Comparing Clusterings by the Variation of Information

368 Downloads 200 Citations 9 Comments
Download Book (7,688 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests. Download Chapter (277 KB)

Abstract

This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering to clustering . The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.