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Abstract

Biology presents us with several interesting kinds of networks that transmit and process
information. Neurons communicate by exchanging action potentials; proteins in a signaling
pathway detect chemicals at the cell surface and conduct the information to the nucleus in a
cascade of chemical reactions; and in gene regulation, transcription factors are responsible
for integrating environmental signals and appropriately regulating their target genes.

Understanding the collective behavior of biological networks is not easy. These systems
are inherently noisy and thus require a model of the mean dynamics as well as that of the
noise; in addition, if we view the regulatory networks as information transmission devices,
implemented by the “hardware” of chemical reactions, we need to describe them in a prob-
abilistic, not deterministic (or noiseless), language. Unfortunately, connecting theory with
experiment then becomes exponentially hard due to sampling problems as the number of
interacting elements grows, and progress depends on finding some simplifying principle.

In this work two such principles are presented. In the first half I discuss a bottom-
up approach and analyze the responses of a set of retinal ganglion cells to a naturalistic
movie clip, and the activation states of proteins in a signaling cascade of immune system
cells. The simplifying principle here is the idea that the distribution of activities over
elements of the network is maximum entropy (or most random), but still consistent with
some experimentally measured moments (specifically, pairwise correlations). The analogies
between maximum entropy and Ising models are illustrated and connected to the previously
existing theoretical work on spin-glass properties of neural networks.

In the second part a top-down approach is presented: viewing genetic regulatory net-
works as being driven to maximize the reliability of the information transmission between
their inputs and outputs, I first examine the best performance of genetic regulatory ele-
ments achievable given experimentally motivated models of noise in gene regulation; and
second, make the hypothesis that, in some systems at least, such optimization is beneficial
for the organism and that its predictions are verifiable. Data from early morphogenesis in
the fruit fly, Drosophila melanogaster, are used to illustrate these claims.
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Chapter 1

Introduction

Organisms are devices that have evolved to produce particular responses, beneficial for their
own survival and reproduction, to the stimuli that they are exposed to in their natural
environments. The proverbial encounter of a cheetah with its prey, the antelope, is a good
example. While grazing, the antelope is on the lookout for its predator, and has to react
quickly to the visual, auditory or olfactory signals that could indicate the cheetah’s presence.
There is a fatal cost for a “false negative” and potentially as high a cost for being slow;
in comparison, making a “false positive” choice is a mere nuisance, and the worst that can
happen is that the animal gets tired trying to escape from phantom cats lurking in the
shadows.

The imaginary grassland scene where the antelope is being chased represents an interplay
of several conceptual ingredients. First, there is the current state of the world and its rules
— the probability of encountering a cheetah or of other events happening given the location
or the time of day, physical laws governing the dynamics of the animals’ bodies and so on;
second, there are the detection and processing of environmental signals by the antelope’s
sensory system and its brain; and finally, there is the policy of action — (how) to flee or
whether to continue grazing — and a possible, perhaps deadly, feedback. We have a clear
intuition that for the antelope there is a limited set of “correct” ways to behave, and
there are theoretical frameworks that embody this intuition, like optimal Bayesian decision
making (MacKay, 2003) or game theory (von Neumann and Morgenstern, 1947). Recent
work has incorporated two additional important notions into this overall picture. The
first is the idea of learning and adaptation. Unlike textbook problems on inference, the
underlying probabilities of various events are not initially known to the animal. The world
is an orderly place because of its rules, which operate on many levels and induce correlations
in time between events: knowing what has happened until now is informative about what
will happen next (Bialek et al., 2001), and the animal will pay for the cost of information
gathering and processing if it can extract the predictive part of the information that will
guide its future actions (Tishby, 2007). The second idea is that there are physical limits
to perception and signaling due to sources of noise that cannot be eliminated given other
relevant constraints, and this noise must restrict the reliability of the organism’s decision-
making (Bialek, 1987, 2002). Putting everything together, one has a view of a complex —
yet not chaotic — world from which the organisms constantly acquire information at some
cost and with limited precision, and learn to use the predictive part of this information to
perform actions, either in the blink of an eye or perhaps even years later.

While in principle there exists an information theoretic language based on the laws



of probability in which the above framework can be formalized (Shannon, 1948; Cover
and Thomas, 1991), the practical goal of taking some organism and mapping the stimuli
which act on it to its choice of possible behaviors is probably still unattainable. We run
into difficulty as soon as we try to characterize quantitatively the relevant dimensions in
the space of stimuli and responses and have to stop before even trying to understand the
computations that implement the stimulus-response map, or the statistical structure of the
inputs. For example, human “behavior” manifests itself on many levels, from low-level motor
actions to complex social phenomena, and trying to label it, find the stimuli that elicit the
corresponding responses, or sample enough stimulus-response pairs seems daunting. Even
for very simple organisms like the extensively studied roundworm, Caenorhabditis elegans
(an animal with 959 cells of which 302 are neurons), finding the relevant “features” in
organism’s behavior, i.e. trying to quantify and separate a stereotyped response from its
natural variability or noise, can be a serious research undertaking (Stephens et al., 2007).

There are cases, however, where the behavior of the whole organism is in some way
dependent on, and therefore limited by, a much smaller and perhaps manageable subsystem.
For example, neurons at the periphery of the visual system that encode the sensory inputs
are the single conduit through which all image-related information must flow to the brain,
regardless of the complexity of downstream processing (Barlow, 1981). Alternatively, some
behaviors of a yeast or bacterial cell can be orchestrated by networks of a few coupled
genes that coherently respond to various experimentally controllable conditions, or so called
modules (Thmels et al., 2002; Slonim et al., 2006). Pinpointing the cases (and subsystems)
where such “information bottlenecking” ! occurs can be productive for many reasons. Firstly,
the set of possible inputs and outputs of this, much smaller, subsystem might now be
restricted enough in size to allow for quantitative description and thorough experimental
sampling. Secondly, the subsystem itself will probably be smaller, and as we move along
the length scale from cheetahs and antelopes past cells down to single molecules, we gain a
new leverage: for example, physical laws now tell us how the neural spike propagates along
the axon (Hodgkin and Huxley, 1952) or about the structural and functional interaction
between the DNA and example regulatory proteins (Benoff et al., 2002; Kuhlman et al.,
2007). In general, we will have the knowledge to model phenomenologically the response to
an input (and the accompanying noise) from physical principles.

Apart from having a well-defined parametrization of the functionally relevant features
of the inputs and outputs, and being smaller in terms of physical size, there is yet another
way in which a subsystem can be “small”. Biological computation often is implemented in a
dynamical system composed of (relatively) simple nodes that interact and thus give rise to
(possibly) non-trivial collective behaviors of its constituent elements (Hopfield, 1982; Hop-
field and Tank, 1986; Hartwell et al., 1999). Smallness in this context refers to the number
of effective constituent elements, and simplicity to the fact that the elements internally do
not have many states or different behaviors. In this case we often represent the dynamical
system graphically as a network (Alon, 2003), where every vertex denotes a constituent
element, or a node, and we draw connections between the nodes based on some notion of
correlation or interaction. Every node has an associated dynamical variable that we ab-
stractly call activity, and this can mean either the spiking rate of a particular neuron, the
expression level of a gene, or the activation/phosphorylation state of a particular signaling
protein. We will define the concepts more precisely in the following chapters.

!There is a formal notion of an information bottleneck as a specific form of data compression which has
a correspondence to the way we use the phrase here; see Tishby et al. (2000) for details.



In the first part of the thesis we discuss the problem of inferring the structure of the
network from experiments that provide snapshots of the states of nodes. More precisely, we
will assume that we have identified some of the interacting elements, but do not know the
strengths of their interactions. Our approach will be data-driven, or bottom-up: starting
with multiple joint measurements of the activities of a set of nodes, we will try to character-
ize their interactions. Clearly, we have many useful approaches at our disposal. We consider
deterministic models, in which one postulates a set of differential equations describing the
behavior of the node activities (and motivates it by some microscopic picture of how the
system is assumed to work) and then proceeds to fit the model coefficients to the data; the
connectivity map of the network that gives rise to the dynamical equations can even be
iteratively updated for a better fit. Such approaches have been successfully applied in the
study of circadian clocks and the oscillators responsible for the cell cycle, with the nodes
representing the expression levels of various mutually (in)activating genes and protein ac-
tivation levels (Chen et al., 2000; Leloup and Goldbeter, 2003); other systems have been
studied as well in this context, see Tyson et al. (2001) for a review. Similarly, theoretical
neuroscience has explored neurons from a dynamical systems perspective (Dayan and Ab-
bott, 2001). Alternatively, genetic circuitry has been also modeled as a logical deterministic
network with activities taking on a discrete set of possible values (Sanchez and Thieffry,
2001), or studied from a purely topological perspective (Shen-Orr et al., 2002).

We will soon see, however, that noise — in the sense of observed variability at constant
input conditions — is important in the cases of interest to us, and that a probabilistic de-
scription is required. Only cases where systems are exposed to stimuli drawn from some
specified ensemble will be considered, after the adaptation to the statistics of the ensemble
has taken place. In this “steady-state” regime a noisy system constantly fluctuates around
a fixed point, and each measurement can be considered as a draw from a stationary dis-
tribution that can depend on the stimulus. These assumptions, along with the desire to
formulate a probabilistic model that does not incorporate any prior knowledge beyond the
measured data, will lead us to mazrimum-entropy models, strongly analogous to the Ising
models of statistical physics. Importantly, these models will be phenomenological, in con-
trast to microscopic ones, where the mechanistic treatment of an interaction between two
elements is followed up to the whole network.? This distinction between microscopic and
phenomenological models of biological networks is one that we will have to constantly keep
in mind when interpreting our results.

In the second part of the thesis, we will take a top-down approach to study transcrip-
tional control in genetic regulatory networks, that is, we will try to derive the properties
of simple regulatory elements from a first principle. Again, noise will play an important
role and will correspondingly motivate us to posit that the information capacity of genetic
circuits is maximized, a variation on the idea in neural sensory coding where adaptation of
neurons to the input signals is often explained in terms of such maximization. This hypoth-
esis will generate testable predictions about the distribution of proteins used for signaling
and will put bounds on the reliability of regulatory elements, which can be compared to
measurements.

We will pick a biochemical network of signaling proteins, retinal ganglion neurons and
transcriptional regulation during morphogenesis as examples, all of them being instances of
biological systems where information flows through a small and rather restricted network

2In a microscopic model one would postulate, for example, Michaelis-Menten or similar kinetic equations
for enzymatic reactions or integrate-and-fire equations for neurons, and try to learn about the collective
behavior of the network by coupling the equations for constitutive elements together.



under our (and the experimentalist’s) control, and where the inputs and outputs are rel-
atively easily describable: for signaling proteins one stimulates the network with chemical
perturbations, for neurons one projects the images onto the retina and records the outgoing
spikes; for transcriptional regulation, one measures the concentration fields of fluorescently-
tagged transcription factors using microscopy. If these subsystems are biologically essential
for the whole organism, yet noisy in their implementation, we can hope to capture the sig-
natures of an optimization principle at work. And finally — much in the same way as for the
antelope’s story, where information theory allows us to make statements about perception,
computation and optimal behavior despite being unable to write down the corresponding
detailed dynamical model — the same information theory here will help us understand the
smaller networks and shift the focus from the prevailing question ‘What is the set of mi-
croscopic interactions between constituent elements?’ to a more interesting ‘How can a
biological network collectively perform its computation?’

The thesis is organized around three papers referenced on the Acknowledgments page
(and in their corresponding sections) that have been reproduced here with as few changes as
possible. T have tried to provide enough introductory material to make the reading smooth,
at the expense of sometimes (but hopefully not often) repeating what was already said.
Because the thesis covers what are considered to be distinct topics, some references for
classic and review papers specific to particular chapters are cited there instead of in the
Introduction. The data analysis methods and some computations, along with a substantial
number of interesting side results referred to in the main text, are presented in the Methods
Appendix.



Chapter 2

Building networks from data

In physical systems correlation functions are of interest because of two reasons. First, they
are “natural” to compute in theory and involve taking derivatives of the log partition func-
tion with respect to the coupling constants. Second, they are connected to experimentally
observable properties, such as scattering cross sections or susceptibilities, and their behavior
often characterizes the macroscopic order in the system. In networks of genes or neurons
the experiments usually amount to collecting snapshots of the instantaneous state of the
system, and while it is possible to define and compute the correlations between the con-
stituent elements, it is not immediately clear how to carry over our intuitions from statistical
mechanics to biological networks.

We try to explore the issue by first presenting information theoretic tools that are
required to deal formally with non-parametric probabilistic descriptions of the data; specif-
ically, we will first show how to measure the “correlation” between nodes in a principled
way, and will generalize this measure in several interesting directions. Then, the difference
between correlations and interactions will be discussed, with special emphasis placed on
distinguishing effective interactions of the phenomenological model from the real, physical
interactions in the modeled system. Finally, two concrete networks will be studied: a set of
interacting proteins in a signaling cascade of human immune response cells, and a group of
ganglion neurons of the salamander retina.

3

2.1 Computing correlations

Let o denote the activity variables defined for each of the nodes in a network. When we
think of a correlation measure between two elements o; and o, we usually mean either their
covariance:

Cij = (0i05) — (oi)(0}), (2.1)

or its normalized version, the correlation coefficient:

Ry = (0icj) — (0i)(0;) 7 (2.2)
Vo) = (0 (0) = (07)%)
where o; is a measure of “activity” at node ¢, and can quite generally be either a discrete or

continuous quantity. This measure of dependence is intuitive as it “interpolates” between
the case where o; and o; are chosen independently from each other and R;; = 0, and the



2.1 Computing correlations 6

case in which they are perfectly linearly correlated and |R;j| = 1. R can be taken as a
measure of the goodness-of-fit if the model dependence is linear, i.e. 0; = Ao; + B.
Despite being conceptually appealing and easy to estimate from the data, correlation
has at least two problems as a generic measure of dependency. Firstly, it does not capture
non-linear relationships, as shown in Fig 2.1b; secondly, when o take on discrete values
that are not ordered (e.g. a set of possible multiple-choice responses on a test), the linear
correlation loses its meaning, although the problem itself is well posed (e.g. What is the
correlation between two answers on a multiple-choice test across respondents?).

1=1.4 bits, C=0.94 1=0.7 bits, C~ 0

-4 -2 0.5 1

co
n
IS

!

I
o
o
co

2.1a: Linear correla- 2.1b: Nonlinear cor- 2.1c: No correlation.
tion. relation.

Figure 2.1: Correlation coefficient and mutual information as measures of dependency. Left panel:
the points drawn from a joint distribution that embodies linear dependence plus noise have both a
high mutual information and high linear correlation. Middle panel: in case of nonlinear dependence,
the correlation coefficient can be zero although the variables are clearly strongly correlated. Right
panel: if the joint probability distribution is a product of factor distributions for both variables,
then the correlation coefficient and the mutual information measures are zero.

There is an alternative way of defining dependency, or correlation, between two variables
due to Shannon (Shannon, 1948; Cover and Thomas, 1991). Let us suppose that both o;
and o; are drawn from a joint distribution p(c;,0;). For argument’s sake, suppose further
that we do not know anything about the value of ;. Then the entropy of p(c;):

Stp(e)] = - [ doplo) logs () (2.3)

is a useful measure of uncertainty about the value of o}, and, as defined above, is a value
measured in bits. This information-theoretic entropy is equivalent to physical entropy up to
a multiplicative constant, and is defined up to an additive constant (connected to the finite
resolution of o) for continuous variables, with a straightforward generalization for discrete
variables.

We have assumed that o; and o; have been drawn from an underlying joint distribution;
in contrast to the case above, if we actually know something about ¢;, our uncertainty
about o; might be reduced. The uncertainty in o; that remains if the value of o; is known
is again defined by the (conditional) entropy:

Slp(o;lo0)] = — / do; p(o;|0:) Togy pl(0r;]). (2.4)
We can now define the mutual information between elements o; and o; as:

I(oi;05) = Slp(o;)] = (S[p(9519:)])p(e): (2.5)
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where we write I(0;;0;) as a shorthand for I[p(o;,0;)], i.e. the mutual information is a
functional of the joint distribution.

The mutual information is the average reduction in entropy about one variable if one
has knowledge of the other, related, variable. This measure is symmetric in the exchange
of the variables, which is manifest if we rewrite Eq (2.5) as:

0y 0

I(04;05) = /dai/dajp(ai,aj)logz M. (2.6)
Mutual information is always positive and is measured here in bits; it is well-defined for
continuous and discrete supports because it is a difference of two entropies. This measure
also has a clear interpretation: saying that the variable o; has I bits of mutual information
with variable o; means that there are 21(9395) states of the variable o; that give rise to
distinguishable states in aj.l One bit of mutual information at least conceptually means that
there are two such values (or intervals) of o;, which separately map into two corresponding
values (or intervals) of o, without the possibility of confusion due to noise. Note that mutual
information in no way specifies the nature of the dependency, as opposed to the correlation
coefficient that specifically measures how good a linear model is; mutual information is a
statistical measure that states how many bits, on average, one learns about ¢; by knowing
i, but says nothing about ¢; = 0;(0;), i.e. about the actual value that o; takes if o; is
known.

Estimating the mutual information from the data by way of Eq (2.5) is notoriously
difficult as one is making systematic errors due to undersampling,? but there are methods
that explicitly use the scaling of entropy with the number of samples to correct for this bias
to lowest order (Strong et al., 1998). We have adapted the method to large-scale estimation
of many pairwise mutual information relations on a finite number of samples;? this so-called
direct method will be used in the remainder of the thesis (Slonim et al., 2005a).

If we adopt the terminology used by Shannon to discuss information transmission, we
speak of the communication channel between two variables, and regard o; as the source (or
input), and o; as the output.* Equation (2.5) can then be read as follows: the maximum
value for the mutual information would be the entropy of the output, S[p(c;)], but because
the communication channel is noisy, we have to subtract the so-called noise entropy, or
(Sp(oj|oi)]). Clearly then the information is bounded from above by the output entropy,
and is often normalized by S[p(o;)] to give a value between zero and one.

L«Djstinguishable” is meant as “distinguishable given noise”: a certain value of o; corresponds to a
distribution of values for o;, as described by the conditional distribution p(o;|o;); for two different values of
o; there will be two distributions of ¢, and to be distinguishable, they must not substantially overlap.

2When naive estimation of the mutual information is performed, one takes N samples of data and bins
them into a 2D histogram, from which a frequentist estimate of the joint distribution, p(o;,0;), is created
and used to compute [ in Eq (2.6). Often there will be too few samples to have a good coverage of the
histogram domain.

3The basic idea is that the mutual information will behave as I(N) = I(co) 4+ a/N + - - -, where I(c0) is
the correct information value that one would obtain at infinite sample size; I(N) is the naive estimate at N
samples, obtained by binning the data and estimating the entropies; and the term inversely proportional to
N is the first-order bias. By taking many subsamples of the data at different fractions of total size N, one
is able to estimate o and extrapolate to infinite sample size. The reader is directed to Slonim et al. (2005a)
for details on extrapolation, binning etc.

4Because of the symmetry of information in its arguments, the designations “input” and “output” are
arbitrary and acquire their meaning only when we map the information theoretic framework onto a physical
system.
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The concept of mutual information can be generalized in several ways. First, we can
define multi-information among N variables, & = {01,09,...,0n}, by extending Eq (2.6)
as follows:

p()

I1(5) /dap(a) log, I ilod)”
The multi-information quantifies how much “structure” or non-uniformity there is in the
distribution, and is a general measure of dependency between N elements. Is there any scale
to which this number can be compared, in a way similar to the comparison of the mutual
information with the entropy of the output, as we have shown above? If the network consists
of N nodes, with each node having @ possible states (in a discrete case), the entropy of
the distribution must be smaller than Supiform = N log, @, i.e. the entropy of the uniform
distribution on the same support. We can go even a step further: we can imagine a factor,
or independent, distribution, p) (&) = [, pi(c;), where p;(o;) = Egj7j#p(5’) — this is a
distribution that is a product of single-element distributions for each of the N elements
where every factor is just a marginal of the joint distribution over all other elements. The
independent distribution is easy to compute and all its single-point statistics will match
those of the full joint distribution. Because it has a product form, its entropy is simply the
sum of entropies of individual factor distributions:

8 [00@] ==X [ doinioi)tog mlo). (28)

2.7)

We will refer to the entropy of the independent distribution p(M) (&) as the independent
entropy and denote it as Sing[p(!) ()] to remind ourselves that this entropy does not include
any effects of the correlations and that the true entropy of the joint distribution must be
lower. Furthermore, we see that the multi-information of Eq (2.7) can be rewritten as:

1(3) = Sialp™(9)] = S[p(5))- (2.9)

The multi-information is therefore the reduction in entropy due to the correlations between
N elements.® We see from Eq (2.9) that Sjhq again provides a convenient normalization
for the multi-information; when we introduce the maximum entropy models, we will also
find out that there exists a unique decomposition of the multi-information into a sum of
connected information terms that describe the successive reductions in entropy due to the
presence of 2-body, 3-body, and up to N-body interactions.

Multi-information is a special case of the Kullback-Leibler (KL) divergence of the two
distributions (Cover and Thomas, 1991):

Dol = [ dopie) 1og, {;Exi (2.10)

The KL divergence is (almost) a distance metric on the space of distributions, but is not
symmetric. If random variables x were really drawn from distribution p(z), but we assumed
they were drawn from ¢(z) instead, and were to build an encoding for = using this (wrong)
assumption, the KL divergence would measure the number of bits needed to encode =z
in excess of the optimal encoding achievable using the correct model, p(z). The multi-
information is related to the KL divergence as:

1(p(#)) = D, (p(@) |1V ()) - (2.11)

SIf there are only two variables, the reader can easily verify that multi-information is just the mutual
information and that all formulae for N-body system match the corresponding ones in the case of 2 elements.
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Consistent with our intuition that the multi-information captures the dependency beyond
the single-point statistics, Eq (2.11) states that the multi-information is the number of bits
we need, in addition to the factor distribution model, to specify elements drawn from the
full joint distribution p(&).

A symmetric version of the KL divergence is the Jensen-Shannon (JS) divergence, or:

(p(z) +q(2)), (2.12)

Dis(p.a) = 5 (Dxu(pllr) + D fallr) (213)

N | =

r(x) =

The JS divergence is always between zero and one and is approximately the inverse of the
number of samples that would have to be drawn from the distribution p(x) to say with
confidence that they do not come from ¢(z) (Lin, 1991).

2.2 Networks from correlations

After having introduced the information theoretic measures of correlation, it is time to
ask why it is advantageous to use those instead of easily computable linear correlation
coefficients. In this section, I will discuss an interesting example where the analysis has
benefited from the properties of the information measure that the linear correlation lacks.
In parallel, we will also present one of the simplest, yet powerful and productive ways of
understanding the collective behavior of networks of many elements — clustering.

Microarrays have enabled genome-wide surveys of the changes in gene expression (more
precisely in mRNA levels) as the organism is subjected to different environments. Yeast,
for example, can be grown both at reference (neutral) growth conditions and in a number of
environments that are strongly perturbed away from the reference, usually by changing the
nutrient media, pH, temperature or by adding various chemicals that stress the organism.
Messenger RNA from reference yeast is then extracted and tagged with green fluorescent
probes, while perturbed yeast is tagged in red; both are hybridized to the same DNA
microarray, onto which segments of coding DNA have been spotted, such that each spot
localizes the sequences from a single known gene. The red and green message reverse
transcripts compete on the microarray for binding onto their complementary spots, and by
reading the relative red/green intensity ratios for each spot (and thus for each one of the
~ 6000 yeast genes) one can determine whether, for every condition, a certain gene is over-
or under-expressed relative to the reference.

A standard data analysis technique takes these IV genes exposed to M different condi-
tions, and tries to group genes into clusters that behave “similarly” when the conditions
are changed (Eisen et al., 1998). More precisely, a matrix of pairwise similarities is first
constructed from the data, usually simply by calculating the matrix of correlation coeffi-
cients between the genes (and across the conditions). With this N x N matrix in hand, one
employs a standard clustering algorithm® to partition N genes in O(v/N) clusters; if the
clustering is successful, the genes are probably co-regulated and form a module. Although
clustering would not provide a description of how the co-regulation works, it does reduce
the dimensionality of the problem by cutting its size from N elements down to several clus-
ters, based on each gene’s response to a changed environment and thus, probably, on its
function.

5For example, K-means or hierarchical clustering; see Jain et al. (1999) for a short review.
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We decided to reexamine both steps of the data analysis with information theoretic
tools. The publicly available dataset of Gasch et al. (2000) comprising about N = 900
yeast genes was chosen; experimenters characterized their expression patterns in different
conditions. Pairwise mutual information values I(o;,0;) were calculated using the direct
method and compared to the linear correlation coefficients, as shown in Fig 2.2. If every
pairwise distribution p(o;, o) were a Gaussian, there would be an analytic relation between
the mutual information and the correlation of the two variables, shown in red. Although
this relation is generally observed, there is significant deviation; moreover, there are pairs of
genes for which the correlation coefficient is small, but mutual information is significantly
above zero, and for some datasets this effect can be more pronounced (not shown). These
pairs are thus (wrongly) declared to be unrelated by the linear measure.

In addition to being sensitive to nonlinear correlations, the mutual information is also
invariant to invertible reparametrizations of its arguments (because it is a functional of
the probability distribution). It therefore does not matter if the information is estimated
between the green/red intensity ratio, the log of the intensity ratio, or any affine trans-
formation of it, including, of course, the change in units; this is in stark contrast to the
linear correlation measure, and is a very desirable feature for biological data sets where the
experimental error model (the likelihood of a measured signal given some physical event
taking place on the array) is not well understood.

In the work of Slonim et al. (2005b) we have reformulated the problem of clustering:
taking the pairwise similarity matrix obtained through information estimation as an input
and partitioning elements into a smaller number of clusters, such that the elements within
a cluster are more similar to each other on average than they are to the elements in other
clusters. The main idea is to assign each of the o; elements to one of the clusters C' by
choosing the assignments P(C|i) such the functional F is maximized:

F = (s)—TI(C;i) (2.14)
(s) = D _P(C)s(C)=> _P(C) > Pi|C)-- P(i,|C)I(ix,...,ir), (2.15)
(& C

ila’”vir

where I(i1,...,4,) is a similarity measure between r elements. Here we take r to be 2
and [ is therefore pairwise or mutual information, but the clustering formulation allows
the generalization along the lines of multi-information in Eq (2.7). The functional F is a
tradeoff, enforced by a tunable parameter T', between the desire to increase the similarity (s)
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between the elements of the same cluster (which is maximized if every element is placed in its
own cluster), and decrease the description length when elements o; are replaced by clusters
C' (which is minimized if all elements are placed into the same cluster). Mutual information
enters the computation as both the Shannon measure of channel capacity or compression
in I(C;i), which we want to minimize, and as a r-body element-wise similarity measure,
I(i1,...,i). Optimal assignments of elements i to clusters C' are found at the stationary
points of the functional F. Figure 2.3a shows the raw data, and Fig 2.3b the mutual
information matrix I(o;,0;) reordered such that the genes in the same cluster are next to
each other. The use of information theoretic formulation of clustering has helped us uncover
interesting new structure in the dataset (Slonim et al., 2005a). Moreover, we demonstrate in
the paper that the generic nature of mutual information as the similarity measure enabled
us to construct a clustering method that works for data of different origins and statistical
properties (gene expression, daily fluctuations in stock market prices, qualitative ratings
of movies by fans) without any tuning parameters apart from the generic parameter T
Information-based clustering outperforms the other state-of-the art tools in its class.

20 40 60 80 100 120 140 160

2.3a: Raw data for ESR module. 2.3b: Clustered ESR genes.

Figure 2.3: Left panel: All yeast Emergency Stress Response (ESR) genes (vertical) in 173 microarray
experiments (horizontal), sorted into 20 clusters (white separating lines). Color scale is over- or
under-expression of a specific gene relative to the same gene in a reference condition. Right panel:
The matrix of all pairwise information relations, sorted such that the genes belonging to the same
cluster are consecutively listed. Blocks on the diagonal are thus intra-cluster similarity, and off-
diagonal rectangles are inter-cluster similarity. Color scale is in bits.

Instead of discussing the results of the clustering project in detail, we emphasize that
clustering is one of the simplest and scalable methods of understanding the collective be-
havior of a network. Consider the information matrix of Fig 2.3b as a matrix of weights
between the nodes of a graph: the graph has strongly connected components that corre-
spond to clusters (blocks on the diagonal of the information matrix) and these blocks are
weakly coupled to other blocks. One might even threshold the information matrix and draw
binary links in the graph whenever the similarity measure exceeds the threshold value, and
some researchers have indeed taken this approach; cf. Remondini et al. (2005) for network
inference by thresholding correlation coefficient values.

Clustering turns out to be an extremely powerful approach for several reasons. Firstly,
in gene regulation we know that out of the whole set of genes (around 6000) for yeast, the
total number of genes that regulate other genes — so called transcription factors — is on
the order of a few percent (van Nimwegen, 2003). Although this, much smaller, group of
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genes with regulatory power could conspire combinatorially and still regulate every other
gene in a complicated individual fashion, many genes need to be up- or down-regulated
together, because they act as enzymes in connected reaction pathways. This coregulation
is the basis for the success of the clustering approach: coregulated genes cluster and cluster
members are assumed to be regulated in identical ways by their (one or few) transcription
factor(s). Instead of looking separately into regulatory regions of every single gene whose
regulation we want to understand, we can look across the members of the cluster and hope
that common elements in the regulatory regions will emerge above the random background
sections of the genetic code (Kinney et al., 2007; Foat et al., 2006).

Although clustering is clearly productive as a first step in understanding genetic reg-
ulatory networks, it is not a generative model of the network. It reorders the nodes so
that the structure (hopefully) becomes apparent, but does not give any prescription about
how the activity of one gene influences the activity of the others — the only input to the
clustering procedure is the mutual information, and we explicitly stated that information
measures dependency without revealing anything about underlying functional relationships.
Moreover, as we will soon see, understanding that elements o; and o are correlated, which
is the basis of clustering, tells us nothing about whether o; is really directly influencing aj;7
in particular, in gene regulation, the genes are coregulated and are therefore coexpressed,
and correlation does not imply causation or direct interaction. Despite being very prac-
tical, clustering leaves too many questions unanswered if we want to understand network
behavior.

2.3 Computing interactions

Can we disentangle the mesh of correlations and separate the correlations caused by real
underlying interactions from the correlations induced indirectly by other interactions, as is
illustrated in Fig 2.47

To start, we should recall a classic problem in statistical physics: we are given a lattice
of Ising spins, and some specification of exchange couplings (interactions) — perhaps nearest
neighbor only — and the exercise requires us to find the equilibrium correlation function be-
tween the spins, i.e. (0;0;4+A). In our case however, we will be dealing with network “reverse
engineering”. The exchange interactions themselves will be unknown, yet we will observe a
mesh of correlations. The problem will then be to compute the exchange interactions, and
the hope to find a network defined by the interactions to be simpler (for instance sparser)
than the network of correlations.

Let us formulate the problem more precisely. The network consists of N nodes with
activities o;, which, we will for now assume, can take on only two values, o; € {—1,1}.8
Our data consist of patterns D = {El, 7, ... ,ET}, i.e. there are a total of T' simultaneous
measurements of the activities at all nodes, while the network is in some stationary state.
These samples can be thought of as “instantaneous” snapshots of the system or, in simula-
tion, draws made during a Monte Carlo sampling run. From the samples we can estimate
the moments at successively increasing orders: first order moments are N mean activity
values, (0;); second moments are N(N — 1)/2 correlations, (o;0;); and so on. Because
the system is noisy, there will be fluctuations around the stationary state and not all T’
patterns are going to be equal. We expect some patterns to be more likely than the others,

"Let us leave “direct influence” as an intuition until the next section.
8This assumption will be relaxed later.
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and the full description of the system as it rests near the minimum of an effective potential
in an equivalent of a “thermal bath” must be contained in a joint probability distribution,
p(o1,09,...,0n). Getting a handle on this distribution is therefore our final goal, and as
we will soon discover, computing successive approximations to it will give us the desired
interactions that cause the observed correlations.

Figure 2.4: A small three-element sec-
tion from a network of interacting
nodes. Suppose that o; modulates the
activity of o; and o) through some
microscopic mechanism (denoted by
thick lines). We can expect to observe
strong correlations between o; and o,
and between o; and o due to this di-
rect influence. On the contrary, o;
and o} are not directly coupled, but
can still show significant correlation
(dashed line) because of common con-
trol by o;.

Except for a very small number of network nodes there is no hope of directly sampling
the distribution from the data. Its size grows exponentially in N and for a modest network
of 10 binary nodes we would need to estimate 2!° ~ 1000 parameters. To proceed, we
clearly need a simplifying principle.

A commonly used procedure is called Bayesian network reconstruction (Friedman, 2004),
and it is a method from the more general class of graphical models. One starts by assum-
ing a specific (initial) factorization of the joint probability distribution over all nodes and
represents it as a graph G°, as in Fig 2.5. Remembering that the activities are discrete
variables, all conditional distributions in the factorization can be represented as probability
tables with unknown entries that need to be fit from the data. Such fitting procedure can be
performed in many ways, and one can evaluate the likelihood of the fit £(G").? Of course,
we have no prior knowledge of what the correct graph factorization of the initial distribution
is, therefore a procedure is devised that wanders in the space of possible graph topologies
and tries a likelihood on each, producing a sequence {£(G),...,L(G"),L(G"),...}.1°
The complexity of each graph, e.g. the number of links, is penalized and combined together
with the fit likelihood into a scoring function. The goal is to find the factorization of the
probability distribution with the best score. Presumably, we will then have discovered a
simple graph that fits the data well.

There have been successful network reconstructions using this approach (Sachs et al.,
2005). The key simplifying assumption that makes this approach feasible is that the graph
of interactions is sparse, i.e. that there are many fewer real than potential interactions.
Given such sparsity, the factorized probability distribution will have a far smaller number
of unknown parameters than the full joint distribution, and there will be reasonable hope of
fitting them from the data. The method allows interactions of arbitrary complexity (as many
arrows converging on a single node as possible), but has some drawbacks. Firstly, there is

9Bayesian network reconstruction is an iterative procedure, and at n-th step, we are considering graph
G", hence the index.
0T his will usually be some sort of gradient descent or simulated annealing procedure.
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an exploding number of graph topologies over N elements, and no hope in exhaustively
trying all of them; whatever algorithm one devises to explore the space of topologies, it
can get stuck in local extrema of the scoring function. Secondly, due to computational
constraints not all kinds of graphs can be explored — usually one has to exclude loops
and this is a big handicap for biological systems where feedback plays a very important
role. In statistical mechanics the “no loops” approximation on the lattice is the Bethe-
Peierls approximation, in which one explicitly treats a chosen spin and a shell of nearest
neighbors around it, while the rest of the lattice produces an effective molecular field which
is determined self-consistently. Finally, because we are looking for a tradeoff between the
best likelihood fit and the simplicity of the model, we have to (arbitrarily) decide how to
penalize complex topologies. It is not a priori clear that one should simply minimize the
number of links and disregard other features of the graph. In particular, we expect that for
systems, in which collective effects are driven by the presence of weak interactions between
lots of pairs, Bayesian method will perform poorly.

Figure 2.5: Bayesian factoring
of the probability distribution

over five nodes. This example
graph G implies that the joint
probability  distribution can be
written as follows: p(oq,...,05) =

p(o1)p(oa)p(os)p(os|or)p(oz|or, 04, 05)

Let us try to take a radically different route to the solution. As has been said, with a
limited number of samples, T, we can successfully estimate several lowest-order moments
of the distribution, for example, the means (o;) and covariances Cj; of Eq (2.1), or, in
general, a set of mean values of some operators, (O, ()). For any reasonable choice of the
operators there is an infinite number of joint distributions over N elements with the same
mean operator values. Nevertheless, there is only one distribution that also has maximum
entropy, i.e. there is one distribution that is as random as possible but still satisfies those
statistics that have been measured in an experiment (Jaynes, 1957). This is the distribution
that we would like to find, and the maximum entropy principle embodies the idea that
any structure (or constraint) in the distribution has to be the structure induced by the
measurement (and not by explicit or hidden assumptions on our part). Formally then, we
are looking for the extremum of the following functional:

@) = Sp@) =3 gu(0u(@)) — A / 05 p(#) (2.16)
m
= /do‘p( log, p(& Zgu/dap A/do'p . (2.17)
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The first term is the entropy of the distribution, and there are p constraints enforced by
their Lagrange multipliers g,

<OM(6)>p(&) = <Ou>expt D; (218)

such that the average values of the operators over the sought-after distribution p(&) are
equal to the averages over data patterns, D = {51, ... ET}. It is easy to take the variation
in Eq (2.16) and write the explicit form for the maximum entropy solution:

1
p(0) = 7 &P

> QMOM(E)] . (2.19)

We call Eq (2.19) the maximum entropy distribution with constraints Ou and we will en-
counter it many times in subsequent chapters. The solution has an exponential form and
looks like a Boltzmann probability distribution with the factor 5 = 1/kgT = 1. Indeed, in
statistical mechanics, we can view the Boltzmann distribution, p o exp(—(3H ), as maximum
entropy distribution that is constrained to reproduce the mean energy, (H). The tempera-
ture is the corresponding Lagrange multiplier. Usually we ask what the mean energy is of
the system given some temperature:

[ dé H(5)e PH©)
<H(/6)> - fdo—_»efﬁH(g) )

(2.20)

while in the maximum entropy modeling, we are interested the inverse question — what is
the temperature that will make the expected energy of the system equal to the observed
average.!!

Operators that constrain the distribution can be arbitrary, but we can gain further
insight by restricting ourselves to the moments of increasing orders (the variables are still
binary for simplicity). If one chooses Ou = 0y, then the mean values, (0;), are constrained,

and the maximum entropy distribution is the factor distribution:

1 1
M(7) = —enuou — T _—_eouo
p(F) = esn = eInn (2.21)
L 1L
Z, = 2cosh(gy). (2.22)

Mean field models look similar and it is instructive to pursue this analogy a little further.
For a simple linear chain model where a spin couples to two of its nearest neighbors with
exchange interactions J, the full distribution is given by:

J6] (hZO'Z + ;JZO‘Z‘O'Z‘+1>] . (223)

1A lot of physicist’s “staple” distributions are also intriguing when viewed as solutions to the maximum
entropy problem. For example, the exponential distribution is the maximum entropy distribution with
a constrained mean; the Gaussian distribution is a maximum entropy solution for continuous variables
with constrained mean and covariance; and clearly, the uniform distribution is a non-constrained maximum
entropy distribution (alternatively, the only constraint is normalization). More exotic distributions such
as gamma, beta, Laplace etc. can also be seen as solutions to the constrained maximum entropy problem:;
things seem to be less clear for the Poisson distribution.

p({o}) = 5 exp
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In the mean field approximation, we would approximate the Hamiltonian as follows:
1 1 -
H= hZoi + §JZUZ-UZ-+1 ~ Za <h + 2zJ<a>> = Z hi((o))as, (2.24)
(] (2 (2 (]

that is, we neglect correlated fluctuations and write the average of the product of spins as
the product of averages (z stands for the number of nearest neighbors, z = 2 here). The new
Hamiltonian is now one-body with effective magnetic field h((o)). Clearly, the mean-field
Hamiltonian also makes the distribution factorize, such that

— 1 -~CT'
pMFA) () = Eeilh i (2.25)

One can easily calculate the expected value of o; in this model by solving
1
(o) = tanh <ﬂh + 262J<a>> , (2.26)

which is a well-known mean field equation for magnetization. Both models, namely the
maximum entropy constrained by mean values and the mean field approximation, yield
factorizable approximations to the joint distribution; however, for the maximum entropy
problem we are given the mean values (o;), and we ezactly reproduce them; for the mean-
field approximation we are given the (microscopic) interactions and we compute approzimate
mean values by disregarding fluctuations. In general, the Lagrange multipliers of the factor
maximum entropy distribution will not be the same as the effective magnetic fields of the
mean field approximation; they would be equal only if the mean field approximation yielded
the exact magnetization.

Returning now to the maximum entropy problem, we could continue constraining the
maximum entropy distribution with correlation functions of higher and higher orders. If
we were to fix both mean values and two-point correlations, the resulting distribution, Eq
(2.19), would have an Ising form. Constraining the three-point correlations would induce a
new term in the Hamiltonian of the form ), ik Jijkoiojoy. There is clearly a “ladder,” where
higher and higher order constraints are imposed on the distribution, and as a result, better
and better maximum entropy approximations are constructed. Let us call, then, p(k)(c?) a
maximum entropy distribution consistent with correlations of order k£ and smaller, in line
with our notation for the factor distribution, p(l)(c}'). In an N-body system, the highest
order of correlation is N, and p(™) (&) must therefore be the exact joint distribution — at this
order our approximation is the exact solution, with entropy equal to S[p(&)]. Schneidman
et al. (2003) have shown that this sequence of ever better maximum entropy approximations
defines a unique decomposition of multi-information:

N

Ip@)] = > 1% (2.27)
k=2

1™ = Sp*(7)] - S[p*)(3)). (2.28)

In words, the connected information of order k is the difference of the entropies of the
maximum entropy distribution consistent with correlations of order £ — 1 and one higher
order. For example, connected information of the second order is the reduction of the
entropy due to pairwise interactions; one creates the best factor (independent) model for
the data and the best pairwise (two-body Ising) model for the data, and compares their
entropies to see how much of the total structure in the joint distribution has been explained
by purely pairwise terms.
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2.4 Networks from interactions

Have we made any progress? In theory we could have looked forward to the scenario in
which the only limitation came from the finite data size and that would put a bound on how
far we could reliably sample in the space of correlations; once we collected the measured
correlations, we would postulate the maximum entropy model of Eq (2.19) and solve the
equations that determine all couplings, Eq (2.18). We now need only to interpret the result:
since we have a generative model of the data, i.e. the probability distribution, we can calcu-
late any new kind of average. Moreover, we can examine the couplings g,,, conjugate to the
constrained operators, and interpret these as interactions that cause and explain the ob-
served correlations. For example, if the data were generated by a 1D Ising nearest-neighbor
chain (but we did not know that), the correlation structure would appear complicated: each
pair of spins would be correlated and correlation would have some complicated dependence
on the spin-spin separation. Putting the correlation matrix into the maximum entropy cal-
culation and reconstructing the interactions .J;; would, however, reveal a very simple picture
— the only non-zero couplings would be between nearest neighbors and they would be all
the same. We would have achieved our goal of disentangling the mesh of correlations. In
(biologically realistic) situations which lack the perfect translational symmetry of an Ising
chain, the mapping from correlations to interactions, C;; — J;;, can be very non-trivial: if
there is frustration, there could be interactions between pairs where there is no correlation,
or vice-versa, or the signs of the correlation and interaction could be different. Nevertheless,
there is only one solution for the above mapping, and it is, in principle, computable.

As is done in Bayesian network reconstruction, once we have computed the couplings
and therefore the Hamiltonian that explains the data, we can draw a graphical model of
the network with a link for each nonzero coupling g¢;,4,..;, connecting those [ elements that
are conjugate to it in the Hamiltonian.!? These weighted links are undirected as there is
generally no way of determining the “direction” of the interactions from an equilibrium
model. Assumptions underlying maximum entropy reconstruction are also quite different
from its Bayesian relative: whereas in the latter case we assume sparse a network of (arbi-
trarily complex) interactions, we assume an arbitrarily dense network of simple (low order,
e.g. pairwise or triplet) interactions in the former case. To explain all N(N — 1)/2 pairwise
correlations one needs the full matrix of N(N — 1)/2 exchange couplings J;;,'> and there-
fore no discrete topology on the graph is assumed a priori. There is hence no problem of
searching and scoring the space of topologies, no exclusion of graphs that include loops, and
reduced dependence on the implementation details of the algorithm. The drawback is the
ab initio exclusion of complex irreducible interactions between many nodes. Clearly, the
real question to ask is about the approximation regime that is more suitable to biological
systems, if a general answer exists at all.

In practice, unfortunately, the maximum entropy network reconstruction is made dif-
ficult by two problems. One is technical — solving coupling Eqs (2.18) is very hard. In
essence, one needs to solve

dlog Z({gv})

0gu

where Z is the partition function of the maximum entropy distribution in Eq (2.19). This

= <OM>6XPt D; (2‘29)

12Therefore, for instance, the graphical decomposition of the probability distribution plotted in Fig 2.5
would correspond to the Hamiltonian H = ), hio;+ J130103 + J145010405 in the maximum entropy picture.

13For higher orders, there is similarly no restriction on the structure of, for example, three-point interac-
tions, Jijk.
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set of equations is both nonlinear in couplings g and requires the evaluation of the partition
function, Z({gy,}), or effectively a complete solution of the statistical mechanics problem.
The other problem concerns the identification of the nodes that are observed in the exper-
iment. First, usually one will be able to take measurements of only a small subset of the
nodes comprising the network and we will need to discuss how the hidden nodes influence
models of visible nodes. Second, even if the all nodes were identified, there is an issue of
“coarse-graining.” Is a node with two states really an elementary, physical object that only
has two states (a protein with two phosphorylation states), or is it in itself a complex with
many states, but for which a two-state model might (or not) be a valid approximation?
We will address both problems to some extent in the following sections that present two
applications of the maximum entropy principle to network reconstruction.
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2.5 Ising models for biochemical networks

The expression level of a specific gene in a regulatory network or an activation state of
a specific protein in a signaling pathway depends both on the states of other interacting
genes or proteins as well as on external stimuli. If the system is subjected to a wide
variety of such stimuli, the patterns of correlated activity can provide us with an insight
into the network structure. Recent advances in molecular biology techniques have enabled
researchers to collect measurements of protein activation or gene expression levels that
have not been averaged across populations of cells. Consequently, each cell selected from
a pool exposed to the same condition provides an independent, simultaneous measurement
of the relevant activation levels. In principle, therefore, one could attempt to construct a
joint distribution of these levels at every external condition, as opposed to approaches that
require the extraction of lysates from many cells and thus only allow access to the mean of
the distribution. In practice, however, the data is usually badly undersampled and we are
unable to explore the distribution without making prior simplyfing assumptions about its
form.

Figure 2.6: A diagram of MAP sig-

naling network in human CD4 T-cells,

reproduced and simplified from Sachs

et al. (2005). Phosphorylation level of

11 white nodes was observed; red and q 9 ?
green numbers indicate points of in-
tervention (i.e. the change of external
conditions C' in which the network op-
erates). These chemical interventions
change the state of the whole network
by locking the activity of the nodes on
which they act into activated (green)
or deactivated (red) state. Chemicals
0, 1 and 2 represent naturally occur-
ring stimulatory agents; 0 and 1 are
present in all C, while 2 is present
in C = 2. The arrows represent ex-
perimentally verified chemical interac-
tions; there are a number of known in-
teractions through intermediaries that
are known, but not plotted.

Here we present a maximum-entropy-based approach to biochemical network recon-
struction following the steps outlined in previous sections. We assume that, given a set of
N network nodes, their interactions can be well described as occuring only between pairs
or perhaps triplets, and not as combinatorial interactions involving quadruplets or larger
groups. Finding a distribution consistent with data that incorporates these simplifications
is a well-known problem in machine learning that has a unique solution for which convergent
algorithms exist (for small enough N) (Hinton and Sejnowski, 1986; Dudik et al., 2004).
It has also been shown to have an appealing physical interpretation as an N-body system
in thermal equilibrium whose Hamiltonian is written out in terms of one-, two-, three- etc.
body potentials (Schneidman et al., 2003). These potentials parametrizing interactions at
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increasing orders of complexity are our final goal, and to compute them we must be able to
estimate the corresponding one-, two-, three- etc. body marginals from the data. Schnei-
dman et al. (2006) have succesfully deployed the procedure at pairwise order to explain
the observed correlations between the spiking of neurons in the vertebrate retina. Can
protein-protein or genetic regulatory interactions be simplified to the same extent? Alter-
natively, does a failure of the pairwise model indicate where more complex interactions are
dominating?

We tackle these questions on the set of 11 interacting proteins and phospholipids (jointly
referred to as biomolecules here) in a signaling network of human primary immune system
T cells. We use data from Sachs et al. (2005), where approximately 600 single-cell mea-
surements of the activity level of biomolecules have been made for each of the 9 available
conditions using flourescent cell cytometry [Methods A.1.1]. The network has been studied
in detail and Fig 2.6 shows the conventionally accepted interactions, placing the observed
proteins into their biological context.

A typical experiment to which maximum-entropy network reconstruction can be applied
will yield a large number of simultaneous observations of N real-valued activation levels
for each external stimulus. We first outline how to quantize each of the N series into
@ discrete levels in a conceptually meaningful way that retains as much information as
possible.' We illustrate the maximum entropy reconstruction by focusing first on each of
the nine experimental conditions separately, and attempt to address the questions presented
above. We then show how to formulate maximum entropy problem such that the network
reconstruction takes advantage of all experimental conditions simultaneously; lastly, we
examine if the results justify the conceptual picture of a network as a sparse graph.

2.5.1 Discovering structure in the data

We begin by examining the activation levels of single biomolecules across all conditions.
When the raw activity values are histogramed, they frequently exhibit distinct peaks that
correlate well with external stimuli (see Fig 2.7 for an example). This suggests that perhaps
the scatter around the mean value at every condition is smaller than the spacing between
mean values and hence the mean values can be proxies for what we would intuitively call
discrete activity states. Moreover, if there are strong correlations between such “states” of
all proteins in the system, then knowing that protein A is in state 1 should tell us something
about the state of protein B. We would like to formalize this notion.

Suppose that we split the range of values taken on by the activity of protein ¢, x;, into Q

consecutive intervals, such that each value of x; maps to a discrete value o; € {0,...,Q — 1}.
Every measurement is now denoted by a IN-letter word with an alphabet of size ), and the
whole dataset is sequence of random draws from a probability distribution p(o1,...,on|C),

where external conditions C are chosen by the experimenters. Saying that the discretized
activity levels for different proteins should be as informative of one another as possible
is equivalent to making a statement that multi-information of the distribution [Eq (2.9)]
marginalized over C, I[Y "~ p(o1,...,0n|C)p(C)], is maximized for some quantization as-
signment z; — ;.1 The quantization method that finds such an assignment will be called

!Discretization can be regarded as a form of data compression; the original continuous data have some
correlation structure, and as quantization maps the data into the discrete domain, we would like the structure
to remain preserved. Note that we use the terms “quantization” and “discretization” interchangeably.

5Note that we need p(C). This prior over experimental conditions C is chosen by the experimentalists,
who collect 600 samples at each C.
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Figure 2.8: Left: original raw data for the activity level of 11 proteins (vertical axis) across different
conditions (horizontal axis, 9 conditions with 600 samples each, arranged sequentially such that
samples 1 — 600 represent condition 1 etc). Middle: the raw data discretized into 2 levels such that
the multi-information between proteins is maximized. Right: the data discretized into 3 levels such
that the average mutual information is maximized [Methods A.1.2]. In experiments that involve
chemical interventions [Methods A.1.1], the “red” activity level for proteins means that all samples
there are forced to be deactivated (lowest state), and the “green” level means that all samples are
activated (highest state). Due to the resolution of the printing process not all sample points can be
seen.

mazimum-multi-information quantization. We can find such assignment for () = 2, because
we (barely) have enough samples to calculate the entropy S[p(&)] of the full distribution,
including small sample corrections [Methods A.1.2]. For @ = 3, we are completely under-
sampled and unable to maximize the multi-information, but we can find an assignment that
maximizes the average pairwise information (1)) = (S[p(c4,0;)])i; — 2(S[p(c:)])i. Figure
2.8 shows the data discretized into two and three levels; note the high correlation between
the discrete states and the external stimulus.'®

Note that choosing a good quantization mapping is important because restricted sample
size and computing power are limiting us to small number of discrete levels. We could have
used the traditional quantization approach (Slonim et al., 2005a) that assigns a separate

YTrrespective of the way we discretize (i.e. either independently for each condition, or jointly for all
conditions), there is significant information about the condition in the activity patterns of the nodes, I(7; C);
because of undersampling we can only estimate this number approximately to be between 1.5 and 2 bits (for
reference, log, |C| = log, 9 &~ 3.2 bits). Interestingly, both the pattern of fluctuations in each condition and
the pattern of changes in the mean activities across conditions, reflecting two different quantization schemes,
are similarly informative about the condition.
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discrete level to each of the Q uniformly-partitioned quantiles of the data (i.e. each bin
is equi-populated); the resulting distribution for each discretized variable is then uniform
and the independent entropy, Sinq[p(7)], of the joint distribution is maximized. We would,
however, not have been taking into account the fact that experimental setup enforces equal
priors p(C) on conditions!” and that it is therefore very likely that we see a very active
or inhibited protein in only one out of all nine conditions; as a result we would recover all
pairwise dependencies only when the number of quantization levels was approximately equal
to the number of conditions. This is indeed what we see in Fig 2.9a, which compares the
mutual information capture of quantization methods described above on the whole dataset.

In addition, the fact that we only can handle a small number of quantization levels
forces us to trade dynamic range for fine-structure details of the distribution [Fig 2.9b],
especially because certain interventions move some activation levels far away from their
unperturbed values. We can, however, restrict ourselves to a single condition, quantize only
the corresponding subset of the data, and try to infer the interactions from the local “fuc-
tuations” around the steady state. In this case, applying either the traditional quantization
or multi-information maximization quantization does not result in appreciable difference in
the recovery of mutual information, indicating that the distribution at fixed condition is
much less structured then the distribution of data pooled across conditions.

Why is there any need to discretize the data at all? First, we might have prior reasons
for believing that there is a limited number of states that each node can have; for instance,
the enzyme might be unphosphorylated (and thus inactive) or phosphorylated (and thus
active).!® In each condition, a fraction of proteins will be in either of the two states, and
discretization takes this (and only this) gradation into account by discounting all remaining
variability as noise. Furthermore, the discretized picture can capture complex behaviors of
the system, e.g. the presence of multiple peaks in the joint distribution over activities, and
there is evidence (at least in 2D cross-sections of the joint distribution that we can sample,
e.g. Fig 2.9b) that there are such structures in the data. Conversely, we know that a
maximum entropy distribution over N continuous variables with constraints on the first and
second moments is a Gaussian, which is fully specified by the mean and covariance matrix.
Moreover, the constraining covariance matrix is also (inverse of) the matrix that appears in
the exponential form of the maximum entropy solution [Eq (2.19)] and the mapping from
correlations to interactions is trivial: Cj; — J;; = Ji; = CZ-; 1; multi-dimensional Gaussian
is easy to understand and is a function with one peak, but unfortunately is not rich enough
to describe the data.'®

Having reduced the data to the binary representation in the most informative way

"These priors simply reflect the number of samples at each condition that get measured and have no
relation to the set of conditions a typical cell experiences during its lifetime; this is why the distribution of
all activation levels pooled over different stimuli is not the natural distribution of expression levels. The same
reasoning holds in gene expression arrays: experimentally induced conditions which the yeast is exposed to
are not a properly weighted ensemble of conditions that yeast sees during its life — they might reveal strong
correlations useful for clustering input, but cannot be used to build a “natural” probability distribution of
expression levels.

18Fquivalently, one could have phosphorylation or some other chemical modification in multiple locations
on the protein which would induce more than two levels of activity. There is ample evidence for such behavior
in MAP signaling cascades (Kolch, 2000).

19A popular continuous model often assumed in machine learning that can account for multi-peaked
structure in the data is the mixture-of-Gaussians. An interesting project for future work is the exploration
of an alternative model, where one uses the maximum entropy models of real-valued activation levels,
which constrain 1-D marginal histograms to capture their non-Gaussian distributions, and the two-point
correlations (z;x;).
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Figure 2.9: Left panel: mutual information capture using various discretization methods as a function
of the number of discrete states @, data from all conditions is being discretized simultaneously.
Blue line puts an equal number of samples into each of the @ bins (and thus maximizes Sy, the
independent entropy of the distribution), while the red line greedily chooses binning boundaries so
that the average mutual information between all pairs, (I(0;;0;)):j, is maximized. As mentioned in
the text, the blue quantization needs @ ~ 9 levels to fully capture all pairwise relations. For @ = 2
we are able to maximize the total multi-information, I[p(&)], and the result is shown as the black dot.
The black dot has slightly smaller average pairwise information, but bigger total multi-information
than either blue or red line; this is the binary quantization used in the subsequent analysis. Right
panel: scatter plot of activity levels of proteins 9 and 11 across all (black) and certain subset (red)
of conditions (see legend). If binary quantization is performed, then optimally quantizing over the
whole dataset will set the bin boundaries at thin black lines and the “low” and “high” states of both
proteins will appear positively correlated. However, this will ignore the red substructure. If, instead,
only the red data subset is optimally quantized (and bin boundaries are at thin red lines), then the
data will appear anti-correlated and we will have revealed the previously hidden substructure that,
in the whole-data-quantization, was all lumped together in the “low/low” state. Note also that
continuous maximum entropy models constrained by pairwise correlations (Gaussian distributions)
cannot be used to model the multi-peaked structure seen in this example cross-section.
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Figure 2.10: Correlation coefficient
between log activity of 11 protein acti-
vation levels across experimental con-
ditions. Almost all pairs appear sta-
tistically significantly correlated (the
largest error bar on the correlation co-
efficient is ~ 2-1072).

possible, we now turn our attention to pairwise correlations and show in Fig 2.10 the
matrix of correlation coefficients between protein activation levels. The majority of pairs
show strong correlations, and even weaker correlations are statistically significant. Based on
the correlations alone the network would thus seem to be densely connected — but how does
the connectivity map look in terms of exchange interactions J;; of the maximum entropy
distribution, Eq (2.19) and Eq (2.30)? We will approach the question systematically: firstly,
we will examine data at each condition separately; then we will find a way to model multiple
conditions at the same time.

2.5.2 Analyzing a single condition

The data collected for conditions 1 and 2 describe the activation levels of 11 biomolecules
when the cells are exposed to their natural stimulatory signals. If we focus on each of the
two conditions separately, we will be dealing with draws from two stationary distributions:
applying the max-multi-info quantization discussed in previous section separately to each
condition will produce binary words that represent fluctuations around the steady state
in that condition. Because the nodes are functionally connected, the fluctuations are not
independent, and must reflect local couplings between nodes near the given steady state.
Can we learn something from the correlated fluctuations in the activities?

Having quantized the data into two levels and calculated the correlations and mean
values, we write down the form of maximum entropy distribution consistent with these
operators,?’ Eq (2.19):

- - 1 . 1 -
p(al,...,UN> = Zexp Zhiai—i-iz(]ija'igj . (2.30)

We proceed to calculate the interaction map J;; and the magnetic fields h; that explain the
measured observables [Eq 2.29, Methods A.1.3].

Figure 2.11 shows interaction maps J;; and magnetic fields for each condition’s data
quantized and analyzed separately. Interestingly, both condition 1 and 2 exhibit a similar
pattern of interactions, with those of condition 1 being a subset of condition 2; moreover they

29Let’s denote by a tilde over the activity variable, &, the Ising model convention of naming two states
—1 and 1; the corresponding states of o are 0 and 1.
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Figure 2.11: Interactions (color map) and magnetic fields (blue line) for all 9 external conditions,
proceeding top down, left to right, computed (both quantization and maximum entropy reconstruc-
tion) separately for each condition. All interactions J;; are drawn on the same scale, with red
color indicating positive and green color indicating negative couplings. Note that since the data is
requantized in each condition, and requantization amounts to the change in single-body marginals
(averages) which are constrained by the magnetic fields, the magnetic fields are in this case a “side-
effect” of the data analysis procedure. Conditions 1 and 2 represent cells exposed to the naturally
occurring stimulatory chemical signals; other conditions represent environments where “interven-
tion” chemicals — which are supposed to lock the activity states of certain nodes to either “on” or
“off” — have been added to the stimulatory chemicals of condition 1.
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also agree with the conventional map of interactions in Fig 2.6, except for the interaction
between 10 and 11 (p38, JNK) in condition 2. A possible explanation for this interaction is
the cross-talk in the MAPKK pathway upstream of p38 and JNK: unobserved biomolecules
that couple pairs of observed proteins would induce effective interactions between them. In
general, the interaction matrices are sparse, and most of the small coupling constants can
be set to zero with minimal change to the distribution, as shown in Figs 2.12a and 2.12b.2!
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2.12a: Condition 1. 2.12b: Condition 2.

Figure 2.12: Sparsity of the interaction maps for both condition 1 (left) and condition 2 (right).
Blue line plots the rank-ordered magnitudes of the couplings (both magnetic fields and exchange
interactions) g,. Smallest n couplings of the original Ising model inferred from the data are set to
zero and the resulting “pruned” Ising model is compared to the original. For this comparison we
plot the Jensen-Shannon divergence as a function of n (red dots). For both conditions we see a sharp
bend at first 40-50 couplings that can be zeroed at low D ;g; the remaining 11 magnetic fields and
~ 10 pairwise couplings are significant.

Note again that we are looking only at fluctuations around a naturally stimulated steady
state. These fluctuations are much smaller then those induced by intervening chemicals,
which is presumably why we detect only a subset of full interactions.

How much of the complexity of the true distribution is captured by the maximum
entropy approximation? To answer this question we look at the fraction of the multi-
information of the real distribution that is captured by the pairwise model. As Fig 2.13
demonstrates, in case of condition 2 it recovers almost all of the 2.8 bits of total information;
for condition 1, however, the fraction is around 70 percent out of the total of 1.5 bits.??
A further test of the pairwise model involves comparing the predictions about connected
three-point correlations ((o; — 7;)(0j — ;)(0k — %)) with values estimated from the data,
as shown in Fig 2.14. As expected, the match between predictions and measurement is

21One starts with the smallest couplings and proceeds towards bigger ones by setting them to zero and
calculating the Jensen-Shannon distance between such “pruned” and the original distributions. For con-
ditions 1 and 2, if all exchange interactions but for the “skeleton” around the diagonal are set to 0, the
Jensen-Shannon distance will be around 0.015, i.e. one would need on the order of 70 samples to distinguish
the full maximum entropy from the pruned distribution.

22There might be larger systematic errorbars on experiments 1, 6 and 9 because the distribution seems
considerably more uniform than for other experiments and we are low on samples.
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good in condition 2 (not shown), while for condition 1 we see a single three-point predicted
correlation deviating strongly from its measured value. The corresponding biomolecules
are 2, 3 and 4, namely PLC~, PIP2 and PIP3, and they are suspected to form a feedback
loop [Fig 2.6]. To ascertain that it is not only the observed correlation, but actually a
true triplet interaction between the molecules that generates the discrepancy, we build a
new maximum-entropy model consistent with three-point marginals. The corresponding
Hamiltonian has the following form:

. 1 . 1 . -
H=—- Zhldl — 5 Z JijO'iO'j — 6 Z Jijkamjak (2.31)
7 ¥ ijk

In the generalized Hamiltonian of Eq (2.31) the largest three-point interaction term is
J345. Moreover, in order to convincingly show that it really is J345 that fixes the offending
three-point correlation (as opposed to all other triplet degrees of freedom in Eq (2.31)), we
construct yet another maximum entropy model: a pairwise Ising system that constrains
exactly one three-point marginal, p(os, 04, 05), and has a single three-point coupling, J345.
The agreement between prediction and observations is then restored up to third-order in
correlations, at the cost of one additional underlying interaction. Experimentally it is
also known that PLC~ hydrolyses its substrate PIP2 to produce PIP3; furthermore it is
suspected that PIP3 can recruit PLCy (Goodridge and Harnett, 2005; Kolch, 2000).

We believe that the described procedure generalizes. The theoretical foundation (Schnei-
dman et al., 2003) provides a way of decomposing the total information of a given distri-
bution into a sum of positive terms, each of which indicates the extent to which maximum-
entropy models incorporating successively higher order marginals recover the total com-
plexity. A failure to account for the total information with a simple model is diagnostic of
complexity being unaccounted for in the model; to pinpoint the problem, one compares the
prediction and measurement of next order correlations; hopefully, the failure is localized and
not distributed through the network. If this is the case and fixing the failure requires the
introduction of a single new interaction, we might believe that we have learned something
new about the system.
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Table 2.1: Different models of incorporating conditional dependence on the external stimuli. The
Ising model of Eq (2.30) is complemented by binary variables y; that are “on” in condition k
and “off” otherwise and therefore mimic the presence or absence of intervening chemicals. Depen-
dence on conditions is achieved by coupling the 11 internal nodes ¢; to the condition nodes yy;
the coupling constants, when computed using the maximum entropy network reconstruction, will

then parametrize the condition-dependent magnetic fields hz(-k) in H; and, additionally, condition-

dependent exchange interactions Ji(;f) in Hs.

2.5.3 Combining multiple conditions

To extend the analysis to conditions of chemical intervention, we need to formulate the max-
imum entropy problem such that it will constitute a proper description of p(o1,...,on|C)
for various conditions C'. It is clear that we cannot proceed without further assumptions
about how a change in condition affects the system. Conceptually, we can view inhibition
and activation chemicals that are added to the cell culture to induce the change in network
behavior on the same footing as 11 measured proteins — the fact that these chemicals are
“external” to the cell, while the flourescently-tagged ones are natural and “internal” is of no
consequence for the method. We therefore extend the support of the probability distribu-
tion {o1,...,0n} with external variables C' = {y1,...,yx} that speficy the condition, such
that the concatenated dataset defines a probability distribution p(o1,...,0nN,91,.-.,YK).
For each measured sample in condition C; we know what values to assign to variables y;:
y; = 1 if during C; a given intervention chemical was present, and —1 otherwise [Methods
A.1.1]. Introduction of the new variables allows us to make our intuition about the influence
of the condition C' on parts of the network precise: we couple the terms in the Ising model
of Eq (2.30) that are assumed to vary upon change in C, to variables y. The immediate
cases of interest are the described in Table 2.1 and below.
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Figure 2.15: Once the maximum entropy model has been solved from the correlations and the
Hamiltonian is known, we can calculate the energy histograms over the real data samples (red)
and compare them to the Boltzmann density of states prediction (blue), shown for each condition
separately. Black dashed line (on right vertical axis) shows log base 10 of the number of possible
distinct patterns in a given energy bin. Condition 1 has the worst agreement with the pairwise
prediction, specifically in the states with the low energy.
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To construct a distribution that corresponds to a Hamiltonian with no y-couplings,
we constrain only the pairwise marginals of 11 observed biomolecules, quantized together
to maximize the multi-information. This is equivalent to pooling all data together and
building a single model to account for all conditions, an approach that should perform
rather disastrously.?> On the other extreme there is the Hamiltonian Hs of Table 2.1
that couples both J and h terms to y variables and corresponds to maximum-entropy
distribution that constrains all three-point marginals of the form p(o;,0;,yx) — this is the
model with maximum number of free parameters, where changing a condition can completely
change both the interactions J and magnetic fields h. The middle ground is the model
that assumes that the interaction map of J is independent of the condition, and all inter-
condition variation is subsumed into hl(-k)ykai terms that set the strength of influence of
external chemical k on the protein activation level ;. When the chemical k is present, y; is
always 1, and the condition-independent Hamiltonian Hy magnetic fields are transformed by
h; — h; + hgk). The equivalent maximum entropy problem constrains marginals of the form
p(oi,0;) and p(o;, yx).2* The assumptions of this model are consistent to what is thought to
occur biologically, that is, that the intervening chemicals change the activation state of the
signaling proteins, but do not affect the nature of biochemical interactions between them.

Figure 2.16a shows the results for the model H; of Table 2.1 in which external variables
couple to magnetic fields. Data has been quantized into binary levels to maximize the multi-
information and all 9 conditions have been used. Because we chose a discrete representation
in which certain activation states correlate strongly with external conditions, only a small
number (~ 10) of patterns have considerable weight in each condition, and we can plot
their measured against the predicted frequency for each condition separately [Fig 2.17].
Despite only having 600 samples for each plot, the agreement is reasonable with average
Jensen-Shannon divergence of 0.036 (not corrected for sample size). The interaction matrix
is still relatively sparse and captures more of the expected interactions, especially between
JNK, p38 and other proteins. There are missing links between PKA, PKC and RAF and
MEK. Histograms of MEK [Fig 2.7] and to some extent PKA exhibit three activation levels
that cannot be reflected in the binary quantization, and we would hope to recover the
interactions using a finer quantization.
Condition-dependent magnetic fields hl(k) are, for each intervention condition except C'4,
in agreement with expectations — the field that couples to the perturbed chemical has the
largest value and the correct sign (first 4 interventions are inhibitions while the other 3
are activations). However, each intervention also perturbs to some extent other activation
levels and, moreover, a model in which each yi couples only to the o; that it is supposed
to influence, produces much higher divergence values (data not shown). Note that the

intervention in condition 4 specifically seems to affect activation levels other than that of
PKC.

23Which it does. The Ising model description of the activation levels pooled over conditions is good;
however the conditional distributions, p(&|C'), are very different from condition to condition, with (Djs)c =~
0.35, and one cannot expect that one distribution is a good model for all C.

24Note that in constraining two-point marginals p(03,yr) we implicitly constrain one-point marginals p(o;),
yielding h;, corresponding to the magnetic fields in Ho, and p(yx), yielding magnetic fields for y variables.
Values of h; are reflective of the quantization (e.g. in case of equi-populated bins h;=0, as there is no
inherent ’bias’ for o; being in a —1 or +1 state). Values of magnetic fields for yi variables recount the
priors p(C) over conditions, and as such only carry information about the experimental setup and not the
biological system itself.
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Figure 2.16: Exchange interactions (left) and condition dependent magnetic fields (right) using
the Hamiltonian H; from Table 2.1. The interaction map is fixed from condition to condition,
but the magnetic fields change; the inferred condition-dependent magnetic fields mostly match the
expectation that the biggest value in condition C couples to the protein that has been influenced
by the chemical intervention in condition C' (interventions are protein 7 in condition 3 and 7, 9
in condition 4 and 8, 4 in condition 5, 2 in condition 6 and 8 in condition 9) [Fig 2.6, Methods
A.1.1]. Comparison between known map of protein-protein interactions and interaction map J;;
thresholded at 0.25 to define links (bottom): brown solid line — known map and reconstructed
interactions overlap; brown dashed line — link is predicted by the maximum entropy model; black
line — link is not predicted by the maximum entropy model.
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Figure 2.17: Observed and expected frequencies of activity states of 11 proteins over 9 conditions
(top-to-bottom, left-to-right). With 11 proteins, there are 2!! = 2048 possible activation states of
the network. Because the whole dataset is quantized into binary symbols at the same time using
max-multi-info scheme, each condition is dominated by a small number of frequent binary patterns
(while most of the others have zero or near zero frequency), allowing us to get estimates for their
frequencies from only 600 data points per condition. Observed frequency on horizontal, and Ising
prediction using H; from Table 2.1 on vertical axis; equality with counting error shown in blue.
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2.5.4 Discussion

Several lessons can be learned from our first application of the maximum entropy to the real
biological dataset. On the technical side, we were lucky to have dealt with less than 20 binary
variables and thus had exact algorithms for finding the interactions. On the other hand,
the sample size was severely limiting. There were two clear ways of improving the fidelity of
our models (either by increasing the number of discretization levels ) [Methods A.1.3] or by
increasing the order of correlations captured) but we could not take either while remaining
convinced that small-sample systematics would not be corrupting the results. Only @ = 2
models are therefore presented here.

On the modeling side, we devised a method for quantizing the data that retains as much
information in the distribution as possible, a huge improvement over naive quantization
schemes with equi-populated bins [Fig 2.9a]. We saw that having a limited dynamic range
in terms of discrete levels can induce unwanted effects by missing finer structure in the data
[Fig 2.9b]. Nonetheless, we could verify that our results do not qualitatively depend on the
quantization by choosing random quantization schemes and performing a reconstruction
on each [Fig A.la]. Finally, we showed how to make the model parameters dependent on
external conditions in a controllable way.

The data are examined in two ways. In the analysis of a single condition, one observes
the fluctuations around the steady state and tries to infer the network structure from cor-
related fluctuations, independently from condition to condition. We learned that pairwise
models here capture most of the information, and where they fail, they fail so as to suggest
how the model has to be modified to correct for the failure, in particular with the addition
of a three-point interaction in Fig 2.14. Because of small data size it was impossible to
directly sample the distribution, but there are projections from the pattern space into a
space of lower dimensions, e.g. energy in Fig 2.15, that we can use to compare data with
predictions reasonably well. The interaction maps across 9 conditions look very similar:
they are sparse and there exists a “skeleton” structure of common interactions across con-
ditions which nicely corresponds to what is known from previous work (more precisely, the
single-condition interaction maps of conditions 1 and 2 are a subset of microscopic inter-
actions in Fig 2.6). We understand that if an interaction is seen in one condition, it could
disappear in the other (e.g. when that activation level is at saturation in one of the two con-
ditions); having the interaction change the sign (for example in Fig 2.11, conditions 1 and
2, proteins 10 and 11) is harder to understand and could point to a general difficulty with
network reconstruction, namely the presence of hidden nodes. The interaction that changes
sign could be “renormalized” between the two conditions by being coupled to a node that
we do not observe and that has a different value in both conditions. Such a possibility
nicely illustrates the point that our interactions are effective and phenomenological and not
necessarily aligned with the microscopic reactions of phosphorylation and dephosphoryla-
tion. There might be cross-talk between the nodes, or common intermediary chemicals in
the pathway (see Fig 2.6 pathways above p38 and JNK, for instance), or hidden nodes;
or perhaps one chemical has many different phosphorylation states. In all these cases we
can expect the reconstructed exchange interactions to deviate from the microscopic picture
while still being a good model for the data, and therefore comparison with the known and
verified arrows in the interaction diagram of Fig 2.6 cannot be the gold standard of validity.
The agreement is nevertheless good, presumably because the network ¢s sparse and seems
mostly non-frustrated.

Various conditions induce very different activation patterns and the chemical interven-



2.5 Example I: Biochemical network 34

tions are mot small perturbations. The separation between the mean values of activation
levels can be similar or even larger than their spread around the mean [Fig 2.7]; although
we miss some of the structure by quantizing in only () = 2 levels, this is the best that we
can do. Then, according to the prescription of Table 2.1, we can build a maximum entropy
model that incorporates the external, perturbing, chemicals on the same footing as the
internal chemicals, and assume that the presence of an inhibitory or excitatory drug will
change the activation level of its target protein, but will leave the interaction structure in-
tact. Under such assumptions the maximum entropy yields one interaction map in addition
to condition-dependent magnetic fields [Fig 2.16a] and the model accounts reasonably well
for the data [Fig 2.17] (see divergence values at various conditions). Because the chemical
perturbations are very strong and the dynamic range of quantization limited, there is only
a small number of distinct patterns with nonzero probability in the data. The interaction
map has more structure now, which is close but not the same as the “conventional wisdom”
for the interactions in the MAP system. As a task for the future, it would be interesting
to see how the network reconstruction performs on a simulated system, where one assumes
the reaction equations and a noise model for a certain number of microscopic processes and
reconstructs back the interaction maps from the simulated data.

Our second example will deal with the structure of responses of the retinal ganglion
cells when they are shown a naturalistic movie clip. The problem of data quantization will
fortunately be absent, because there will exist a natural quantization into 2 bins (whether
the neuron spikes or does not), and we will have two orders of magnitude more data to
analyze. We will nevertheless face the technical challenges related to computing maximum
entropy solutions on more than 20 nodes, and conceptual difficulties because we will have
good reasons to believe that the set of observed nodes is much smaller than the set of truly
interacting nodes.
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2.6 Ising models for networks of real neurons?

Physicists have long explored analogies between the statistical mechanics of Ising models
and the functional dynamics of neural networks (Hopfield, 1982; Amit, 1999). Recently it

has been suggested that this analogy can be turned into a precise mapping (Schneidman
et al., 2006): In small windows of time, a single neuron i either does (o; = +1) or does not

(01 = —1) generate an action potential or “spike” (Rieke et al., 1997); if we measure the
mean probability of spiking for each cell ({oj)) and the correlations between pairs of cells
(Cyj = (oioj) — (0i)(0j)), then the maximum entropy model consistent with these data is

exactly the Ising model

N N

1 1

P({Ul}) = Eexp E hio; + 5 E JijUin , (2.32)
i=1 i£]

where the magnetic fields {h;} and the exchange couplings {J;;} have to be set to repro-
duce the measured values of {(oi)} and {Cjj}. We recall that maximum entropy models
are the least structured models consistent with known expectation values (Jaynes, 1957;
Schneidman et al., 2003); thus the Ising model is the minimal model forced upon us by
measurements of mean spike probabilities and pairwise correlations.

The surprising result of Schneidman et al. (2006) is that the Ising model provides a
very accurate description of the combinatorial patterns of spiking and silence in retinal
ganglion cells as they respond to natural movies, despite the fact that the model explicitly
discards all higher order interactions among multiple cells. This detailed comparison of
theory and experiment was done for groups of N ~ 10 neurons, which are small enough
that the full distribution P({c;}) can be sampled experimentally. Here we extend these
results to N = 40, and then argue that the observed network is typical of an ensemble out
of which we can construct larger networks. Remarkably, these larger networks seem to be
poised very close to a critical point, and exhibit other collective behaviors which should
become visible in the next generation of experiments.

To be concrete, we consider the salamander retina responding to naturalistic movie
clips, as in the experiments of Schneidman et al. (2006); Puchalla et al. (2005). Under
these conditions, pairs of cells within ~ 200 ym of each other have correlations drawn from
a homogeneous distribution; the correlations decline at larger distance.?6 This correlated
patch contains N ~ 200 neurons, of which we record from N = 40;%7 experiments typically
run for ~ 1hr.2®

The central problem is to find the magnetic fields and exchange interactions that re-
produce the observed pairwise correlations. It is convenient to think of this problem more
generally: We have a set of operators OA“({Ji}) on the state of the system, and we consider

25This section appeared on the arXiv as Tkacik et al. (2006).

26The correlations between pairs are drawn from a single distribution that depends neither on the location
nor on the separation between the neurons, as long as they are within ~ 200 yum. These are approximate
statements; for details see Puchalla et al. (2005).

27 Alternative recording methods can capture more cells at low density (Mathieson et al., 2004), or fewer
cells at higher density (Segev et al., 2004).

#Some experimental details (Schneidman et al., 2006): The visual stimulus consists of a 26.2s movie
that was projected onto the retina 145 times in succession; using A7 = 20 ms quantization this yields 1310
samples per movie repeat, for a total of 189950 samples. The effective number of independent samples
is smaller because of correlations across time; using bootstrap error analysis we estimate Ngamp ~ 7- 10*
[Methods A.2.1].



2.6 Example II: Network of retinal ganglion cells 36

a class of models

K
P({Ui}lg)=Z(1g) exp [ > 9.0,({oi}) | ; (2.33)

our problem is to find the coupling constants g that generate the correct expectation values,
which is equivalent to solving the equations 0In Z(g)/dg, = <Ou({ai})>expt~ Up to N ~ 20
cells we can solve exactly, but this approach does not scale to N = 40 and beyond. For
larger systems, this “inverse Ising problem” or Boltzmann machine learning, as it is known
in computer science (Hinton and Sejnowski, 1986), is a hard computational problem rarely
encountered in physics, where we usually compute properties of the system given a known
model of the interactions.

Given a set of coupling constants g, we can estimate the expectation values <Ou>g by
Monte Carlo simulation. Increasing the coupling g,, will increase the expectation value (O#>,
so a plausible algorithm for learning g is to increase each g, in proportion to the deviation

A~

of (O,) (as estimated by Monte Carlo) from its target value (as estimated from experiment).
This is not a true gradient ascent, since changing g, has an impact on operators <OV¢”),
but such an iteration scheme does have the correct fixed points; heuristic improvements
include a slowing of the learning rate with time and the addition of some ‘inertia’, so that

we update g, according to

Agu(t+1) = —n(t) [(Ou>g(t) - <OA,u>expti| + algu(t), (2.34)

where 7)(t) is the time—dependent learning rate and a measures the strength of the inertial
term.??

Figure 2.18 shows the success of the learning algorithm by comparing the measured pair-
wise correlations to those computed from the inferred Ising model for 40 neurons [Methods
A.2.2]. To verify that the pairwise Hamiltonian captures essential features of the data, we
predict and then check statistics that are sensitive to higher order structure: the proba-
bility P(K) of patterns with K simultaneous spikes, connected triplet correlations and the
distribution of energies [Methods A.2.3]. The model overestimates the significant 3—point
correlations by about 7% and generates small deviations in P(K); most notably it under-
estimates the no-spike pattern, Pexpi(K = 0) = 0.550 vs. Piging(K = 0) = 0.502. These
deviations are small, however, and it seems fair to conclude that the pairwise Ising model
captures the structure of the N = 40 neuron system very well. Smaller groups of neurons
for which exact pairwise models are computable also show excellent agreement with the
data®® (Schneidman et al., 2006).

It is surprising that pairwise models work well both on N = 40 neurons and on
smaller subsets of these: not observing o, will induce a triplet interaction among neu-
rons {04, 03,0} for any triplet in which there were pairwise couplings between o, and all
triplet members. Moreover, comparison of the parameters in g(40) with their corresponding
averages from different subnets g(29 leaves the exchange interactions almost unchanged,

29The learning rate 7(t) was decreased as O(1/t) or slower according to a custom schedule; o = 0.9 for
a network of N = 120 neurons and 0 otherwise. An initial approximate solution for g was obtained by
contrastive divergence (CD) Monte Carlo (Hinton, 2002) for 40 neurons for which we have the complete set
of patterns needed by CD. The Hamiltonian was rewritten such that Ji; was constraining (oi — (0i)expt ) (05 —
(0j)expt ), and we found that this removed biases in the reconstructed covariances.

39Exact pairwise models at N = 20 exhibit similar but smaller systematic deviations from the data,
suggesting that the deviations are not due to convergence problems [Methods A.2.4].
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Figure 2.18: (a) Precision of the Ising model learned via Eq (2.34): measured covariance elements
are binned on the x-axis and plotted against the corresponding reconstructed covariances on y-
axis; vertical error bars denote the deviation within the bin and horizontal error bars denote the
bootstrap errors on covariance estimates [Methods A.2.1]. (b) Zoom-in for small Cj;, with scale bar
representing the distribution of covariances from shuffled data. Not shown are the reconstructions of
the means, (o;), which are accurate to better than 1%. (c) Distribution of coupling constants J;;. (d)
Measured vs predicted connected three—point correlations for 40 neurons (red) and exact solution
for a 20 neuron subset (black). (e) Probability of observing K simultaneous spikes, compared to the
failure of the independent model (black line). Dashed lines show error estimates.

while magnetic fields change substantially [Methods A.2.5]. To explain both phenomena,
we examine the flow of the couplings under decimation. Specifically, we include three-body
interactions, isolate terms related to spin oy, sum over oy, expand in Jiy, Jijn up to 0(04),
and then identify renormalized couplings [Methods A.2.6]:

Jij — Jiy+ G+ 0(7,9), (2.36)
Jix —  Jig + O(v,0) (2.37)

where Ji, = Jin — Zj Jijn, ﬁij = Jinz]jn(l —wQ) —I—UJJijn and w = tanh(hn — Zi Jin—l-% Zij Jijn)-
The terms 7, § o (1 — w?) originate from terms with 3 and 4 factors of o, respectively. The
key point is that neurons spike very infrequently (on average in ~ 2.4% of the bins) and so
(07) &~ —1, in which case w is approximately the hyperbolic tangent of the mean field at site
n and is close to —1. If pairwise Ising is a good model at size N, and couplings are small
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enough to permit expansion, then at size (N — 1) the corrections to pairwise terms, as well
as Jijk, are suppressed by 1 — w?. This could explain the dominance of pairwise interactions:
it is not that higher order terms are intrinsically small, but the fact that spiking is rare
means that they do not have much chance to contribute. Thus, the pairwise approximation
is more like a Mayer cluster or virial expansion than like simple perturbation theory.

We test these ideas by selecting 100 random subgroups of 10 neurons out of 20; for
each, we compute the exact Ising model from the data, as well as applying Eqs (2.35—
2.37) 10 times in succession to decimate the network from 20 cells down to the chosen
10. The resulting three-body interactions .Jjx have a mean and standard deviation ten
times smaller than the pairwise Jj;. If we ignore these terms, the average Jensen—Shannon
divergence (Lin, 1991) between this probability distribution and the best pairwise model
for the N = 10 subgroups is D jg = 9.3 + 5.4 x 10~ bits, which is smaller than the average
divergence between either model and the experimental data and means that > 10® samples
would be required to distinguish reliably between the two models. Thus, sparsity of spikes
keeps the complexity in check.

Given a model with couplings g, we can explore the statistical mechanics of models with
g — g/T. In particular, this exercise might reveal if the actual operating point (7' = 1) is
in any way privileged. Tracking the specific heat vs T also gives us a way of estimating the
entropy at T' = 1, which measures the capacity of the neurons to convey information about
the visual world; we recall that S(T' = 1) = fol C(T)/T dT, and the heat capacity can be
estimated by Monte Carlo from the variance of the energy, C(T) = ((§E)?)/T? [Methods
A.2.7].
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Figure 2.19 shows the dependence of heat capacity on temperature at various system
sizes. We note that the peak of the heat capacity moves towards the operating point with
increasing size. The behavior of the heat capacity C(T') is diagnostic for the underlying
density of states, and offers us the chance to ask if the networks we observe in the retina
are typical of some statistical ensemble. One could generate such an ensemble by randomly
choosing the matrix elements J;; from the distribution that characterizes the real system,
but models generated in this way have wildly different values of (oj). An alternative is to
consider that these expectation values, as well as the pairwise correlations Cj;, are drawn
independently out of a distribution, and then we construct Ising model consistent with
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these randomly assigned expectation values. Figure 2.19 shows C(T') for networks of 20
neurons constructed in this way,?! and we see that, within error bars, the behavior of these
randomly chosen systems resembles that of real 20 neuron groups in the retina.

Armed with the results at N = 20, we generated several synthetic networks of 120
neurons by randomly choosing once more out of the distribution of (o) and Cj; observed
experimentally 32. The heat capacity C120(T") now has a dramatic peak at T* = 1.0740.02,
very close to the operating point at T' = 1. If we integrate to find the entropy, we find that
the independent entropy of the individual spins, Sy(120) = 17.8 £0.2 bits, has been reduced
to S(120) = 10.7 £ 0.2bits. Even at N = 120 the entropy deficit or multi-information
I(N) = So(N) — S(N) continues to grow in proportion to the number of pairs (~ N?) [Fig
A.7], continuing the pattern found in smaller networks (Schneidman et al., 2006). Looking
in detail at the model, the distribution of .J;; is approximately Gaussian J = —0.016+0.004
and o7 = 0.61 &+ 0.04; 53% of triangles are frustrated (46% at N = 40), indicating the
possibility of many stable states, as in spin glasses (Mezard et al., 1987). We examine these
next.

At N = 40 we find 4 local energy minima (Ga,---,Gs) in the observed sample that
are stable against single spin flips, in addition to the silent state G; (o3 = —1 for all i)
[Methods A.2.8]. Using zero—temperature Monte Carlo, each configuration observed in the
experimental data is assigned to its corresponding stable state. Although this assignment
makes no reference to the visual stimulus, the collective states G, are reproducible across
multiple presentations of the same movie [Fig 2.20a], even when the microscopic state {o;}
varies substantially [Fig 2.20b].

At N = 120, we find a much richer structure:®® the Gibbs state now is a superposition
of thousands of G,, with a nearly Zipf-like distribution [Fig 2.20c|. The entropy of this
distribution is 3.4+0.3 bits, about a third of the total entropy. Thus, a substantial fraction of
the network’s capacity to convey visual information would be carried by the collective state,
that is by the identity of the basin of attraction, rather than by the detailed microscopic
states [Methods A.2.9].

To summarize, the Ising model with pairwise interactions continues to provide an accu-
rate description of neural activity in the retina up to N = 40. Although correlations among
pairs of cells are weak, the behavior of these large groups of cells is strongly collective
[Methods A.2.10], and this is even clearer in larger networks that were constructed to be
typical of the ensemble out of which the observed network has been drawn. In particular,
these networks seem to be operating close to a critical point. Such tuning might serve to
maximize the system’s susceptibility to sensory inputs, as suggested in other systems (Duke
and Bray, 1999; Eguiluz et al., 2000; Camalet et al., 2000); by definition operating at a
peak of the specific heat maximizes the dynamic range of log probabilities for the differ-
ent microscopic states, allowing the system to represent sensory events that occur with a
wide range of likelihoods.?* The observed correlations are not fixed by the anatomy of the

31Not all combinations of means and correlations are possible for Ising variables. After each draw from the
distribution of (o) and Cjj, we check that all 2 x 2 marginal distributions are in [0, 1], and repeat if needed.
Once the whole synthetic covariance matrix is generated, we check (e.g. using Kolmogorov—Smirnov) that
the distribution of its elements is consistent with the measured distribution.

32Learning the couplings g was slow, but eventually converged: Cj; converged to within 10% for the largest
quartile of elements by absolute value, and within 15% for the largest half, without obvious systematic biases.

330ne run of 2-107 independent samples (7'971 ~ 5-10*flips) is collected; for each sample ZTMC is used
to determine the appropriate basin; we track 5-10% lowest energy stable states and keep detailed statistics
for 10% lowest [Methods A.2.9].

34In contrast, simple notions of efficient coding require all symbols to be used with equal probability. But
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Figure 2.20: (a) Probability that the 40 neuron system is found in a configuration within the basin
of each nontrivial ground state G,, as a function of time during the stimulus movie; P(G,|t) = 0.4
means that the retina is in that basin on 40% of the 145 repetitions of the movie. (b) All unique
patterns assigned to Gs at t = 10.88 — 10.92s. (c) Zipf plot of the rank ordered frequencies with
which the lowest lying 5-10* stable states are found in the simulated 120 neuron system.

retina or by the visual input alone, but reflect adaptation to the statistics of these inputs
(Smirnakis et al., 1997); it should be possible to test experimentally whether these adap-
tation processes preserve the tuning to a critical point as the input statistics are changed.
Finally, the transition from N = 40 to N = 120 opens up a much richer structure to the
configuration space, suggesting that the representation of the visual world by the relevant
groups of N ~ 200 cells may be completely dominated by collective states that are invisible
to experiments on smaller systems.

since states of the visual world occur with wildly varying probabilities, this (and related notions of efficiency)
require codes that are extended over time. If the brain is interested directly in how surprised it should be
by the current state of its inputs, then it might be more important to maximize the dynamic range for
instantaneously representing this (negative log) likelihood.
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2.6.1 Extension to stimulus dependent models

In the previous section we explored the distribution of spike pattern responses that the
retina emits when it is shown a naturalistic movie. Our primary goal was to characterize
the output binary “vocabulary” without any regard for the inputs, s, that this vocabulary
encodes. By studying solely the words of the output, we observed how the number of
accessible patterns, 25(N) where S (N) is the entropy of the network of N neurons, increases
with network size [Fig A.7]; we furthermore pointed out that information could possibly be
encoded in collective states corresponding to the local energy minima of the Ising model,
instead of in the precise microscopic patterns of spiking and silence. Last but not least, we
justified our analysis of the correlations in retinal output by pointing out that brain itself
does not have independent access to the stimuli: it only “sees” the spikes streaming in along
the optic nerve, and therefore all the information that it can extract about the world must
be present in p(&).

Here we try to incorporate the dependence on the input into the maximum entropy
framework by building on the ideas of conditional dependence in biochemical network and
with the aim of extracting explicit encoding conditional probability distribution, p(&|s).

A lot of work has been done in characterizing the responses of a single neuron to time-
dependent stimuli (Rieke et al., 1997; Dayan and Abbott, 2001). One usually looks for a
description of the neural processing in the form of a spatio-temporal receptive field R(r,t),
such that the probability of spiking at time ¢ is related to the stimulus s(r,¢) as follows:

p(spike|s) = < / dr / dt' R(r, ¢)s(r, t — t’)> , (2.38)

where F is some nonlinear function, for instance a sigmoid or half-wave rectification. The
receptive fields for neurons in the retina (as opposed to higher processing centers such as
V1) factorize, such that R(r,t) = R(r)R(t); the first factor is the spatial receptive field,
and the second factor the temporal receptive field.3® While this simple connection between
the stimulus and the response of a single neuron performs reasonably for a single neuron,
it has been shown in the work of Schneidman et al. (2006) and Shlens et al. (2006) and
subsequent analysis of Section 2.6, that understanding the correlation structure between
the neurons is crucial for capturing the properties of the population code. It is with this in
mind that we now proceed to create maximum entropy models of the joint distribution of
(spikes, stimulus), which simultaneously addresses both the issue of input dependence and
the neuron-to-neuron interactions.

The problem will be simplified here because the stimulus used in the experiment will be
uniform in space and the spatial receptive field will therefore be unimportant. We will try
to compute the temporal receptive fields, or spike-triggered-averages (STA), jointly with
neuron interactions. In the same way that the condition C' was represented in the case of
biochemical networks by a set of condition variables y, C = {y1, 92, ...,yx }, we will use a
set of binary variables in addition to N variables describing spiking, in order to encode the
stimulus, s. The response at time ¢ is a convolution of the kernel over the past stimulation,
as in Eq (2.38), and therefore the encoding of the stimulus that determines response at time
t must contain some of the stimulus history. We detail the procedure below.

35The temporal receptive field is, in the case of Gaussian white noise stimulus ensemble, proportional to
the so called spike-triggered average, or STA, i.e. the time course of the stimulus preceding the spike.
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Stimulus encoding

The stimulus, i.e. the instantaneous light intensity that is projected onto the retina, and
spike trains are discretized into bins of size At.

In the case of the stimulus, the average of the input light intensity is computed for the
period of At in duration and that average is discretized into Qg levels. For biochemical
networks we devised a special quantization scheme that retained dependencies between
different protein activation levels; here, in contrast, we deal with a single random time
series, and we discretize it such that the bin boundaries cut the domain into intervals
containing the same number of data points (Slonim et al., 2005a) . Thus, the real valued
raw light intensities are mapped to:

s(t) — s',s'€{0,...,Qs — 1}. (2.39)

In case of the spike train, o! is equal to 1 if there was at least one spike of neuron i in time
bin [¢,t 4+ At], and —1 otherwise.
We want a probabilistic model of population behavior,

—K+1—ag logy Qs

1 1 -
p({ai},§) = Zexp ;h90i+2izjjij0'i0'j+zi: Z ﬂz_l h?’ﬂsa’ﬂai—i--'- 7

a=—aq
(2.40)

where &' is the binary encoding of s’, and the index 3 runs over all log, Qs bits of this
encoding.?® The last term of Eq (2.40) describes the coupling of each spin o; to the past
history of the stimulus, extending back in time for K time bins, starting «g time bins in the
past relative to spike/silence in the current bin. In particular, ag could be 0, which would
couple instantaneous spiking to the stimulus at the same moment, but we can generally
leave g as a free parameter. The --- terms describe couplings among stimulus variables
and are uninteresting for this discussion.?7

Here we can observe a nice analogy with position weight matrices used to describe
the transcription-factor / DNA interaction energy (Berg and von Hippel, 1987), see also
Section 3.3. A position weight matrix (PWM) is a linear filter that takes a short piece
of DNA sequence and returns a corresponding scalar, or binding energy, that is a sum of
independent energy contributions from every letter at each position in the sequence. In the
situation we are considering here, the “sequence” is the time-ordered sequence of stimulus
code words, §%°, and one is computing the inner product between it and the stimulus-
dependent magnetic fields, hia”g , to yield a scalar quantity. The probability of spiking is
then given by the Boltzmann distribution, just as in the case of DNA binding, where either
a sharp threshold (a step function) or a smooth one (Fermi distribution) are applied to the
energy of the DNA site to determine whether the site is bound or unbound [Eq (3.18)].

Let’s suppose that we have discretized the stimulus into a sequence

{...,S_K+1,S_K+2,...,871,80,...},

where each s; can take on Qg different, discrete values. We are claiming that each neuron,
at time ¢ = 0, looks at the past history of K such samples — essentially a K-letter, log,(Qs)

36This is done just to reduce the stimulus encoding problem to the two-state Ising model.

37Since the stimulus will be a random Gaussian-intensity spatially-uniform flicker with a fixed frequency,
these terms will be all close to zero, with the possible exception of small couplings between the neighboring
time bins, as time-averaging in At windows mixes some signal from the previous bin into the next one.
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bit word — and creates a dot product between the “weight matrix” and the sequence:

—K+1 —K+1

he(8) = Y Mas, = > > h*P50, (2.41)
a=0 a=0 g

where M is a properly arranged matrix of dimension K X log (g of stimulus-dependent
magnetic fields from the Hamiltonian in Eq (2.40). Such energy matrix M must exist,
because it is simply a different way to rewrite a linear function of the stimulus from Eq
(2.40). To illustrate, consider a trivial network of a single neuron exposed to a given
stimulus. Its probability of firing will be, according to Eq (2.40):

p(o]8) = % exp (W00 + e ()0} (2.42)

In the simplest model above, the average probability of firing is a sigmoidal function
(o) = tanh(hg + heg(8)). In fact, our general N-body setup has in this case been reduced
to the known single-neuron problem of linear filter inference: the linear filter is embodied
in heg(5), and the firing rate is a simplified version of Eq (2.38). It is unclear what happens
when the network is extended to two or more neurons: how much of the spiking of these
two neurons is explained by their own sensitivity to the stimulus and how much by their
mutual coupling?

If all practical problems could be addressed, it seems that this approach could combine
both the inherent couplings between the neurons and the dependence on stimulus history
for each neuron. If inherent couplings really are a property of the network and not of
the stimulus, they should remain constant for the same set of neurons regardless of the
stimulus, or at least for different time slices of the same recording. Because it incorporates
the stimulus, this formulation naturally yields a testable prediction for spike trains of the
neural population, given the stimulus. Finally, relative sizes of the h°, J and the distribution
of the stimulus-dependent magnetic fields h{* describe the importance weight carried by
three very different functional processes (inherent spiking, coupling with other neurons,
stimulus sensitivity) that together determine the spiking probability of each neuron.

Application

The data consists of simulaneous recordings from 20 neurons, exposed to spatially homoge-
nous light-intensity flicker at 120Hz, chosen with a Gaussian prior on intensities, such that
the contrast variance is about 30 percent. I would like to acknowledge and thank Greg
Schwartz of Michael Berry’s lab at Princeton University, for sharing the data (Schwatz,
2006).

Both the neural response and the stimulus time series are discretized into At = 25ms
time bins, which span approximately 3 different and independent light intensity draws from
the stimulus time series (120 Hz corresponds to 8.3ms intervals of constant intensity). We
focus on 10 neurons only, and reserve 10 bits per time bin for description of the stimulus:
the first 2 bits represent the intensity at tg — At, the second two represent the intensity at
to — 2At, and so on, stretching 5 time bins into the past.

The resulting data is a binary matrix of 20 time series (10 spike series and 10 stimulus
series), with a total of 84236 samples. The maximum entropy pairwise ansatz produces the
distribution p({c},3). Since the stimulus is random, the pairwise model of the marginal
distribution p(8) will be unimportant, however, both the encoding distribution, p({c} |3),
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and the spike marginal, p({o}), can be extracted from the joint and they fit the data well
[Fig 2.21].

Figure 2.21: Maximum entropy mod-
els of 2!0 spike patterns for 10 neu-
rons. Predicted frequency of the 10-
neuron pattern on vertical axis, ob-
served frequency on horizontal axis.
Red — model conditioned on the stim-
ulus, black — stimulus independent
model.  Djg(red,data) = 0.0076,
D js(black, data) = 0.0078, S = 2.45,

predicted pattern frequency

So = 2.82, 5 = 2.48 (all data). T .
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There is not enough data to sample conditional responses and make frequency-frequency
conditional plots similar to Fig 2.21, but some projections of the distributions are made in
Fig 2.22. We can compare the conditionally dependent probability of silence of the joint
spike-stimulus maximum entropy model with the prediction of conditionally independent
neurons, i.e. the maximum entropy model assuming (c;0;) are not constrained to reproduce
measured correlations and thus J;; = 0. The latter model systematically underestimates
the probability of silence by about 17 percent on average, while the model with coupling
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overestimates it by about 11 percent — including coupling therefore helps, but there is still
room for improvement. In general we observe an agreement between the maximum entropy
prediction and experiment despite significant scatter, which partly must also be due to our
crude representation of the stimulus.

How well does the model describe the responses of single neurons? We can compute the
predicted spike triggered average (w;) for each neuron i:

wi = Y p(§loi =1)3, (2.43)
g

p(8loi) = ploi,5)/p(oi), (2.44)
p(oi,5) = > p({o},3). (2.45)
05,J7F4

The figures that compare the spike triggered averages constructed from the Ising model
and the spike triggered averages computed with the traditional reverse-correlation methods
from the data for each neuron independently, are shown in Fig 2.23; given the crudeness of
stimulus representation the match is quite remarkable. A calculation similar to Eq (2.43)
allows one to condition the STA on alternative triggers (such as a pair of neurons firing at
the same time).

How should we visualize the corresponding terms in the Hamiltonian? For each neuron,
the dependence on the stimulus is reflected by the sum of the form:

Hi —_ — e — thanao.lgawg
a7ﬂ

where « is the time index that extends K bins back into the past, and, at each time instant,
there is logy(Qg) bits, indexed by (3, available for description of the light intensity s(¢). In
the case at hand we have 2 bits per timebin, so that we can encode 4 grayscale levels.3

The energy matrix form of the stimulus coupling in the Hamiltonian would allow the
neuron, for each time bin, to be funnily sensitive to the intensity: a hypothetical neuron
might “prefer” light level 3 and “dislike” levels 1, 2 and 4. Although this is not forbidden by
our model, we know that the temporal kernel is linear at each point in time and is essentially
the scalar multiplier for the stimulus intensity at each time bin. A relevant question is then
to assess if our energy matrix is also linear and not “combinatorial” at each bin. If this is
so, then one coefficient (the linear slope) is sufficient to describe the response in that bin.
Figure 2.24 shows that this seems to be a good approximation.

If such an approximation can be made and the energy contribution conditioned on the
stimulus intensity in a given time bin is proportional to the intensity, there exists a spike-
triggered-average equivalent plot in energy space, which is displayed in Fig 2.25.

By inspecting the magnitudes of various terms in the Hamiltonian we see that inherent
magnetic field and the stimulus dependent magnetic field range over the same order of
magnitude (1 in natural units), while the couplings are a bit smaller (but since the neurons
are mostly silent, the effective contribution from the other neurons is close to hgouphng ~
-> j Jij, which is also order 1); this confirms our intuition that it is a bad approximation to
leave out the neuron-to-neuron couplings when considering the population code, even if the

3%In terms of raw data all intensities below intensity 155 (mean 141) in arbitrary units are assigned level
1 = (0,0), everything between 155 and 175 (mean 166) is assigned level 2 = (0, 1), between 175 and 186
(mean 180) is level 3 = (1,0) and everything above 186 (mean 212) is level 4 = (1,1). These divisions
capture quartiles of data and have been used to map the discrete values back into the raw intensity space.
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Figure 2.23: Spike triggered averages for 10 neurons. Time is depicted on horizontal axis for a
spike occurring at ¢ = 0, and each unit corresponds to At = 25ms. Vertical axis contains arbitrary
intensity units. Black line shows single-neuron reverse correlation calculations of STA from white
noise stimuli. Red line shows Ising model predictions for STA w [Eq (2.43)], based on marginalizing
the Ising model distribution of spiking and stimulus for 10 neurons, p(&, §), over all but one neuron.
The first timebin preceding the spike is always equal to the stimulus average, since we are computing
a model that is coupled only to stimulus preceding spikes by more than 1 bin.
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Figure 2.24: Linearity in the neuron-stimulus coupling, for 10 neurons, listed top-to-bottom, left-to-
right. For each neuron we plot two panels. Left panels show the linear relation between the energy
contribution (vertical axis) and the stimulus intensity (horizontal axis), for each of the K = 5 bins in
time separately (each of the 5 lines is determined by 4 points, corresponding to the discretization of
light intensity into 4 bins). Right panels show energy contributions to stimulus-dependent magnetic
fields, Ms, plotted in the matrix form. Five bins in time («) are on the horizontal axis, with the
left-hand bin being closest to the spike, and the intensity increases downwards (4 levels for s). The
statement that neuron is linear in each time bin corresponds to the observation that in the energy
matrix the colors change in each column from red-to-green or from green-to-red along the vertical
direction, linearly and without alternating.
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Figure 2.25: For each of the 10 neurons and assuming that the energy contribution in each time

bin is linearly proportional to light intensity, this figure shows the energy STA-equivalent.

For

each stimulus I(¢) (raw intensity units), the energy contribution for neuron ¢ will be given by
hi =, 1(t)xi(t), where x;(t) are, for each ¢ and each neuron i, the slopes of the response functions
of Fig 2.24. x;(t) are only relevant up to an additive constant and are plotted as functions of time
in red; qualitatively, their shape is similar to STA. In other words, x are the kernels with which
one convolves the stimulus, I(t), to get the time-dependent energy contribution. The histograms
show the exact (calculated from the weight matrices and stimuli) distributions of stimulus-dependent
magnetic fields that each neuron experiences.
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Spike entropy 2.45 bits
Stimulus entropy ~ 10 bits
Spike multi-information 0.37 bits
Fraction of I captured by Ising model, I, on spike trains 0.92
Channel capacity with p(&|s) and the optimal choice of p(5) | 0.80 bits

Table 2.2: Information-theoretic quantities for a system of 10 neurons collectively driven by a spa-
tially homogenous flicker. Spike entropy is estimated from the data; stimulus is random and is
therefore uniform in its encoding variables.

stimulus dependence is separately accounted for in the Hamiltonian.?? To make precise the
statements about the relative influences of the stimulus energy contributions and inherent
inter-neuron couplings, we would need to tighten the approximations we made in the way we
encoded the stimulus; one possibility that is currently being explored is to present the retina
with repeats of the same movie segment, and use time index within the movie segment as
the proxy for the stimulus. In this case the magnetic fields acting on the neurons literary
are directly time dependent, and can capture the behavior of the neurons without assuming
which features specifically they are sensitive to (and how far back in past one needs to
look).40

Although the maximum entropy model is formulated for the joint (spikes, stimulus) dis-
tribution, the random stimulus prior, p(5) = > p({c},5), does not tell us anything new;
therefore it is meaningful to extract the encoder distribution p({c} |5) only. We can make
limited progress if we look for such distribution on stimulus space, p(3), that will maximize
the channel capacity of the encoder system, bearing in mind that the encoder distribu-
tion was deduced in an experiment where the retina was adapted to a uniform, full-field
flicker stimulus and not its natural ensemble. In this specific case, we use Blahut-Arimoto
algorithm (Blahut, 1972) to compute the optimal distribution of 1024 possible stimulus
patterns; the results are shown in Table 2.2. The most frequently used stimulus patterns
in an optimal code are shown in Fig 2.27, and the maximum information transmission that
can be sustained by a system of N neurons is plotted in Fig 2.26. From Table 2.2 we see
that the maximum information transmission would be about a third of the output entropy,
a relatively low coding efficiency. Furthermore, if the stimulus distribution is not optimal
but uniform — close to what is actually being shown in the experiment — the information
transmission is only about a third of the capacity, or about 9 bits per second for 10 neu-
rons. It would be extremely interesting to know if, by increasing the number of neurons NV,
one can increase the fraction of the entropy that is used to convey information due to the
hypothesized error correcting nature of the code discussed in the preceding section; or to
see how the encoding kernel adaptation affects the capacity of the population code.

39 Alternatively this means that the correlation effects are not driven purely by the exposure to a common
stimulus.

40 At this time we are just becoming able to carry out the computations required to construct models with
time-dependent fields.
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Figure 2.26: Optimal channel capac-
ity between the simultaneous spiking
of 10 neurons and the stimulus, as a
function of the number of neurons in
the network. For each possible sub-
group of n neurons out of 10, we find
the pairwise Ising model, calculate the
encoding distribution p(&|5), and then
compute the optimal input alphabet
p(8) and the corresponding channel
capacity. Error bars are plotted by
exhaustively choosing every possible
group of n neurons out of 10, and com-
puting the deviation of the channel ca-
pacities.
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Figure 2.27: First panel: the rank ordered optimal probability distribution of 1024 stimuli that
maximize channel capacity of the system of 10 neurons. The first 10 codewords account for 0.96,
and the first 20 for 0.99 of the total weight. Remaining panels: codewords most frequently used in
capacity achieving distribution, sorted by their probability. Horizontal axis is time in At = 25 ms
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2.7 Summary

In this chapter we attempted to build a picture of the collective behavior of IV interacting
elements, starting from a number of joint experimental measurements of their activities. We
showed how to systematically create probability distributions that describe patterns of ac-
tivities of the nodes when the network is in stationary state, and have further demonstrated
how these maximum entropy distributions can be interpreted graphically as networks of
interactions. The maximum entropy models constrained by pairwise marginals were later
extended to include the dependence of activities on a (parametrized) set of external condi-
tions (intervening chemicals or light intensity). Two very different systems were examined
with this maximum entropy toolkit. In each, we were faced with a fresh set of problems,
but in the end finished by observing two diametrically opposite network structures.

A signaling network of interacting proteins was small, with experimentally observed
activities of 11 nodes. We were severely undersampled and therefore had to devise ways of
encoding the experimental data as efficiently as possible before computing the corresponding
Ising model, in itself an easy task for the case at hand. We found sparse, mostly unfrustrated
and mutually similar interaction maps across all external conditions,*! and argued that
pairwise models either work well or fail cleanly in a localized way that indicates where
the model must be supplemented with a higher-order interaction. Interestingly, interaction
maps created from correlated fluctuations in a single experiment turned out to be quite
similar to the interaction map describing the correlations between the activity changes
under conditions of chemical intervention.*> We were careful not to interpret the inferred
interactions as microscopic chemical reactions between signaling proteins, because we have
incomplete access to all nodes and internal states in the network, and so our reconstructed
interactions reflect “averaging over” the states of the invisible parts of the network; this
should also be a caveat when strong interventions are used to experimentally confirm or
disprove microscopic interactions in vivo.*? It actually seems that, for our analysis at least,
using small perturbations would be much more revealing as it would only slightly change
the activity patterns and — given the restriction on the dynamic range we face because of
the quantization and sampling issues — would allow us to observe simultaneously the change
in local fluctuations as well as the shift in the mean activation due to the interventions. In
addition, if the interventions were small, we could expect their effects to add and one could
test this additivity assumption by verifying that the effects of two simultaneously intervening
chemicals are captured by adding the corresponding stimulus dependent magnetic fields.

A completely different set of issues arose when we analyzed the network of neurons. We
could use ~ 2-10° samples of naturally discretized data, and previous work has confirmed
that the pairwise maximum entropy models work remarkably well on groups of up to 15
neurons. When we attempted to push the size of the analyzed network to the whole dataset
of 40 and beyond, we were faced with technical problems of computing the maximum
entropy distributions and estimating the information theoretic quantities, and finally had

41 This is also probably the reason why a Bayesian network reconstruction assumptions are valid for this
dataset.

42A guess for why this is so might be that the energy landscape of the system is simple and although
the intervention chemicals shift the mean activity values, the “forces” that determine the dynamics around
the stable state look the same no matter which state one is in; this could also explain why the joint
activity /condition distribution, where conditions only couple to magnetic fields, is a good model for the
data.

43The popular approach of using strong interventions probably works here also because the underlying
network is sparse.
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to resort to large Monte Carlo simulations. Nevertheless, we were able to reconstruct the
interaction map for 40 neurons. In contrast to the signaling network, the neurons are densely
connected, which gives rise to weak pairwise correlations, but ever stronger collective effects
as the network grows larger. The pairwise model is very good but not perfect; however, the
failure seems to be distributed throughout the network,** contrary to the signaling protein
example, where a single higher-order interaction was required or a better fit. By constructing
a simulated network of 120 neurons, which we believe would behave thermodynamically in
a similar way to the smaller measured networks, we pushed the system into a regime where
correlations start to dominate, Cj; ~ 1/N 4 and the entropy of the system significally
decreases from its independent value. The system could use the correlation structure in the
spike trains to perform error correction, if, as we suggest, the information is encoded in the
identities of local energy attractors and not in the exact microscopic patterns of spiking.
Such encoding would be rich, with a language-like distribution of “word” frequencies that
span a wide range of probabilities, perhaps to allow for the encoding of very rare and very
frequent stimuli; we suggest that the system could actively tune itself to this wide dynamic
range. In this system, similarly to the biochemical network, we cannot observe all nodes;
moreover, here the retina is indeed driven by the movie and the interactions represent the
effect of both the underlying connectivity and excitation by the stimulus. We concluded
the neural case by trying to account explicitly for the stimulus dependence in case where
the stimulus can be easily encoded, with some success. In particular, it seems as if it were
possible to study, for example, two neurons by simultaneously determining their receptive
fields and their pairwise coupling. Despite being currently just a working idea for future
explorations, the possibility is intriguing as it simultaneously incorporates both stimulus
and non-trivial population coding, and consequently enables us to compute all the relevant
information theoretic quantities for the neuronal population.

“For example, most of the three-point predicted interactions deviate systematically, although by a small
amount, from their measured values.

45For a simple system in which all spins couple with the same exchange interaction and are exposed to
the same external field, it is easy to show that susceptibility (per spin) is x1 = 1 — (o) + (N — 1)C, where
C is the connected pairwise correlation and N the number of neurons; in thermodynamic limit x; should
be intensive, and therefore the contribution of the last term would have to be negligible. In the scaling
examined here (which is not the TD limit), C is held fixed as N is increased, and we watch out for new
collective behavior as C' ~ 1/N.



Chapter 3

Genetic regulatory networks

The second half of this thesis represents an attempt to derive and predict some of the
properties of (genetic regulatory) networks with a top-down approach, starting with a theo-
retical principle and working out its observable consequences. Accordingly, the principle of
maximization of information capacity will be examined in Chapter 4. To proceed, however,
one must first understand the noise in the biological system of interest, and we take up this
task here, in Chapter 3. By its end we should be able to define (and parametrize) a class
of biologically relevant models for noise in transcriptional requlation, which will be used
subsequently for computation of channel capacities.

In this chapter we focus specifically on genetic networks, mainly because of the amount
of research that has already been invested into characterizing their signal transmission
properties. As we will demonstrate shortly using the data from fruit fly development, there
are precision methods available today that reveal the detailed properties of the noise in gene
regulation and, despite extensive existing literature on the topic, can yield surprisingly new
results.

3.1 Signal transduction in gene regulation

The central dogma of molecular biology puts into words the conceptual scheme by which
the hereditary information is stored, read out and expressed into protein on a cellular
level (Alberts et al., 2002). DNA, the information carrying molecule whose integrity is
actively maintained by the cell, encodes this information in a linearly ordered sequence of
base pairs. There are four possible types of bases attached to the sugar-phosphate DNA
backbone, namely adenine, cytosine, thymine and guanine, and they constitute a four-
letter genetic alphabet, {A,C,T,G}. When needed, the information is transcribed by the
transcription apparatus, which is essentially a complex of proteins that can attach to DNA
at particular places, called promoter sequences. After binding, this machinery can slide
along the length of the gene coding region on the DNA and produce a messenger RNA
(mRNA) transcript, carrying an inverted copy of the DNA original.! The message only
has a limited lifetime that is oftentimes actively controlled by the cell; in eukaryotes it is
exported from the nucleus into the cytoplasm for further processing. In the translation step
that ensues, special RNA /protein complexes called ribosomes bind to the starter regions
of the message, and, for each of the 43 = 64 possible triplets of base pairs of the message

Letter A on the DNA original maps into a T equivalent of the message and vice versa; the same
complementarity holds for the C and G pair.
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(or codons) that they encounter as they “read” the message sequence, they attach one
of the 20 amino-acids to the growing protein chain undergoing assembly (or terminate the
process). After the synthesis is complete, the ribosome falls off the message and the finished
polypeptide starts to fold into its active 3D conformation that will allow it to perform its
structural or enzymatic role.

While this picture might be intuitively simple, it almost exclusively focuses on the
process of production of proteins from the DNA, rather than on regulation, i.e. the molecular
mechanisms that determine when, and how much, of each protein the cell will make. The
genes are clearly not being constantly transcribed and translated into protein.? We find
a clear demonstration of the importance of regulation when we recall that the cells of
higher organisms, despite sharing the same DNA, differentiate into morphologically and
functionally distinct types during development, and later give rise to various organs. It
is due to the cells having expressed different sets of genes in a regulated way during their
development history that this commitment to a specific cell fate occurs. Alternatively, both
complex and simpler organisms, including bacteria, respond effectively to certain signals
because they dynamically measure their environment and act by “switching” the relevant
genes on or off. The example of the yeast Emergency Stress Response module from Chapter
2 provides a striking and genome-wide illustration of such a coherent response evoked by
genetic regulation.

There are many ways in which the final amount of a certain protein might be regulated,
and Fig 3.1 shows several kinds of regulatory mechanisms available to the cell. At a very
early stage of gene expression the cell might make the relevant protein-coding segment of
the DNA physically inaccessible to the transcriptional apparatus by packing it into highly
condensed chromatin structures (in eukaryotic cells only). If unpacked, the affinity of the
apparatus for the DNA can be drastically modified by the presence or absence of transcrip-
tion factors, proteins that bind specific short sequences of DNA in order to facilitate or
prevent transcription. It is this transcriptional regulation that we think of when we dis-
cuss turning some genes “off” or “on” and it will be the focus of our further exploration.
Nevertheless, the regulation repertoire has by no means been exhausted yet. After the
message is produced, it will be processed (splicing will remove certain nonsense stretches
but sometimes also select among functional variants of the protein) and modified (chemi-
cally tagged for transport, physical localization, destruction etc). Finally, the protein itself
can be regulated, either by having its lifetime controlled (e.g. through active degradation
mechanism called wbiquitination) or by having its activity tuned through various chemical
modifications (e.g. phosphorylation by activating enzymes).

The detailed study of transcriptional regulation started with the work of Jacob and
Monod (1961), for which they were awarded the Nobel prize in 1965. The basic organization
of prokaryotic DNA gradually emerged: genes (or in general coding regions that end up
being transcribed/translated into proteins) comprise the majority of the DNA; in front of
each gene or set of coregulated genes there is a noncoding piece of the DNA that contains
operators and promoters. The promoter is the target binding site of the transcriptional
apparatus (called the RNA polymerase or RNAP in prokaryotes); operators contain target
binding sites for transcription factors (TFs). There are millions of short sequences of around
10 to 20 base-pairs to which a transcription factor could presumably bind in a bacterial
genome, yet it will most often be found on its operator, because of the extremely favorable

2This unregulated and constant gene expression, known as constitutive expression, does happen for a few
essential housekeeping genes.
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Figure 3.1: Information in the cell flows from the DNA to messenger RNA to proteins. Regulatory
processes intervene at various stages and control the final amount of the protein expressed. Tran-
scription factors bind operators on the DNA and influence the rate of transcription by recruiting
the RNA polymerase complex, usually through favorable energetic interactions; packing of the DNA
onto the histone spools can stop transcription by making genes inaccessible. Alternative mecha-
nisms involve mechanical deformation of the DNA, as in protein-induced DNA looping, or covalent
modifications of the DNA (methylation). On the messenger level, silencing and other controlled
degradation mechanisms modulate the quantity of mRNA present; expression can also be varied by
controlling the nuclear export of mRNA or by localizing the message in other ways; splicing can
produce alternative protein versions from the same gene. Finally, proteins can be degraded in a
highly controlled way, and can have their activity modified through covalent modification by other
signaling enzymes.

sequence-dependent interaction energy that this particular TF has with its operator. The
occupancy of the operator is determined by the amount of transcription factor, and it in
turn determines the occupancy of the nearby promoter region by the RNA polymerase
complex. The interaction between the RNAP and the TF is usually by means of a direct
physical interaction by touching, which can either enhance the equilibrium occupancy of the
promoter or reduce it (for example by TF physically obscuring the RNAP binding site). The
situation in eukaryotes is biologically more complicated (usually involving what resembles a
combinatorial code in the enhancer regions that are equivalent to the operators in bacteria)
but the basic ideas remain similar.

In a seminal series of papers starting in 1987, Berg and von Hippel outlined the basic
physics involved in the first step of transcriptional regulation, namely the interaction of
the TF and the DNA (Berg and von Hippel, 1987). More specifically, they have identified
three problems that need to be addressed satisfactorily by physical models of transcriptional
regulation. In current terminology, they can be briefly summarized as follows:

e The specificity problem. The question here is about how the transcrption factor
recognizes its operator site on the DNA. What is the physical mechanism by which
a TF gains the binding energy difference between the specific operator site and the
genomic background, such that the equilibrium probability of being on the operator
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is high, despite an overwhelming number of non-specific, or distractor, sites? A good
model should take into account also that the genomic background has some distribu-
tion of energies, rather than a single non-specific value. See Bintu et al. (2005) for equi-
librium statistical mechanics calculations for various regulatory scenarios, Djordjevic
et al. (2003) for the discussion of non-specific binding in the models of transcriptional
regulation and binding site discovery, and Bakk and Metzler (2004) for estimates of
the fraction of non-specifically bound CI / Cro proteins in E. coli inferred from the
data. Kinney et al. (2007) have shown how to infer models of TF-DNA interaction
from high-throughput data without making most of the usual assumptions.

e The noise problem. When the mean equilibrium occupancy of the operator is
reached, the instantaneous occupancy nevertheless fluctuates in time as the TF binds
and unbinds from the specific site. The mean occupancy is read out by the transcrip-
tional machinery and it ultimately sets the mean level of gene expression. Similarly,
the fluctuations in occupancy get transmitted to the output and are one of the con-
tributors to the noise in gene expression. It turns out that there is a tradeoff — at
least in simple models — between the specificity of the TF-DNA binding and the noise
magnitude: highly specific TFs have large binding energies and stay on the binding
sites for a long time before unbinding, thus triggering an increase in output noise,
because these slow fluctuations are not effectively averaged away by downstream pro-
tein production steps. The noise problem deals with equilibrium fluctuations in the
expression of the gene under transcriptional control, and their biological impact.

e The search problem. The search problem examines how a TF finds the binding
site embedded in the DNA background within a time window consistent with available
measurements.? If the cytoplasmic, or 3D, diffusion of TF is too slow and 1D diffusion
along the arc-length of the DNA is the main method by which TFs translocate on the
DNA, and if the binding energy landscape of the DNA is rough, then the total search
time could be completely dominated by those periods when the TF stays ineffectively
stuck on relatively strong, yet non-functional sites on the DNA (traps). To a large
extent the negative impact of traps is affected by the mode of diffusion (either 1D
along the DNA or 3D in solution) and by the energy landscape of the binding sites
on the DNA (especially by the variance in the distribution of the non-specific site
energies). The resolution of the search problem is to show that there exists an optimal
combination of 1D and 3D diffusion strategies which can explain the observed short
search times. See Halford and Marko (2004); Slutsky and Mirny (2004) for recent
theoretical discussions, or Wang et al. (2006) for measurements.

As stated, our final goal is to compute the information capacity of simple regulatory
elements, for which the characterization of noise is needed [Eq (2.5)]. We are therefore
concerned with the second problem above, that is the noise problem, and the bulk of this
chapter is devoted to the noise analysis in transcription factor binding, transcription and
translation. While we do not discuss the other two problems listed above in detail, the
mechanisms that have been put forward as their potential solutions in the literature can
influence the noise behavior as well; this chapter therefore ends with the estimates on how

3These search times can be on the order of a minutes or less; if the diffusion limited on-rate, k; = 4w Da,
is postulated, where D is the TF diffusion constant and a is the linear dimension of the target site, then
for certain transcription factors like lac such an on-rate would be too slow to account for experimental
observations.
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the noise calculations have to be modified by including the non-specific binding sites and
the 1D sliding along the DNA.
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3.2 Input and output noise in transcriptional regulation*

3.2.1 Introduction

A number of recent experiments have focused attention on noise in gene expression (Elowitz
et al., 2002; Ozbudak et al., 2002; Blake et al., 2003; Raser and O’Shea, 2004; Rosenfeld
et al., 2005; Pedraza and van Oudenaarden, 2005; Golding et al., 2005; Newman et al., 2006;
Bar-Even et al., 2006). The study of noise in biological systems more generally has a long
history, with two very different streams of thought. On the one hand, observations of noise
in behavior at the cellular or even organismal level give us a window into mechanisms at a
much more microscopic level. The classic example of using noise to draw inferences about
biological mechanism is perhaps the Luria—Delbriick experiment (Luria and Delbriick, 1943),
which demonstrated the random character of mutations, but one can also point to early
work on the nature of chemical transmission at synapses (Fatt and Katz, 1950, 1952) and
on the dynamics of ion channel proteins (Lecar and Nossal, 1971a,b; Stevens, 1972; Conti
et al., 1975). On the other hand, noise limits the reliability of biological function, and
it is important to identify these limits. Examples include tracking the reliability of visual
perception at low light levels down to the ability of the visual system to count single photons
(Hecht et al., 1942; Barlow, 1981), the implications of channel noise for the reliability of
neural coding (Verveen and Derksen, 1965, 1968; Schneidman et al., 1998), and the approach
of bacterial chemotactic performance to the limits set by the random arrival of individual
molecules at the cell surface (Berg and Purcell, 1977).

After demonstrating that one can observe noise in gene expression, most investigators
have concentrated on the mechanistic implications of this noise. Working backward from
the observation of protein concentrations, one can try to find the components of noise that
derive from the translation of messenger RNA into protein, or the components that arise
from noise in the transcription and degradation of the mRNA itself. At least in some
organisms, a single mRNA transcript can give rise to many protein molecules, and this
“burst” both amplifies the fluctuations in mRNA copy number and changes their statistics,
so that even if the number of mRNA copies obeys the Poisson distribution the number of
protein molecules will not (Paulsson, 2004). This discussion parallels the understanding that
Poisson arrival of photons at the retina generates non—Poisson statistics of action potentials
in retinal ganglion cells because each photon triggers a burst of spikes (Barlow et al., 1971).
Recent large scale surveys of noise in eukaryotic transcription have suggested that the noise
in most protein levels can be understood in terms of this picture, so that the fractional
variance in the number of proteins g; expressed from gene i is given by

(90> (o)’
where b ~ 102 is the burst size, and is approximately constant for all genes (Bar-Even et al.,
2006).

The mechanistic focus on noise in transcription vs translation perhaps misses the func-
tional role of gene expression as part of a regulatory network. Almost all genes are subject
to transcriptional regulation, and hence the expression level of a particular protein can be
viewed as the cell’s response to the concentration of the relevant transcription factors. Seen
in this way, transcription and translation are at the “output” side of the response, and the

“This section appeared on the arXiv as Tkagik et al. (2007a).
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binding of transcription factors to their targets along the genome is at the “input” side [Fig
3.2]. Noise can arise at both the input and output, and while fluctuations in transcription
factor concentration could be viewed as an extrinsic source of noise (Elowitz et al., 2002;
Swain et al., 2002), there will be fluctuations in target site occupancy even at fixed tran-
scription factor concentration (Bialek and Setayeshgar, 2005; Walczak et al., 2005; van Zon
et al., 2006). There is a physical limit to how much the impact of these input fluctuations
can be reduced, essentially because any physical device that responds to changes in con-
centration is limited by shot noise in the diffusive arrival of the relevant molecules at their
target sites (Berg and Purcell, 1977; Bialek and Setayeshgar, 2005, 2006).

In this chapter we revisit the relative contributions of input and output noise. Input noise
has a clear signature, namely that its impact on the output protein concentration peaks
at an intermediate value of the input transcription factor concentration. The analogous
signature was essential, for example, in identifying the noise from random opening and
closing of individual ion channels in neurons (Sigworth, 1977, 1980). Perhaps surprisingly,
we show that this signature is easily obscured in conventional ways of plotting the data on
noise in gene expression. Recent experiments on the regulation of Hunchback expression by
Bicoid in the early Drosophila embryo (Gregor, 2005; Gregor et al., 2006a) are consistent
with the predicted signature of input noise, and (although there are caveats) a quantitative
analysis of these data supports a dominant contribution of diffusive shot noise. We discuss
what experiments would be required to test this conclusion more generally. We begin,
however, by asking whether any simple global model such as Eq (3.1) can be consistent
with the imbedding of gene expression in a network of regulatory interactions.

3.2.2 Global consistency

Consider a gene i which is regulated by several transcription factors. In steady state, the
mean number of these proteins in the cell will be a function of the copy numbers of all the
relevant transcription factors:

(91) = filg1, 92, . 9K) (3.2)
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If the copy numbers of the transcription factors fluctuate, this noise will propagate through
the input/output relation f (Pedraza and van Oudenaarden, 2005; Hooshangi et al., 2005),
so that

K K
(667) = 32 3 52 250,800 + (597 (3.3)
p=1v=1 H v

where we include the intrinsic noise ((§¢;)?)ins that occurs at fixed transcription factor levels.

If the noise in gene expression is dominated by the processes of transcription and trans-
lation, and if the transcription factors are not regulating each other, then the correlations
between fluctuations in the copy numbers of different proteins will be very small, so we
expect that

<59u5911> = 5W<(59u)2>- (3.4)
This allows us to simplify the propagation of noise in Eq (3.3) to give

K -\ 2
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If, as in Eq (3.1), we express the noise in protein copy number as a fractional noise 7, then
this becomes

K dlog f; 2
2 _ L) 22
n = Mzz:l <810g gu> 77# + 771,1nt' (36)

In particular, this means that there is a minimum level of noise,

K 2
0log fi
2> § 2 )
e pn=1 (810g g#) n'u (3 7)

But if the fractional variance in protein copy number has a simple, global relation to the
mean copy number, as in Eq (3.1) (Bar-Even et al., 2006), then this simplifies still further:

<gbi> > i(mogﬁ)gb (3.8)

= \0loggu/) (9u)
1 > i(alogfi>2 (1) (3.9)
~ = \Ologgu) (g) '

Since the proteins labeled by the indices p represent transcription factors, usually
present at low concentrations, and the protein i is a regulated gene—such as a structural
or metabolic protein—but not a transcription factor itself, one expects that (g;)/(g,) > 1.

But then we have «

dlog fi \ 2

3 (mogf ) <1. (3.10)
y=1 Og gu

Since this inequality constrains the sum of squares of terms, each must be much smaller than
one. This means that when we make a small change the concentration of any transcription
factor, the response of the regulated gene must be much less than proportional. In this
sense, the assumption of a simple global description for the level of noise in gene expression,
Eq (3.1), leads us to the conclusion that transcriptional “regulation” can’t really be very
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effective, and this must be wrong. Notice that this problem is independent of the burst
size b, and hence doesn’t depend on whether the noise is dominated by transcription or
translation.

Our conclusion from the inequality in Eq (3.10) is that we should re—examine the orig-
inal hypothesis about noise [Eq (3.1)]. An alternative is that this hypothesis is correct,
but that there are subtle correlations among all the protein copy number fluctuations of
all the different transcription factors. If we want the global output model to be correct,
these correlations would have to take on a very special form—different transcription factors
regulating a single gene would have to be correlated in a way that matches their impact
on the expression of that gene—which seems implausible but would be very interesting if it
were true.

3.2.3 Sources of noise

Figure 3.2 makes clear that the concentration of a protein can fluctuate for many reasons.
The processes of synthesis and degradation of the protein molecules themselves are discrete
and stochastic, as are the synthesis and degradation of mRNA molecules; together these
constitute the “output noise” which has been widely discussed. But if we are considering
a gene whose transcription is regulated, we need a microscopic model for this process. For
the case of a transcriptional activator, there are binding sites for the transcription factors
upstream of the regulated gene, and when these sites are occupied transcription proceeds
at some rate, but when the site is empty transcription is inhibited. Because there are only
a small number of relevant binding sites (in the simplest case, just one), the occupancy of
these sites must fluctuate, and this random switching is an additional source of noise. In
addition, the binding of transcription factors to their target sites along the genome depends
on the concentration in the immediate neighborhood of these sites, and this fluctuates as
molecules diffuse into and out of the neighborhood.

All of the different processes described above and schematized in Fig 3.2 can be an-
alyzed analytically using Langevin methods, and the predictions of this analysis can be
tested against detailed stochastic simulations. The details of the analysis are given in the
Methods section [Methods A.3]. Notice that variations in cell size, protein sorting in cell di-
vision, fluctuations in RNA polymerase and ribosome concentrations, and all other extrinsic
contributions to the noise are neglected.

When the dust settles, the variance in protein copy number O'g
of three terms, which correspond to the output, switching, and diffusion noise. To set the
scale, we express the copy number as a fraction of its maximum possible mean value, gy,
which is reached at high concentrations of the transcriptional activator. In these units, we

find
("g)g— L+ Ry (1-9)%5  (1-9)°5
— | = g+ +
g0 g0 k_7q mDacty
where g = (g)/go is the protein copy number expressed as a fraction of its maximal value,
¢ is the concentration of the transcription factor, and other parameters are as explained in
Fig 3.2.

The first term in Eq (3.11) is the output noise and has a Poisson—like behavior, with
variance proportional to the mean, but the proportionality constant differs from 1 by Ry,
i.e. the burst size or the number of proteins produced per mRNA (Paulsson, 2004). This is
just the simple model of Eq (3.1), with b =1+ Ry..

can be written as a sum

(3.11)
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The second term in Eq (3.11) originates from binomial “switching” as the transcription
factor binding site occupation fluctuates, and is most closely analogous to the noise from
random opening and closing of ion channels. This term will be small for unbinding rates
k_ that are fast compared to the protein lifetime, but might be large for factors that take
a long time to equilibrate or that form energetically stable complexes on their promoters.

The third term in Eq (3.11) arises because the diffusive flux of transcription factor
molecules to the binding site fluctuates at low input concentration c; in effect the receptor
site “counts” the number of molecules arriving into its vicinity during a time window 7,
and this number is of the order ~ Dact,. This argument is conceptually the same as that
for the limits to chemoatractant detection in chemotaxis, as discussed by Berg and Purcell
(1977). It can be shown that this is a theoretical noise floor that cannot be circumvented by
using sophisticated “binding site machinery” as long as this machinery is contained within
a region of linear size a (Bialek and Setayeshgar, 2005, 2006). For example, cooperative
binding to the promoter or promoters with multiple internal states will modify the binomial
switching term, but will leave the diffusion noise unaffected if we express it as an effective
noise in transcription factor concentration o. such that

99
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Figure 3.3: Expression noise as a function of the mean. The standard deviation of the protein
concentration oy /go is plotted against the mean protein concentration g = (g)/go, from Eq (3.14)
with h = 5. In all cases the output noise term has a strength o = 0.01, and the different curves are
indexed by the ratio of input noise to output noise 5/« = 0, 10, 20, 30. In the absence of input noise,
the noise level is a monotonic function of the mean, but input noise contributes a peak near the point
of half maximal expression g = 0.5. In the inset, we show the same results plotted as a fractional
noise variance ng vs the mean [Eq (3.15)], on a logarithmic scale, and we see that the prominent
peak has become just an inflection. For most of the dynamic range of means, the contribution of
input noise is to increase the fractional variance without substantial changes in the slope of the
double-log plot, so that we can confuse input noise with a larger level of output noise, especially if
we remember that real data will be scattered due to measurement errors.

Although cooperativity does not change the effective concentration noise due to diffu-
sion, it does reduce the relative significance of the switching noise (Bialek and Setayeshgar,
2006). Since we will discuss a system which is strongly cooperative, in much of what follows
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we neglect the switching noise term and focus on the output noise and diffusion noise. Then
the generalization to multisite, cooperative regulation is straightforward [Methods A.3.2].
We expect that cooperative effects among h transcription factors generate a sigmoidal de-
pendence of expression on the transcription factor concentration, so that

ch

7 3.13
ch+ K" (3.13)

g p—
where h is called the Hill coefficient, and K is the concentration required for half maximal
activation. We can invert this relationship to write the concentration ¢, which is relevant
for the diffusive noise, as a function of the mean fractional expression level g. Substituting
back into Eq (3.11), and neglecting the switching noise, we obtain

2
0,
<g§> =g+ 01— g, (3.14)

where o and (§ are combinations of parameters that measure the strength of the output and
diffusion noise, respectively. If we express the variance in fractional terms, this becomes

1 _ _
= az+ 53 Yh(1 — g)2+i/n, (3.15)

The global output noise model of Eq (3.1) corresponds to f = 0 (no input noise) and
b = ago. Figure 3.3 shows the predicted noise levels for different ratios of output to input
noise (3/a).

For very highly cooperative, essentially switch—like systems, we can take the limit h — oo
to obtain

o 2
(%) = ag+pa-gp (3.16)

2= a; + 81— )2 (3.17)

In particular, if we explore only expression levels well below the maximum (g < 1), then
the diffusion noise just add a constant 3 to the fractional variance. Thus, diffusion noise in
a highly cooperative system could be confused with a global or even extrinsic noise source.

3.2.4 Signatures of input noise

Input noise arises from fluctuations in the occupancy of the transcription factor binding
sites. Thus, if we go to very high transcription factor concentrations, where all sites are fully
occupied, or to very low concentrations, where the sites are never occupied, the fluctuations
must vanish. These limits correspond, in the case of a transcriptional activator, to maximal
and minimal expression levels, respectively. Thus, the key signature of input noise is that
it must be largest at some intermediate expression level, as shown in Fig 3.3.

The claim that many genes have expression noise levels which fit the global output
noise model of Eq (3.1) would seem to contradict the prediction of a peak in the noise as
a function of the mean. But if we plot the predictions of the model with input noise as
a fractional variance vs mean, the prominent peak disappears (inset to Fig 3.3). In fact,
over a large dynamic range, the input noise seems just to increase the magnitude of the
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fractional variance while not making a substantial change in the slope of log(n2) vs log((g)).
Confronted with real data on a system with significant input noise, we could thus fit much
of those data with the global output noise model but with a larger value of b. There is,
of course, a difference between input and output noise, even when plotted as log(ng) VS
log({g)), namely a rapid drop in noise level as we approach maximal expression. But this
effect is confined to a narrow range, essentially a factor of two in mean expression level.
As we discuss below, there are variety of reasons why this might not have been seen in the
data of Bar-Even et al. (2006).

Recent experiments on the precision of gene expression in the early Drosophila embryo
provide us with an opportunity to search for the signatures of input noise (Gregor, 2005;
Gregor et al., 2006a). The embryo contains a spatial gradient of the protein Bicoid (Bed),
translated from maternal mRNA, and this protein is a transcription factor which activates,
among other genes, hunchback. Looking along the anterior—posterior axis of the embryo
one thus has an array of nuclei that experience a graded range of transcription factor
concentrations. Using antibody staining and image processing methods, it thus is possible
to collect thousands of points on a scatter plot of input (Bicoid concentration) vs. output
(Hunchback protein concentration); since even in a single embryo there are many nuclei
that have the same Bed concentration, one can examine both the mean Hunchback (Hb)
response and its variance; data from Gregor et al. (2006a) are shown in Fig 3.4.

Figure 3.4: The input—output relation
for Bicoid regulation of Hunchback ex-
pression, redrawn from Gregor et al.
(2006a). Dashed curves show mean
expression levels in different embryos,
thick black line is the mean across all
embryos, and points with error bars
show the mean and standard devia-
tion of Hb expression at a given Bed
concentration in one embryo.

max

Hb/Hb

The mean response of Hb to Bed is fit reasonably well by Eq (3.13) with a Hill coefficient
h =5 (Gregor et al., 2006a), and in Fig 3.5 we replot the noise in this response as a function
of the mean. The peak of expression noise near half maximal expression—the signature of
input noise—is clearly visible. More quantitatively, we find that the data are well fit by
Eq (3.14) with the contribution from output noise (o ~ 1/380) much smaller than that
from input noise (8 ~ 1/2). We also consider the same model with h — oo, and this
fully switch—like model, although formally still within error bars, systematically deviates
from the data. Finally we consider a model in which diffusion noise is absent, but we
include the switching noise from Eq (3.11), which generalizes to the case of cooperative
binding (see Methods). Interestingly, this model has the same number of parameters as the
diffusion noise model, but does a significantly poorer job of fitting the data. While the fit
can be improved further by adding a small background to the noise, we emphasize that Eq
(3.14) correctly captures the non—trivial shape of the noise curve with only two parameters.
Because input noise falls to zero at maximal expression, the sole remaining noise at that
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point is the output noise, and this uniquely determines the parameter «. The strength of
the input noise () then is determined by the height of the noise peak, and there is no
further room for adjustment. The shape of the peak is predicted by the theory with no
additional parameters, and the different curves in Fig 3.5 demonstrate that the data can
distinguish among various functional forms for the peak.

0.25
Figure 3.5: Standard deviation of
Hunchback expression as a function
of the mean (points with error bars), 0.2
replotted from Gregor et al. (2006a).
The black line is a fit of combined
output and diffusion noise contribu- 0.15
tions, from Eq (3.14) with h = 5,
and the dashed red line is with h —
oo, from Eq (3.16). In contrast, the 0.1
dashed blue line is the best fit of com-
bined output and switching noise con-
tributions. Although both diffusion
and switching noise produce a peak
at intermediate expression levels, the
shapes of the peaks are distinguish-
able, and the data favor the diffusion 0
noise model.

()g/g0

0.05]f

Are the parameters o and (8 that fit the Bed/Hb data biologically reasonable? The
fact that diffusive noise dominates at intermediate levels of expression (3 > «) is the
statement that the Hunchback expression level provides a readout of Bed concentration
with a reliability that is close to the physical limit set by diffusional shot noise, as was
argued in Gregor et al. (2006a) based on the magnitude of the noise level and estimates of
the relevant microscopic parameters that determine 8. The dominance of diffusive noise over
switching noise presumably is related to the high cooperativity of the Bed/Hb input/output
relation (Bialek and Setayeshgar, 2006).

The parameter o measures the strength of the output noise and thus depends on the
absolute number of Hb molecules and on the number proteins produced per mRNA tran-
script. If this burst size is in the range R,7. ~ 1 — 10, then our fit predicts the maximum
expression level of Hb corresponds to gg = 700 — 4000 molecules in the nucleus. Given the
volume of the nuclei at this stage of development (~ 140 um?; see Gregor et al. (2006a,b)),
this is a concentration of 8 — 48nM. Although we don’t have independent measurements
of the absolute Hunchback concentration, this is reasonable for transcription factors, which
typically act in the nanoMolar range (Ptashne, 1992; Pedone et al., 1996; Ma et al., 1996;
Burz et al., 1998; Winston et al., 1999; Zhao et al., 2002), and can be compared with the
maximal nuclear concentration of Bed, which is 55 £ 3nM (Gregor et al., 2006a). Larger
burst sizes would predict larger maximal expression levels, or conversely measurements of
absolute expression levels might give suggestions about the burst size for translation in the
early Drosophila embryo.
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3.2.5 Discussion

In the process of transcriptional regulation, the (output) expression level of regulated genes
acts as a sensor for the (input) concentration of transcription factors. The performance
of this sensor, and hence the regulatory power of the system, is limited by noise. While
changes in the parameters of the transcriptional and translational apparatus can change
the level of output noise, the input noise is determined by the physical properties of the
transcription factor and its interactions with the target sites along the genome. Ultimately,
there is a lower bound on this input noise level set by the shot noise in random arrival of
the transcription factors at their targets, in much the same way that any imaging process
ultimately is limited by the random arrival of photons.

Input and output noise seem to be so different that it is hard to imagine that they could
be confused experimentally. Some of the difficulty, however, can be illustrated by plotting
the results from the Bed/Hb experiments of Gregor et al. (2006a) in the form which has
become conventional in the study of gene expression noise, as a fractional variance vs mean
expression level [Fig 3.6]. The signature of input noise, so clear in Fig 3.5, now is confined
to a narrow range (~ x2) near maximal expression. In contrast, over more than a decade
of expression levels the noise level is a good fit to ng x (g)~7, with v = 1.04 being very
similar to the prediction of the global noise model (y = 1) in Eq (3.1). The departures from
power—law behavior are easily obscured by global noise sources, experimental error, or by
technical limitations that lead to the exclusion of data at the very highest expression levels,
as in Bar-Even et al. (2006).

Figure 3.6: Logarithmic plot of frac-
tional variance vs the mean expression
level for Hunchback, replotted from
Gregor et al. (2006a). Each black
point represents the noise level mea-
sured across nuclei that experience the
same Bcd concentration within one
embryo, and results are collected from
nine embryos. The solid line shows
a fit to 72 o< (g)~7 in the region be-
low half maximal mean expression; we
find a good fit, with v = 1.04, despite
the fact that these data show a clear
signature of input noise when plotted
in Fig 3.5. Dashed line indicates the
global noise floor suggested in Bar-
Even et al. (2006), and red points
show the raw data with this variance
added. Although the input noise still
appears as a drop in fractional noise
level near maximal mean expression,
this now is quite subtle and easily ob-
scured by experimental errors.

In <g>

The lesson from this analysis of the Bicoid/Hunchback data is that the signatures of
input noise are surprisingly subtle. In this system, however, the behavior near half maximal
expression is exactly the most relevant question biologically, since this is where the “deci-
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sion” is made to draw a boundary, as a first step in spatial patterning. In other systems,
the details of noise in this region of expression levels might be less relevant for the organism,
but it is only in this region that different sources of noise are qualitatively distinguishable,
as is clear from Fig 3.6. Thus, unless we have independent experiments to measure some of
the parameters of the system, we need experimental access to the full range of expression
levels and hence, implicitly, to the full dynamic range of transcription factor concentrations,
if we want to disentangle input and output noise.

The early Drosophila embryo is an attractive model system precisely because the organ-
ism itself generates a broad range of transcription factor concentrations, and conveniently
arranges these different samples along the major axes of the embryo. A caveat is that
since we don’t directly control the transcription factor concentration, we have to measure
it. In particular, in order to measure the variance of the output (Hunchback, in the present
discussion) we have to find many nuclei that all have the same input transcription factor
(Bicoid) concentration. Because the mean output is a steep function of the input, errors
in the measurement of transcription factor concentration can simulate the effects of input
noise, as discussed in Gregor et al. (2006a). Thus, a complete analysis of input and output
noise requires not only access to a wide range of transcription factor concentrations, but
rather precise measurements of these concentrations.

Why are the different sources of noise so easily confused? If noise is dominated by
randomness in a single step of the translation process, then the number of protein molecules
will obey the Possion distribution, and the variance in copy number will be equal to the
mean. But if we can’t actually turn measurements of protein level into molecule counts,
then all we can say is that the variance will be proportional to the mean. If the dominant
noise source is a single step in transcription, then the number of mRNA transcripts will obey
the Poisson distribution, and the variance of protein copy numbers still will be proportional
to the mean, but the proportionality constant will be enhanced by the burst size. The
same reasoning, however, can be pushed further back: if, far from maximal expression,
the dominant source of noise is the infrequent binding of a transcriptional activator (or
dissociation of a repressor) to its target site, then the variance in protein copy number still
will be proportional to the mean. Thus, the proportionality of variance to mean implies that
there is some single rare event that dominates the noise, and by itself doesn’t distinguish
the nature of this event.

If noise is dominated by regulatory events, then the number of mRNA transcripts should
be drawn from a distribution broader than Poisson. In effect the idea of bursting, which am-
plifies protein relative to mRNA number variance, applies here too, amplifying the variance
of transcript number above the expectations from the Poisson distribution. Transcriptional
bursting has in fact been observed directly (Golding et al., 2005), although it is not clear
whether this arises from fluctuations in transcription factor binding or from other sources.

Previous arguments have made it plausible that input noise is significant in comparison
to the observed variance of gene expression (Bialek and Setayeshgar, 2005), and we have
shown here that models which assign all of the noise to common factors on the output
side are inconsistent with the embedding of gene expression in a regulatory network. The
signatures of input noise seem clear, but can be surprisingly subtle to distinguish in real
data. We have argued that the Bicoid/Hunchback system provides an example in which
input noise is dominant, and further that the detailed form of the variance vs mean supports
a dominant role for diffusion rather than switching noise. Although there are caveats, this
is consistent with the idea that, as with other critical biological processes (Barlow, 1981;
Berg and Purcell, 1977; Bialek, 1987, 2002), the regulation of gene expression can operate
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with a precision limited by fundamental physical principles.
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3.3 Alternative noise sources

3.3.1 Effects of non-specific binding sites

We start by briefly introducing the statistical mechanical framework in which the TF-DNA
interaction is usually discussed.® Different sites on the DNA — where by a site we mean a
consecutive sequence of L base pairs starting at a particular location in the genome — to
which a transcription factor can bind are viewed as distinct energy states of the TF-DNA
system. The interaction energy is a complicated function of the relative position of the
protein with respect to the DNA and carries contributions from several sources: the main
contribution is usually taken to be the direct, or sequence-dependent, energy, which arises
from specific hydrogen contacts between the amino acid residues of the TF and the DNA
bases; to get favorable energetic contribution, the TF and DNA therefore have to be in
a proper spatial alignment. There are also indirect contributions to the binding energy:
the non-specific attractive electrostatic interaction, the mechanical energy of deformation
if the TF bends the DNA and so on, which here simply redefine the zero of the sequence
dependent energy.

Once the energy F, of a site v is known, the probability of that site being bound, or
the site occupancy, is easy enough to calculate:

1

n = ———
Y14 ebrn?

(3.18)
where all energies have been expressed in units of kgT'; u is the chemical potential of the
free transcription factors in the cytoplasm, and is proportional to the logarithm of their
concentration ¢.® By inspecting the equation for the mean occupancy [Eq (A.12)] and
comparing it to Eq (3.18), we recognize that e®*=# = KY /c = k¥ [k c, where k_ and k4
are the on- and off- rates for TF binding and unbinding at site v and K} is its equilibrium
binding constant. Here the dynamical and equilibrium pictures connect.

What remains to be determined is the dependence of the energy of the site, F,, on the
site sequence, o, = {o(1),0(2),...,0(L)},, where 0,(i) is one of the four letters of the
genetic alphabet. We can always write this energy as a series:

o 1
E(G) =) o) T 5 ) Jijotot + 7 - (3.19)

% iJ

Here, the lowest order approximation is written as an energy matrix e (of dimension L x 4),
which parametrizes the linear contribution to the binding energy: a base o, (i) at position i
of the site p adds an amount to the energy that is independent of bases at other positions.
Note that this “expansion” is not a systematic expansion in some small parameter; in
principle the dominant contribution could come from any order in the series, although in
practice this does not seem to be the case (Robinson et al., 1998).

Berg and von Hippel (1987) presented a simple argument by which the entries of € can
be computed if we know a set of sites ¢, to which the transcription factor binds strongly,

®Equilibrium calculations would by convention precede the noise calculations, but as modeling (and
inferring from the data) of the interaction energy between DNA and protein is a whole separate field and
such models were not necessary for simple computations of the input and output noise, the issue was
postponed until now.

5The free concentration is the total concentration minus the number of transcription factors bound over
all sites. We will return to this point shortly.
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Figure 3.7: A depiction of the tran-
scription factor binding to its specific
site on the DNA. The energy of the
interaction is described by the posi-
tion weight matrix, with red (black)
elements denoting favorable (unfavor-
able) interactions. In the example pre-
sented here, the site on the DNA ex-
actly corresponds to the consensus se-
quence of the TF (red entries in the

Transcription
factor - PWM

Cell volume, concentration
cof TF

Transcription into
mRNA by polymerase

Ge i
matrix), and the binding energy is reg,2i°°d'ng
the sum of the corresponding red el-
ements.

under some assumptions.” In the limit where the occupancies are not saturated, i.e. the
concentration is small compared to the relevant equilibrium binding constants, K, the
matrix € is given by:

NP
e = —log——t—, (3.20)
maxp N;
Ny = No+ > 60,00 (3.21)
w

where N? is the count of the number of times the base b = {A, C, G, T} appears at position
i in the set of known binding sites ', and Ny is the so-called “pseudo-count” regularization
parameter (usually 1). Kinney et al. (2007) have later relaxed some of the assumptions
required by the Berg and von Hippel construction, at the expense of increasing the amount
of data needed to do proper inference of ¢; in addition they argue that if the Berg —
von Hippel assumptions do not hold, the energy matrix and the matrix computed from
counts in Eq (3.20), also called position weight matrix or PWM, are no longer simply
related. High-throughput essays like chromatin immunoprecipitation (ChIP) or protein
binding microarrays (PBM) can provide datasets big enough for such analyses.

Mean response

Let the system be composed of N binding sites (with density p = N/V, where the volume
of cell nucleus is V') indexed by p, with kinetic parameters k‘i and k" and occupancies my,.
The site equilibrium dissociation constants are denoted by K, = k”/k!. The functional
binding site embedded in this background has a dissociation constant K; and we give it a
reference binding energy of 0, with the nonspecific site u having a relative energy of F, in
units where kg7 = 1 with respect to this reference, so that K, = Kqgexp(FE,). Then the

" Assumptions are: the specific sites have approximately the same affinity; the genetic background, or the
set of nonspecific sites, is random; positions within the binding site are independent; the selection that acts
on the sites in order to preserve their function is a linear function of the energy.
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relation between the total and free concentration must be:

1 cy
_ 1y 22
“ ot % cr+ K, (3.22)
I
A ocf —l—p/dEp(E) “ (3.23)
¢+ Kqexp(E)’

where we have replaced the sum over the sites with the integral over the distribution p(F)
of binding energies relative to the reference (functional) binding site. If the system is in the
weak binding regime with ¢y < (K,), then the fractional occupancy under the integral can
be approximated with linear response, and therefore:

o e {1 + Kid /dE eEp(E)} (3.24)

If the nucleus were bathed in an extremely high concentration of TF, all non-specific sites
would be occupied and therefore we have to get ¢; = ¢y + p in the saturated limit of Eq
(3.23).

We will assume that the distribution of the binding energies, p(F), is a Gaussian with
mean E and variance o2. For simple physical models of DNA-TF interaction, for instance
the energy matrix model [first term of Eq (3.19)], where each position in the binding site
contributes independently to the binding energy, the energies on a random genome will
indeed be normally distributed. To evaluate the integral in Eq (3.24) we remember that for
Gaussian distributions (exp(ikz)) = exp (ik(z) — $k?0?) and therefore (with z = iE and
kE=p=1):

_ 1
o =cy {1 + Kid exp <—E + 202> } (3.25)

We are interested in examining how the specificity of the functional binding site, Ky,
influences the relation between the total and free concentration. At first sight it appears
that the relation is linear, and if the affinity of the nonspecific binding sites, Kng = Kqe?
and o are held fixed, K, cancels out of the expression Eq (3.25), and the spread of the
distribution effectively just renormalizes the mean nonspecific affinity. Alternatively, if
o = 0, we get the simplest model that makes all the sites except for the functional site have
the same affinity, Kng. We can, however, also expect o2 to scale with E: this is evident if
we consider the simplest model that, for each position in the binding site, assigns energy 0 if
that position matches the specific functional site, and assigns energy A otherwise. In such
a model the expected discrimination energy and the variance under the assumed random
genetic background, of the binding site of length L, will be

E = zAL (3.26)
3

2= AL 2

OF 16 (3.27)

Since F is related to Ky at constant Kyg, and we assume 012,3 x E, we get the dependence
on K, of the relation between the total and free concentrations in Eq (3.25):

K n
Ct:cf{l—i—f(i]s,(fgj) }, (3.28)
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where 1 > 0 is a parameter that depends on the proportionality constant between the mean
energy and its variance. The important message here is that even though the distribution
of nonspecific site energies has a finite width, when K is increased and the specificity of
the functional site is thus decreased, the number of TFs stuck to the nonspecific sites, or
¢t — cf, will not start to increase in a super-linear fashion for Ky greater than some critical
K. On the contrary, a linear relationship between the total and free concentrations is
expected to hold, even when weak-binding limit is no longer valid, although possibly with
a large proportionality constant; e.g. there are (perhaps typical) cases when 90% of the
TF molecules can be nonspecifically bound to the DNA, cf. Bakk and Metzler (2004).

Fluctuations

The fluctuations in the occupancy of the binding sites are coupled to each other by diffusion
in a limited geometry, such that there are no fluxes through the volume boundaries and the
total number of particles (those diffusing in free solution and those bound on the binding
sites) is held fixed. The equations for the system are as follows:

dm,,

i K e(x,) (1 —my) — kEmy, + €, (3.29)
) d
%;” - Dv%QJy—%:Z?MX—x@+n@¢y (3.30)

Here, Eq (3.29) describes the binding and unbinding to the site at location x,, and Eq
(3.30) is a diffusion equation for the free concentration with the additional terms that take
into account the possibility that the molecule gets absorbed to or released from a binding
site, cf. Eq (A.7). We linearize and Fourier-transform:

(—iw+1/1)dmy, = k(1 —my)de(xy) +&u (3.31)
(—iw + k*D) dcxc = iw Z omy ™ 4 n(k, w). (3.32)
0

The terms &, and n(x,t) represent Langevin noise, and they are normalized as follows:

(Eu)u(®)) = (Kmy + K e(l —my))o(t —t) (3.33)
(nk,w)n*(K,w")) = 4Dk*e5(k —K)d(w — ). (3.34)

Expressing dm,, from Eq (3.31) and inserting it into Eq (3.32), we get a coupled system of
equations for the modes of concentration fluctuations:

. 1kx Zw — 1 —ik/x
(i + kD) b = n(le,w) + 3 e — == (’“i“‘mﬂ)vzéck’e ' ”'S“)’
w I 1%

(3.35)
where we have written dc(x,) = &> dewe ™ *Xu To get the power spectrum at low
frequency Sc(w — 0) = limy, 0 Y, (dck(w)dcy(w)) we have to treat separately two cases,
namely k = 0 and all others. In case of non-zero mode, the only surviving term after the
limit is taken is the noise 7 term, from which it follows that:

n(k,w)
D2

Sox = k0. (3.36)
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On the other hand, the conservation of total particle number gives us for zero mode, in the
small w limit:

* 1 * *
(0codey) = 5 {<m7 Y=o+ D Ta(€uE) (3.37)
(14 & SR =) r
1 v
+ 73 > Q- my)kL (1 —m) (3.38)
ok 0.k £0
426 (K = K") i i
X TMTyic (Dk’2 )e_zx“k +ixok } (3.39)

Contribution from diffusion noise 7 is 0 at zero mode. The summation does not extend over
k = 0, because this term has been absorbed into the denominator. Collapsing the double
sum into the single sum using the delta function, the last term can be written separately
as a contribution when p = v and otherwise, as follows:

1
(beodes) = 5 {2 Z Tumy (1 —my,)+ (3.40)
(1+%meu(1_mu)) #
2 _9 _\2
e Zu: m2 (1 —iny,)*+ (3.41)
4 _ o 1 cik(xu—x)
+ E Mz;mu(l — mu)my(l — my)v lgé;) TkQ . (342)

In the above expression, a is the size of the binding site, i.e. the corresponding k-cutoff in
sum over momenta is 7/a. Assuming that the position of the binding site is not correlated
with its affinity, we can rewrite the full noise spectrum at zero frequency in terms of site
averages:

([oc]?) = % > (|del?) (3.43)
k
€ 1 ON )
~ 7Da * (1+ E(m(1 —m))m)? {2<Tm(1 —m))m+ (3.44)
c c 2
+ 7Tl)a(‘2/]5\EQ<m2(l — T_TL)2>m + 7Tl)b(‘]/\ré)2<m( — m))f,z} (3.45)

Angular brackets with subscript m, i.e. (---),, stand for an average over all sites. Length
scale b depends on the geometry of the binding sites, where it is assumed that the position
of the site is uncorrelated with its affinity:

1 1 gikx 1 /1
_ /2t - - [ = 3.46
47h <Vzk: k2 > 4 <]x]>x (3:46)

We can rewrite the result in terms of fractional fluctuations in the input concentration
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at the position of the specific site:
(%) = oo (1
¢ nDacr N (1+Ty)?
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) (3.48)
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We recognize the diffusion input noise contribution as the leading term in the parenthesis
of Eq (3.47); the other terms are contributed by the nonspecific sites and vanish if N = 0.
Moreover, we can put reasonable bounds on the new terms: the fractions of I'-averages
in Eq (3.47) are at most of order 1, and their magnitude is therefore upper-bounded by
their prefactors. These, however, are clearly small: 1/N is the inverse of the number of
nonspecific sites, a/b is the ratio between the receptor size a and a typical distance between
the sites b, and 7,,,/7 < 1, because the nonspecific site occupancies presumably equilibrate
on a much shorter timescale than the integrating time (minutes or more). The conclusion
here is that the nonspecific sites will not significantly increase the diffusion contribution to

the input noise.
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3.3.2 Effects of TF diffusion along the DNA

We have already computed the noise power spectrum in fractional occupancy n of the
specific transcription binding site located at position zg on the DNA due to the binomial
and diffusion flux fluctuations [Eq (A.34)]:

2n(1 —n)? N 272(1 — n)?
k_ 2w Dac

Sp(w—0) = (3.51)
The result is derived in the low frequency (long integration time) limit, assuming an average
bulk concentration ¢ of free transcription factor molecules in the cell, which bind and unbind
to the specific site in a one-step process, as described by Eqs (A.7, A.8). In particular, the
diffusion constant D that enters into these equations is the bulk, or 3D, diffusion constant
for the stochastic motion of TF molecules in the cytoplasm.

Noise in Eq (3.51) has two contributions: the first one arises from the fact that the
binding and unbinding state is a binary process, which has a binomial variance — this term
would exist even if the local concentration at xy were perfectly fixed; the second contribution
is a consequence of concentration fluctuations at xy around the mean é.

Here, we analyze the case where the transcription factor can attach non-specifically to
the DNA, slide for a certain length along its contour (while being nonspecifically bound
to it and performing a 1D random walk), and either bind to the specific site, or dissociate
from the DNA back into bulk solution. The situation is illustrated in Fig 3.8.

Figure 3.8: The transcription factors bulk concentration
3D diffusion, D3
c(x,t)

can either be free in solution at con-
centration c, or they can enter a region
on the DNA where they diffuse by slid-
ing. The effective 1D concentration is s s
denoted by & and is position and time l |
dependent. The specific binding site

on the DNA is at location z¢; k4 and ;L

diffusion along DNA in 1D, D1

——] E(x,0 I
k_ are the on- and off-rates for tran- ¥
sition from/to 1D “solution” £. The 5
effective radius of the DNA molecule ke k-
is R and the “sliding length”, or aver-
age distance along the contour covered binding site
in the 1D random walk before dissoci- “h At
ation, is denoted by b.
<t b >
We describe the system by the following set of equations:
dn
il k+&(zo,t)(1 —n) —k_n (3.52)
0¢(x,t) 0%¢(z,t)  dn
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ot gy @@ (3.53)
+ Ky /dy dze(x,1)0(y)d(z) — k_&(x,t) (3.54)
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We have assumed that DNA is stretched along the xz-axis and that it is an infinitely thin
molecule — as we will see soon, we will need to regularize the Dirac-delta functions (see Fig
3.8 for explanation of the length symbols R, b etc). £ is a function of only one variable, x,
while ¢ is a function of all three spatial coordinates. k_ is the rate at which TF dissociates
from the non-specific binding mode into the bulk; x, is the corresponding on-rate per unit
length.

We need to linearize and Fourier-transform the equations, which is straightforward,
apart from Eq (3.55), where we have a product of ¢(z,y, z,t)d(y)d(z) that turns into a
convolution of Fourier-transforms. This effectively couples the equation for wave-mode k
with other wave-modes, making problem difficult to solve analytically. However, we can
proceed as follows. First, the delta functions are really just approximations for finite-size
regions and we are really trying to take the Fourier-transform of

c(x,y,z,t)Hr(y)Hg(2)

Here Hp(y) is a Heaviside function that is 1, if its argument is in the interval [—R, R], and
zero outside. We write:
dk, dk, dk,

co(z,y,z,)Hr(y)Hr(2) = // 2r 27 27
1 —ikly—iklz
< G / / dl AR, H () i (K )~ o=

C(kix, ky, kz, t)e—zkwr—zkyy—zkzz %

1 .
= @y / dl dk,d*ke(ky, ky — k), k. — kL, t)e ™ Hp(k,) Hp(K.)

/(;erl){5 <21§>2 ek, t). (3.56)

The approximation we make is that since Hg(y) goes to 0 for absolute y larger than R, its
Fourier transform, Hg(kj) has to go to zero for |ky| > %. In the region where it is not 0,
we assume that the integrand can be evaluated at k:?’J =k, = 0 in the first approximation,
integrated over the allowed range for primed momenta. The Fourier transform of the whole
term is then simply ~ #ck(t).

Using this result we can write down the complete linearized and transformed set of Eqs
(3.54, 3.55):

—iwda, = —k’Dsdcy — %&k + k_06& (3.57)
—iwdE = —k2D10¢ 4 iwdne*T0 — k¢ + ky / dex d(/;yd)lzz' (3.58)
7r

Here, 6¢ is function of k, only. Let us evaluate the last term of the second equation, by
expressing it from the first equation and integrating:

1

S = KO .
cx K g—z'w T EDs T % (3.59)
dk,dk 1 [ ok, dk;
) = Kk_0 3.60
/ r2 0% = F-0%gs /0 —iw+ (k2 + k2)Ds3 + iy | R2 (3.60)

-1
K08 ko \ 2 Kot



3.3 Alternative noise sources i

In the second step, we transformed the integration over k, and k. into a radial integration
over k., where k? = kg + k2. In addition, we discarded the iw term, because we are
calculating the noise in the small w limit. In the third step, we had to introduce ultra-violet
cutoff at A = %.

This result can be plugged back into the equation for 6¢(xg) = [ %55(@)6_’%’”0:

dk 1
2T }2Dy + ki (1 — oy n{- })

3¢(xg) = iwdn/ (3.62)

Before we insert the result into Fourier transform of Eq (3.52), let us briefly recapitulate how
one obtains the noise power spectrum, starting with the linearized equation for occupancy
responding to the thermal fluctuation 0F', as in Bialek and Setayeshgar (2005):

—iwén = —k_on — ki Eon 4+ ky(1 —n)dé(xo) — Bk_AdF (3.63)
Bk_ndF

on = _ 3.64

" —iw+ k_ + k+§ — k+(1 — ﬁ)’La)/(’ﬂ'ADl)I’ ( )

where I is a rewritten form of integral in Eq (3.62):

©© dt
Lo, B) = /0 2+ 081 —aln{l+ (t?+4a/7)"1})’ (3.65)
_ Ky
o« = 5o (3.66)
K_

Observe that in the calculation with 3D diffusion only, Eq (3.64) would have exactly the
same form with different dimensional parameters (rates, diffusion constants) standing next
to the integral I. Therefore, we can use the same expression for noise power spectrum
without rederiving it here, by simply replacing the case of 3D integral with combined 1D /3D
integral, cf. Eq (3.51):

~2n(1—n) | 2n%(1—n)?
a k+§+ k_ 7TA1)1§T

Sp(w — 0) I(a, ). (3.68)

We can use the equilibrium conditions to eliminate the average 1D concentration £ and
estimate the rates from dimensionality arguments (see the text below for the explanation):

_ ki€

s e (3.69)
ki = Kk_E, (3.70)
ky = 4mDs, (3.71)
¥ ~ Dkl (3.72)

where b is the typical sliding length along the DNA before the TF dissociates into the
solution. This finally allows us to rewrite the result in a more intuitive form:
2n(1 —n)?  n%(1 —n)

2
Sp(w —0) = e (3.73)




3.3 Alternative noise sources 78

The result looks similar to the pure 3D diffusion case: the noise due to concentration
fluctuations has its length scale a (receptor size in pure 3D case) replaced with R (effective
DNA cross-section in mixed 1D /3D case), and the noise contribution term gets multiplied
by the “structure factor” BI(«a, ). What is the meaning of parameters o and 3?7

Parameter o = 4';—53 is close to 1 for diffusion-limited approach to DNA. Imagine that
the area that TF attempts to hit in order to stick non-specifically to the DNA is a cylindrical
segment of DNA with radius R and length b. Length scale b is the average 1D diffusion
length, b2 = Ditgg ~ D1k_*. If we were treating the cylindrical DNA segment as a sphere
of radius b, then Smoluchowski limit <y = 47 D3b would aply. In the first approximation,
the on rate k4 (note that x4 is the rate per unit length of the DNA, which effectively
is b) would then be 47Ds. Since the DNA segment is a cylinder and not a sphere, this
reasoning is not exact, and an effective length scale ~ (sz)l/ 3 would probably be a better
approximation. Regardless of the exact geometrical factors, however, it turns out that «
has a smaller effect on the result than .

What is 47 Written out in terms of b defined above, 3 is:

Kk R2 ([ RY’
jol (R e
We see that [ is approximately the square of the ratio between the cross-section of the
1D cylinder (the “target” that 3D diffusion has to hit) and the average “sliding length”
along the DNA. R must be of order of several nanometers; while b is, at DNA stacking
length of @ = 0.3 nm per base-pair and 100 bp average diffusion length (Halford and Marko,
2004; Slutsky and Mirny, 2004), around b = 10 — 100 nm. It is therefore not unreasonable

to assume that the factor 8 could be as low as 3 ~ 1072 — 1072, and the corresponding
decrease in noise variance relative to pure 3D diffusion, 3 I(a, 3), is shown in Fig 3.9.8

B 1(o,B)

Figure 3.9: The relative decrease in
noise variance, compared to the pure
3D diffusion model, as a function of
parameters o and (3. Three values
for a0 are shown, spanning two orders
of magnitude; [ covers the relevant
range if typical 1D diffusion length
is as expected from search time opti-
mality arguments (order hundred base
pairs).
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8An alternative diffusion noise calculation is possible if we only had 1D diffusion, and no coupling to
the 3D cytoplasmic bath in the model. In that case, interestingly, we cannot take the limit w — 0 in the
power spectrum, but the noise variance is finite; it is suppressed relative to pure 3D diffusion by a factor
~ %x/kﬂ', which could be of order one for biologically relevant parameters.
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3.4 Summary

In this chapter we have analyzed the gene expression noise in an activator, one of basic
building blocks of genetic regulatory networks. Starting with a simplified mechanistic pic-
ture of transcriptional regulation and using the Langevin approximations, we were able to
decompose the total noise in protein levels into the input and output contributions. The
input part arises from the fluctuations in transcription factor binding site occupancy and
the diffusive flux of TF molecules towards it, and the output part from the stochastic pro-
duction of mRNA and protein. Comparison with precise measurements of the noise in the
fruit fly Bicoid-Hunchback system supports the claim that the input noise can significantly
contribute to the total noise. A further argument that this conclusion is valid more gener-
ally is provided by simple theoretical considerations. These show that global noise models,
where output noise is the sole major contributor to the total noise, are inconsistent with
the embedding of such elements into a regulatory network. Recent experiments that claim
consistency with the global noise models might have wrongly assigned part of the input
noise to the output, and such misattribution could easily occur if the experiment does not
probe the full range of input TF concentrations.

We have further shown that the presence of non-specific binding modifies the relation
between free and total transcription factor concentrations significantly, but probably still
linearly; and that such sites do not appreciably increase the noise on the input side. In
contrast, if transcription factor executes the binding site search in an optimal combination
of 1D and 3D diffusion, the diffusive contribution to the input noise can change considerably.

In the process of analyzing the fruit fly data we have also created a family of biologically
plausible noise models, defined by a small number of parameters, and differing in the relative
contributions of various noise sources. In the following and last chapter of the thesis we will
examine regulatory elements similar to the one dissected here, by systematically exploring
the space of the elements’ noise models and computing their corresponding information
capacities.



Chapter 4

Building networks that transmit
information

4.1 Introduction

Networks of interacting genes coordinate complex cellular processes, such as responding
to stress, adapting the metabolism to a varying diet, maintaining the circadian cycle or
producing an intricate spatial arrangement of differentiated cells during development. The
success of such regulatory modules is at least partially characterized by their ability to
produce reliable, stereotyped responses to repeated stimuli or changes in environment, and
to perform the genetic computations reproducibly, either on a day-by-day or generation
timescale. In doing so the regulatory elements are confronted by noise arising from physical
processes that implement such genetic computations, and this noise ultimately traces its
origins back to the fact that the state variables of the system are concentrations of chemicals
and “computations” are really reactions between chemical species, usually present at low
copy numbers.

It is useful to picture the regulatory module as a device that given some input computes
an output, which in our case will be a set of expression levels of regulated genes. Sometimes
the inputs to the module are easily identified, such as when they are the actual chemicals
that a system detects and responds to, for example chemoattractant molecules, hormones
or transcription factors. There are cases, however, when it is beneficial to think about the
inputs on a more abstract level: in early patterning we talk of positional information and
think of the regulatory module as trying to produce a different gene expression footprint at
each spatial location; alternatively, circadian clocks generate distinguishable gene expression
profiles corresponding to various phases of the day. Regardless of whether we regard the
input as a physical concentration of some transcription factor or perhaps a position within
the embryo, and whether the computation is complicated or as simple as an inversion
produced by a repressor, we want to quantify its reliability in the presence of noise, and ask
what the biological system can do to maximize it.

If we make many observations of a genetic regulatory element in its natural conditions
we are collecting a sample drawn from a distribution p(Z, O), where Z describes the state of
the input and O the state of the output. Saying that the system is able to produce a reliable
response O across the spectrum of naturally occurring input conditions p(Z) amounts to
saying that the dependency — either linear or strongly non-linear — between the input and
output is high, i.e. far from random. Shannon has shown how to associate a unique measure,
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the mutual information I of Eq (2.5), with the notion of dependency between two quantities
drawn from a joint distribution:
p(Z,0)

I(I,O):/ dIdOp(I,O)long

Tw(0) 4.1)

The resulting quantity is a measure in bits and is essentially the logarithm of the number
of states in the input that produce distinguishable outputs given the noise. A device that
has one bit of capacity can be thought of as an “on-off” switch, two bits correspond to four
distinguishable regulatory settings and so on. Although the input is usually a continuous
quantity, such as nutrient concentration or phase of the day, the noise present in the reg-
ulatory element corrupts the computation and does not allow the arbitrary resolution of a
real-valued input to propagate to the output; instead, the mutual information tells us how
precisely different inputs are distinguishable to the organism.

Experimental or theoretical characterization of the joint distribution, p(Z, ), for a
regulatory module can be very difficult if the inputs and outputs live in a high-dimensional
space. We can proceed, nevertheless, by remembering that the building blocks of complex
modules are much simpler, and finally must reduce to the point where a single gene is
controlled by transcription factors that bind to its promoter region and tune the level of its
expression. While taking a simple element out of its network will not be illuminating about
how the network as a whole behaves in general — especially if there are feedback loops —
there may be cases where the information flow is “bottlenecked” through a single gene, and
its reliability will therefore limit that of the network. In addition, the analysis of a simple
regulatory element will provide directions for taking on more complicated systems.

Our aim in this chapter is therefore to try to understand the reliability of a simple
genetic regulatory element, that is, of a single activator or repressor transcription factor
controlling the expression level of its downstream gene. We will identify the concentration ¢
of the transcription factor as an input, Z = {c}, and the expression level of the downstream
gene g as the output, O = {g}. The regulatory element itself will be parametrized by
input/output kernel, p(g|c), i.e. the distribution (as opposed to a “deterministic” function
g = g(c) in case of a noiseless system) of possible outputs given that the input is fixed to
some particular level c. For each such kernel, we will then compute the maximum amount
of information, I(c; g), that can be transmitted through it, and examine how it depends on
the properties of the kernel.

4.2 Maximizing information transmission

Our central idea is the realization that the input/output kernel of a simple regulatory
element, p(g|c), is determined by the biophysics of transcription factor-DNA interaction,
transcription and translation, whereas the distribution of inputs, p(c), that the cell uses
during its “typical” lifetime, is free for the cell to change. The cell’s transcription factor
expression footprint is its representation of the environment and internal state, and the form
of this representation can be the target of adaptation or evolutionary processes. Together,
the input /output kernel and the distribution of inputs define the joint distribution, p(c, g) =
p(g|c) p(c), and consequently the mutual information of Eq (4.1) between the input and the
output, I(c;g).

Maximizing the information between the inputs and outputs, which corresponds to our
notions of reliability in representation and computation, will therefore imply a specific
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Figure 4.1: A schematic diagram of a
simple regulatory element. Each in-
put is mapped to a mean output ac-
cording to the input/output relation
(thick sigmoidal black line). Because
the system is noisy, the output fluc-
tuates about the mean. This noise is
plotted in gray as a function of the
input and shown in addition as error 004k
bars on the mean input/output rela-
tion. Inset shows the probability dis-
tribution of outputs at half saturation,
p(gle = Kg) (red dotted lines); in this
simple example we assume that the
distribution is Gaussian and therefore
fully characterized by its mean and
variance.
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matching between the given input/output kernel and the distribution of inputs, p(c), that
is being optimized. If one believes that a specific regulatory element has been tuned for
maximal information transmission, then the optimal solution for the inputs, p*(c), and the
resulting optimal distribution of outputs, p*(g) = [ dep(g|c)p*(c), become experimentally
verifiable predictions. If, on the other hand, the system is not really maximizing information
transmission, then the largest capacity achievable with a given kernel and its optimal input
distribution, I[p(g|c),p*(c)], can still be regarded as a (hopefully revealing) upper bound
on the true information capacity of the system.

During the past decades the measurements of regulatory elements have focused on re-
covering the mean response of a gene under the control of a transcription factor that had
its activity modulated by experimentally adjustable levels of inducer or inhibitor molecules.
Typically, a sigmoidal response is observed with a single regulator, as in Fig 4.1, and more
complicated regulatory “surfaces” are possible when there are two or more simultaneous
inputs to the system (Setty et al., 2003). In our notation, these experiments measure the
conditional average over the distribution of outputs, g(c) = [ dg gp(g|c). Efforts to charac-
terize the noise in gene expression were renewed by theoretical work of Swain et al. (2002)
that has shown how to separate intrinsic and extrinsic components of the noise, i.e. the noise
due to the stochasticity of the observed regulatory process in a single cell, and the noise
contribution that arises because typical experiments make many single-cell measurements
and the internal chemical environments of these cells differ across the population. Conse-
quently, the work exploring the noise in gene expression, or o2(c) = [ dg (9 — g)*p(glc), has
begun to accumulate, on both the experimental and biophysical modeling side.

4.2.1 Small noise approximation

We start by showing how the optimal distributions can be computed analytically if the
input/output kernel is Gaussian and the noise is small, and proceed by presenting the exact
numerical solution later. Let us assume then that the first and second moments of the
conditional distribution are given, and write the input/output kernel as a set of Gaussian
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distributions G(g; g(c), o4(c)), or explicitly:

plgle) = 1()exp{ - [g‘g(”z} (4.2)

2%03 203 (c)

where both the mean response, g(c), and the noise, o4(c), depend on the input, as illustrated
in Fig 4.1.

We rewrite the mutual information between the input and the output of Eq (4.1) in the
following way [Eq (2.5)]:

I(e:g) = / dep(c) / dg plgle) log, plgle) —
- / dep(c) / dgp(glc) log, p(g)- (4.3)

The first term can be evaluated exactly for Gaussian distributions, p(g|c) = G(g; g(c), o4(c)).
The integral over g is just the calculation of the (negative of the) entropy of the Gaussian,
and the first term therefore evaluates to —(S[G(g; g, o)) p(c) = —1(log 2mea(¢))p(e)-

In the second term of Eq (4.3) the integral over g can be viewed as calculating (log, p(g))
under the distribution p(g|c). For an arbitrary continuous function f(g) we can expand the
integrals with the Gaussian measure around the mean:

D)ooy = / dgG(9)1(3) +

+ [aaotoZ] a0+
2
g [d0055] -9+ (1.4

The first term of the expansion simply evaluates to f(g). The series expansion would end
at the first term if we were to take the small noise limit, lim,, .0 G(g;g,04) = 6(g—g). The
second term of the expansion is zero because of symmetry, and the third term evaluates
to %03 "(g). We apply the expansion of Eq (4.4) and compute the second term in the
expression for the mutual information, Eq (4.3), with f(g) = logyp(g). Taking only the

zeroth order of the expansion, we get

I(c;9) = — / dep(c) [log V2meoy(c) + log p(g(c))| ; (4.5)

we can rewrite the probability distributions in terms of g, using p(c)de = p(g)dg. The
optimal solution is obtained by taking a variational derivative with respect to p(g) and
enforcing the normalization through a Lagrange multiplier; the solution is
11

Z og (g)
By inserting the optimal solution, Eq (4.6), into the expression for mutual information, Eq
(4.3), we get the explicit result for the capacity:

p*(9) (4.6)

, (4.7)

Iopt(c;g) = 10g2 |::|
2me
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where Z is the normalization of the optimal solution in Eq (4.6):

_ [ dg
7= | oy (48)

If we were to include the second-order term of Eq (4.4), the approximate solution for
the optimal distribution of expression levels would become:

1o
Z Ug(g)

»'(9) eavaloe2s)’, (49)

The optimization with respect to the distribution of inputs, p(c), has led us to the
result for the optimal distribution of mean outputs, Eq (4.6). We had to assume that the
input /output kernel is Gaussian and that the noise is small, and we refer to this result as
the small-noise approximation (SNA) for channel capacity. Note that in this approximation
only the knowledge of the noise in the output as a function of mean output, o,4(g), matters
for capacity computation and the direct dependence on the input c is irrelevant. Note also
that for big enough noise the normalization constant Z will be small compared to v/2me, and
the small-noise capacity approximation of Eq (4.7) will break down by predicting negative
information values.

4.2.2 Large noise approximation

Simple regulatory elements usually have a monotonic, saturating input/output relation, as
shown in Fig 4.1, and (at least) a shot noise component whose variance scales with the
mean. If the noise strength is increased, the information transmission capacity must drop
and, even with the optimally tuned input distribution, eventually yield only a bit or less
of capacity. Intuitively, the best such noisy system can do is to utilize only the lowest
and highest achievable input concentrations, and ignore the continuous range in between.
Thus, the mean responses will be as different as possible, and the noise at low expression
will also be low because it scales with the mean. More formally, if only {cmin, Cmax} are
used as inputs, then the result is either p(g|cmin) or p(g|cmax); the optimization of channel
capacity reduces to finding p(cmin), With p(cmax) = 1 — p(cmin) subsequently given by the
normalization condition. This problem can be solved either by assuming that each of the
two possible input concentrations produces their respective Gaussian output distributions,
and maximizing information for p(cyiy); or simplifying even further and assuming that each
of the two possible inputs, “min” and “max”, maps into two possible outputs, “on” and
“off”, and that “min” input might be misunderstood as “on” output and vice versa with
probabilities given by the output distribution overlaps, as shown schematically in Fig 4.2.

In the latter case we can use the analytic formula for the capacity of the binary asym-
metric channel. If 7 is the probability of detecting an “off” output if “max” input was sent,
and ¢ is a probability of receiving an “off” output if “min” input was sent, and H(-) is a
binary entropy function:

H(p) = —plogyp — (1 — p)logy(1 —p), (4.10)
then the capacity of such asymmetric channel is (Silverman, 1955):

—nH(g)_—i—:H(n) +logy (14275, (4.11)

I(c;g) =
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Figure 4.2: An illustration of the large
noise approximation. We consider dis-
tributions of the output at minimal
(Cmin) and full (¢payx) induction as try-

P(g|cmax)
ing to convey a single binary decision,
and construct the corresponding en-
coding table (inset). The capacity of
Cmin Cmax

such an asymmetric binary channel is
degraded from the theoretical maxi-
mum of 1 bit, because the distribu-

g=0] 0.95 0.1

tions overlap (blue and red). For un- g=1] 0.05

clipped Gaussians the optimal thresh-

old is at the intersection of two alter- o ; s
native pdfs. Output expression level g

Because this approximation reduces the continuous distribution of outputs to only two
choices, “on” or “off”, it can underestimate the true channel capacity and is therefore a
lower bound.

4.2.3 Exact solution

The information between the input and output in Eq (4.3) can be maximized numerically
for any input/output kernel, P(g|c), if the variables ¢ and g are discretized, making the
solution space that needs to be searched, p(c;), finite. One possibility is to use a gradient
descent-based method and make sure that the solution procedure always stays within the
domain boundaries ), p(¢;) = 1,p(cj) > 0 for every j. Alternatively, a procedure known
as Blahut-Arimoto algorithm has been derived solely for the purpose of finding optimal
channel capacities (Blahut, 1972). Both methods yield consistent solutions, but we prefer
to use the second one because of faster convergence and convenient inclusion of constraints
on the cost of coding [Methods A.4.1].

One should be careful in interpreting the results of such an optimization and worry
about the artifacts introduced by discretization of input and output domains. After dis-
cretization, the formal optimal solution is no longer required to be smooth and could, in
fact, be composed of a sum of Dirac-delta function spikes. On the other hand, the real,
physical concentration ¢ cannot be tuned with arbitrary precision in the cell; it is a result
of noisy gene expression, and even if this noise source were removed, the local concentration
at the binding site is still subject to fluctuations caused by randomness in diffusive flux
[Section 3.2]. The Blahut-Arimoto algorithm is completely agnostic as to which (physical)
concentrations belong to which bins after concentration has been discretized, and so it could
assign a lot of probability weight into bin ¢; and zero weight in the neighboring bin ¢;41 that
might represent a concentration change of less than o, (i.e. the scale of local concentration
fluctuations) from ¢;. It is clear that such a solution is physically unrealizable.

One way to address this problem is to include a term in the functional that represents
a smoothness constraint on the scale of o.(¢). The other way is to let the procedure find
the spiky solution, but interpret it not as a real, “physical” concentration, but rather as the
distribution of concentrations that the cell attempts to generate, ¢*. In this case, however,
the limited resolution o.(¢) must be referred to the output as the effective noise in gene
expression, o, = 0.|dg/0c|. The optimal solution p(c*) is therefore the distribution of the
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levels that the cell would use if it had infinitely precise control over choosing various c*,
but the physical concentrations are obtained by convolving this optimal result p(c*) with a
Gaussian of width o.(c*). Both of these approaches are presented in Methods A.4.1; as we
point out next in the discussion of signals and noise, we use the second method of referring
all noise to the output explicitly in the noise model. The third alternative would be to
take the finite resolution of the input into account when the input axis is discretized, by
matching the sizes of the bins to the input precision.

4.3 A model of signals and noise

If enough data were available, one could directly sample P(g|c) and proceed by calculating
the optimal solutions as described previously. Here we start, in contrast, by assuming
a Gaussian model [Eq (4.2)] in which the mean, g(c), and the output variance, o4(c), are
functions of the transcription factor concentration, c¢. Our goal for this section is to build an
effective microscopic model of transcriptional regulation and gene expression, and therefore
define both functions with a small number of biologically interpretable parameters;' later
we plan to vary those and thus systematically observe the changes in information capacity.

In the simplest picture, the interaction of the TF with the promoter site consists of
binding with a (second order) rate constant k and unbinding at a rate k_. The equilibrium
occupancy of the site is [Eq (3.13)]:

P

= 4.12
" (4.12)

where the Hill coefficient, h, captures the effects of cooperative binding, and K; = k_/k
is the equilibrium constant of binding. The mean expression level g is then [Eq (A.14)]:

n activator
—-n repressor

g9(c) = 909 = 9o { . (4.13)
where g has been normalized to vary between 0 and 1, and gg is the maximum expression
level. In what follows we will assume the activator case, where g = n, and present the result
for the repressor in the end.

The fluctuations in occupancy have a (binomial) variance o2 = n(1—n) [Eq (A.33)] and
a correlation time 7. = 1/(kyc" +k_) [Eq (A.31)]. If the expression level of the target gene
is effectively determined by the average of the promoter site occupancy over some window
of time 7y, then the contribution to variance in the expression level due to the “on-off”
promoter switching will be [Eq (A.46)]:

<gg>2:0_2¢c: n(1—n) :n(l—n)g, (4.14)

90 "Tint (kec + k) Ting k_Tint

where in the last step we use the fact that k c"(1 —n) = k_n.

At low TF concentrations the arrival times of single transcription factor molecules to the
binding site are random events. As we argue in Chapter 3, recent measurements (Gregor
et al., 2006a) seem to be consistent with the hypothesis that this variability in diffusive flux

!The discussion here briefly recapitulates the results of Section 3.2 and focuses on those features of the
noise model that will be needed subsequently.
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contributes an additional noise term (Bialek and Setayeshgar, 2005; Tkacik et al., 2006),
similar to the Berg-Purcell limit to chemoattractant detection in chemotaxis. The noise in
expression level due to fluctuations in the binding site occupancy, or the total input noise,
is therefore a sum of this diffusive component [Eq (A.46)] and the switching component of
Eq (4.14):

2
<og> ~ n(l-n)? N hg(l—n)2n27 (4.15)

90 / input k_Tint mDacTing

where D is the diffusion constant for the TF and a is the receptor site size, a ~ 3nm for a
typical binding site on the DNA.

To compute the information capacity in the small noise limit using the simple model
developed so far we need the constant Z from Eq (4.8), which is defined as an integral over
expression levels. As both input noise terms are proportional to (1 — g)?, the integral must

take the form: )
dg
7 X / —_— 4.16
o (1-9)F(9) (4.16)

where F(g) is a function that approaches a constant as g — 1. Strangely, we see that this
integral diverges near full induction (g = 1), which means that the information capacity
also diverges.

Naively we expect that modulations in transcription factor concentration are not espe-
cially effective at transmitting regulatory information once the relevant binding sites are
close to complete occupancy. More quantitatively, the sensitivity of the site occupancy to
changes in TF concentration, On/dc, vanishes as n — 1, and hence small changes in TF con-
centration will have vanishingly small effects. Our intuition breaks down, however, because
in thinking only about the mean occupancy we forget that even very small changes in oc-
cupancy could be effective if the noise level is sufficiently small. As we approach complete
saturation, the variance in occupancy decreases, and the correlation time of fluctuations
becomes shorter and shorter; together these effects cause the standard deviation as seen
through an averaging time 7j,; to decrease faster than dn/dec, and this mismatch is the
origin of the divergence in information capacity. Of course the information capacity of a
physical system can’t really be infinite; there must be an extra source of noise (or reduced
sensitivity) that becomes limiting as n — 1.

The noise in Eq (4.15) captures only the input noise, i.e. the noise in the protein level
caused by the fluctuations in the occupancy of the binding site. In contrast, the output noise
arises even when the occupancy of the binding site is fixed (for example, at full induction),
and originates in the stochasticity in transcription and translation. The simplest model
postulates that when the activator binding site is occupied with fractional occupancy n,
mRNA molecules are synthesized in a Poisson process at a rate R, that generates R.7.n
mRNA molecules on average during the lifetime of a single mRNA molecule, .. Every
message is a template for the production of proteins, which is another Poisson process
with rate R,. If the integration time is larger than the lifetime of single mRNA molecules,
Tint > Te, the mean number of proteins produced is g = RyTint ReTen = gon, and the variance
associated with both Poisson processes is [Eq (A.36)]

2
1+ R
<‘79> _ 1R (4.17)
90 output 90

where b = Ry7, is the burst size, or the number of proteins synthesized per mRNA.
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’ Parameter ‘ Value ‘ Description
! (14+0b)/90 Output noise strength
I} h? /mDaKyine | Diffusion input noise strength
~ (k_Ting) ~* Switching input noise strength
h Cooperativity (Hill coefficient)

Table 4.1: Gaussian noise model parameters. Note that if burst size b > 1, then the output noise
is determined by the average number of mRNA molecules, a ~ ((mRNA))~!. Note further that if
the on-rate is diffusion limited, i.e. ky = 4w Da, then both input noise magnitudes, § and ~, are
proportional and decrease with increasing k_, or alternatively, with increasing K.

We can finally put the results together by adding the input noise Eq (4.15) and the
output noise Eq (4.17), and expressing both in terms of the normalized expression level

g(c):

_ 1 9 1 _ _
+ BA-g)* hg* n +g(1 - 9)7 (4.18)
2
(52) = asv
90 / rep
_1_ 1 _ _
+ B(l-g)* ng*tn +45*(1 - g), (4.19)

with the relevant parameters {«, 3,7, h} explained in Table 4.1. Note that both repressor
and activator cases differ only in the shape of the input noise contributions (especially for
low cooperativity h). Note further that the output noise increases monotonically with mean
expression g, while the input noise peaks at the intermediate levels of expression [Section
3.2.4]. To make the examination of the parameter space in the next section feasible, we set
~v = 0; models with switching noise instead of diffusive noise produce qualitatively similar
results [Figs A.17a, A.17b].

4.4 Results

4.4.1 Capacity of simple regulatory elements

Having at our disposal both a simple model of signals and noise and a numerical way of
finding the optimal solutions given an arbitrary input-output kernel [Methods A.4.1], we
are now ready to examine the channel capacity as a function of the noise parameters from
Table 4.1. Our first result [Fig 4.3] concerns the simplest case of an activator with no
cooperativity, h = 1; for this case, the noise in Eq (4.18) simplifies to:

(?) Cag+ 80— 9% (4.20)

Here we have assumed that there are two relevant sources of noise, i.e. the output noise
(which we parametrize by « and plot on the horizontal axis) and the input diffusion noise
(parametrized by 3, vertical axis). Each point of the information plane in Fig 4.3a therefore
represents a system characterized by a Gaussian noise model, Eq (?7), with variance given
above.
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As expected, the capacity increases most rapidly when the origin of the information
plane is approached approximately along its diagonal, whereas along each of the edges
one of the two noise sources effectively disappears, leaving the system dominated by either
output or input noise alone. We pick two illustrative examples, the blue and the red systems
of Figs 4.3b and 4.3c, that have realistic noise parameters. The blue system has, apart for
the decreased cooperativity (h = 1 instead of h = 5), the characteristics of the bicoid-
hunchback regulatory element in Drosophila melanogaster [Section 3.2]; the red system has
the same (dominant output noise) characteristics as those recently measured for about 40
yeast genes by Bar-Even et al. (2006). We would like to emphasize that both the small-
noise approximation for capacity, which is easily computable from measured noise at various
induction levels, and the exact solution predict that these realistic systems are capable of
transmitting more than 1 bit of regulatory information and that they, indeed, could transmit
up to about 2 bits.

Figure 4.3: Information capacity
(color code, in bits) as a function of in-
put and output noise using the activa-
tor input-output relation with Gaus-
sian noise given by Eq (4.20) and no
cooperativity (h = 1). Panel A shows
the exact capacity calculation (thick
line) and the small noise approxima-
tion (dashed line). Panel B displays AT
the details of the blue dot in the in- \
formation plane: the noise in the out- -7.50 ‘ ‘ ‘
put is shown as the function of the in- -75 -575 -4 -225 -05
put, with a peak being characteristic Output noise, log(c:)
of the dominant input noise contribu- B 01°
tion; also shown is the exact solution
(thick black line) and the small-noise
approximation (dashed black line) to
the optimal distribution of output ex-
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A closer look at the overall agreement between the small-noise approximation (dashed
lines in Fig 4.3a) and the exact solution (thick lines) shows that the small-noise approxima-
tion underestimates the true capacity, consistent with our remark that for large noise the
approximation will incorrectly produce negative results; at the 2-bit information contour
the approximation is about ~ 15% off but improves as the capacity is increased.

Indeed, in the high noise regime we are making yet another approximation, the validity
of which we now need to examine. In our discussion about the models of signals and noise
we assumed that we can talk about the fractional occupancy of the binding site and the
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Figure 4.4: Difference in the information transmission capacity between the repressors and activators
(color code in bits). Left panel shows Iiep(h = 1) — It (h = 1), with the noise model that includes
output («) and input diffusion noise (3) contributions (see Fig 4.3 for absolute values of L.t (h = 1)).
Right panel shows I ep — Iact for the noise model that includes output noise () and input switching
noise () contributions. This latter difference does not depend on cooperativity (see Fig A.17b for
the corresponding absolute information values).

continuous concentrations of mRNA, transcription factors and protein, instead of counting
these species in discrete units, and that noise can effectively be treated as Gaussian. Both
of these assumptions are the cornerstones of the Langevin approximation for calculating the
noise variance [Methods A.4.5]. If parameters o and (3 actually arise due to the underlying
microscopic mechanisms described in the section on signals and noise and schematized in
Fig 3.2, we expect that at least for some large-noise regions of the information plane the
discreteness in the number of mRNA molecules will become important and the Langevin
approximation will fail. In such cases (a much more time-consuming) exact calculation of
the input-output relations using the Master equation is possible for some noise models; in
Fig A.18 we show that in the region where log o > —2 the channel capacities calculated with
Gaussian kernels can be overestimated by ~ 10% or more; there the Langevin calculation
gives the correct second moment, but misses the true shape of the distribution. We can
nevertheless conclude that Langevin approximation provides a good analytic framework for
the analysis of information capacity in the biologically relevant region of parameter space.

Is there any difference between activators and repressors in their capacity to convey
information about the input? We concluded Section 4.3 on the noise models with separate
expressions for activator noise, Eq (4.18), and repressor noise, Eq (4.19); focusing now on
the repressor case, we recompute the information plane in the same manner as we did for
the activator in Fig 4.3a, and display the difference between the capacities of the repressor
and activator with the same noise parameters in Fig 4.4. As expected, the biggest difference
occurs above the main diagonal, where the input noise dominates over the output noise. In
this region the capacity of the repressor can be bigger by as much as third than that of the
corresponding activator. Note that as h — oo, the activator and repressor noise expressions
become indistinguishable and the difference in capacity vanishes for the noise models with
output and input diffusion noise contributions [Eqs (4.18, 4.19)]. The difference between
the two modes of regulation is still present but less striking in an alternative model with
output and input switching noise contributions.

The behavior of the regulatory element can be conveniently visualized in Fig 4.5 by
plotting a cut through the information plane along its main diagonal. Moving along this
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Figure 4.5: Comparison of exact channel capacities and various approximate solutions. For both
panels (no cooperativity, h = 1, on the left; strong cooperativity, h = 3, on the right) we take a
cross-section through the information plane in Fig 4.3 along the main diagonal, where the values
for noise strength parameters o and 3 are equal. The exact solution is shown in red. By moving
along the diagonal of the information plane one changes both input and output noise by the same
multiplicative factor s, and since, in small-noise approximation, Isna o log Z < [ oy (g)~'dg, that
factor results in an additive change in capacity by log, s. We can use the large noise approximation
lower bound on capacity for the case h = 1, in the parameter region where capacities fall below 1
bit.

cut corresponds to scaling the total noise of the system up or down by a multiplicative factor,
and allows us to observe the overall agreement between the exact solution and small- and
large-noise approximations. In addition we point out the following interesting features of
Fig 4.5 that will be examined more closely in subsequent sections.

Firstly, there is only a small regime where the capacity is below one bit and the large
noise approximation can be applied. With higher cooperativity this regime disappears,
suggesting that a biological implementation of a reliable binary channel could be relatively
straightforward if our noise model is appropriate. In addition, there are distributions not
specifically optimized for the input/output kernel that nevertheless achieve considerable
capacities: we illustrate this idea by using input distributions that are uniform in log(c/Ky)
in Fig 4.5 (thick black line) and interpret it as an indication that the maximum in capacity
cannot be very sharp with respect to small perturbations of the optimal solution, p(c*). We
revisit this idea more systematically in the next section.

Secondly, it can be seen from Fig 4.5 that at small noise the cooperativity has a minor
effect on the channel capacity, which is unexpected at first because the functional form of the
noise explicitly depends on cooperativity, Eq (4.18), and additionally, the shape of the mean
response g(c) strongly depends on h. We recall, however, that mutual information I(c; g)
is invariant to any invertible reparametrization of either g or ¢. In particular, changing the
cooperativity or the value of the equilibrium binding constant, K4, in theory only results
in an invertible change in the input variable ¢, and therefore the change in the steepness or
midpoint of the mean response must not have any effect on I(c; g). This argument breaks
down in the high noise regime, because reparametrization invariance would work only if
the input concentration could extend over the whole positive interval, from zero to infinity.
The substantial difference between capacities of cooperative and non-cooperative systems
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in Fig 4.5 at low capacity stems from the fact that in reality the cell (and our computation)
is limited to a finite range of concentrations, ¢ € [Cmin, Cmax], instead of the whole positive
half-axis, ¢ € [0,00) . We explore the issue of limited input dynamic range further in the
next section.

Finally, we draw attention to the simple linear scaling of the channel capacity with the
logarithm of the total noise strength, as explained in the caption of Fig 4.5, when small noise
approximation is valid. In general, increasing the number of input and output molecules by
a factor of four will decrease the relative input and output noise by a factor of v/4 = 2, and
therefore, in the small noise approximation, increase the capacity by logy 2 = 1bit. If there
is no cost that needs to be paid by the cell to make more transcription factor and output
protein molecules, then scaling the noise along the horizontal axis of Fig 4.5 is directly
related to the scaling of the total number of signaling molecules used by the regulatory
element. If there are metabolic or time costs to making more molecules, our optimization
needs to be modified appropriately, and we present the relevant computation in the section
on the costs of coding.

4.4.2 Cooperativity, dynamic range and the tuning of solutions

So far we have assumed that the computed optimal input distributions are biologically
realizable. For instance, the range of the allowed input concentrations was not constrained
explicitly to a narrow band of several-fold change around Kj; neither was any special
attention paid to the absolute value of K, because we argued that it would only modify the
units on the concentration axis; nor did we examine what are the possible consequences of
the requirements on the smoothness of optimal distributions, or discuss their “fine-tuning.”
Relying on simplifications of this sort or ignoring constraints to which a biological system
must inevitably be subjected amounts to making assumptions that do not necessarily hold
in nature, and the goal of this section is to study how the information transmission is
affected if such idealizations are relaxed.

We start by considering the impact on channel capacity of changing the allowed total
dynamic range to which the input concentration is restricted. Figure 4.6 displays, in the
left plot, the capacity as a function of the dynamic range (where we talk about a “10-fold
range” if ¢ € [%Kd, 5Kd] ), output noise and cooperativity. The main feature of the plot is
the difference between low and high cooperativity cases at each noise level; regardless of co-
operativity the total information at infinite dynamic range would saturate at approximately
the same level (which depends on the output noise magnitude). However, highly coopera-
tive systems manage to reach a high fraction (80% or more) of their saturated information
transmission levels even at reasonable dynamic ranges of about 10 to 20-fold, whereas low
cooperativity systems require a much bigger dynamic range for the same capacity. The
decrease in capacity with decreasing dynamic range is a direct consequence of the nonlinear
relationship between the concentration and occupancy, Eq (4.12), and for low cooperativity
systems in particular means not being able to fully shut down or fully induce the promoter.
This contrasts sharply with the theoretical noise model with infinite concentration range in
which, at zero input concentration, the noise is always zero, o4(c = 0) = 0, and therefore
this “zero input” constitutes a “letter” of the input alphabet that can be perfectly discrimi-
nated from all other inputs. Although we do not discuss it explicitly in our models of signals
and noise, leaky expression (i.e. non-zero output when the concentration of activators is
zero) will have a similar effect of degrading capacity to that of reducing the available input
dynamic range.
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Figure 4.6: Effects of imposing realistic constraints on the space of allowed input distributions. Left
panel shows the change in capacity if the dynamic range of the input around K, is changed. The
regulatory element is a repressor with either no cooperativity (dash-dot line) or high cooperativity,
h = 3 (thick line), and with output noise o only. We plot three high-low cooperativity pairs for three
different choices of the output noise magnitude (high noise in light gray, log o ~ —2.5; medium noise
in dark gray, loga ~ —5; low noise in black, loga = —7.5). Right panel shows the sensitivity of
channel capacity to perturbations in the optimal input distribution (grayscale indicates the number
of bits of capacity lost per unit Jensen-Shannon divergence between the optimal and suboptimal
input distribution — see main text and Fig A.19).

We conclude this section by discussing how precisely tuned the resulting optimal dis-
tributions have to be to take full advantage of the regulatory element’s capacity. For each
point in the information plane of Fig 4.3a the optimal input distribution p*(c) is perturbed
many times to create an ensemble of suboptimal inputs p;(c) [Methods A.4.6]. For each
pi(c), we compute, first, its distance away from the optimal solution by means of Jensen-
Shannon divergence, d; = Djs(p;, p*); next, we use the p;(c) to compute the suboptimal
channel capacity I;. A scatter plot of many such pairs (d;, I;) obtained with various pertur-
bations p;(c) for each system of the information plane characterizes the sensitivity of the
optimal solution for that system; the main feature of such a plot [Fig A.19] is the linear
(negative) slope that describes how many bits in channel capacity are lost for each unit
of Jensen-Shannon distance away from the optimal solution. These slopes are shown in
grayscale in the right plot of Fig 4.6 for the whole information plane. We note that for
systems with high capacity the linear relationship between the the divergence d; and ca-
pacity I; provides a better fit than for systems with small capacity. Most importantly, the
figure not only shows that high capacity solutions are more sensitive to deviations from the
optimal solution, but also that achieving 1 bit of capacity does not require much tuning —
if we take the linear slopes seriously and try to extrapolate as Djs — 1 to ask how much
channel capacity remains if one were to use very “un-tuned” solutions, we see that this
value is about a bit for most of the information plane.

4.4.3 Non-specific binding and the costs of higher capacity

Real regulatory elements must balance the pressure to convey information reliably with
the cost of maintaining the cell’s internal state, represented by the expression levels of
transcription factors. The fidelity of the representation is increased (and the fractional
fluctuation in their number is decreased) by having more molecules “encode” a given state.
On the other hand, making or degrading more transcription factors puts a metabolic burden
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on the cell, and frequent transitions between various regulatory states could involve too large
time lags as, for example, the regulation machinery attempts to keep up with a changed
environmental condition, by accumulating or degrading the corresponding TF molecules.
In addition, the output genes themselves that get switched on or off by transcription factors
and therefore “read out” the internal state must not be too noisy, otherwise the advantage
of maintaining precise transcription factor levels is lost.

Suppose that there is a cost to the cell for each molecule of output gene that it needs
to produce, and that this incremental cost per molecule is independent of the number of
molecules already present. Then, on the output side, the cost must be proportional to
(g9) = [dggp(g). We remember that in optimal distribution calculations g is expressed as
relative to the maximal expression, such that its mean is between zero and one. To get
an absolute cost in terms of the number of molecules, this normalized g therefore needs to
be multiplied by the inverse of the output noise strength, a ', as the latter scales with g
[Table 4.1]. The contribution of the output cost is thus oc a~g.

On the input side, the situation is similar: the cost must be proportional to K4(¢) =
K, [ déép(é), where our optimal solutions are expressed, as usual, in dimensionless concen-
tration units, ¢ = ¢/Ky. In either of the two input noise models (i.e. diffusion or switching
input noise), with diffusion constant held fixed, K4 oc 371 or Kg oc v~ 1.

Before continuing we need to make a careful distinction between the total concentration
of the input transcription factors, ¢;, and the free concentration cy, diffusing in solution in
the nucleus. We imagine the true binding site embedded in a pool of non-specific binding
sites — perhaps all other short fragments of DNA — and there being an ongoing competition
between one functional site (with strong affinity) and large number of weaker non-specific
sites. If these non-specific sites are present at concentration p in the cell, and have affini-
ties drawn from some distribution p(K), the relationship between the free and the total
concentration of the input is [Eq (3.23)]:

ct—Cf—i-p/de(K) Cf'ij. (4.21)
Importantly, the concentration that enters all information capacity calculations is the free
concentration ¢y, because it directly determines both the promoter occupancy in Eq (4.12)
as well as diffusive noise; on the other hand, the cell can influence the free concentration
only by producing more or less of the transcrption factor, i.e. by varying (and paying
for) the total concentration. Since our costs are determined only up to a proportionality
constant, the important question is whether or not the relation between ¢; and c; in Eq
(4.21) is close to linear. In Section 3.3.1 we have shown that a linear relation between total
and free concentrations is a reasonable approximation, and that no new appreciable noise is
generated by the presence of nonspecific binding sites. The bottom line is that the effect of
the nonspecific sites is restricted to changing the proportionality factor between the average
free concentration of the input molecules and their metabolic cost, but nothing else.

Collecting all our thoughts on the costs of coding, we can write down the “cost func-
tional” as the sum of input and output cost contributions:

ol =3 [depere+ ™ [depte) [dgptgios (422

where v1 and vy are proportional to the unknown costs per molecule of input or output,
respectively, and « and [ are noise parameters of Table 4.1. This ansatz captures the
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intuition that while decreasing noise strengths will increase information transmission, it
will also increase the cost. Instead of maximizing the information without regard to the
cost, the new problem to extremize is:

Lip(©) = Ip©)] - sClp(e))) — A / dep(c), (4.23)

and the Lagrange multiplier ® has to be chosen so that the cost of the resulting optimal
solution (C[p*(c)]) equals some predefined cost Cj that the cell is prepared to pay.
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We now wish to recreate the information plane of Fig 4.3, while constraining the total
cost of each solution to Cy. To be concrete and pick the value for the cost and proportionality
constants in Eq (4.22), we use the estimates from Drosophila noise measurements in Gregor
et al. (2006a) and the analysis of Section 3.2, which assign to the system denoted by a
blue dot in Fig 4.3a, the values of ~ 800 Bicoid molecules of input at K4, and a maximal
induction of gy ~ 4000 Hunchback molecules if the burst size b were 10. Figure 4.7a is the
information plane for an activator with no cooperativity, as in Fig 4.3, but with the cost
limited to an average total of Cy ~ 7000 molecules of input and output per nucleus. There
is now one optimal solution denoted by a green dot; if one tries to choose a system with
lower input or output noise, the cost constraint forces the input distribution, p(c), and the
output distribution, p(g), to have very low probabilities at high induction, consequently
limiting the capacity.

Clearly, a different system will be optimal if another total allowed cost Cj is selected.
The dark green line on the information plane in Fig 4.7a corresponds to the flow of the
optimal solution for an activator with no cooperativity if the allowed cost is increased, and
the corresponding cost-capacity curve is shown in Fig 4.7b. The light green line is the
trajectory of the optimal solution in the information plane of the activator system with
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cooperativity h = 3, and the dark and light red trajectories are shown for the repressor
with h = 1 and h = 3, respectively. We note first that the behavior of the cost function
is quite different for the activator (where low input implies low output and therefore low
cost; and conversely high input means high output and also high cost) and the repressor
(where input and output are mutually exclusively high or low and the cost is intermediate in
both cases). Secondly, we observe that the optimal capacity as a function of cost is similar
for the activators and repressors [Fig 4.7b] in sharp contrast to the comparison of Fig 4.4,
where repressors would enable higher capacities. Thirdly, we note in the same figure that
increasing the cooperativity at fixed noise strength 3 brings a substantial increase, of almost
a bit over the whole cost range, in the channel capacity, in agreement with our observations
about the interaction between capacity and the dynamic range [Fig 4.6]. The last and
perhaps the most significant conclusion is that even with input distributions matched to
maximize the transmission at a fixed cost, the capacity still only scales roughly linearly with
the logarithm of the number of available signaling molecules, and this fact must ultimately
be limiting in a single regulatory element.

4.5 Discussion

We have tried to analyze a simple regulatory element as an information processing device.
As a result we find that one cannot discuss an element in isolation from the statistics
of the input that it is exposed to. Yet in cells the inputs are often transcription factor
concentrations that “encode” the state of various genetic switches, from those responsible
for cellular identity to those that control the rates of metabolism and cell division, and the
cell exerts control over these concentrations. While it could use different distributions to
represent various regulatory settings, we argue that the cell should use the one distribution
that allows it to make the most of its genetic circuitry — the distribution that maximizes the
dependency, or mutual information, between inputs and outputs. Mutual information can
then be seen both a measure of how well the cell is doing by using its encoding scheme, and
the best it could have done using the optimal scheme, which we can compute; comparison
between the optimal and measured distributions gives us a sense of how close the organism
is to the achievable bound. Moreover, mutual information has absolute units, i.e. bits, that
have a clear interpretation in terms the number of discrete distinguishable states that the
regulatory element can resolve [Methods A.4.3, Fig A.16b]. This last fact helps clarify the
ongoing debates about what is the proper noise measure for genetic circuits, and in what
context a certain noise is either “big” or “small” (as it is really a function of the inputs).
Information does not replace the standard noise-over-the-mean measure — noise calculations
or measurements are still necessary to compute the element’s capacity — but does give it a
functional interpretation.

We have considered a class of simple parametrizations of signals and noise that can be
used to fit measurements for several model systems, such as bicoid-hunchback in the fruit
fly, lac in Escherichia coli and a number of yeast genes. We find that the capacities of these
realistic elements are generally larger than 1 bit, and can be as high as 2 bits. By simple
inspection of optimal output distributions in Figs 4.3b or 4.3c it is difficult to tell anything
about the capacity: the distribution might look bimodal yet carry more than one bit, or
might even be a monotonic function without any obvious structure, indicating that the
information is encoded in the graded response of the element. When the noise is sufficiently
high, on the other hand, the optimal strategy is that of achieving one bit of capacity and
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only utilizing maximum and minimum achievable levels of transcription factors for signaling.
The set of distributions that achieve capacities close to the optimal one is large, suggesting
that perhaps one-bit switches are not difficult to implement biologically.

Finally, we discussed how additional biophysical constraints can modify the optimal ca-
pacity. By assuming a linear cost model for signaling molecules and a limited input dynamic
range, the capacity and cost couple in an interesting way and the maximization principle
allows new questions to be asked. For example, increasing the cooperativity reduces the
cost, as we have shown; on the other hand, it increases the sensitivity to fluctuations in
the input, because the input noise strength 3 is proportional to h? [Table 4.1]. In a given
system we could therefore predict the optimal effective cooperativity, if we knew the real
“cost per molecule” [Methods A.4.2]. Further work is needed to tease out the consequences
of cost (if any) from experimental data.

The principle of information maximization clearly is not the only possible lens through
which regulatory networks are to be viewed. One can think of examples where only a
single bit needs to be conveyed, but it has to be done reliably in a fluctuating environment,
perhaps by being robust to the changes in outside temperature. It seems both concepts,
that of maximal information transmission and the robustness to fluctuations in certain
auxiliary variables that also influence the noise, could be included into the same framework,
but the issue needs further work. Alternatively, consider signaling systems where there
are constraints on the dynamics, something that our analysis has ignored by only looking
at steady state behavior; for example, the chemotactic system of Fscherichia coli has to
perfectly adapt in order for the bacterium to be able to climb the attractant gradients. All
these examples, however, assume some knowledge about the behavior over and above the
ability to define the element, its inputs and its outputs: they imply what is essential for the
proper functioning of that specific module, and this knowledge can be viewed (and perhaps
later formally included) as introducing additional constraint to which the basic information
transmission is subjected.

We emphasize that the kind of analysis carried out here is not restricted to a single
regulatory element. As was pointed out in the introductory Section 4.1, the inputs Z and
the outputs O of the regulatory module can be multi-dimensional, and the module could
implement complex internal logic with multiple feedback loops. It seems that especially
in such cases, when our intuition about the noise — now a function of multiple variables —
starts breaking down, the information formalism could prove to be helpful. Although the
solution space that needs to be searched in the optimization problem grows exponentially in
the inputs, there are biologically relevant situations that nevertheless appear tractable: for
example, when there are multiple readouts of the same input, or combinatorial regulation of
a single output by a pair of inputs; in addition, knowing that the capacities of a single input-
output chain are on the order of a few bits also means that only a small number of distinct
input levels for each input need to be considered. Some cases therefore appear amenable to
biophysical modeling approaches, and in the next section we will apply the theory presented
here to the regulation of Hunchback expression by the Bicoid TF in Drosophila melanogaster.
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4.6 Information flow and optimization in transcriptional reg-
ulation — Morphogenesis in the early Drosophila embryo?

Cells control the expression of genes in part through transcription factors, proteins which
bind to particular sites along the genome and thereby enhance or inhibit the transcription
of nearby genes [Fig 4.8]. We can think of this transcriptional control process as an in-
put/output device in which the input is the concentration of transcription factor and the
output is the concentration of the gene product. Although this qualitative picture has been
with us for roughly forty years (Jacob and Monod, 1961), only recently have there been
quantitative measurements of in vivo input/output relations and of the noise in output level
when the input is fixed (Elowitz et al., 2002; Ozbudak et al., 2002; Blake et al., 2003; Setty
et al., 2003; Raser and O’Shea, 2004; Rosenfeld et al., 2005; Pedraza and van Oudenaar-
den, 2005; Golding et al., 2005; Kuhlman et al., 2007; Gregor et al., 2006a). Because these
input/output relations have a limited dynamic range, noise limits the “power” of the cell
to control gene expression levels. In this section, we quantify these limits and derive the
strategies that cells should use to take maximum advantage of the available power. We
show that, to make optimal use of its regulatory capacity, cells must achieve the proper
quantitative matching among the input/output relation, the noise level, and the distribu-
tion of transcription factor concentrations used during the life of the cell. We test these
predictions against recent experiments on the Bicoid and Hunchback morphogens in the
early Drosophila embryo (Gregor et al., 2006a), and find that the observed distributions
have a nontrivial structure which is in good agreement with theory, with no adjustable
parameters. This suggests that, in this system at least, cells make nearly optimal use of
the available regulatory capacity and transmit substantially more than the simple on/off
bit that might suffice to delineate a spatial expression boundary.

Figure 4.8: Transcriptional regula-
tion of gene expression. The occu-
pancy of the binding site by tran-
scription factors sets the activity of
the promoter and hence the amount
of protein produced. The physics
of TF-DNA interaction, transcription
and translation processes determine
the conditional distribution of expres-
sion levels g at fixed TF concentra-
tion ¢, P(g|c), shown here as a heat
map with red (blue) corresponding
to high (low) probability. The mean
input/output relation is shown as a
thick white line, and the dashed lines
indicate 4+ one standard deviation of 0
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the noise around this mean. Two sam- log(c/K,) log(c/Ky) 9
ple input distributions Prg(c) (lower
left) are passed through P(g|c) to
yield two corresponding distributions
of outputs, Pexp(g) (lower right).

2This section appeared on the arXiv as Tkacik et al. (2007b).
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Gene expression levels (g) change in response to changes in transcription factor (TF)
concentration (¢). These changes often are summarized by an input/output relation g(c)
in which the mean expression level is plotted as a function of TF concentration [Fig 4.8].
The average relationship is a smooth function but, because of noise, this does not mean
that arbitrarily small changes in input transcription factor concentration are meaningful
for the cell. The noise in expression levels could even be so large that reliable distinctions
can only be made between (for example) “gene on” at high TF concentration and “gene
oft” at low TF concentration. To explore this issue, we need to quantify the number of
reliably distinguishable regulatory settings of the transcription apparatus, a task to which
Shannon’s mutual information (Shannon, 1948; Cover and Thomas, 1991) is ideally suited.
While there are many ways to associate a scalar measure of correlation or control with a
joint distribution of input and output signals, Shannon proved that mutual information is
the only such quantity that satisfies certain plausible general requirements, independent of
the details of the underlying distributions. Mutual information has been successfully used
to analyze noise and coding in neural systems (Rieke et al., 1997), and it is natural to think
that it may be useful for organizing our understanding of gene regulation; see also Ziv et al.
(2006).

Roughly speaking, the mutual information I(c; g) between TF concentration and expres-
sion level counts the (logarithm of the) number of distinguishable expression levels achieved
by varying c. If we measure the information in bits, then

I(c;g) = / de Pry(c) / dg P(g|c) log, [ 113::8)] : (4.24)

where Prp(c) is the distribution of TF concentrations the cell generates in the course of
its life, P(g|c) is the distribution of expression levels at fixed ¢, and Pexp(g) is the resulting
distribution of expression levels,

Poxp(g) = /ch(g|c)PTF(c). (4.25)

The distribution, P(g|c), of expression levels at fixed transcription factor concentration
describes the physics of the regulatory element itself, from the protein/DNA interaction, to
the rates of protein synthesis and degradation; this distribution describes both the mean
input/output relation and the noise fluctuations around the mean output. The information
transmission, or regulatory power, of the system is not determined by P(g|c) alone, however,
but also depends on the distribution, Prg(c), of transcription factor “inputs” that the cell
uses, as can be seen from Eq (4.24). By adjusting this distribution to match the properties
of the regulatory element, the cell can maximize its regulatory power.

Matching the distribution of inputs to the (stochastic) input/output relation of the
system is a central concept in information theory (Cover and Thomas, 1991), and has
been applied to the problems of coding in the nervous system. For sensory systems, the
distribution of inputs is determined by the natural environment, and the neural circuitry can
adapt, learn or evolve (on different times scales) to adjust its input/output relation. It has
been suggested that maximizing information transmission is a principle which can predict
the form of this adaptation (Barlow, 1961; Laughlin, 1981; Atick and Redlich, 1990; Brenner
et al., 2000). In transcriptional regulation, by contrast, it seems more appropriate to regard
the input/output relation as fixed and ask how the cell might optimize its regulatory power
by adjusting the distribution of TF inputs.
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It is difficult to make analytic progress in the general calculation of mutual information,
but there is a simple and plausible approximation. The expression level at a fixed TF
concentration ¢ has a mean value g(c), which we can plot as an input/output relation [Fig
4.8]. Let us assume that the fluctuations around this mean are Gaussian with a variance

o2(c) which will itself depend on the TF concentration. Formally this means that

g
— ()2
Plgle) = —— ()exp{— lo=g()" } (4.26)

2770'3 20’3 (c)

Further let us assume that the noise level is small. Then we can expand all of the relevant
integrals as a power series in the magnitude of o, [Eq (4.4)]:

I(C; g) = - / dg Pexp(g) 10g2 Pexp(g)
1 .
-2 / 0 Prsp(9) ogo [2mea ()] + - - (4.27)
where - -+ are terms that vanish as the noise level decreases and Pexp(g) is the probability

distribution for the average levels of expression. We can think of this as the distribution
that the cell is “trying” to generate, and would generate in the absence of noise:

Pols) = [ dePree)slg — g(c) (4.28)
-1
= Pr=c@)|2 (4.29)
c=c«(9)

where ¢,(g) is the TF concentration at which the mean expression level is g; similarly, by
04(g) we mean o4(c) evaluated at ¢ = c.(g).

We now can ask how the cell should adjust these distributions to maximize the in-
formation being transmitted. In the low-noise approximation summarized by Eq (4.27),
maximizing I(c;g) poses a variational problem for Puy,(g) whose solution has a simple
form:

pr () — L. L
_ 1
Z = /dgag(g). (4.31)

This result captures the intuition that effective regulation requires preferential use of signals

that have high reliability or low Variance—Pg‘xp(g) is large where o4 is small. The actual

information transmitted for this optimal distribution can be found by substituting ngp(g)
into Eq (4.27), with the result Iop(c; g) = log, (Z/v/2me).

Although we initially formulated our problem as one of optimizing the distribution of
inputs, the low noise approximation yields a result [Eq (4.30)] which connects the optimal
distribution of output expression levels to the variances of the same quantities, sampled
across the life of a cell as it responds to natural variations in its environment. To the extent
that the small noise approximation is applicable, data on the variance vs mean expression
thus suffice to calculate the maximum information capacity; details of the input/output
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relation, such as its degree of cooperativity, do not matter except insofar as they leave their
signature on the noise.

Recent experiments provide the data for an application of these ideas. Elowitz and
coworkers have measured gene expression noise in a synthetic system, placing fluorescent
proteins under the control of a lac-repressible promoter in E. coli (Elowitz et al., 2002).
Varying the concentration of an inducer, they determined the intrinsic variance of expression
levels across a bacterial population as a function of mean expression level. Their results
can be summarized as ag(g) = ag + bg?, where the expression level g is normalized to
have a maximum mean value of 1, and the constants are = 5 — 7 x 107 and b =
3—10x 1073, Across most of the dynamic range (g > 0.03), the small noise approximation
should be valid and, as discussed above, knowledge of o4(g) alone suffices to compute
the optimal information transmission. We find Iopi(c;g) ~ 3.5 bits: rather than being
limited to on/off switching, these transcriptional control systems could in principle specify
2lopt ~, 10 — 12 distinguishable levels of gene expression (see Section A.4.3)! It is not clear
whether this capacity, measured in an engineered system, is available to or used by F.
coli in its natural environment. The calculation does demonstrate, however, that optimal
information transmission values derived from real data are more than one bit, but perhaps
small enough to provide significant constraints on regulatory function.

When the noise is not small, no simple analytic approaches are available. On the other
hand, so long as P(g|c) is known explicitly, our problem is equivalent to one well-studied in
communication theory, and efficient numerical algorithms are available for finding the input
distribution Ppp(c) that optimizes the information I(c;g) defined in Eq (4.24) [Methods
A.4.1] (Blahut, 1972). In general we must extract P(g|c) from experiment and, to deal
with finite data, we will assume that it has the Gaussian form of Eq (4.26). P(g|c) then is
completely determined by measuring just two functions of ¢: the mean input/output relation
g(c) and the output variance ag(c). The central point is that, in the general case, solving the
information optimization problem requires only empirical data on the input/output relation
and noise.

The initial events of pattern formation in the embryo of the fruit fly Drosophila provide
a promising testing ground for the optimization principle proposed here. These events
depend on the establishment of spatial gradients in the concentration of various morphogen
molecules, most of which are transcription factors (Wolpert, 1969; Lawrence, 1992). To be
specific, consider the response of the hunchback (Hb) gene to the maternally established
gradient of the transcription factor Bicoid (Bed) (Driever and Nusslein-Volhard, 1988b,a,
1989; Struhl et al., 1989). A recent experiment reports the Bed and Hb concentrations in
thousands of individual nuclei of the Drosophila embryo, using fluorescent antibody staining
(Gregor et al., 2006a); the results can be summarized by the mean input/output relation
and noise level shown in Fig 4.9. These data can be understood in some detail on the basis
of a simple physical model as in Section 3.2 (Tkacik et al., 2007a), but here we use the
experimental observations directly to make phenomenological predictions about maximum
available regulatory power and optimal distribution of expression levels.

Given the measurements of the mean input/output relation g(c) and noise o4(c) shown
in Fig 4.9, we can calculate the maximum mutual information between Bed and Hb con-
centrations by following the steps outlined above; we find Iy (c; g) = 1.7 bits. To place this
result in context, we imagine a system that has the same mean input/output relation, but
the noise variance is scaled by a factor F', and ask how the optimal information transmission
depends on F'. This is not just a mathematical trick: for most physical sources of noise,
the relative variance is inversely proportional to the number of molecules, and so scaling
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Figure 4.9: The Bed/Hb input/output relationship in the Drosophila melanogaster syncitium at
early nuclear cycle 14 (Gregor et al., 2006a). (a) Each point marks the Hb (g) and Bed (¢) con-
centration in a single nucleus, as inferred from immunofluorescent staining; data are from ~ 11-103
individual nuclei across 9 embryos. Hb expression levels g are normalized so that the maximum and
minimum mean expression levels are 1 and 0 respectively; small errors in the estimate of background
fluorescence result in some apparent expression values being slightly negative. Bed concentrations
c are normalized by K, the concentration of Bed at which the mean Hb expression level is half
maximal. For details of normalization across embryos, see Gregor et al. (2006a). Solid red line is a
sigmoidal fit to the mean g at each value of ¢, and error bars are & one s.e.m.. (b) Noise in Hb as a
function of Bed concentration; error bars are & one s.d. across embryos, and the curve is a fit from
Tkacik et al. (2007a), cf. Section 3.2.

the expression noise variance down by a factor of ten is equivalent to assuming that all
relevant molecules are present in ten times as many copies. We see in Fig 4.10 that there
is a large regime in which the regulatory power is well approximated by the small noise
approximation. In the opposite extreme, at large noise levels, we expect that there are
(at best!) only two distinguishable states of high and low expression, so that our problem
approaches the asymmetric binary channel (Silverman, 1955). The exact result interpolates
smoothly between these two limiting cases with the real system (F' = 1) lying closer to the
small noise limit, but deviating from it significantly.

In the embryo, maximizing information flow from transcription factor to target gene has
a very special meaning. Cells acquire “positional information,” and thus can take actions
which are appropriate to their position in the embryo, by responding to the local concen-
tration of morphogen molecules (Wolpert, 1969). In the original discussions, “information”
was used colloquially. But in the simplest picture of Drosophila development (Lawrence,
1992; Rivera-Pomar and Jackle, 1996), information in the technical sense really does flow
from physical position along the anterior—posterior axis to the concentration of the primary
maternal gradients (such as Bed) to the expression level of the gap genes (such as Hb).
Maximizing the mutual information between Bcd and Hb thus maximizes the positional
information that can be carried by the Hb expression level.

More generally, rather than thinking of each gap gene as having its own spatial profile,
we can think of the expression levels of all the gap genes together as a code for the position
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Figure 4.10: Optimal information tull solution
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of each cell. In the same way that the four bases (two bits) of DNA must code in triplets in
order to represent arbitrary sequences of 20 amino acids, we can ask how many gap genes
would be required to encode a unique position in the Nyows ~ 100 rows of nuclei along the
anterior—posterior axis. If the regulation of Hb by Bed is typical of what happens at this
level of the developmental cascade, then each letter of the code is limited to less than two
bits (Iopt = 1.7 bits) of precision; since logy(Nyows)/Lopt = 3.9, the code would need to have
at least four letters. It is interesting, then, to note that there are four known gap genes—
hunchback, krippel, giant and knirps (Rivera-Pomar and Jéckle, 1996)—which provide the
initial readout of the maternal anterior—posterior gradients.

Instead of plotting Hunchback expression levels vs either position or Bed concentration,
we can ask about the distribution of expression levels seen across all nuclei, Peyp(g), as
shown in Fig 4.11. The distribution is bimodal, so that large numbers of nuclei have near
zero or near maximal Hb, consistent with the idea that there is an expression boundary—
cells in the anterior of the emrbyo have Hb “on” and cells in the posterior have Hb “off.”
But intermediate levels of Hunchback expression also occur with nonzero probability, and
the overall distribution is quite smooth. We can compare this experimentally measured
distribution with the distribution predicted if the system maximizes information flow, and
we see from Fig 4.11 that the agreement is quite good. The optimal distribution reproduces
the bimodality of the real system, hinting in the direction of a simple on/off switch, but
also correctly predicts that the system makes use of intermediate expression levels. From
the data we can also compute directly the mutual information between Bed and Hb levels,
and we find Tgata(c; g) = 1.5 £ 0.15 bit, or ~ 90% (0.88 +0.09) of the theoretical maximum.

The agreement between the predicted and observed distributions of Hunchback expres-
sion levels is encouraging. We note, however, some caveats. Bicoid has multiple targets and
many of these genes have multiple inputs (Ochoa-Espinosa et al., 2005), so to fully optimize
information flow we need to think about a more complex problem than the single input,
single output system considered here. Measurement of the distribution of expression levels
requires a fair sampling of all the nuclei in the embryo, and this was not the intent of the ex-
periments of Gregor et al. (2006a). Similarly, the theoretical predictions depend somewhat
on the behavior of the input/output relation and noise at low expression levels, which are
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Figure 4.11: The measured (black) and optimal (red) distributions of Hunchback expression levels.
The measured distribution is estimated from data of Gregor et al. (2006a), by making a histogram
of the g values for each data point in Fig 4.9. The optimal solution corresponds to the capacity of
Iopi(c; g) = 1.7bits. The same plot is shown on logarithmic scale in the inset.

difficult to characterize experimentally, as well as the (possible) deviations from Gaussian
noise. A complete test of our theoretical predictions will thus require a new generation of
experiments.

In summary, the functionality of a transcriptional regulatory element is determined by
a combination of its input/output relation, the noise level, and the dynamic range of tran-
scription factor concentrations used by the cell. In parallel to discussions of neural coding
(Laughlin, 1981; Brenner et al., 2000), we have suggested that organisms can make maximal
use of the available regulatory power by achieving consistency among these three different
ingredients; in particular, if we view the input/output relation and noise level as fixed, then
the distribution of transcription factor concentrations or expression levels is predicted by the
optimization principle. Although many aspects of transcriptional regulation are well stud-
ied, especially in unicellular organisms, these distributions of protein concentrations have
not been investigated systematically. In embryonic development, by contrast, the distribu-
tions of expression levels can literally be read out from the spatial gradients in morphogen
concentration. We have focused on the simplest possible picture, in which a single input
transcription factor regulates a single target gene, but nonetheless find encouraging agree-
ment between the predictions of our optimization principle and the observed distribution
of the Hunchback morphogen in Drosophila. We emphasize that our prediction is not the
result of a model with many parameters; instead we have a theoretical principle for what
the system ought to do so as to maximize its performance, and no free parameters.



Chapter 5

Conclusion

In this work we discussed two approaches to understanding biological networks, or dynam-
ical stochastic systems that process and transmit information in cells or organisms. The
first approach, i.e. building maximum entropy distributions with correlation constraints, is
data-driven and allows us to treat the network as a set of interacting nodes for which we
can compute the map of phenomenological interactions in a principled way. By applying
this method to the measurements of neural responses in retinal ganglion cells and activation
patterns in a protein signaling cascade, we have learned a number of new things summarized
below.

Firstly, despite an a priori possibility of finding very complex interactions, where k
elements jointly cooperate and influence the network state, the two data sets are very satis-
factorily explained by assuming that all interactions only happen between pairs of elements;
this is a huge simplification in model complexity. Secondly, the network structure of two
experiments is very different: in neurons we observe a dense mesh of all pairs interacting,
which causes weak but significant correlation between every pair, in addition to strong col-
lective effects once the network is big enough; in signaling proteins we observe a skeleton
of a few strong interactions that explain the whole correlation structure. Thirdly, the pair-
wise interaction approximation is probably valid in neurons because one of the two possible
states at a node (spiking vs non-spiking) is very rare; in contrast, in proteins we see at least
one instance where a higher order (triplet) interaction has to be added to account for the
data. Finally, in neurons we hypothesize about the role of collective states once the network
approaches the “critical” size of a few hundred components, as being one of providing the
error-correction capability to the population code.

In the second part of the thesis we introduced a new way of looking at building blocks
of genetic regulatory networks, namely transcriptional regulatory elements. These noisy
genetic components can be understood as information transmission devices in the sense
defined by Shannon, and as such they can be tuned to achieve a well-defined maximum of
the “regulatory power” when their properties are matched to the statistical properties of
the incoming signals. In the case of genetic regulatory elements, the incoming signals are
transcription factor concentrations, because this “chemical language” is the way in which
the cell stores a representation of its state and the state of its environment. If such maxi-
mum of regulatory power, or information capacity, has been selected for during the course
of evolution, our theory generates testable predictions about the distributions of TF con-
centrations in the cell; analysis of the data in the case of the fruit fly development seems to
support the hypothesis that information transmission is maximized. Even in the absence of
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such detectable optimization, however, information theory for genetic networks offers three
substantial benefits when formulating questions about the network’s functionality. Firstly,
it defines a scalar measure for the power of the regulatory element in conjunction with its
natural ensemble of inputs, that is a universal yard (or bit) stick for various regulatory ele-
ments. Secondly, it defines, in the same units, the limits to what the same regulatory element
could achieve if it is perfectly matched to the input ensemble, and therefore sets a theo-
retical upper bound on the information transmission. Finally, it provides an interpretation
of information capacity of a regulatory element in terms of biologically relevant concepts:
for example, the number of distinguishable regulatory settings for a genetic switch, or the
precision of spatial partitioning of the embryo for patterning systems during development.

There are a number of issues not addressed here in detail. In the phenomenological
picture of interactions we do not discuss time dynamics and therefore the interactions be-
tween nodes are undirected. It seems possible to extend the maximum entropy modeling to
encapsulate (at least a “one-timestep”) dynamics, but this has not been done yet. More-
over, when the maximum entropy formulation is extended to cover the dependence on the
stimuli, the problems of how to encode and include stimulus features in more general and
complex cases are not worked out. When information transmission in the genetic network
is discussed, a single regulatory element is extracted from the network, thus avoiding the
problems posed by feedback loops (or topology in general) and issues pertaining to global
information flow optimization versus local, single element, optimization. All these compli-
cations probably arise to some extent even in the fruit fly example considered here. Ideas
about incorporating constraints other than maximal information transmission, such as the
metabolic cost or robustness to parameter variations, are not worked out completely.

On the upside, it is easy to see the outlines of a more comprehensive theoretical program
here. We are thinking in particular about approaching the first steps of some complex ge-
netic program, for instance embryonic patterning, with the information transmission frame-
work: information flows from position to morphogen gradients (via the physical process of
gradient establishment) and from there to the gap genes (via the morphogen readout mech-
anisms). Given the upcoming generation of quantitative experiments exploring the early
development, it seems conceivable that both approaches to understanding networks could be
applied in parallel to great benefit. A successful theory of biological information processing
in such a system requires three components: a model — almost by necessity phenomenologi-
cal due to the complicated nature of elementary biophysical interactions — of the measured
data; predictive power that validates the model on unobserved data, e.g. on knockout and
other mutant perturbations; and most importantly, an answer to how the system achieves
what it is supposed to do, that is, assign unique identities to nuclei that start out being the
same. Phenomenological analysis of the data would uncover the structure of interactions
between the genes; a stochastic dynamical model can then be postulated or inferred from
the data (if they are abundant enough) and verified. When the agreement with measure-
ments is satisfactory, such model, analyzed with information theoretic tools, would result
in a prediction for its information capacity — a quantity for which we can develop a func-
tional and intuitive understanding because it counts the number of distinguishable nuclear
identities that could be conferred by the regulatory network performing at its best.



Appendix A

Methods

A.1 The biochemical network

1. Interpreting data

The dataset of Sachs et al. (2005) consists of the simultaneous measurements of the activity
level of N = 11 biomolecules (proteins and phospholipids) in the MAP cascade of human
CD4+ T cells: RAF, MEK, PLC~, PIP2, PIP3, ERK, AKT, PKA, PKC, p38 and JNK,
which we number in this order. The cells were treated with flourescent antibodies recogniz-
ing specific phosphorylated forms of the biomolecules, and multicolor flow cytometry was
performed to collect &~ 700 single-cell samples at every condition in steady state. There
are 9 conditions in total: the first 2 represent treatment with stimulatory agents (S1, S2)
that activate the cells through their surface receptors; the remaining conditions utilize vari-
ous additional combinations of non-natural intervention (inhibitory or activating) chemicals
that interfere at (presumably known) points in the pathway: condition 3 (C3 = S1 + I1)
inhibits AKT, C4 = S1 + I2 inhibits PKC, C'5 = S1 + I3 inhibits PIP2, C6 = S1 + I4 in-
hibits MEK, C'7 = S1+ I5 activates AKT, C8 = S1+ I6 activates PKC and C9 = S1+ 17
activates PKA. To be consistent with the experimenter’s procedure of preprocessing the
data when conditions were combined, we ignored raw values deviating more than 3¢ from
the mean and randomly drew a sample of exactly 600 measurements per condition from the
remaining data before the analysis.

2. Quantizing data

Quantization that maximizes the multi-information is a hard computational problem: sim-
ulated annealing Metropolis Monte Carlo has been used to choose the best way to partition
each of the 11 data series into 2 bins such that the multi-information among all of the
11 data series is maximal. The Monte Carlo moves consisted of increasing or decreasing
the quantization boundary by a decile of data points in each data series independently. A
custom annealing schedule was used that kept the ratio of rejected moves approximately
constant. 100 quantizations were done, all of which converged to within the order of esti-
mation error in entropy and gave essentially the same results on the whole dataset; the best
run was chosen for further analysis. Following the analysis by Sachs et al. (2005), during
quantization in the conditions that involve intervention (C3 — C9), the levels of perturbed
biomolecules were set to high for activated species or to low for inhibited species.
Quantization that maximizes mutual information (which is the method to choose when
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A.la: Condition 1. A.1b: Condition 2.

Figure A.1: Average exchange interactions for conditions 1 and 2, calculated separately for each
condition. 100 quantizations with random quantization boundaries are done for each condition,
and the maximum entropy model is computed for every such quantization. The magnetic fields
vary wildly from quantization to quantization because they constrain the single-element means (and
those depend on the quantization choice); the average magnetic field over random quantizations is
zero within error bars for all proteins. On the other hand the exchange interactions add coherently
to yield the average interaction maps plotted above.

one is too undersampled for max-multi-info quantization, for instance for quantization into
three bins) was performed by first quantizing data into 10 equipopulated bins and success-
fully coalescing neighboring bins in a greedy approach that minimizes the loss of average
mutual information at each step until all the data has been quantized into 2 or 3 levels (see
Supplementary Information of Sachs et al. (2005)). Small sample correction was used for
all estimates, following the direct method (Slonim et al., 2005a).

Note that the main features of the interaction maps can be recovered even if complicated
quantization schemes are not used. We could, for example, make quantizations in which the
boundary between state “off” and “on” is chosen randomly and separately for each protein
at decile boundaries, and repeat many times the maximum entropy reconstruction with these
quantizations. The average of the interaction maps over random quantizations for conditions
1 and 2 is shown in Figs A.la,A.1b, with clear similarities to Fig 2.11. By using the max-
multi-info quantization one simply hopes to extract as much of significant correlations from
the data as possible given the limited dynamic range of the discrete alphabet.

3. Constructing maximum entropy distributions

In the introduction to the chapter we only discussed how to compute maximum entropy
models in which the activities could take on two distinct states. Let us generalize this
to @ states here.! In other words, we are looking for p(coy,...,on) such that S[p(7)] is
maximized, subject to constraints:

p(oi = ar, 05 = @) = mj] (A1)

where p(0;,0;) are two-point marginals of the wanted distribution, ¢x,q € {0,...,Q — 1}
and mfjl are N (N —1)/2 measured marginal tables of dimension @) x Q. This is a constrained

!We find that the dataset of Sachs et al. (2005) is too small to estimate the quality of maximum entropy
reconstructions at @ = 3 (with max-mutual-info quantization, verification by measuring the three-point
correlation functions and entropy estimations similar to Fig 2.13.
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variational problem with an analytic solution:

p(o-h... ,UN) = %exp Zhi(gi)JrZJij(Uiao-j) (AQ)

1<j

Our task is then to solve constraint equations Eq (A.1), with probability distribution given
by Eq (A.2), and with unknowns h, J. In this case, where the quantization level @ is larger
then 2, the coupling J is not a single number, but is a matrix for each pair (7, j), and can be
in general regarded as a pairwise “potential” that depends on the levels of both interacting
elements.

It is easy to see why, in the binary case where o; = {—1, 1}, the general ansatz of Eq (A.2)
can be rewritten into the Ising form [Eq (2.30)]. Each pairwise constraint is a 2 X 2 marginal
probability table m with one normalization constraint and consequently 3 free parameters.
Suppose then that these three independent parameters are mg;, mig and mq;. Constraining
the mean of the first spin, (0;), by the magnetic field h;, is equivalent to constraining the
linear combination 1 (mig 4+ mi1)+0- (Mmoo + mo1), and similarly for spin j. Constraining
(oi0;) by the exchange coupling J;; is equal to constraining 1-m11+0- (mgo + mo1 + mao).
The Lagrange multipliers of the Ising model and Lagrange multipliers that constrain the
two-by-two marginal table in Eq (A.1) are consequently trivially related.

Note that the parametrization of Eq (A.2) contains more parameters than are needed
to uniquely specify the distribution, because there are consistency constraints between el-
ements of all marginal probability tables. To remove this ambiguity at @ = 3, we can
select the following gauge for each i and each pair (i,7): h;(1) = 0, Zqi Vij(ai,q5) =
g, Viilai q5) = 0.

Maximum entropy distributions of binary variables were computed using a custom Mat-
lab code that solves a set of Eqs (A.1) with the distribution parametrized by Eq (A.2); the
solution is accelerated by analytic evaluation of derivatives. For larger problems (i.e. @ = 3)
and the cases where conditions were combined in one reconstruction, we use L1-regularized
maximum entropy algorithm by Dudik et al. (2004). Regularization parameters of this
procedure do not have large impact on the solution and are determined by computing the
variance in constrained marginals in 20 random draws of half of the data at each condition.
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A.2 Network of retinal ganglion cells

1. Bootstrap errors. Because the 40-neuron sample consists of responses to movie
repeats, bootstrap errors are estimated by repeatedly taking a random half of the repeats?
and estimating deviations in covariance and means. Figure A.2 shows the process of error
estimation. Out of 145 repeats, first 25 are discarded to remove the systematic variation
(adaptation of neurons apparent as a drift in the mean firing rate). Then, bootstrap repli-
cas are generated by selecting, with replacement, 1,2,--- 64 random repeats out of total
of remaining 120, using 200 resamplings, and calculating (o;) and (o;0;) over those sub-
samples. The deviation in the means and covariances is taken to be the sample error in the
corresponding statistics, and is extrapolated to the full dataset. The upper right panel in
Fig A.2 shows that this extrapolation procedure is reliable, with expected scaling (which is
noticably less exact if bootstrapping is done without replacement). Effectively, this means
we treat the movie repeats as independent draws from some underlying probability distri-
bution that generates the whole 1310-sample-long spike train. Having so extrapolated the
errors in means and correlations to the whole dataset or, alternatively, to one repeat, we
compute the predictions for the errors in the mean and correlation.

For example, let the estimated mean of the spin o; be ;. Because the spins are binary,
the variance associated with the mean estimation is (Std ;)* = (0y03) — (03)? = 1 — (0)?
per draw, and is decreased to Std g; = ?}% if Neg independent samples are measured.

By comparing the sample error in a statistic (inter-repeat deviation, on the left-hand
side of the expression above) with the expected total deviation of the statistics (computable
from the mean, on the right-hand side of the expression above) we can figure out the effective
sample size, Nqg. For the true dataset with preserved repeat structure, the effective number
of samples per repeat is Neg ~ 3500. If timebins are randomly permuted in the dataset,
so that the repeat structure is destroyed, and the bootstrap estimation is performed again,
the Nggnd ~ 1300. The number of total samples in a repeat is 1310.

The interpretation of these results is as follows: the random reshuffling of the time
bins generates a homogenous data set in which the partition into “repeats” is arbitrary.
Therefore intra-repeat and inter-repeat variance in the estimates must be consistent, and
indeed they are (see the black line fit in the lower panel in Fig A.2). In contrast, for real data
set, the inter-repeat variance is too small given the statistics to which the Ising model was
fit. This is due to the fact that, within each repeat, the response is driven by the stimulus
and is not stationary, which makes the intra-repeat variance big compared to inter-repeat
variance; the smallness of the latter basically says that the system gives reliable response to
the same repeated stimulus. Because the inter-repeat variance is so small, it appears as if
one needed approximately 2.7 times more samples within each repeat to make the observed
variances equal. Turning this around, for a given intra-repeat variance, we really have just
about 54 independent effective repeats of the data, instead of nominal 145.

2. Reconstruction precision. For 40 neurons we solve for {h;, J;;} using Contrastive
Divergence Monte Carlo (one-step learning (Hinton, 2002)) followed by gradient descent
learning Eq (2.34) with a = 0. For 120 neurons we use Eq (2.34) with the momentum
a = 0.9. The set of constrained operators consisted in this case of means and covariances
C;; instead of means and products (o;0;); the latter change is made because otherwise
a small error in the reconstruction of a mean systematically influences a large number
of Cjj, with consequences for the thermodynamic quantities of interest. See Fig A.3 for

2Note that this is not the same as taking any random half of the data.
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Figure A.2: Upper left: non-stationarity in the statistics in the first ~ 20 repeats of the movie. Up-
per right: bootstrap error extrapolation for all means and covariances of 40 neurons with bootstrap
sample size (N, repeats) on x-axis (200 repeats for each bootstrap sample). The extrapolation is
reliable and estimated errors decrease as 1/ V/N,., as expected. Lower panel: scatterplot of total
deviation in each correlation, /1 — (0;0,)? against the per-repeat sampling error in the same corre-
lation. Red dots show the scatterplot when the repeat structure of the data is preserved; black dots
show the time-axis reshuffled, so that the time structure is destroyed. The fits are used to calculate
Negr, the effective number of samples in a given repeat.

reconstruction precision. Monte Carlo simulation was implemented in C/C++, and the
learning algorithm in Matlab; Matlab drove parallel instances of Monte Carlo simulations
on the cluster. Order 10® independent samples (at least 2N, but sometimes more, spin flips
were made before a sample was drawn from MCMC) were taken for the computation of
operator averages at each step of the learning iteration.

3. Energy histograms. If we take the Hamiltonian of the pairwise model that is
computed from the correlations in the data, we can evaluate the energy of all patterns
observed in the data set; in addition, we can calculate (or simulate with Monte Carlo for
bigger cases) what the expected distribution of the energies would be. Figs A.4a and A.4c
show energy histograms for 40 and 20 neurons, respectively. In addition to the probability
of observing K simultaneous spikes [Fig 2.18] this is yet another projection of 40 (20)
dimensional sample space down to one scalar dimension. We see the expected disagreement
in the ground state frequency (related to the P(K = 0) disagreement of the firing curve),
but also a more marked discrepancy in 40-neuron MC energy histogram in the tail.

4. Comparison with n = 20 neuron reconstructions. To decide whether the
systematic deviations in the case of three-point correlations and the firing curve are a con-
sequence of imperfect MC reconstruction or a real effect, we perform the same analysis on a
pairwise maxent model of first 20 out of 40 neurons, for which we have a convergent, deter-
ministic algorithm. Figure A.5a shows, as expected, that the reconstruction has converged
to within sampling limits, and that MC simulations for computing back the observables
given the fully converged coupling constants work without bias.
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Figure A.3: Reconstruction precision of Monte Carlo (MC) on full data set of 40 neurons. Upper left:
measured covariance vs reconstructed covariance. Reconstruction is averaged over 5 MC runs of 190k
samples each. Black lines represent error estimates obtained by taking a random selection of a half
of the samples from the real data, and estimating covariances 5 times. Lower left: the same plot for

. . . . . CE _CoxPt
mean firing rates. Upper right: a plot of precision of reconstructed variances, —logy, (700,‘;,5),

ij
where Ceth is obtained from the data and Cg is the average of 5 MC runs, in red; in black, bootstrap
error of the covariance element estimates plotted in the same manner for 5 half-size subsamples of
the data. Lower right: the same plot for mean firing rates.

Figure A.5b shows that firing curve deviates with the same systematics as in 40 neuron
case. Here, the probabilities of silence in the data and Ising model are Pp(0) = 0.621 vs
Pyr(0) = 0.599, a deviation of about one-half of the size of that for 40 neurons. In addition,
the deviations between data and predictions for K simultaneous spikes are in the same
direction as in the 40-neuron case.

Furthermore, the triplet correlations show the same deviation as in 40-neuron case, in
which the three-point correlations are over-estimated by the pairwise model [Fig 2.18]. I
have again checked that this is not a consequence of faulty MC implementation, as we have
the ability to explicitly sum the partition function and compute the three-point correla-
tions exactly: MC and explicit calculations agree with no systematics (not plotted). The
consistency of results between 20 and 40 neurons indicates that although the 40-neuron
reconstruction does not perfectly converge to the data, this fact is mot responsible for
disagreements in the three-point correlations and the firing curve; on the contrary, it is
probably an indication that while second-order Ising is a good model that captures most of
the features of the data, it does not capture all of them.

5. Reconstruction of 40-neuron coupling constants from 20-neuron subnet-
works
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Figure A.4: Energy histograms for 20 and 40 neurons. The MC-reconstructed couplings are used to
calculate the energy of each sample in the real dataset and the histogram of such energies is plotted
in red. 5 MC simulations of 190k samples each are used to generate the corresponding blue curve,
and the dashed blue lines describe the error estimates. The line is broken in several places because
the density of states is low at low energies (e.g. ground state is far away from the bulk).
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Figure A.5: Reconstruction precision (a) and the probability P(K) of observing K simultaneous
spikes (b) for the first 20 neurons of the dataset. Computed using L-1 regularized maximum-entropy
algorithm of Dudik et al. (2004), a convergent and deterministic learning procedure for {h;, J;;}.
Although the observables are fit to within better than bootstrap error estimates, there is nevertheless
a systematic deviation both in the firing curve and in the triplet correlations [Fig 2.18], showing
that in the 40-neuron case the incomplete convergence of the Monte-Carlo reconstruction is not the
cause of the disagreement of the model and the high-order statistical features in the data.

40-neuron vs 20-neuron couplings
Figure A6: Comparison between the magnetic fields (black)’, exchange cpls (red)
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Here we explore the agreement between coupling constants reconstructed by doing max-
imum entropy on 88 subnetworks of size 20, using exact calculation, and coupling constants
obtained by full 40-neuron MC. Comparison of couplings reconstructed exactly from 20-
neurons with MC 40-neuron reconstructions shows interesting features: A) magnetic fields
follow a linear trend and are by a factor of ~ 2.2 bigger for 20-neuron case; B) pairwise
couplings exhibit the same slope, but are offset by approximately a constant relative to the
40-neuron case, see Fig A.6. The increase in 20-neuron magnetic fields is likely to be ac-
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counted for by the mean-field of the unobserved 20-neurons; the change in pairwise coupling
between two arbitrary neurons N1 and N2 is a consequence of (unobserved) N3 that couples
to both N1 and N2. In this case, it could also be expected that the three-point couplings
(induced by unobserved elements) are smaller in 40-neuron case and that the disagreement
in three-point correlations is somewhat smaller for the bigger system [Fig 2.18].

6. Decimation flow of coupling constants. We would like to study the behavior of
the mapping {h, J} 5 — {h,J}y_;, i.e. the flow of coupling constants when we stop keeping
track of the last, or N-th, neuron (e.g. suppose this is the neuron we cannot observe). The
idea is to start out with a probability distribution defined on N neurons (we decide to keep
the three-point interaction term):

p(N)({al, .., ON}) = = exp Z hioi + = Z Jijoioj + — Z Jijk0i0 ;0%
Z]k

We are looking for the probability distribution p¥—1 of the same form, but defined over
N — 1 neurons, and the relation between the two is marginalization:

o)=Y p"(o)

In general, the marginalization cannot hold exactly while the forms of both distributions are
fixed to an Ising form with two- or three-point interactions. However, our experiments on
real data show that a two-point Ising is a good description for any size, from 2 neurons to 40,
of the observed spike train statistics. We might be hopeful, therefore, that the interactions
of level three and higher will be negligible.

Since the spiking is rare, let’s switch first into sparse representation o; — 20; — 1, with
the new o; € {0,1}. Then, the marginalization reads:

_ 1 )
pN V() = = exp( HN-1)( >) y
X Zexp{h]v@a]v—l)—i-
ON

+ ZJUV 2on —1)(205 — 1) + ZJ”N 20 — 1)(205 — 1) (205 — 1)

This equation is now exactly summed over oy; the terms resulting from the summation
are expanded (up to fourth order) in ;. If we define renormalized J;ny = Jin — Zj JijN

(use renormalized two-point .J from now on without a tilde) , and introduce factors §0V) =
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exp <2hN =235 DN+ Dy JUN) and w) = 0§N§+}, such expansion reads:

P o) = (- HY ()0 +1) %

X 1+2WZJiNUi+2WZJijNUz’Uj+2ZJiNJjNUin+

iN ijN ij
+ 4 Z JinJjkNOiojo) + 2 Z JijNJunoiojoR0; +
ijk ijkl
8w
+ ? Z JZ'NJjNJkNUinUk + 4w Z JiNJjNJklNUinUkUZ +
ijk ijkl

24
+ o Zk:z JinJiNJknJINTiT OO}
ij

Since the distribution for N — 1 neurons also has to take the Ising form, we require that the
expansion in curly braces above be an expansion of a term of the form (sums over repeated
indices are understood, but notice that sums are taken in the expression above as well as
below also over equal indices i =j =k---):

f=exp{aio; + Bijoioj + Vijroiojok + dijkioiojoRor + - -+ }

Matching terms order-by-order we identify:

ap = 2wdin
ﬁij = 2JiN<]jN(1 —w2) +2injN
2
Yijk = 4(1 — w2) (JiNijN — BWJiNJjNJkN)
5ijkl = (1 - WQ) (2JijN<]klN - GWJiNJjNJklN—

4
— 2wJiinJgkNIiN + §(3w2 - 1)Jz‘NJjNJk:NJlN>

Now that the expression for decimated probability distribution has been collapsed back to
the exponential form, we switch into o; € {—1,1} representation and contract the sums
on equal summation indices, since o7 = 1. This yields the final mapping for the coupling
constants as the system is reduced by marginalizing over N-th neuron:

hi — hi+ al+ Z%]k+16z]€;5mkl+3zmﬂ Wi (A.3)
]

1
iJij — §Jij + Zﬁij Z%]k +— 16 Z%kz +— 16 Z(Sz]kk 16 bijij  (A4)

1 1
Ui T G

1
Jije + g%k + 16 Z Oijkl (A.5)
l
where 7 = $7ijk + 15 >y Oijhi-
The form of Eqs (A.3, A.4, A.5) explains both why pairwise Ising model can successfully
describe less than N neurons if it works on N neurons; and the scaling of the coupling
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constants seen in Fig A.6. If parameter |w| is close to 1, factors of 1 — w? are found in

the expressions for 8, v and §, and they will tend to make (,,d close to zero; the only
sizeable contribution is therefore to «, which renormalizes magnetic fields; and would be to
B from three-point coupling terms. However, as we postulate (and show on real data) that
two-point Ising is a good description for N neurons, these 3-point couplings are 0 for N
neurons and can grow only through v and § terms, which again are suppressed as 1 — w?.

If # — 0, then w — —1, which happens when hAn — ), Jin tends to be very negative.
Because we can rewrite Ay — ), Jin &~ hy + > jiN<U7;>, we see that this limit is actually
a requirement that in mean field treatment, the effective bias experienced by spin N must
be such that the (on) ~ —1.

7. Calculation of the entropy for 40 neurons. The entropy of the 40-neuron
system can be estimated in two similar ways: in method A, one starts with magnetic fields
that reproduce the observed 1-point marginals and zero pairwise couplings (in this state
we know how to calculate the entropy), and then magnetic fields and couplings are varied
to their final values. In the process S = Sy — 3, [ d(0,)g,-2 This process yields a multi-
information of I = 0.689 bits. As a sanity check, for a 20-neuron system, it yields I = 0.368
bits, compared to the exact value (by state enumeraton) of I = 0.369 bits.

Method B for estimating the entropy involves heating up the system from low tempera-
ture (where it is in the ground state at Sy = 0) to the final state with 7' = 1, using the fact
that heat capacity is C =T g—? and C = kBlTQ ((0E)?), which can be evaluated either ana-
lytically (for 20 neurons) or in a MC simulation by sampling. The entropy for 40 neurons
is thus S = 5.466, independent entropy Sy = 6.1534 and multi-information I = 0.6868, all
in bits, in excellent agreement with method A.

There exists an entropy bound, or Ma entropy estimate (Strong et al., 1998) that we
can use for binary patterns discussed here. On the 40-neuron dataset this estimate gives
S = 4.66 bits, and on 20-neuron dataset S = 3.36 bits (for this case, sample-sized corrected
direct estimate from the data is S = 3.65 bits and maximum entropy model is S = 3.69
bits).

Figure A.7 shows the scaling of the entropy and multi-information with the size of the
system. Notice that the expected exponents for the scaling are 1 for entropy and 2 for multi-
information (in the limit of weak coupling). The point at which the curves would intersect,
yielding a zero-entropy frozen system, is at N. &~ 300 (with the entropy starting to decrease
at about N, =~ 200), cf. Schneidman et al. (2006). This point cannot be achieved as entropy
does not decrease with increasing size, and the real system must either be composed from
a smaller number of elements, or the extrapolation loses its validity at N < N.. For fits
based on up to 20 neurons only, the exponents are 0.96 for the entropy and 2.05 for the
multi-information, and the intersection happens at about 200 neurons (Schneidman et al.,
2006).

8. Ground states. 40-neuron system has 5 1-spin-flip-stable ground states G, found
in the dataset, depicted (with their corresponding energies) in Fig A.8a. These states were
found by taking the real data sample and examining the stability of each distinct state.?
If such state can be perturbed by a single spin flip so that the energy is lowered, this is
done until a local energy minimum is reached. Then the complete 190k data series can be
projected onto its corresponding ground states, as shown in Figs A.8b, A.9.

3A quick way to show this is to take the derivative of the entropy with respect to coupling g, and write
the entropy as S =1logZ — 3 9u(Op).
4There are probably some stable states that have not been discovered, especially if they have high energies.
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For each of the ground states we can try to estimate the size of the “basin” of states
that are assigned to it. The number of samples for each state but the state 1 (silence)
is small: out of 189950 total samples, 658 (383 distinct, ground state appears 70 times,
with approximately 10-20 other states appearing around 10 times, and others being single
repeats) correspond to state 2, 295 (113 distinct, ground state appears around 40 times,
and there are around 20 states appearing around 5 times, others being single or double
repeats) to state 3, 154 (57 distinct, ground state appears 20 times, there are around 5
other states appearing 10-15 times, and the remaining are single repeats) to state 4 and 235
(152 distinct, ground state appears around 25 times, there are order of 20 states apparing
3-5 times, the remaining are single repeats) to state 5. One can try to use the Ma estimate
of entropy of these states (i.e. S[P({0;}|Ga)]) from Strong et al. (1998), to get 7.5 bits for
state 2, 5.1 bits for state 3, 4 bits for state 4, 5.2 bits for state 5 and 4.6 bits for silence
(which is similar to total Ma entropy estimate for the whole sample).

The information conveyed by the five possible ground state assignments about the time
(which stands as a proxy for the stimulus) is small, I(G,;t) ~ 0.046 bit. This is bounded
from above by the entropy in the ground state assignment distribution, which is very skewed
by the frequent occurence of the trivial ground state, S[p(G,)] ~ 0.07 bit. The brain
thus learns a lot on the rare occasion when a specific non-trivial state happens, but most
frequently it does not learn much from such a small piece of the retina with this stable-state
code.

9. Properties of low-lying stable states For a network of 120 neurons we can
generate a large sample (10 - 10° independent samples, drawn from a long MCMC run where
K spin-flips are performed between successive draws), and identify lowest lying stable states
by zero-temperature Monte Carlo (ZTMC starts with the pattern and iterates Eq (A.6) until
no more spins are flipped):

g; < sign Z JijUj + hi (A6)

J
For lowest 1000 stable states, arranged by energy, we want to compute several local statistics,
such as magnetization within the basin, entropy of the basin, average energy etc. For
this, every MC sample in a long simulation run is assigned to its basin using ZTMC,
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Figure A.8: Left: firing (white) and silence (black) patterns of the non-trivial stable states. Index
« of the stable state G, runs along the vertical axis, and the neuron index ¢ = 1,...,40 along the
horizontal. Right: projection of the real data series onto the stable states, averaged over 145 repeats.
Time is plotted on the horizontal axis in units of At = 20 ms; vertical axis shows the probability of
the system being in a certain state that corresponds to one of the four non-trivial stable states.
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and we hope to collect enough patterns in each basin to make the local statistics feasible
to estimate. First, we have to determine K, the minimum number of spin-flips in the
Metropolis procedure that breaks the Markov chain correlations with the previous sample.
We start the Markov Chain in stable states that we have pre-identified, and measure the
average number of spin-flips needed to depart from that stable state and fall into the basin
of another stable state. Figure A.10 shows this distribution in lower right corner: we set
K = 1000 as the number of spin flips between sample draws. With this value K we can
accumulate enough samples to estimate the local average energy of basin of attraction G;,
as well as a naive estimate of the entropy in that basin. As a consistency check we then plot
the log (empirical MC) probability of observing a pattern from basin G; against the free
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energy F(G;) = (E)g, — S(G;) and find a linear relationship with a slope 1.07 between both
quantities, thereby confirming that our local estimates are reasonably good and properly
sampled (note that we only track 1000 lowest states out of many more, but the lowest 1000
account for most of the probability weight [Fig 2.20]).
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Figure A.10: Properties of the lowest-lying 1000 stable states. Upper right: the average energy
barrier for escape from a stable state to a nearby stable state, averaged across the “from” and “to”
states. For each of the 1000 states studied, we attempted 1000 escapes to a neighboring state in
the pattern space. The path from the stable state to the separatrix between the two states is also
measured and histogrammed in lower right plot; from here we pick K ~ 1000 as the number of flips
between samples. Left: for each energy basin we can estimate the log probability of finding a state
from that basin (horizontal axis) and compare this to the free energy of the basin, F(G;), with a
satisfactory linear match (black line).

10. Redundancy. How much information does a group of neurons contain about
another neuron in the network or about the identity of the basin of attraction?
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Figure A.11 shows the scaling of these information quantities for small enough subgroups
of 120 neurons, for which we can generate enough MC samples using the synthetic model.
One learns approximately twice as fast as the number of neurons grows about the stable
state (with extrapolated “full knowledge” at 60 neurons, or one half of the total network
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size) in comparison with learning about the state of the single neuron (extrapolated “full
knowledge” at 120 neurons, i.e. the network is close to error-correcting for single neuron
fluctuations). Alternatively, it is easier to infer the collective state of the network than the
state of a single neuron from a subgroup of neurons, a property that might be desirable for
reliable and robust downstream decoding of a population code.
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A.3 Input and output noise in transcriptional regulation

1. Langevin noise model

We consider a simplified model of regulated gene expression, as schematized in Fig 3.2:

dic = DV3¢(x,t) —nd(x—x9) +S—D (A.7)
n = kyc(xo,t)(1—n)—k-n+¢&, (A.8)
¢ = Ren—1,ret+& (A.9)
g = Ree—71,'g+¢. (A.10)

Equation (A.7) describes the diffusion of the transcription factor that can be absorbed to
or released from a binding site on the DNA located at xg. These transcription factors are
produced at sources § and degraded at sinks D, which can both be spatially distributed
and can also contribute to the noise in ¢. Equation (A.8) describes the dynamics of the
binding site occupancy; binding occurs with a second order rate constant k4 and unbinding
with a first order rate constant k_, and the dissociation constant of the site is Ky = k_ /k4.
The Langevin term &, induces stochastic (binomial) switching between occupied and empty
states of the site. Equations (A.9) and (A.10) describe the production and degradation of
mRNA and protein, respectively, and include Langevin noise terms associated with these
birth and death processes.

This seems a good place to note that, while conventional, the assumption that transcrip-
tion and translation are simple one step processes seems a bit strong. We hope to return
to this point at another time.

Our goal is to compute the variance in protein copy number, 02 (¢). For simplicity we
will assume that the transcription factors are present at a fixed total number in the cell
and that they do not decay, S = D = 0. We will see that even with this simplification,
where the overall concentration of transcription factors does not fluctuate, we still get an
interesting noise contribution from the randomness associated with diffusion in Eq (A.7).

Our basic strategy is to find the steady state solution of the model, and then linearize
around this to compute the response of the variables {n, e, g} to the various Langevin forces
{&n. &, &g} In the linear approximation, the steady states are also the mean values:

c = ¢ (A.11)
B ke ¢

() = kic+k_ e+ Ky (A.12)

(e) = Rete(n) (A.13)

(9) = Rg14(e) = goln), (A.14)

where gy = R.7.Ry474 is the maximum mean expression level. Notice that what we have
called g = (g)/go is just the mean occupancy, (n), of the transcription factor binding site.
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Small departures from steady state are written in a Fourier representation:

3 . .
c(x,t) = c—{—/;&:/(gw];::ge’k'xe“"téé(k,w) (A.15)
dw .
n = <n>+/we_“"t(5ﬁ(w) (A.16)
27
dw .
e = (e)+ / = (A.17)
dw —iwt §~
g = o)+ [ e ). (A18)
™
Similarly, each of the Langevin terms is written in its Fourier representation,
dw —iwt &
M:/%e '€,(w), (A.19)

where u =n,e,g.
As a first step we use the Fourier representation to solve Eq (A.7) for dc(xo,t) that we
need to substitute into Eq (A.8) for the binding site occupancy:

de(xg,t) = /(;Cde_i‘“téé(xo,w) (A.20)
s
8 o 43k 1
0é(xp,w) = zwén(w)/@ﬂ_)g i T DK (A.21)
_iwdn(w)
= . (A.22)

The integral over k in Eq (A.21) is divergent at large |k| (ultraviolet). This arises, as ex-

plained in (Bialek and Setayeshgar, 2005), because we started with the assumption that the

binding reaction occurs at a point—the delta function in Eq (A.7). In fact our description

needs to be coarse grained on a scale corresponding to the size of the binding site, so we

introduce a cutoff so that |k| < kpax = 27/a, where a is the linear size of the binding site.
Linearizing Eq (A.8) for the dynamics of the site occupancy, we have

—iwdi(w) = — (ks + k_)oA(w) + ki (1 — (n))6&(x0,w) + En(w). (A.23)

Substituting our result for 0¢(xp,w) from Eq (A.22), we find

—wn(w) = —(kyc+k_)on(w)+ (A.24)
b)) ) )

iw {1 + W] S(w) = —(kye+k_)0n(w) + Enw) (A.26)
Sh(w) = n(w) (A.27)

where ¥ = k4 (1 — (n))/(wDa). The linearization of Eqs (A.9) and (A.10) takes the form

—iwdé(w) = —Tleéé(w) + Redi(w) + Eo(w) (A.28)
Liwb§(w) = ——65(w) + Ry0e(w) + &, (w) (A.29)

Tg
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Each Langevin term is independent, and each frequency component w is correlated only
with the component at —w, defining the noise power spectrum (£, (w)€,(—w')) = 2md(w —
W' )Nu(w) for = n,e, g. Solving the three linear equations, Eqs (A.27-A.29), we can find
the power spectrum of the protein copy number fluctuations,

_ Ng 2 Ne
S%W = i t a e ) (A.30)
+ R2R? Al (A.31)

A+ 1R+ EP + 1]

where 1/7. = ki¢ + k_. This form has a very intuitive interpretation: each Langevin
term represents a noise source; as this noise propagates from the point where it enters
the dynamical system to the output, it is subjected both to gain of each successive stage
(prefactors R), and to filtering by factors of F, = (w? + 1/72)7L.

The total variance in protein copy number is given by an integral over the spectrum,

(697) = 72 = [ 528,0) (A32)
T

and the noise power spectra of the Langevin terms associated with the mRNA and protein

dynamics have the simple forms N.(w) = 2R.(n) and Ny(w) = 2R4(e), respectively. The

spectrum N, (w) is more subtle. One way to derive it is to realize that since there is only

one binding site and this site is either occupied or empty, the total variance of dn must be

given by the binomial formula,

((0n)%) = (m)(1 = (n)). (A.33)

Starting with Eq (A.27) and the analog of Eq (A.32), we can use this condition to set the
magnitude of NV,. Alternatively, we can use the fact that binding and unbinding come to
equilibrium, and hence the fluctuations in n are a form of thermal noise, like Brownian
motion or Johnson noise, and hence the spectrum N, is determined by the fluctuation—
dissipation theorem (Bialek and Setayeshgar, 2005). The result is that

N, = i(l £ D)) (1 — (). (A.34)

For simplicity we consider the case where the protein lifetime 7, is long compared with
all other time scales in the problem. Then we can approximate Eq (A.31) as

! NQ + (RQTG)QNe + (RgTeReTc)an] . (A35)

Sy(w) ~ 21/ [

Substituting the forms of the individual noise spectra N, and doing the integral over w [Eq
(A.32)], we find the variance in protein copy number

o5 = TylRyle) + (Ryme)*Re(n)]
+ 22 (Ryre Rere) (1 + T)(n) (1 = (). (A.36)

We notice that the first term in this equation is R,7,4(e), which is just the mean number of
proteins (g) from Eq (A.14). The second term

Tg(Rg7e)?Re(n) = Rg7y(Rete(n))(RyTe) (A.37)

= Ryry(e)(RyTe) (A.38)

= Ry7e(g). (A.39)
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Thus, the first two terms together contribute (1 + Ry7.)(g) to the variance, and this corre-
sponds to the output noise term in Eq (3.14).

The third term in Eq (A.36) contains the contribution of input noise to the variance in
protein copy number. To simplify this term we note that the steady state of Eq (A.8) is
equivalent to

kyc(1 — (n)) = k_(n). (A.40)
Thus we can write
Tl = hict ko (A.41)
B (n) ke
C e[ e

The term we are interested in is

E(RgTeReTC)2 x (14+2)(n)(1—(n)) = (RngRere)Q%(l + X)(n)(1 — (n)) (A.43)

T, 9
= B+ D - () (A1)

n — n 2 —n
- O g BEE oy ()
a0 ) (o)) )

k_7, mDacr,

where in the last step we once again use Eq (A.40) to rewrite the ratio k4 /k_ in terms of
(n). We recognize the two terms in this result as the switching and diffusion terms in Eq
(3.14).

2. Cooperativity

To generalize this analysis of noise to cooperative interactions among transcription factors
it is useful to think more intuitively about the two terms in Eq (A.46), corresponding to
switching and diffusion noise. Consider first the switching noise.

We are looking at a binary variable n such that the number of proteins is go n. The total
variance in n must be ((6n)?) = (n)(1 — (n)) [Eq (A.33)]. This noise fluctuates on a time
scale 7., so during the lifetime of the protein we see Ny = 7,/7, independent samples. The
current protein concentration is effectively an average over these samples, so the effective
variance is reduced to

1 T,

((6n)%)err = 7 (n)(1 = (n)) = = (m)(1 = (n)). (A.47)
s Tg
Except for the factor of gy that converts n into g, this is the first term in Eq (A.46).

Now if h transcription factors bind cooperatively, we can still have two states, one in
which transcription is possible and one in which it is blocked. For the case of activation,
which we are considering here, the active state corresponds to all binding sites being filled,
and so the rate at which the system leaves this state, k_, shouldn’t depend on the concen-
tration of the transcription factors. The rate at which the system enters the active state
does depend on concentration, but this doesn’t matter, because with only two states we
must always have an analog of Eq (A.40), which allows us to eliminate the “on rate” in
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favor of k_ and (n). The conclusion is that the first term in Eq (A.46), corresponding to
switching noise, is unchanged by cooperativity as long as the system is still well approxi-
mated as having just two states of transcriptional activity that depend on the potentially
many more states of binding site occupancy.

For the diffusion noise term we use the ideas of Berg and Purcell (1977) and Bialek and
Setayeshgar (2005, 2006). Diffusion noise should be thought of as an effective noise in the
measurement of the concentration ¢, with a variance

Ie o = (A.48)

where again we identify the protein lifetime as the time over which the system averages.
For the system with a single binding site,

() = -+ X (A.49)
so that 5 )
0~ Ly~ ). (A50)

The noise in concentration, together with this sensitivity of n to changes in the concentra-
tion, should contribute a noise variance

a(n)

2 201 ()2
(6n)on = |2 g2 = S )

oL = (A.51)

mDacTy

Jc

This is (up to the factor of gg) the second term in Eq (A.46). Now the generalization to
cooperative interactions is straightforward. If we have

h
(= 5——en TR (A.52)

then 5 "
é)? = E(n)(l —(n)). (A.53)

Since the effective noise in concentration is unchanged (Bialek and Setayeshgar, 2006), the
only effect of cooperativity is to multiply the second term in Eq (A.46) by a factor of k2.

Thus, in the expression [Eq (3.14)] for the variance of protein copy number, coopera-
tivity has no effect on the switching noise but actually increases the diffusion noise by a
factor of h?. When written as a function of the mean copy number and the transcription
factor concentration, this leaves the functional form of the variance fixed, only changing the
coefficients. The overall effect it to make the contribution of diffusion noise more important.
One way to say this is that, when we refer the noise in copy number back to the input,
cooperativity causes the equivalent concentration noise to become closer to the limit Eq
(A.48) set by diffusive shot noise (Bialek and Setayeshgar, 2006).

Gregor et al. (2006a) also consider the possibility that noise is reduced by averaging
among neighboring nuclei. This does not change the form of any of the noise terms, but does
change the microscopic interpretation of the coefficients o and 8. For example, averaging
for a time 7, over N nuclei is equivalent to having one nucleus with an averaging time N.
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A.4 Information flow in transcriptional regulation

A.4.1 Finding optimal channel capacities

If we treat the kernel p(g|c) on a discrete (¢, g) grid we can easily choose p(c) so as to
maximize the mutual information I(c; g) between the TF concentration and the expression
level. The problem can be stated in terms of the following variational principle:

ZP gle)p 10{-’;2

where the multiplier A enforces normalization of p(c), and p(g) is a function of the unknown
distribution, since p(g) = >_.p(g|c)p(c). The solution p*(c) of this problem achieves the
maximum capacity I(c; g) of the channel.

The original idea behind the Blahut-Arimoto approach (Blahut, 1972) for finding optimal
p*(c) was to understand that the maximization of Eq (A.54) using variational objects p(c;)
is equivalent to the following maximization:

—A Z (A.54)

r;l(gfﬁ[p(d] ~ max max L'[p(e), p(clg)], (A.55)

where

L'[p(c), p(clg)] Zp c) log ((|‘(§) — AZp(c). (A.56)

In words, finding the extremum in variational object p(c) is equivalent to a double maxi-
mization of a modified Lagrangean, where both p(c) and p(c|g) are treated as independent
variational objects. The extremum of the modified Lagrangean is achieved exactly when
the consistency condition p(c|g) = % holds. This allows us to make an iterative

algorithm, where Eq (A.56) is first solved for p(c) given some guess for p(c|g):

p(e) =  exp {2p<g|c> 1ogp<c|g>} , (A.57)

and the guess is then updated with the new p(c).

Let us suppose that each input signal ¢ carries some metabolic or time cost to the cell.
Then we can introduce a cost vector v(c) that assigns a cost to each codeword ¢, and require
of the solution the following:

Zp(c)v(c) <y (A.58)
(&
where Cj is the maximum allowed total expense. The constraint can be introduced into
the functional [Eq (A.54)] through appropriate Lagrange multiplier; the same approach can
be extended to introduce the cost of coding for the output words, > > .p(glc)p(c)(g),
because it reduces to an additional “effective” cost for the input, v(c) = >_/ p(glc)v(g).

We demonstrate next how to include a smoothness constraint into the functional; the
degree of “smoothness” of the resulting input distribution p(c¢*) will then be controllable
through an additional Lagrange multiplier, and both ways of computing the capacity ex-
plained in the main text — that of referring the limited input resolution o.(¢) to the noise in
the output, and that of including it as a smoothness constraint on the input distribution —
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will be possible within a single framework. For the capacities in the paper we assume that
all relevant noise has already been included in the explicit output noise model.

By analogy to the field theories in which kinetic energy terms of the form [ |V f(z)[* dz
constrain the gradient, we write the following functional:

Lp(e)] = Ie;g) — Ao ple) — (A.59)
— ®1) peuile) = D2y plg)va(y) - (A.60)

— @Zc: <i’za(c)>2. (A.61)

Eq (A.59) maximizes the capacity with respect to variational objects p(c) while keeping the
distribution normalized by Lagrange multiplier Ag; Eq (A.60) imposes cost v1(c) on input
symbols and cost va2(g) on output symbols; finally, Eq (A.61) limits the derivative of the
resulting solution. The difference operator A is defined for an arbitrary function f(c):

Af(e) = fleirr) — f(ei). (A.62)

o(c) assigns different weights to different ranges of input ¢; there is arbitrariness in the
selection of scale ©, as it can be absorbed into o(c). This construction can be seen as
placing limits on the resolution of the input, in the following way. If the input cannot be
precisely controlled, but has an uncertainty of o(c) at mean input level ¢, we require that
the optimal probability distribution must not change much as the input fluctuates on the
scale o.(c), or in other words,

A
16p| = ‘A—io(c)‘ <1. (A.63)

The term in Eq (A.61) constrained by Lagrange multiplier © can be seen as the sum of
squares of such variations for all possible values of the input.
By differentiating the functional with respect to p(c;) we get the following equation:

0 = Y plglei)logp(cilg) —logp(e;) — A = Proi(ci) — @2 plglei)va(g) + (A.64)
o*(ci)
(cit1 —ci)?

e — (e ] O (ei1)
[p(ei) — p( 1_1)}( } (A.65)

Ci — Ci71)2

+ e {[p(ci-i-l) - p(ci)]

Let us denote by F'(c,p(c)) = A(AA—SQJ(C)Q the term in braces. The solution for p(c) is given
by:

plc) = %exp {ZP(QIC) log p(clg) — ®1v1(c) — B2 Y plgle)va(g) + @F} (A.66)

We can now continue to use the Blahut-Arimoto trick of pretending that p(c|g) is an inde-
pendent variational object, and that p(c) has to be solved with p(c|g) held fixed; however,
even in that case, Eq (A.66) is an implicit equation for p(c) which needs to be solved by
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numerical means. The complete iterative prescription is therefore as follows:

p"(9) = > plglop™(c) (A.67)

n _ plglop™(c)
p'(clg) = () (A.68)
o) = ;GXP{ZP(Q\C) log p"(clg) — ®rv1(c)— (A.69)
- <I>22p(9|6)v2(9)+@F(c7p"“(6))} (A.70)
g

To reiterate, Eq (A.70) has to be solved on its own by numerical means as the variational
objects for iteration (n + 1) appear both on its left- and right-hand side. The input and
output costs of coding are neglected if one sets &1 = 2 = 0; likewise, smoothness constraint
is ignored for © = 0, in which case Eq (A.70) is the same as in the original Blahut-Arimoto
derivation and gives the value of p"*1(c) explicitly.

If we take a fixed input-output relation P(g|c) and vary Lagrange multiplier ©, we trace
out the so-called rate distortion (RD) curve, shown in Fig A.12; this curve is parametrized by
© and plots the achievable channel capacity as the function of the smoothness, which is the
term conjugate to multiplier © in Eq (A.61). Solutions that are forced to be smoother have
a smaller capacity, and in the extreme case one would obtain the capacity for distribution
that is uniform in the input. Figure A.12 (left) shows that smoothing will remove features
in the low concentration region, where the gene expression is turned off regardless of precise
shape of the distribution, at practically no cost in capacity;® in contrast, the shape of the
input near ¢/ Ky ~ 1 is important and is preserved if the smoothing is not too strong. Figure
A.12 (right) shows a case of very high cooperativity. It is clear that as h — oo, the input-
output relation becomes a step function, and as such would be able to transmit at most
1 bit of information. For h large but not infinite, the system has to move in a controlled
manner from zero occupancy to full occupancy within a very small concentration window;
the optimal distribution must therefore be steep there, which is in direct contradiction
with the imposed smoothing. In particular, the optimal distribution is “tuned” to the
input-output relation, and if (in case of extreme smoothing) the uniform input distribution
were used (black dashed line), the capacity would fall considerably from its unconstrained
maximum [Fig A.12].

A.4.2 Channel capacity at constrained expense

Here we take a look at how the optimization principle can be used to make non-trivial
predictions about the regulatory element, especially when metabolic cost of coding is a
real concern. Suppose we take an input-output activator kernel with variable cooperativity
(parametrized by Hill coefficient h), that has the noise parameters of the blue system of
Fig 4.3b. We assume explicitly that the diffusive noise strength scales with h? as expected
from theoretical considerations, see Table 4.1. Conceptually, increasing the cooperativity
increases the sensitivity to fluctuations in the input (especially at half-maximal induction),

®This is a consequence of the degeneracy of the input/output kernel. For high cooperativity, the in-
put/output relation is flat in the regions ¢ < Kg4 and ¢ > Kg, and the local shape of the p(c) there must be
irrelevant for the channel capacity. It is not irrelevant for the smoothness penalty constraint, however.
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Figure A.12: Imposing smoothness constraint on the solutions. Left panel shows the optimal input
concentrations of the input-output relation P(g|c) for an activator system with h = 2 cooperativity
whose output noise characteristics mimic that of the red system presented in Fig 4.3c. As the
Lagrange multiplier conjugate to the smoothness term is increased, the solutions lose sharp features
(and the color in the plot changes from black to red). The corresponding output distributions are
plotted in the inset, and the rate-distortion curve is shown below the distributions. We see that
the sharp features of p*(c¢) in the ¢ <« Ky region are smoothed out with no appreciable decrease
in the channel capacity because the input/output kernel is flat (degenerate) there. Right panel
shows similar computations carried out for a highly cooperative h = 15 kernel of with the same
noise characteristics as the blue system of Fig 4.3b. Here the decrease in capacity is much greater,
because the input is forced to be precisely tuned to the extremely sharp input/output relation at
¢ = K4 on one hand, but also constrained to have small derivative in p(c) on the other.
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and thus reduces the channel capacity; on the other hand, increased cooperativity allows
the system to explore the full dynamic range of promoter occupancy at a smaller cost in
the input. Consequently there should be an optimal cooperativity h*(Cy) that depends on
the total expense for coding inputs and outputs. This kind of tradeoff is illustrated in Fig
A.13.

Figure A.13: Information capacity of

the blue system of Fig 4.3b in which

cooperativity (horizontal axis) is be- 25 ——

ing changed. Different curves corre- ___Iggzzzzg;gﬁ
spond to different allowed values of

the total expense, Eq (4.22), for cod- 2r ]
ing inputs and outputs (the logarithm
of the allowed cost increases by 0.25
for each curve between thick black
curves indicated in the legend). Qual-
itatively similar results are obtained
as the ratio of costs of input and out-
put are changed (i.e. the peak at low
h > 1). Note that although the blue
system is similar to the Drosophila 0.5f
Bicoid /Hunchback system studied in
the next section, we do not recover as
optimal the observed Hill coefficient 0 ‘ s s ‘
h = 5, presumably because we do not 0 2 I-‘Ilill coefficiegt 8 10
have the correct expense model or be-

cause the element in the fruit fly does

not operate in isolation.

Information (bits)

A.4.3 Capacity as the number of distinguishable discrete states

Here we discuss if it is possible to use constructively the interpretation of information
capacity I(c; g) between the input ¢ and output g, namely that there are 2/(9) levels in the
input that have distinguishable outputs. In other words, despite the fact that both input
and output are continuous variables in our problem, we are looking to find the smallest
set of discrete ¢; and the related optimal discrete distribution p(c;), such that the channel
capacity remains undegraded compared to its maximal value when the whole continuous
range in ¢ is used. This can also be seen as compressing the continuous range of input
concentrations onto a discrete subset of concentrations.

To tackle this task, we introduce the notion of abstract signal s, i.e. a quantity that
describes some abstract form of control over the concentration ¢, as is shown in Fig A.14b.
The new “handle” s defines a Markov Chain s — ¢ — g. As before, we want to maximize
the information between the ultimate input, s, and the final output, g; additionally, we will
now also limit the amount of information that can flow between s and ¢. This compound
channel will be called the information bottleneck (IB) channel.

The situation is similar, but not equal to the information bottleneck problem. There,
we look for a probabilistic mapping of a true signal x into the compressed form z’, such
that 2’ retains a fixed amount of information with y, as shown in Fig A.14a. Note that
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A.14a: Information bottleneck problem. A.14b: Information bottleneck channel.

Figure A.14: Left: information bottleneck problem. We are given the joint distribution p(z,y), and
would like to compress signal x into z’, so that the mutual information I(z’;x) is minimized. The
compressed signal 2’ has to retain a fixed amount of information about the relevant feature y. Right:
information bottleneck channel. Diagram of the explicit influence of signal control s over ¢, which
couples to the expression level through known p(g|c). The unknown quantities to be optimized for
are in red (the distribution of signals and the conditional p(c|s)). We are maximizing the information
flow through the system at fixed information flow through the first segment.
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there is more variational freedom in the new IB channel formulation than in the classical
IB problem, because we also have to compute the optimal signal distribution p(s).

We expect that as the constraint between the signal s and concentration c is increased,
¢ will become more and more “compressed” and will start to take non-zero values only on
smaller and smaller support until only a few discrete states in ¢ remain. If this can happen
without significant loss of total capacity, I(s;g), we will have found the discrete states that
we refer to when explaining the concept of mutual information. Clearly, if the constraint
is increased still further, the total capacity will become degraded. How this happens is an
interesting question in itself, because the IB compound channel can be seen as a problem
of optimally coupling together two channels, i.e. I(s;c) and I(c;g); we will not pursue this
— more general — issue further.

For the IB channel the variational problem can be stated as follows:

Llp(s),p(cls)] = I(s;9)— BI(s;c) — Py Zp (A.71)
— Z)\Sp(cls — X Zps (A.72)

I(s;9) = Zp gls)p(s) log ((;)) (A.73)

I(si0) = 3 plels)p(s) logp(c's). (A7)

p(c)

Constraint (3 is conjugate to the constrained mutual information between s and c; constraint
®; is conjugate to the total expense C, and there are |s| + 1 normalization constraints
{Xo, As}. Furthermore, p(g|s) = > p(glc)p(c|s), and p(c) and p(g) are implicit functions of
both p(s) and p(c|s) through marginalization.

Let us first evaluate %. The first term can be computed as follows:

oI(s;9) _ __plgls)
p(cs) ZP (gle)p(s) log © o) (A75)
Np(d|s)p(s’ p(9) plgle) o
- gc;gp(g! P S e { ) (A.76)
B pzfg(;;)p (glelp (5)} (A7)
- Anls) log P13
B zg:p(g’ Jpls)os p(g) (A.78)

The contributions in curly braces that originate by taking derivative under the logarithm
cancel out. Similarly,

Sl(sie) o plels)
Sp(cls) ~ P11y (A.79)

Inserting both results into Eq (A.72) gives us the first set of equations:

> olsilp(s)tog ((5)—ﬁp(s)logp;f’c‘j)—As—qnp(s)v(c) — 0. (AS0)




A.4 Information flow in transcriptional regulation 134

Now let’s take the derivatives with respect to p(s): 52@ y = 0:
61(s;9) (gls)
= p(gls)log” A.81
)~ 2T sy
( p(gls’)

- Zp @17 e 229 > plgld)p(c]s) (A.82)

= > plgls) log 2 - | )y, (A.83)

Similar calculation yields the result for the derivative of I(s;c). Absorbing constants into
Ao, we can write down the next set of equations:

Zpg! log g| ﬂzpd log

In total, Eq (A.80) and Eq (A.84) define |s| + |s| - |c| equations; in addition, we have the
marginalization and normalization consistency conditions.

We can now generate an iterative scheme in a way similar to the modified Blahut-
Arimoto algorithm presented above:®

Zp cls)v = Ap. (A84)

n p"(gls)p"(s)
p(slg) = ———————=, A.85
(slg) 7 (9) (A.85)

n p"(c[s)p" (s)
p(slc) = ———————=. A.86
(sl e (4.86)

Finally, this gives the complete iterative scheme for new value p"*!(s):
nt1 p"(s) 1 n p"(gls)

s) = ex — s)lo A .87
pT(s) =~ p{l_BEP(g\)gpn(g) (A.87)

B ﬁzp (c|s) log 7EC|C ﬁzp (c|s) }.(A.88)

From Eq (A.80) we can similarly express the other unknown p"*!(c|s), as follows:

n+1 pgls) _P1
P (cls) = Z exp{ﬂZp & ) B ( )}. (A.89)

Eqgs (A.88, A.89), together with consistency equations form the iterative scheme. The
scheme needs both initial conditions, p°(s) and p°(c|s), and the values of the Lagrange
constraints 4 and ®; in order to work, and is carried out until desired convergence is achieved
in variational objects. At given pair (3, ®1), the resulting distributions are constrained by
(I(s;¢),C(c)), where C is the expense of the distribution p(c). The rate-distortion curve in
our case is a plot of I(s;g) against I(s;c).

As a simple example consider the binary symmetric channel, which is fully characterized
by the “switching” parameter p. The transition matrix for this channel can be written as:

sl = (1,7, 17

5We give no proof of convergence for these iterative equations.
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We use this channel but constrain the input ¢ by modifying it only through s. Figure A.15
shows how the total capacity through the IB channel depends on the capacity of the first,
bottleneck, segment.
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Figure A.15: Upper panel: as constraint 3 varies between 0 and 1, the constrained capacity I(s;c)
is plotted in green for three decreasing values of p, and the total channel capacity is plotted in
blue. Lower panel: full channel capacity vs first segment capacity for three p values; this is the
rate-distortion curve for the upper plot. The algorithm has been executed with 3 different values
for p, p = {0.25,0.125,0.0625}, with 10 iterations for each p value, zero cost function, cardinality
of set of s equal to 10, stopping condition equal to step-by-step change below 10~7 in variational
objects, and random initialization. When the constraint is inactive (the first segment can transmit
maximum 1 bit of capacity), the resulting total channel capacities are equal to the full capacities
of the symmetric binary channel, i.e Ie.(p) = 1+ plogsp + (1 — p) logy(1 — p), which gives values
{0.1887,0.4564,0.6627} for different p, consistent with numerical results (the points where the RD
curve intersects the I(s;c) = 1 bit line).

For a more realistic application of the information bottleneck channel we analyze the
information transmission through a lac-like repressor element with the noise parameters
measured by Elowitz et al. (2002). Figure A.16a shows the exact numerical solution and
the small-noise approximation for the optimal distribution of output gene expression levels,
along with the distribution of outputs computed with IB channel, where the compression
in the first segment of the IB channel was used to reduce the support of the input to just
a few discrete TF concentrations. The resulting output distributions has distinguishable
peaks. Figure A.16b shows the rate-distortion curve and two sample output distributions
when the IB channel constraint is increased and only I(s; ¢) bits are allowed to flow through
the first segment.
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Figure A.16: Left: The optimal distribution of expression levels, p(g), black line, for the system with
lac noise parameters as measured by Elowitz et al. (2002); the fractional noise is shown in the inset.
Note the solution in gray, computed using the information bottleneck channel. Here we constrain
the size of the support, |s| just enough such that the total capacity is not yet degraded compared
to the unconstrained solution, and we see the emergence of ~ 9 — 10 distinguishable peaks in the
output. Right: as the capacity of the first segment of the IB channel, I(s;¢), is varied by tuning the
Lagrange multiplier 3 of Eq (A.72), we trace out the rate-distortion curve. 2/(5¢) is shown on the
horizontal axis; this is the number of discrete states in the input. The total IB channel capacity is
plotted on the vertical axis. Two insets show output probability distributions for two choices of 3:
in the top inset there are about nine distinguishable levels of the input, while in the bottom we only
see four (consequently the total capacity of the channel is 2 bits).
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A.4.4 Solutions with alternative input-output relations

In this section we present channel capacities for two alternative noise models. We use
activator kernels with no cooperativity and consider the models with output and switching
input noise [Fig A.17b| or a model with output and global noise [Fig A.17a]. In contrast
to the input diffusion noise, discussed in Section 4.4, changing cooperativity does not affect
the shapes of these kernels, and the sole effect of making the regulatory element cooperative
is to achieve a higher dynamic range in occupancy at the same cost for input transcription
factor concentrations.

A comparison with the results for the diffusive input noise in Section 4.4 shows that,
at the same numerical noise strength (e.g. 8 = 7 or § = §), the diffusive noise is less
limiting than the alternative two models, at least at h = 1. It should also be noted that as

cooperativity is increased, the diffusive noise strength grows in proportion to h?, while ~
and ¢ do not change.
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Figure A.17: Left: Information contours (color scale in bits, thick lines — full solution, dashed lines
— small noise approximation) for noise models where varying amounts of output noise (horizontal
axis) and global noise (vertical axis) are present. See Table 4.1 for the definition of c. The global
noise § adds a term 03 = §- g2 to the total noise. Right: the same plot for models with output noise
(horizontal axis) and input switching noise (vertical axis). For illustration purposes, the dots have
been replotted here in the same position as in Fig 4.3.

A.4.5 Validity of Langevin approximations

Langevin approximation assumes that the fluctuations of a quantity around its mean are
Gaussian and proceeds to calculate their variance. For the calculation of exact channel
capacity we must calculate the exact input-output relation, P(g|c). Even if Langevin ap-
proach ends up giving the correct variance as the function of the input, o4(c), the shape of
the distribution might be far from Gaussian. We expect such a failure when the number of
mRNA is very small: the distribution of expression levels might be then multi-peaked, with
peaks corresponding to b, 2b, 3b, ... proteins, where b is the burst size (number of proteins
produced per transcript lifetime).

In the model used in Eq (4.18), parameter a = (1 + b)/go determines the output noise;
go = bm, where m is the average number of transcripts produced during the integrating
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time (i.e. the longest averaging timescale in the problem, for example the protein lifetime
or cell doubling time). If b > 1, then the output noise « is effectively determined only by
the number of transcripts, a ~ 1/m. We should therefore be particularly concerned what
happens as m gets small.

Our plan is therefore to solve for P(g|c) exactly by finding the stationary solution of
the Master equation in the case where the noise consists of the output and switching input
contributions. In this approach, we explicitly treat the fact that the number of transcribed
messages, designated by m, is discrete. We start by calculating P;(m/|c,t). The state of the
system is described index ¢, which can be 0 or 1, depending on whether the promoter is
bound by the activator or not, respectively. Normalization requires that for each value of c:

>N Pi(mlet) = 1. (A.90)
i=0,1 m

The time evolution of the system is described by the following set of equations for an
activator:

ORIt~ R(Pom e, 1) ~ Po(me 1)

L (mPymle,t) — (m+ 1) Polm + 1]e,))

— k_Py(mlc,t) + kicPy(mle,t), (A.91)
IRt L mPy(mle,t) — (m + )Py + 1]e.1)

+ k_Py(m|c,t) — kycPi(m|e,t), (A.92)

where 7 is the integrating time, k_ is the rate for switching into the inactive state (off-rate of
the activator), k. is the second-order on-rate, and R, is the rate of mRNA synthesis. These
constants combine to give m = R.7 and the input switching noise strength v = (k_7)7!,
see Table 4.1. This set of equations is supplemented by appropriate boundary conditions for
m = 0. To find the steady state distribution P(m|c,t — c0) = P(m|c), we set the left-hand
side to zero and rewrite the set of equations (with high enough cutoff value of mpax) in
matrix form:

M(c)p(c) = b

where p = (Py(0|c), P1(0|c), Po(1]c), Pi(1|c),---) and b = (0,0,---,0,1). Matrix M (of
dimension 2(Mmpax + 1) + 1 rows and 2(mpax + 1) columns) contains, in its last row, only
ones, which enforces normalization. The resulting system is a non-singular band-diagonal
system that can be easily inverted. The input-output relation for the number of messages
is given by taking P(m|c) = Py(m|c) + Pi(mlc).

Having found the distribution for the number of transcripts we then convolve it another
Poisson process, P(g|(g) = bm), i.e. P(g|c) = >, P(m|c)P(g|(g) = bm). Finally, the
result is rediscretized such that mean expression g runs from 0 to 1.

Note that the Langevin approximation only depends on the combination of the burst
size b and the mean number of transcripts m through «; in contrast, the Master equation
solution depends on both b and m independently. The generalization of this calculation to
repressors or Hill-coefficient-type cooperativity is straightforward.

Figure A.18c shows that the Langevin approximation yields correct second moments
of the output distribution; however, Gaussian distributions themselves are, for large burst
sizes and small number of messages, inconsistent with the exact solutions, as can be seen
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in Fig A.18a. In the opposite limit where the number of messages is increased and burst
size kept small [Fig A.18b], normal distributions are an excellent approximation. Despite
these difficulties the information capacity calculated with either Gaussian or Master input-
output relations differs by at most 12% over a large range of burst sizes b and values for «,
illustrated by Fig A.18d.
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Figure A.18: Exact solutions (black) for input-output relations, P(g|c), compared to their Gaussian
approximations (gray). Panel A shows the distribution of outputs at maximal induction, P(g|¢max)
for a system with a large burst size, b = 5* and a large output noise a = % (i.e. the average number
of messages is 6, as is evident from the number of peaks, each of which corresponds to a burst of
translation at different number of messages). Panel B shows the same distribution for smaller output
noise, b = 5% and o = %; here Gaussian approximation performs well. Both cases are computed with
switching noise parameter v = %, and cooperativity of h = 2. Panel C shows in color-code the error
made in computing the standard deviation of the output given c¢; the error measure we use is the
maximum difference between the exact and Gaussian results over the full range of concentrations:
max, abs [0¢(¢)Master — 0¢(€)Gaussian]- As expected the error decreases with decreasing output noise.
Panel D shows that the capacity is overestimated by using an approximate kernel, but the error
again decreases with decreasing noise as Langevin becomes an increasingly good approximation to
the true distribution. In the worst case the approximation is about 12% off. Gaussian computation

only depends on « and not separately on burst size, so we plot only one curve for b = 1.

A.4.6 Fine-tuning of optimal distributions

To examine the sensitivity to the perturbations in the optimal input distributions for Fig
4.6 we need to generate an ensemble of perturbations. We pick an ad hoc prescription,
whereby the optimal solution is taken, and we add to it 5 lowest sine / cosyne waves on the
input domain, each with a weight that is uniformly distributed on some range. The range
determines whether the perturbation is small or not. The resulting distribution is clipped to
be positive and renormalized. This choice was made to induce low-frequency perturbations
(high frequency perturbations mostly just average out because the kernel is smooth). Then,
for an ensemble of 100 such perturbations, p;(c), i = 1,...,100, and for every system of
the information plane in Fig 4.3, the divergence of the perturbed input distribution to the
true solution, d; = Djs(pi(c),p*(c)), is computed, as well as the channel capacity, I; =
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I[p(gle), pi(c)]. Figure A.19 plots the (d;, I;) scatter plots for 3 x 3 representative systems
with varying amounts of output (3) and input («) noise, taken from Fig 4.3 uniformly along
the horizontal and vertical axes.
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Figure A.19: Robustness of the optimal solutions to perturbations in the input distribution. Ac-
tivator systems with no cooperativity are plotted; their parameters are taken from an uniformly
spaced, 3 x 3 grid of points in the information plane of Fig 4.3, such that the output noise increases
along the horizontal edge of the figure and the input noise along the vertical edge. Each subplot
shows a scatter plot of 100 perturbations from the ideal solution; the Jensen-Shannon distance from
the optimal solution, d;, is plotted on the horizontal axis and the channel capacity (normalized to

maximum when there is no perturbation), I;/Inax, on the vertical axis. Red lines are best linear
fits.

Figure A.19 shows that as we move towards systems with higher capacity (lower left cor-
ner), perturbations to the optimal solution that are at the same distance from the optimum
as in the low capacity systems (upper right corner), will cause greater relative loss (and
therefore an even greater absolute loss) in capacity. As expected, higher capacity systems
must be better tuned, but even for the highest capacity system considered, a perturbation
of around djg ~ 0.2 will only cause an average 15% loss in capacity.
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