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Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in

the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the

number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The

ground state of such systems reveals nonmonotonic complex behaviors in average path length and

algorithmic convergence, depending on the network topology, and densities of communicating nodes and

routers. A distributed linearly scalable routing algorithm is also devised.
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Routing and path selection are at the heart of many
communication and logistics applications. For instance,
instant messengers, Internet telephony, and payment secur-
ity verification require packets to be delivered instantly or
otherwise lose their functionality [1,2], while the efficiency
of transportation networks depends crucially on effective
path selection [3,4]. Existing routing algorithms are mostly
based on minimizing path lengths. Some use routing tables
that register the shortest distance to various destinations
but are insensitive to traffic congestion [5,6]; others control
congestion by monitoring queue length or latency heuris-
tically [7] or merely optimize routing selfishly [8]. Both
analytical understanding of routing and the development of
efficient distributive principled routing algorithms, which
minimize route length while restricting congestion, remain
a challenge.

Path optimality and congestion control have been exten-
sively studied within the physics community in other con-
texts, such as the research of spanning [9,10] and Stenier
trees [11] with quenched link weights, to mimic broadcast
or multicast systems. However, these studies ignore inter-
action terms (overlap costs) that depend on the specific
choice of paths. Other approaches such as preferential
random walk and diffusion methods are used to reduce
traffic congestion but result in heuristic protocols which
route packets through suboptimal paths in a probabilistic
manner [12–14]. Active suppression of overlaps is essen-
tial for realistic analysis of routing as they give rise to
congestion; for instance, the road transit time is described
by a quartic function of traffic volume [15].

Mapped onto a statistical physics framework, routing
poses both theoretical and numerical challenges due to the
multiplicity of possible routes between communicating
nodes and the nonlinear costs induced by the interaction
between overlapping routes, akin to a nonlocal repulsion
force between polymers. While overlap costs have been
partially addressed by assigning quenched link weights [9],
these do not fully reflect the complex interaction between
dynamically assigned routes. Techniques used to analyze
polymers [16], for instance, in self-avoiding walks [17] and

the traveling salesman problem [18], are prime candidates
for the analysis of routing but do not consider the cost of
interaction between paths.
In this Letter, we study a scenario whereby numerous

senders seek the shortest possible route to a few receivers
while minimizing traffic congestion. The problem is rele-
vant to node pairs on a network that communicate via
designated routers, or nodes, possibly sensors, that com-
municate via an outlet router or base stations. It is also
relevant to transportation networks where traffic gravitates
towards one or several centers, such as city center or hub
airports [3,19]. Using the cavity approach [20], we exam-
ine analytically the dependence of the typical path length
on the system topology, the density of communicating
node pairs and routers, and their location. We identify the
conditions for ergodicity breaking in solution space and
observe oscillations in typical path lengths and algorithmic
convergence in regular graphs. We show that allocating
routers on hubs, which seems to be the natural choice, is
indeed optimal in many respects. An applicable linearly
scalable local message passing algorithm is also derived
which optimizes, in a principled manner, individual routes
subject to the mitigation of global congestion.
Model.—We consider a sparse network of N nodes,

where each node i ¼ 1; . . . ; N is randomly connected to
ki neighbors denoted by N i, where ki � N is randomly
drawn from a distribution �ðkÞ representing the graph
topology. We randomly select one node as a receiver
(router) denoted by r [21] and a fraction 0 � fs � 1 of
the other nodes as senders that communicate with r
through a single path each. We assign �s!r

ij ¼ 1 if the

communication between sender s and r passes from i to
j and�s!r

ij ¼ 0 otherwise. To minimize path length subject

to a nonlinear cost for overlapping paths, we introduce the
Hamiltonian H ¼ P

ðijÞ½
P

sð�s!r
ij þ �s!r

ji Þ��, counting

the number of paths passing through the edge (ij), with
�> 1 to nonlinearly penalize overlaps; both analysis and
algorithm are generic for any � � 1.
To facilitate the analysis, each node i is assigned with a

communication load �i, reflecting its role: The receiver
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node r being a global sink is assigned with �r ¼ �1,
senders are assigned with � ¼ þ1 as they originate com-
munication, and all other nodes are assigned with � ¼ 0.
We further denote the net directed integer flow Iij �P

s½�s!r
ij � �s!r

ji � from i to j, where Iji ¼ �Iij, and use

it to ensure that all arriving or originated communications
leave node i so that the excess communication load Ri ¼
�i þ

P
j2N i

Iji vanishes, i.e., Ri ¼ 0, 8 i � r.

To minimize path length subject to a nonlinear cost for
overlapping paths, one should minimize H , which is
computationally difficult. Instead, we minimize the
Hamiltonian H 0 ¼ P

ðijÞjIijj� subject to Ri ¼ 0, 8 i � r,

as it can be shown [22] that both Hamiltonians share an
identical ground state. An example of a small system
attaining the ground state of H 0 with � ¼ 2 is shown
in Fig. 1(a).

This model can be adapted to accommodate various
routing scenarios. For instance, senders with integer
�> 1 may be introduced to model data segmentation
and routing through multiple paths; multiple receivers
may be considered as is the case in wireless sensor net-
works where any reachable base station will do [7]. The
Hamiltonian can also be modified to accommodate differ-
ent forms of cost and objectives on nodes and links.

To analyze the system’s ground state behavior, we em-
ploy the cavity approach [20] and assume that only large
loops exist, so that neighbors of node i become statistically
independent if it is being removed. At zero temperature,
this allows one to define the energy at each vertex EiðIilÞ,
representing the sum of net flows on a tree terminated at the
edge from vertex i to parent l, with all flows in the tree
optimized given Iil [23]. For any i � r, one obtains a
recursion relating the energy at vertex i, EiðIilÞ, to EjðIjiÞ
of its neighbors (descendents) j other than (parent) l, as
sketched in Fig. 1(b) and given by

EiðIilÞ ¼ min
ffIjigjRi¼0g

�
jIilj� þ X

j2N inl
EjðIjiÞ

�
: (1)

Intuitively, for each node i one minimizes the nonlinear
cost and descendent energies given the constraint of
Ri ¼ 0. For receiver nodes, being universal sinks, Er ¼
jIrjj�, 8 j 2 N r. For brevity we denote the right-hand

side of Eq. (1) by a functionalM½Eil; �i; Iil�, where Eil �
fEjjj 2 N inlg. The function EðIÞ is extensive and diffi-

cult to iterate; it is replaced by the intensive quantity
EVðIÞ � EðIÞ � Eð0Þ [24] to obtain the recursive relation

EV
i ðIilÞ ¼ M½EV

il ; �i; Iil� �M½EV
il; �i; 0�: (2)

To evaluate various physical quantities, one employs
population dynamics [22,25] to iterate Eq. (2) and obtain
a stable distribution P½EVðIÞ�. The ground state energy is
evaluated by the average energy of an additional node and
link; by denoting EV

i � fEV
j jj 2 N ig, this is given by

hEnodei ¼ hM½EV
i ; �; 0�i�;k;EV

i
; (3)

hElinki ¼ hmin
I
½EV

j1
ðIÞ þ EV

j2
ð�IÞ � jIj��iEV

j1
;EV

j2

: (4)

Angled brackets denote averages over sender and degree
distributions pð�Þ, �ðkÞ, and P½EVðIÞ�. Equation (3) corre-
sponds to the energy change due to contributions of all k
trees per node, while Eq. (4) is obtained by considering two
trees with a common edge [22]. The energy per transmis-

sion is given by hEi ¼ ðhEnodei � hki
2 hElinkiÞ=fs; the nu-

merator corresponds to the average energy per node [22].
To obtain the average path length, we calculate a linear-

cost function LV parallel to EV :

LV
i ðIilÞ ¼ jIilj þ

X
j2N inl

ðLV
j ½I�jiðIilÞ� � LV

j ½I�jið0Þ�Þ; (5)

where the optimal flow I�jiðIilÞ, given Iil, is determined

from Eq. (2). While EV provides the optimal energy, LV

evaluates typical traffic in the optimal state. The average
path length per communication is obtained by using the

joint distribution PðEV; LVÞ in the form hLi ¼ ðhLnodei �
hki
2 hLlinkiÞ=fs, where averages hLnodei and hLlinki are eval-

uated similarly to Eq. (5) via the corresponding flow I�
obtained from Eqs. (3) and (4).
Solutions.—Once we obtain numerically a stable distri-

bution P½EVðIÞ� by iterating Eq. (2), both hEi and hLi can
be evaluated through Eqs. (3)–(5). Results shown in Fig. 2,
for � ¼ 2, fr ¼ 0:01 [21], and different connectivity dis-
tributions representing regular, Erdös-Rényi (ER), and
scale-free (SF) networks, show a linear increase in hEi
for most of the range of fs regardless of network topology.
This indicates that the potential quadratic increase in cost
due to overlaps is mitigated through rerouting, balancing
path length, and overlap costs. The typical path length hLi
(inset) increases initially with fs for all networks (SF being
shorter) due to overlap costs but saturates for ER networks
while showing a decrease for regular and SF graphs at high
fs. This indicates that longer alternative routes are also

. . .

i

j

l

I
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I
il

E
i
(I

il
)

E
j
(I

ji
)
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FIG. 1. (a) An example of the ground state of H 0 with � ¼ 2
in a simple network with 6 senders (d) and a single receiver (4)
among 20 nodes. Dashed lines correspond to idle links, while
thin and thick solid lines correspond to communication loads of
1 and 2, respectively. To minimizeH 0, communication from the
top left sender is routed through a long path. (b) A schematic
diagram representing the derivation of Eq. (1).
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congested, making shorter congested ones more cost-
effective. It suggests that simple shortest path routing
schemes may achieve close-to-optimal performance for
either low or high traffic densities in regular and SF net-
works but are less effective for intermediate densities and
ER networks.

To examine the effect of receiver connectivity, we study
the case where receivers are deployed to the largest hubs in
ER and SF networks. Figure 2 shows a more moderate
increase in energy and path length compared to random
deployment. In addition, communication costs in SF net-
works become lower with respect to ER networks, revers-
ing their random case positions. This suggests that receiver
local connectivity dominates network performance and
potentially explains why most communication networks
are SF with hub receivers.

Careful examination of average path length hLi in regu-
lar networks as a function of fs reveals a fine structure of
small peaks, in addition to the main peak, at multiples of
hki=N as shown in Fig. 3(a). These occur when traffic is
balanced predominantly around the receiver, which we
term the balanced receiver phenomenon. For example,
the long route from the top left sender in Fig. 1(a) is chosen
to ensure that links connecting the receiver are occupied
exactly by 2 communications, as a high cost is incurred by
imbalanced traffic. This behavior is also reflected in the
expected algorithmic convergence time (number of update
steps per node) hTci shown in Fig. 3(b). The balanced
receiver phenomenon may appear in real-life networks;
for instance, one may attempt to balance car traffic heading
towards a city center by varying toll or speed limits. This
phenomenon is masked in the results for ER and SF net-
works due to the degree variability of receivers and since
the balanced receiver phenomenon is more pronounced at
low degree receivers.

Computation.—One computational challenge in Eq. (2)
is the extremization on the integer domain subject to an

equality constraint. We use the convexity of jIj� (� � 1) to
show that EVðIÞ is convex and denote the energy change
when Iil increases or decreases by 1 as �

�
i ðIilÞ ¼ EV

i ðIil �
1Þ � EV

i ðIilÞ. The optimality condition �þ
j1
½I�j1iðIilÞ� þ

��
j2
½I�j2iðIilÞ� � 0, 8 j1; j2 2 N inl, and the convexity of

EV
i ðIilÞ yield

��
i ðIilÞ¼ jIil�1j��jIilj�þ min

j2N inl
f��

j ½I�jiðIilÞ�g;

I�jiðIil�1Þ¼
�I�jiðIilÞ�1; j¼ argminj2N inlf��

j ½I�jiðIilÞ�g;
I�jiðIilÞ; otherwise:

(6)

This simplifies the computation [22] and facilitates a study
of the model’s ergodicity breaking properties. Equation (6)
implicitly assumes localized interdependence of flows that
corresponds to the replica symmetry (RS) [20] property.
Small variations ���

i ðIilÞ in the cavity field of Eq. (6)
lead to expected perturbations of the form hð���

i Þ2i ¼
fshð���

j Þ2i for all system nodes. Perturbations decay for

fs < 1 indicating an RS [26] behavior and a unique state.
This is supported by simulations, as almost all cases con-
verge in a small number of updates.
Algorithm.—Interestingly, the analysis also gives rise to

an algorithm for optimizing individual instances; to do
that, one iterates Eq. (2) until convergence of the EV’s
and computes the flows by using either Eq. (3) or (4) to
identify individual paths. The situation becomes more
complicated when solutions of Eq. (3) or (4) exhibit de-
generacy, which is typical for integer �. One can then
break the degeneracy by assigning randomly to each link
(ij) a small quenched bias �ðijÞ and incorporate in the

iteration of Eq. (2) the modified cost of jIijj� þ jIijj�ðijÞ.
The iterations then converge to a particular solution with
no degeneracy. The algorithm is linearly scalable as shown
in the inset in Fig. 3(b), but the bias increases convergence
time with respect to the zero bias case.
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FIG. 3 (color online). (a) Analytic hLi values (solid lines)
compared to simulation results (dashed lines, symbols)
for regular networks with hki ¼ 3; 4; 5, a single receiver,
and N ¼ 100 nodes, averaged over 1000 realizations.
(b) Algorithmic convergence time hTci averaged over instances
(	 98%) which converge within 5
 104 updates per node.
Inset: hTci as a function of N for hki ¼ 3, fs ¼ 0:2, and a single
receiver.
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hki ¼ 3 and fr ¼ 0:01.

PRL 108, 208701 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
18 MAY 2012

208701-3



Breaking of ergodicity.—As in other combinatorial op-
timization problems, a replica symmetry breaking (RSB)
[20] may emerge under some conditions, resulting in
numerous low-lying states that hinder algorithmic conver-
gence. Clearly, this prevents one from obtaining a complete
analytical solution of the problem; algorithmically, it may
lead to frequent switching of variable states, routing insta-
bilities, and a loss of information.

The framework studied so far is replica symmetric.
However, we will now introduce two similar routing sce-
narios that exhibit RSB behavior under some conditions.
One scenario is that of multiple receiver classes, where
users (sensors) transmit information for specific routers
(receivers). In the case of two receiver types, say, A and
B with ð�A;�BÞ ¼ ð�1; 0Þ and ð0;�1Þ, respectively,
senders are initialized with either ð�A;�BÞ ¼ ðþ1; 0Þ
or ð0;þ1Þ. The corresponding Hamiltonian is H 0 ¼P

ðijÞðjIAijj þ jIBijjÞ�, and vertex energies EVðIAij; IBijÞ become

two-dimensional. As EV’s are no longer convex for the
entire range, only an approximate solution can be obtained
by a recursion relation of cavity fields similar to Eq. (6). To
identify the RS-RSB transition, we introduce perturbations
to the cavity fields, which may depend on those induced by
the descendants [22].

Figure 4(a) shows the RS-RSB phase transition as a
function of the fractions fs and fr of sender and router
nodes with respect to the system size, respectively, for
regular ER networks with random and hub routers (fr
refers equally to each of the receiver types). Generally,
RSB emerges for large fs and small fr as a large number of
communications from distant senders are optimized simul-
taneously, leading to an extensive frustration of a finite
fraction of all communications. While ER networks with a
random receiver have a larger RSB phase than regular
networks, it shrinks significantly when receivers are de-
ployed on the hubs. This shows again the advantage of hub
receivers, since the RS phase, where simple algorithms
suffice, extends to systems with denser communications.
Since the allocation of specified receivers to senders

induces RSB, we expect a more extensive RSB phase
with the increase in receiver types.
In another scenario, senders pair up to establish a com-

munication line via a receiver, which can be of either type
A or B, by setting their respective communication loads
ð�A;�BÞ to either ð1; 0Þ or ð0; 1Þ. The RS-RSB transition
can be similarly identified, but one has to account also for
the perturbations when a partner sender switches its re-
ceiver type, resulting in the qualitatively similar but more
extensive RSB phase shown in Fig. 4(b).
These results provide insights into the complexity of

various routing problems and, in particular, to peer-to-
peer communications. The case of a single receiver type
can be interpreted as routing communications via a central
router, while cases with two receiver types can be consid-
ered as user pairs communicating through a preset or
flexible routers, where RSB emerges and becomes more
prominent with the increasing number of receiver types or
routing flexibility. This suggests that, instead of building a
peer-to-peer network by setting each node as a receiver of a
different type (with direct routing to individuals), one can
use a limited number of receiver types by setting up a small
number of central routers and benefit from simpler algo-
rithms and smoother convergence.
Optimal routing in the presence of overlap costs is a

difficult problem mainly due to the multiplicity of possible
routes and the interaction between them; it is highly rele-
vant to communication networks and exhibits a complex
and interesting behavior as a function of the system topol-
ogy and sender and receiver densities and types.
Analytically obtained results provide insights into the suit-
ability of various network topologies as communication
networks and the preferred location of network servers.
Routing scenarios whereby senders communicate indi-
vidually or jointly through specific receivers exhibit RSB
behavior with direct impact on the algorithmic hardness of
the routing problem and implications for the study of con-
strained polymers on graphs. The application of statistical
mechanics to communication networks is highly promising
due to both the insight gained and the potential for better
principled routing algorithms.
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[15] E. Köhler and M. Skutella, SIAM J. Optim. 15, 1185 (2005).
[16] M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma,

H. Benoit, C. Duplessix, C. Picot, and P.G. de Gennes,
Macromolecules 8, 804 (1975).

[17] J. F. Stilck, K.D. Machado, and P. Serra, Phys. Rev. Lett.
76, 2734 (1996).
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