = 25 near the criticality. The European indices
set is correctly sampled up to 7 indices, the Dow Jones at minute up to 8 stocks. Increasing 15
times the sample length M, allows to consider up to N = 11 entities.

A qualitative observation is that if entities are highly correlated (low stochasticity), almost all
observed configurations (words) should be such that the mean orientation m(t) = N−1 ∑i si,t
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Figure 2: Statistical significance of data sets. The configurations distribution P[s] is correctly
sampled in the left part of the plane {H[K], H[s]}, delimited by the dashed line. The full line
stands for theoretical relation, H[K] as a function of H[s]. The dots stand for empirical values
for each data set, as the system size increases (from left to right in the plane {H[K], H[s]}). The
right-bottom panel illustrates the results for a SK spin glass of size N = 25 near the criticality.

For the European indices set, each point is calculated by averaging over ( 8
N). For the Dow

Jones (daily and minute samplings), each point is calculated by averaging over 100 sets of N
randomly chosen stocks.

is non zero. One expects a H[s] significantly lower than the theoretical upper bound N and
H[K] ≃ H[s] since few different configurations are observed. On the other hand, nearly inde-
pendent entities do not favour any value of m(t). The configuration distribution P[s] should
be approximatively uniform, H[s] should be close to min(N, log2 M) for large system sizes and
H[K] should be small since each configuration is observed approximatively a same number of
times. From pairwise maximum entropy (maxent) models [30], one knows that criticality is a
regime where no net orientation is observed but where fluctuations are the largest. We expect
that the sampling of a truly critical regime should return a situation halfway between the two
previous extreme cases, as illustrated in Fig-2 for the SK-model.

After fitting a pairwise maxent model, we record artificial data for the Dow Jones varying
the stochasticity by 1 third smaller and larger than the actual one. The results are illustrated in
Fig-3. It seems that the Dow Jones (minute sampling) is rather disordered, we will check this in
detail hereafter.

4 Results

In the following, we check if the signatures of criticality are observed in the considered data
sets. The variance of the log-likelihood is illustrated in Fig-4.

We can observe that the peak position scales with the system size, moving from left to right
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Figure 3: Statistical significance of the Dow Jones data set for different levels of stochasticity.
The full line stands for theoretical relation, H[K] as a function of H[s]. The dots stand for ar-
tificial data generated with a pairwise maxent model fit on the Dow Jones data with 1 third
larger stochasticity than actual one. The squares illustrate artificial data with the same level of
stochasticity than the actual one and the pentagons illustrate data generated with 1 third lower
stochasticity.
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Figure 4: Variance of the log-likelihood for the European indices set (left) and for the Dow Jones
at minute sampling (right) vs the rescaling parameter. The peak moves from left to right when
we consider larger sets. For the European set, we plot the variance for sizes N = 2, 4, 5, 8. The
dashed curve is a Monte Carlo simulation (see D) for N = 8. For the Dow Jones, we consider
N = 2, 4, 6, 8, 10, 12, the last two values are not statistically significant. These curves have been
obtained by direct sampling of the probability (and entropy) and by using the relation T∂S/∂T,
see section 2 for details.

towards the operating point T = 1 and that the maximum value of the variance becomes larger
when the number of entities increases. For a given and fixed size, one expects a larger value
of the critical scaling parameter for sets (of N randomly chosen entities) with a larger mean
correlation coefficient [30, 26]. We consider 100 sets of N = 6 randomly chosen entities for the
Dow Jones (daily and minute samplings) and for the S&P100. The results illustrated in Fig-
5 suggest a roughly linear relation between the critical scaling parameter Tmax and the mean
correlation coefficient. Any further results will thus be averaged over several sets for each
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considered size.
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Figure 5: The critical scaling parameter (x-axis coordinate of the maximum of the response
function RU (T)) versus the mean correlation coefficient of the considered set of N = 6 randomly
chosen entities. The results are illustrated for the Dow Jones at minute (squares, left panel) and
daily samplings (triangles, center panel) and for the S&P100 (circles, right panel). The size
N = 6 is chosen consistently with the latter analysis of statistical significance.

To formalize the relation Tmax = Tmax(N), we compute the value of the scaling parameter at
which response function RU reaches its maximum value for different sets of N randomly chosen
entities. Results are illustrated in Fig-6 for the European indices set and in Fig-7 for the Dow
Jones (daily and minute samplings).
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Figure 6: Value of the scaling parameter at which response function RU reaches its maximum
value vs the number of entities N. Mean values T̄ and error bars (1 standard deviation on T̄) are
computed over ( 8

N) samples for European indices set. The full line stands for a power fit and
the dashed line stands for an exponential fit on the first seven values. The response function is
calculated using the relation (1).

The power and exponential fits return an asymptotic critical scaling parameter respectively
equal to 1.38 and 0.92.

An exponential fit, on size up to N = 8, of the DJ (min) returns an asymptotical critical
parameter equal to 0.70 and equal to 0.74 if we fit up to N = 12 (but the latter value is not
trustful since the system is undersampled for N > 8). An exponential fit, on size up to N = 6,
of the DJ (daily) returns an asymptotical critical parameter equal to 0.71 and equal to 0.72 if
we fit up to N = 10, (but the latter value is not trustful since the system is undersampled for
N > 6). Furthermore, even in the undersampled regime, we observe an increase of the critical
scaling parameter.

Larger correlations measured when size (N) increases may be a spurious effect due to the
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Figure 7: Value of the scaling parameter at which response function RU reaches its maximum
value vs the number of entities N. Mean values are computed over 100 sets of N randomly
chosen stocks for the Dow Jones at daily (triangles) and minute (squares) samplings.

consideration of a particular time interval. One can perform the same study by changing size
and scaling sample length simultaneously and considering different time-windows. For the set
of European indices, we chose sample length L(N) = 2N+3 such that L(8) ≃ Lmax = 2300
and we average the results on 5 different time-windows. Results are illustrated in Fig-8. Each
point (square) falls into the confidence interval of the constant size results excepted the last one
(N = 6). Larger correlations for increasing size is thus a genuine feature.
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Figure 8: Value of the scaling parameter at which the response function RU reaches its max-
imum value vs the number of entities N. Mean values and error bars (1 standard deviation)
are computed over ( 8

N) samples for European indices set (circles). The squares illustrate re-

sults for the same sets with scaled sample length L(N) = 2N+3 and averaged over 5 different
time-windows.

As no inference method have been used, we expect that the Kullback-Leibler divergence
(KLD) DKL(Pcrit||Pemp) between the critical distribution PT=Tmax(s) (such that the maximum
value of RU is reached at Tmax) and the empirical distribution Pemp(s) should be of the same
order of magnitude than for a truly critical system operating at Tcrit + ∆T. The relative de-
viation ∆T/Tcrit and (Top − Tmax)/Tmax being equal (by definition Top = 1). Following [25],
a reasonable benchmark is the two dimensional square lattice nearest-neighbours Ising model
with periodic boundaries of size N = 9. The response function RU reaches its maximum value
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at Tcrit = 2.40. We compute the exact distribution Pcrit and the KLD with the scaled distribution

Pscaled = P
1/(1+x)
crit where x = (Tcrit − T)/Tcrit. We found Tmax = 0.88 and DKL(Pcrit||Pemp) =

0.070 for empirical data (European indices). The results for the Ising model are illustrated in
Fig-9.
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Figure 9: Kullback-Leibler divergence between the critical and the scaled distributions for the
two dimensional square lattice nearest-neighbours Ising model N = 9 (light grey circles) and
for the set of 8 European indices (square).

For both systems, the results are similar. Furthermore, we simulated (see D) artificial binary
returns with a Monte Carlo Markov Chain (1 × 104 equilibrations steps and 2.3 × 103 recorded
configurations for N = 8) using a pairwise maximum entropy model fitted on the data. We

obtained an absolute net orientation ˆ|m| = 0.812 ± 0.010 (1 standard deviation). The empirical
value is 〈|m|〉 = 0.726, not included in the confidence interval but near a critical state, a slight
change in inferred parameters may leads to significant change of observables estimated by sim-
ulations [31]. To quantify the effect of a small reconstruction error on the estimated observable,
we inferred Lagrange parameters with a regularized pseudo-maximum likelihood (see C for
details) and we shifted slightly the parameters such that ∆ = 0.015, consistently with [32]. The

reconstruction error is ∆ =
√

N〈(Jij − Jtrue
ij )2〉1/2 and quantifies the ratio between the root mean

square error of the reconstruction and a canonical standard deviation. We obtained 10% of rel-
ative deviation between the two estimations of |m|. The empirical and critical values of |m| are
thus similar.

The European market places seem to operate near the point corresponding to the maximum
of the variance of the log-likelihood while for the Dow Jones, the critical scaling parameter
seems to be far away from the operating point Top = 1 in the range of considered sizes. In
Fig-18, we extend this plot for larger sizes by simulating artificial data (see hereafter). This may
be explained by larger correlation coefficients between stock exchanges than between stocks of
the Dow Jones as illustrated in Fig-10 and by the Epps effect (decreasing correlation magnitude
with decreasing time-scale)[28].

Another observation is that the so-called critical exponent of the variance is equal to zero
for each curve illustrated in the left panel of Fig-4 in agreement with the mean-field value of
the Ising model at the critical temperature. The critical exponent can be obtained by taking the
limit limǫ→0+ log RU (ǫ)/ log ǫ where ǫ = (T − Tmax)/Tmax and Tmax is such that RU (T) reaches
its maximum at this point [33].

We also study the distribution of the configuration rank. In order to know if we should
reject or not Zipf’s law, we perform a modified version (discrete power-law with a natural
upper bound due to the finite number of configurations) of the statistical test described in [34],
see B for details. If the p-value is smaller than 0.05, the power-law hypothesis is ruled out and
for p-value close to one, we can consider it as a good distribution candidate (without guarantee
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Figure 10: Frequencies of correlation coefficients between European stock exchanges (left) and
stocks of the Dow Jones index (right).

that it is the correct distribution). The empirical rank distribution is illustrated in Fig-11.
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Figure 11: From left to right: empirical relative frequencies of configurations vs the configura-
tions rank of the observed time series for a set of 7 randomly chosen stocks of the Dow Jones
(min), artificial rank distribution for a real power-law and empirical relative frequencies for a
set of 12 randomly chosen stocks of the Dow Jones. The fit (dashed line) is obtained with the
maximum likelihood estimator.

Test results for different sets are reported in Table-1. The considered size should not exceed
N = 8 for empirical data to have a good estimate of the distribution P[s] by direct sampling.
As expected, the power-law test outcomes depend on the system size. For the Dow Jones,
the power-law is rejected when the system is properly sampled whereas in the undersampling
regime the power-law is not rejected. As detailed in [29], the power-law is the most informative
distribution when the distribution P[s] is undersampled.

The maximum likelihood estimator (MLE) of the exponent is derived by the maximization
of the log-likelihood

ln L(α) = −α
N

∑
i=1

ln xi − N ln

(

xmax

∑
x=1

x−α

)

(4)

where xmax is the upper bound. The standard deviation of this MLE is obtained by taking
the expansion of the likelihood up to second order (Gaussian approximation). It reads

σαMLE =
1

√

N

[

ζ
′′
(xmax,αMLE)

ζ(xmax,αMLE)
−
(

ζ
′
(xmax,αMLE)

ζ(xmax,αMLE)

)2
]

(5)

where ζ(xmax, α) = ∑
xmax
x=1 x−α and the prime stands for the derivative with respect to α.
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Table 1: Statistical test of power-law hypothesis for sets of N randomly chosen stocks of the Dow
Jones (3 × 104 points at minute sampling). We reported the maximum likelihood estimator α̂ of
the power-law exponent α and its standard deviation σα, the Kolmogorov-Smirnov statistic (D)
and the p-value. One does not reject the power-law hypothesis if the p-value is larger than 0.05.

# of stocks α̂ σα D p-val
6 0.0119 0.00
7 0.0117 0.00
8 0.0194 0.00
9 0.6654 0.0038 0.0147 0.10

10 0.6584 0.0035 0.0164 0.36
11 0.7192 0.0027 0.0210 0.87
12 0.7441 0.0025 0.0292 0.96
13 0.7699 0.0024 0.0290 0.98

The empirical probability density function (pdf) of this estimator for N = 13 and 104 tests
and its Gaussian approximation are illustrated in Fig-12.
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Figure 12: Empirical pdf of the MLE estimator for the size N = 13 and 104 tests (circles). The
Gaussian approximation is illustrated by the full line.

As a complement to the later analyses, we study the linearity of the entropy expressed as
a function of the utility. Zipf’s law induces a linear relation between entropy and the log-
likelihood [24]. The strict linearity can be achieved at a single value of the utility (as for the
2D nearest neighbor Ising model) or for any value of the entropy if the distribution of the rank
is a power-law [24]. The expansion of the entropy around the mean utility U is written (where
U is the notation for 〈U〉)

S(U ) ≃ S(U)− 1

T
(U − U) +

1

2T2RU
(U − U)2 (6)

For ranks distributed following a power-law, the quadratic and higher order terms are sub-
intensive; the entropy should be a linear function of the utility [25].

We check this property for several sets of 7 randomly chosen stocks of the Dow Jones In-
dex. We compute the average entropy-utility relation S(−U ) for 100 sets of 7 randomly chosen
stocks, the results are illustrated in Fig-13.

We measured the relative non-linearity [35], the typical value is 0.053 (equal to zero if the
function is exactly linear). The typical value of the slope is 0.71. We also simulate 5 × 105

artificial returns with a multivariate GARCH(2,2) and pairwise maxent processes fitted on the
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Figure 13: Left: Shannon entropy vs the opposite of the log-likelihood for several sets of 7 stocks
(randomly chosen) of the Dow Jones index (min). Right: the average entropy-utility relation
S(−U ) for 100 sets of 7 randomly chosen stocks. The dashed line is the best linear fit with slope
equal to 0.71 and 0.68 respectively.

data. The entropy dependence on the log-likelihood is illustrated in Fig-14. The relative non-
linearity is 0.032 and 0.035, the slope is equal to 0.77 and 0.59 respectively. For larger sample
size the entropy is not linear either, however in a restricted utility range ([0.3, 0.4], about 10% of
the possible values of the utility, for instance) the entropy is almost linear (as measured by the
relative non linearity).
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Figure 14: Shannon entropy vs minus log-likelihood for 100 sets of 9 randomly chosen stocks.
Artificial returns are simulated with a multivariate GARCH(2,2) process (light line) and with a
pairwise maxent model (bold line). The dashed lines are a linear fit on a restricted range.

As suggested by the Zip’s law checking, the entropy is not a linear function of the log-
likelihood. However, we can not reject the possibility of linearity in a restricted range or zero
curvature in a single point as for the 2D nearest neighbour Ising model.

Last, as the returns are believed to be non-stationary with volatility clustering (often mod-
eled by a GARCH process), we study the evolution of the critical rescaling parameter Tmax (at
which the variance of the log-likelihood reaches its maximum value). As expected, for fixed
size, Tmax increases during the growth period and reaches its maximal value in vicinity of the
crash beginning (when fluctuations are the largest) as illustrated in Fig-15 and gets closer to Top.
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Figure 15: Critical rescaling parameter Tmax for 6 European indices (black curve, left ordinate)
and the normalized sum of indices (light blue curve, right ordinate). The critical rescaling pa-
rameter is empirically estimated on a sliding window of 2N+2 trading days translated by 1
trading day each step.

5 Link to maximum entropy models

In the following, we use an inference procedure to check if the existence of a critical state is sup-
ported. One can show that the pairwise maximum entropy model (maxent) is a consistent sta-
tistical model when the aim is to study collective behaviours rather than to give a precise model
of the market [26, 4]. Rather than making specific assumptions of the underlying dynamics, we
build a model which is consistent with the recorded data and the observed structure. This max-
ent model is directly linked to the former discussion since spin glasses and neural networks
are also represented by pairwise maxent models which actually exhibit critical states. In this
framework the configurations distribution P[s] is rewritten as a Gibbs distribution

p2(s) = Z−1 exp

(

1

2

N

∑
i,j

Jijsisj +
N

∑
i=1

hisi

)

≡ eU (s)

Z (7)

where Jij and hi are Lagrange multipliers (chosen to retrieve the first and second empirical
moments). They can be thought as a measure of the pairwise mutual and individual influences.
Another well known application of the pairwise maxent model is the characterization of the
neural network structure [8] where the operating point seems to be a critical one [24, 10]. One
can show that this model is able to generate correlation matrices with non-Gaussian eigenvalues
[26] as observed in real financial time series [36] but also scale-free asset trees and order-disorder
periods [4]. This pairwise model gives more insights about the possibility of a critical operating
point. The rescaling of the Gibbs distribution is then viewed as a rescaling of all the parameters
by a common factor T−1. This rescaling is an investigation of a slice of the parameters space
which corresponds to a stochasticity variation. A small value of T favoris co-movements and
a large value favoris the randomness. In this work, Lagrange multipliers are estimated with a
regularized pseudo-maximum likelihood [32], see C for a short description. We note that close
to T = 1, many models are distinguishable and a slight change in parameters may lead to a
significant change of the measured observables. One should compare artificial and empirical
results.

First, we simulate artificial data with the estimated Lagrange parameters from the real time
series. The Monte Carlo Markov chain (MCMC) is defined as follows. A randomly chosen ori-
entation is flipped if the conditional flipping probability p(si,t = −si,t−1|s−i,t) is larger than a
realization of a uniform law on the interval [0, 1], where s−i,t is the configuration excluding the
ith entity. A configuration is recorded each N flipping attempts, which defines a Monte Carlo
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step (MCS) [37]. See D for details. The result of the procedure applied to those artificial data is
illustrated in Fig-4 by the dashed curve (1 × 104 equilibration MCS and 1 × 105 recorded MCS).
This is consistent with the empirical variance, both peaks (blue and dashed curves) are located
at the same value of the T-parameter. If Lagrange parameters {Jij} are positive, the orientation
distribution should be unimodal for large value of T and bimodal for small value of T. As a
qualitative test, we check if the empirical distributions are unimodal or bimodal and if they
can become bimodal if we change the stochasticity level T, an order-disorder transition is then
possible. As illustrated in the first row of Fig-16, the empirical distribution of the indices set
is bimodal whereas the distributions of stock sets are unimodal as expected from the former
empirical analyses. The second row of Fig-16 illustrates the difference between the empirical
orientation distribution and the simulated ones Pm(T) at different stochasticity levels. The in-
dices set is a rather ordered system, the probability mass peaks at the extremes values −1, 1 of
the net orientation. A disordered state exists for high level of stochasticity (T = 2). The third
row of Fig-16 illustrates the continuous deformation of the probability density function for a
stochasticity varying from low level (blue) to high level (red). This deformation is compared to
the one of the 2D nearest neighbor Ising model of corresponding size without individual biases.
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Figure 16: First row: the empirical probability density function (pdf) is illustrated for several
data sets. Second row: comparison of the empirical probability mass function (pmf) of the net
orientation to the artificial distributions resulting from simulations. Third row: 10 values of
the stochasticity level T (in the range [0.8, 2], blue to red respectively) are used to check if the
pdf can go continuously from unimodal to bimodal, the results are compared to a 2D nearest
neighbour Ising model without individual biases. The pdf and the pmf are estimated on 5× 105

Monte Carlo steps.

The fitted maxent models allow an order-disorder transition which justifies their use in the
criticality check. As mentioned in [31] such models are prone to accumulate in the vicinity of
the critical point T = 1 but are also highly distinguishable in this neighbourhood. Accordingly,
we check if they return a Tmax in line with the empirical results. One can estimate the variance
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RQ of the overlap parameter q = N−1 ∑i s
(1)
i s

(2)
i and the variance of the log-likelihood. The

overlap parameter measures the correlation between the configurations of two identical systems
denoted by the superscript (1) and (2). The variances RU and RQ are known to peak at the
critical value of the rescaling parameter [30]. If the operating point is indeed critical, we should
find the peak near the value T = 1. The results are illustrated in Fig-17.
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Figure 17: Variances of the overlap parameter (dashed lines) and of the log-likelihood (full
lines) for the 8 indices set, Dow Jones (daily and minute samplings) and SP100. Each point is
computed over 5× 105 MCS after an equilibration period of 5× 104 MCS. The coordinate of the
maximum is pinned (the coordinate on the left stands for the variance of the log-likelihood) .

We note that the peaks are indeed located near the empirical values. For the indices set,
the relative difference between empirical and simulated Tmax is equal to 2%, slightly underes-
timated. For the Dow Jones (min), the relative difference is equal to 6%, slightly overestimated
and for the Dow Jones (daily), Tmax is overestimated of 14%. The first two fitted models are
consistent with the data and lead to the same conclusion: the indices set is close to the criticality
(1 − Tmax ≤ 10%) and the Dow Jones is far from criticality (1 − Tmax ≥ 25%). The larger devia-
tion between empirical and simulated values for the Dow Jones (daily) may be due to inference
errors in the Lagrange parameters estimation. The ratio M/N (sample length on the number of
entities) is too small, ten times smaller than for the Dow Jones (min). Consequently, one may
expect the same relative error for the critical scaling parameter of the SP100 index.

Since simulations are consistent with empirical results, we simulate data to complete Fig-6
for sizes larger than N = 8. We simulate a binary sample of length 5 × 106 with the previ-
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ous MCMC and also artificial returns with a multivariate GARCH process, known to capture
clustering volatility and fatter tail than Gaussian one. We obtain results consistent with the em-
pirical ones. The critical value of the rescaling parameter Tcrit is illustrated in Fig-18. The critical
value increases with size but is still far from T = 1.
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Figure 18: Value of T-parameter at which response function RU reaches its maximum value vs
the number of entities. The squares illustrate the real data, the pentagons stand for a multivari-
ate GARCH(2, 2) process and the dots for the MCMC.

We note that in 2010, 12807 companies (excluding investment funds) have been listed in
stock exchanges (see http://www.world-exchanges.org/). There is thus no obvious reason
to consider the limit N → ∞. The market places system is significantly closer to the criticality
despite its small size. It may be due to information aggregation of an index about the underlying
stocks [38]. A set of indices may operate as a system of larger size.

Furthermore, one can show that the financial network exhibits small-world organization [6]
and one knows that the Ising model on a complex network, among other, is a small-world one
only at the critical temperature [10].

6 Discussion

Stock markets are embedded in a non-uniform background. They should therefore be hetero-
geneous and go through regular periods interspersed with surprising events. In a complex
economic background, reactiveness is an expected behaviour. In the case of the Fukushima
nuclear accident or the 2008 subprime crisis for instance, the market response was clear and
prompt. All stocks fell quickly in an organized fashion. This behaviour can help to secure the
profit made or prevent excessive losses if the situation goes even worse. Then, when the situa-
tion seems stabilized, or that stocks prices have fallen so dramatically that stocks became cheap
and attractive, the market goes up again in an ordered fashion. These large bearish-bullish
movements of the stock prices are encountered at any time scale [39]. During such phases,
the market exhibits large correlated structures and ordered state [40, 27, 4] corresponding to an
increase of the correlation strength. Such dramatic events impact globally the market (all eco-
nomic sectors). On the other hand, some events (like the end of a state subsidy for eco-friendly
goods, nuclear energy, etc.) have an impact on a single or few economic sectors. The criticality
is then thought as a competition between global effects inducing homogeneity and local effects
inducing heterogeneity in trades.

We have seen that Shannon entropy has an inflexion point near the operating point T = 1
for the European indices set. We deduce that the micro-states number increases (or decreases)
drastically following a variation of the stochasticity. The entropy is related to the logarithm
of the averaged micro-states number and we can obtain this quantity by a simple integration
of RU (T)/T. We observe that the largest slope stands approximatively at the actual operating
point T = 1 far from the saturation zones (where the slope is close to zero). In the neighbor-
hood of the operating point, the logarithm of the number of micro-states is almost linear with
a large slope thus a variation of Lagrange parameters will induce a drastic (in an exponential
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fashion) change in the micro-structure. It shows that the market network has a great structural
malleability. The entropy also measures the degree of statistical dependency between stocks.
If stocks did not influence each other, the system would be considered as a random one which
implies small covariances and low reactiveness. Thus entropy would reach its largest value. In
the opposite case, if stocks correlations are maximal (implying again low reactiveness), there
would not be any incertitude anymore, the whole market state s would be predictable on the
knowing of a individual state si and the entropy would be zero. So if the slope of the entropy
reaches its maximum value at the operating point, it means that the market is on the edge. Any
variation can tip the market either towards a random (disordered, with independent trades)
either towards a highly interactive (ordered, synchronized trades) state. We expect thus a large
predictability exploiting instantaneous information: using the system configuration amputated
of the ith entity s−i, one should be able to predict the state of this entity si with high accuracy.
This will be the subject of another work.

Last, the fact that the European indices set is closer to the criticality than the Dow Jones may
follow from information aggregation [38]. A set of indices is a weighted average of stock prices.
Considering the stocks as the fundamental hubs of the financial network, the indices represent
super-hubs acting as a system of significantly larger size. The typical relative cluster size is also
larger in the indices set where each cluster contains roughly 30% of the total number of entities
as illustrated in Fig-19 [4]. For the Dow Jones, the cluster size is about 10% of the index size.
Correlated structures have thus a larger relative size in the indices set which may match the
right balance between co-movements and fluctuations.
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Figure 19: Illustration of the clusters of each data sets. The clusters of the indices set (left)
returns a partition of the European economy. The clustering of the Dow Jones (right) returns
the different economic sectors (technologies, distribution, aircraft industry, TV broadcasting,
finance, chemical and industrial companies, telecom, consumer goods, health care, oil).

From the data analysis and simulations, we saw that the European market places seem to
operate at a point where the variances of the log-likelihood is close to their largest values. An
exponential empirical fit returns Top = 0.92 as asymptotical value (thus maximum) for Euro-
pean indices and Top = 0.70 for the Dow Jones at minute sampling. The entropy is not a linear
function of the log-likelihood. The estimation of Top with simulated data returns a value close
to one but this value is suspected to be overestimated about 15%. For the Dow Jones, large
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simulated samples M = 5 × 106 (using parameters obtained by fitting real data) return a con-
sistent value Top ≃ 0.65. Moreover, financial systems are closer to the criticality close to the
crash beginning meaning large fluctuation and large deviation from the uniform distribution
of the configurations. This evolution also suggests a process of self-organization. The market
is a highly adaptive system. By self-organization, the market reacts strongly to a change or un-
expected events and by itself does not consider all possible events as equiprobable. However
through the data analysis, the stock exchanges system is not exactly critical and the Dow Jones
seems to be far from criticality. Furthermore, financial systems do not stay in the same regime
and get closer to the criticality just before a crisis. An interesting finding since in such models,
large avalanches occur more likely close to the criticality [41].
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A Practical recipe

1. Binarize the returns.

2. Test the statistical significance and determine the corresponding maximum size N.

(a) Compute the empirical distribution of configurations p̂s.

(b) Compute mk (the number of configurations sampled exactly k times) and the empir-
ical distribution of Ki (the number of times the configuration si is observed in the
sample).

(c) Deduce their entropies H[s] and H[K].

(d) Locate the maximum of the relation H[s] vs H[K].

3. Get the response function RU and find its maximum. Repeat for several (∼ 100) sets of N
randomly chosen entities. For each set:

(a) Compute the empirical distribution of configurations P(s).

(b) Rescale the empirical distribution as PT(s) =
P(s)1/T

∑{s} P(s)1/T .

(c) Compute RU = T ∂S
∂T where S(T) = −∑{s} PT(s) log PT(s).

(d) Store the coordinates of its maximum.

4. Compare to a finite size version of a truly critical system.

(a) Compute the relative difference x = (Top − Tmax)/Top where Top = 1.

(b) Compute the Kullback-Leibler divergence (KLD) between PT=Tmax(s) and Pemp(s).

(c) Compare the latter KLD value to the KLD between PT=Tcrit
(s) and PT=(1+x)Tcrit

(s) for
the 2D nearest neighbours Ising model.

5. Perform a statistical test of Zipf’s law as described in B.

6. Check the linearity of the relation S(U ) vs U where U = log P(s).

7. Compare the empirical results to simulations.

(a) Infer the Lagrange parameters (see C).

(b) Simulate data using a Monte Carlo Markov chain (see D).

(c) Check if an order-disorder transition is allowed by computing the orientation distri-
bution and by varying the scaling parameter T.

18 / 23



(d) Compute the variance of the log-likelihood and of the overlap parameter q = N−1 ∑i s
(1)
i s

(2)
i

(two copies denoted by the superscript, linked with the covariance of the utility func-
tion U ). Compare empirical and simulated results for a common size. A large dif-
ference (> 10%) between the simulated value of Tmax and the asymptotical value
returned by fitting the empirical relation Tmax(N) may reveal difficulties in the infer-
ence of Lagrange parameters [31] and therefore a poor fitting.

B Discrete power-law

A statistical test for power-law is given in [34]. We adapt this test to discrete power-law with
a natural upper bound. Before considering the discrete case, we note that if the distribution
p(x) ∼ x−β has a finite upper bound xmax, then the cumulative distribution function (CDF) will
not be a straight line in a log-log plot because

P[X ≥ x] = Cst
∫ xmax

x
y−βdy =

Cst

1 − β

[

x
1−β
max − x1−β

]

(8)

where the constant normalizes the distribution to 1 and β > 1. Taking the logarithm of both
sides, it comes

log P[X ≥ x] = log
(

x1−β − x
1−β
max

)

+ log
Cst

β − 1
(9)

The statistical test proposed in [34] consists to the following scheme

1. Determine the best fit of the power-law to the data using maximum-likelihood estimator.

2. Calculate the Kolmogorov-Smirnov (KS) statistics for the goodness-of-fit. The KS statistics
is the maximum absolute value between empirical CDF and the CDF of the estimated
power-law.

3. Generate a large number (∼ 1000) of synthetic data sets.

4. Calculate the p-value as the fraction of the KS statistics for the synthetic data sets whose
value exceeds the KS statistics of the real data.

5. If the p-value is sufficiently small (∼ 0.05), the power-law is ruled out.

The MLE estimator of a discrete power-law with a natural cut-off xmax is derived from the
first order condition for the log-likelihood based on N observations

L(β) = ln L(β) = −β
N

∑
i=1

ln xi − N ln

(

xmax

∑
x=1

x−β

)

(10)

taking the derivative with respect to β leads to the MLE βMLE satisfying

1

N

N

∑
i=1

ln xi =
∑

xmax
x=1 x−βMLE ln xmax

∑
xmax
x=1 x−βMLE

(11)

The standard deviation of βMLE is obtained by taking the expansion of the likelihood around
βMLE

L(β) = L(βMLE) +
1

2!

∂2L(β)

∂β2

∣

∣

∣

βMLE

(β − βMLE)
2 (12)

identifying the terms to the Gaussian approximation − ln(σ
√

2π)− 1
2

(

x−β
σ

)2
, it comes

σβMLE
=

1
√

√

√

√N

[

ζ
′′ (xmax,βMLE)
ζ(xmax,βMLE)

−
(

ζ
′ (xmax,βMLE)

ζ(xmax,βMLE)

)2
]

(13)
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where ζ(xmax, β) = ∑
xmax
x=1 x−β and the prime stands for the derivative with respect to β.

Synthetic data distributed as a discrete power-law with a finite upper bound are generated
as follows. One generates a realization u of a uniform random variable U in [0, 1], one calculates

∑
xmax
x=1 x−β and the cumulative sum ∑

x
y=1 y−β. The smallest integer x such that ∑

x
y=1 y−β ≥

u ∑
xmax
x=1 x−β is stored. This process is repeated to generate a sample of desired length.

C Regularized pseudo-maximum likelihood

The rPML method is a powerful method for estimation of Lagrange parameters of pairwise
maximum entropy model while common maximum likelihood is untractable [32]. This method
can be thought as an autologistic regression in order to predict binary outcomes. The main
idea is to factorize the distribution and to consider only conditional probabilities. For a N-
dimensional sample of length M, the objective function to maximize is

PL(θ) =
1

M

M

∑
t=1

N

∑
i=1

log P(si,t|s−i,t; θ) (14)

where s−i stands for the configuration excluding the ith entity and the conditional probabilities
of the pairwise maximum entropy model are

p(si,t|s−i,t; θ) =
1

2

[

1 + si,t tanh

(

∑
j 6=i

Jijsj,t + hi

)]

(15)

A regularization term is added to the PL function to prevent overfitting which is a negative
multiple of the l2-norm of parameters to be estimated, for instance. The regularized PL (rPL)
objective function is thus PL(θ)− λ ‖θ‖2 with λ > 0.

D Monte Carlo Markov chain simulations

To perform simulation, we should describe how the Gibbs distribution can be reached as the
equilibrium distribution of a given Markov process. A way to reach a Gibbs distribution

p2(s) = Z−1 exp

(

1

2

N

∑
i,j

Jijsisj +
N

∑
i=1

hisi

)

≡ e−H(s)

Z (16)

is given by the following dynamics (the so-called Glauber dynamics [37]). Namely, one takes an
entity i chosen randomly and the attempt to flip the associated binary variable si is performed
with a rate depending on an exponential weight, the other orientations remaining fixed. We
define the reversal operator Fi such that Fis = Fi(s1, . . . , si, . . . , sN) = (s1, . . . ,−si, . . . , sN). This
asynchronous updating involves that two consecutive configurations only differ by a single
reversal. To find the exponential rate, we consider the evolution of the probability mass function
(PMF) for this dynamics which is given by the master equation

d

dt
p(s; t) =

N

∑
i=1

{

ω(si| − si) p(Fis; t)− ω(−si| si) p(s; t)
}

(17)

where ω(si| − si) is the transition rate from configuration Fis to configuration s. They are de-
rived from the transition probability P[si,t+τ = −si,t|si,t, s−i,t] ≡ W(−si|si, 0) = ω(−si| si) τ +
o(τ).

The master equation states that the variation of the PMF is equal to the inward probability
flow minus the outgoing probability flow [42]. At equilibrium, this dynamics should lead to the
Gibbs distribution (16). A sufficient condition to reach equilibrium is

ω(si| − si) p2(Fis)− ω(−si, | si) p2(s) = 0 (18)

As we are only interested on the equilibrium PMF and not how one reaches it, we can choose
any transition rates satisfying (18). A convenient choice for simulation (discrete time) is to take
the transition probability
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W(−si|si) =
1

2

[

1 − si,t tanh

(

∑
j

Jijsj,t + hi

)]

(19)

Simulations are performed following the scheme

Algorithm

1. Choose an entity uniformly at random.

2. Compute the transition probability (19).

3. Generate a uniform random number x ∈ [0, 1], if W(−si|si) > x, accept the reversal.

4. Parameterize time such that a Monte Carlo step (MCS) corresponds to N reversal at-
tempts.

5. Wait for equilibration.

6. Store the desired statistics.

A more detailed discussion (equilibration time, proper definition of statistics, etc.) can be
found in [43].
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