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1. Introduction

In constraint satisfaction problems (CSP) a set of variables is required to simultaneously
satisfy a series of constraints. One can equivalently define an energy function as the
number of unsatisfied constraints of a given assignment of the variables, and rephrase the
CSP as the quest for a zero-energy ground state configuration. This analogy with low
temperature physics triggered an intensive research effort within the statistical mechanics
community. More precisely, one line of approach for these problems consists in looking for
typical properties of randomly generated large instances. This translates into the presence
of quenched disorder in the corresponding physical model. The constraints to be satisfied
are generally contradicting each other, and the definition of the random instances does
not involve an underlying finite-dimensional space; as a consequence these problems fall
into the category of mean-field spin glasses, for which a set of analytical tools have been
developed during the last decades [1]–[3].

The most famous example of random CSP is the random k-sat ensemble. Statistical
mechanics studies have led to two kind of results for this problem. On the one
hand, qualitative and quantitative predictions have been made about the various phase
transitions encountered for the typical behavior of large instances when the control
parameter governing the amount of frustration is varied. The satisfiability transition
marks the sudden disappearance of the solutions (zero-energy ground states). There exist
rigorous results on the properties of this transition [4] and bounds [5, 6] on its possible
location. Statistical mechanics has complemented these results with a heuristic way
to compute this threshold, hence yielding quantitative conjectures on its value [7]–[9].
Another important contribution has been the suggestion of other phase transitions in
the satisfiable regime, which concerns the geometrical organization of the set of solutions
inside the configuration space [7, 8, 10, 11]. For large enough frustration, but below the
satisfiability transition, the solutions can be grouped in clusters of nearby solutions, each
cluster being separated from the others.

On the other hand, attention has also been paid to algorithmic issues, that is to
procedures aiming at solving CSP, by finding their solutions or proving that no solution
exists. These algorithms can be roughly divided in two broad categories: local search
and sequential assignment procedures. In the first one, which has also been studied with
statistical mechanics methods [12]–[14], a random walk is performed in the configuration
space, with transition rules tuned to bias the walk towards the solutions. This kind of
algorithm is called incomplete: it cannot prove the absence of a solution if it fails to find
one. The second category proceeds differently: at some step of the algorithm only one part
of the variables has a definite value, the others being still free. Each step thus corresponds
to the choice of one free variable and of the value it will be assigned to, the CSP on the
remaining variables being consequently simplified. The heuristics guiding these choices
can be more or less elaborate. In the simplest cases one only takes into account simple
properties of the free variables, such as the number of their occurrences in the remaining
CSP. A rigorous analysis of these simple (‘myopic’) approaches is possible and is at the
basis of most of the lower bounds on the satisfiability transition [5]. Such algorithms can
be made complete if backtracking is allowed, i.e. choices which have led to a contradiction
can be corrected in a systematic way. This complete version of the procedure is called the
DPLL algorithm [15].
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One outcome of the statistical mechanics studies of random CSP has been the proposal
of an incomplete sequential assignment algorithm called survey propagation-inspired
decimation [7, 16], which proved to be very efficient on satisfiable random instances close to
the satisfiability transition. This algorithm relies on the clustering picture of the solution
space in the satisfiable regime. Unfortunately its theoretical analysis is much more difficult
than for myopic ones. Indeed the heuristics of choice of the variables to be assigned is
based on the result of a message-passing iterative computation which depends on the
whole remaining CSP in an intricate way. More generally, the analysis of message-passing
decimation procedures is difficult and there are few results on this issue, with the notable
exception of [17]–[19] for the so-called warning propagation algorithm on overconstrained
satisfiability formulae.

In this paper we provide an analytical description of an algorithm similar to survey
propagation, yet simpler. It has been studied numerically in [20, 21]. A part of our results
were published in [22]; the method developed there was also applied to another family of
CSP in [23]. In the sequential assignment procedure under investigation the choice of the
value of the assigned variable is made at each step according to the belief propagation
message-passing algorithm (instead of survey propagation). it aims at mimicking the
following ideal procedure. After a certain number of variables has been assigned, one
can define the uniform probability measure over the solutions of the CSP which are
still compatible with the previous choices. If one were able to compute the marginal
probabilities of this (conditional) probability measure and use them to draw the value
of the newly assigned variable at each step, one would construct a uniform sampler of
the solutions of the original CSP, and this would in particular lead to an algorithm for
finding one solution of the CSP. The computation of these marginal probabilities is a
computationally intractable task; belief propagation is a fast heuristic algorithm, widely
used for inference problems [24, 25], which is often able to compute good approximations
of these marginal probabilities. Analyzing the behavior of the belief-inspired decimation
procedure thus amounts to controlling the error which accumulates at each step by using
the BP approximate estimates of the marginal probabilities instead of the exact ones. A
theoretical understanding and quantitative description of the deviations between exact and
BP-computed marginal probabilities for graphical models is a formidable open problem
that we shall not attack directly in this paper. We will instead perform a theoretical
analysis of the putative algorithm based on an hypothetical exact marginal computation.
This analysis will be obtained by a generalization of the cavity method which is able to deal
with the partially decimated CSP encountered along the execution of the algorithm, and
to compute the extended phase diagram of these problems. This approach is technically
similar to the computation of Franz–Parisi quenched potentials [26]. The relevance of this
theoretical analysis for the understanding of the approximate BP implementation will
then be argued on the basis of a comparison with extensive numerical simulations.

This paper is organized as follows. In section 2 we give a more precise definition of the
ideal decimation procedure sketched above and explain how an approximate realization
of this idea can be performed in practice. Section 3 is devoted to the cavity method
for decimated formulae that provides an analytical description of the ideal decimation
procedure. In the next two sections we apply this formalism to two specific CSP, and
compare its predictions to the results of numerical simulations of the BP guided decimation
algorithm. We begin in section 4 with the xor-satisfiability problem, a well-studied simple
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example for which many results can be checked with alternative techniques. We then turn
to the case of k-satisfiability random instances in section 5. We draw our conclusions in
section 6. More technical details are deferred to the appendix.

2. A thought experiment

2.1. Definition of random CSPs and a brief review of their properties

A constraint satisfaction problem (CSP) is defined on a set of N variables σ1, . . . , σN ,
taking values in a finite alphabet. We shall denote σ = (σ1, . . . , σN) the global
configuration of the variables, and for a subset S of the indices {1, . . . , N} we call
σS = {σi, i ∈ S} the partial configuration of the variables in S. The solutions of the CSP
are the configurations which simultaneously satisfy M constraints (also called clauses in
the following), each of them being specified by a function ψa(σ∂a) of a subset ∂a of the
variables. The function ψa takes value 1 (resp. 0) whenever the constraint is satisfied
(resp. unsatisfied). A CSP admits a natural representation in terms of a factor graph [24],
i.e. a bipartite graph where one type of vertex (variable node) is associated to each variable
i = 1, . . . , N and another type (function node) to each constraint a = 1, . . . , M . An edge
links the ith variable node with the ath function node whenever the constraint ψa depends
on σi, i.e. in the notation introduced above whenever i ∈ ∂a. We shall similarly denote
∂i the set of function nodes which depend on the ith variable, and define the distance
between two variable nodes i and j as the minimal number of constraint nodes encountered
on a path of the factor graph joining i and j.

In the following we will concentrate on two examples of CSP, both on binary variables
that we shall represent by Ising spins, σi = ±1:

• k-xorsat. Each constraint a depends on k distinct variables ∂a = {ia1, . . . , iak}, and
requires the product of the corresponding spins to take a given value Ja ∈ {−1, +1}:

ψa(σ∂a) = I

(∏
i∈∂a

σi = Ja

)
, (1)

where here and in the following I(·) is the indicator function of an event. This
condition is easily seen to be equivalent to a constraint on the value of the eXclusive
OR of k Boolean variables, hence the name of the problem.

• k-sat. The constraint a depends again on ∂a = {ia1, . . . , iak}, but imposes the
configuration of these k variables to avoid one out of the 2k possible ones:

ψa(σ∂a) = 1 − I(σi = Ja
i ∀i ∈ ∂a), (2)

where (Ja
ia1
, . . . , Ja

iak
) ∈ {−1, +1}k are fixed constants defining the constraint.

Equivalently, one requires the logical OR of k literals (a Boolean variable or its
negation) to evaluate to TRUE.

From a computational complexity point of view these two problems are very different.
The decision version of a CSP consists in determining whether it admits at least one
solution, i.e. one configuration satisfying all constraints simultaneously. The k-xorsat
decision problem belongs to the easy, polynomial P complexity class [27] for any value of
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k. One can indeed use Gaussian elimination to check if the associated system of linear
equations modulo 2 is solvable. k-sat is, in contrast, NP-complete for all k ≥ 3: no
algorithm able to decide the satisfiability of every k-sat formula in a time bounded by a
polynomial of the formula size is known.

Despite this deep difference in the worst-case point of view, these two families of
problems share common features in their ‘average complexity’ behavior. By this we mean
the random ensembles of instances that have been extensively studied in the computer
science and statistical physics literature and that are defined as follows. A random k-xorsat
formula is generated by drawing in an independent, identical way M constraints; the k-
uplet of indices ∂a is drawn uniformly among the

(
N
k

)
possible ones, and the coupling

constant Ja is taken to be ±1 with equal probability of one-half. The generation of a
random k-sat formula is similar, with for all constraints a the k constants {Ja

i }i∈∂a being
taken independently equal to ±1 with equal probability. These random ensembles exhibit
a rich phenomenology in the thermodynamic limit N, M → ∞ with α = M/N fixed.
In particular a satisfiability phase transition occurs at a value αs (which depends on the
value of k and on the problem, sat or xorsat, under consideration): random formulae with
α < αs are, with high probability, satisfiable, whereas for α > αs they are unsatisfiable.
Here and in the following ‘with high probability’ (w.h.p.) means with a probability going
to one in the above stated thermodynamic limit. To be more precise, for xorsat this
statement has been proven and the values of αs have been computed [28, 29]. For sat
random formulae this satisfiability transition is, strictly speaking, only a conjecture. The
existence of a tight threshold αs(N) has been proven in [4], but not the convergence of
αs(N), that could in principle oscillate between the bounds on its possible location [5, 6]. It
is, however, most probable that the values of αs computed within the statistical mechanics
framework [7]–[9] are exact.

Besides the satisfiability transition other interesting phenomena occur in the
satisfiable phase α < αs. In this regime the formulas are w.h.p. satisfiable and in fact
admit an exponential number of solutions; however, there are structural phase transitions
at which the properties of the set of solutions change qualitatively. To describe the set of
solutions it is convenient to introduce the uniform probability measure on this set:

μ(σ) =
1

Z

M∏
a=1

ψa(σ∂a), (3)

where the normalizing factor Z is the number of solutions of the CSP. Note that this
probability measure is itself a random object, as it depends on the instance of the CSP
under study, and that it is defined only for the satisfiable instances, which is the case
w.h.p. in the regime α < αs we are considering here.

In the xorsat ensemble of random formulae there is a single structural phase transition
in the satisfiable regime [28, 29], known as the clustering transition with a threshold
denoted αd. For lower values of the connectivity α, the set of solutions is well connected.
In contrast, for αd < α < αs, the exponential number of solutions gets split into an
exponential number exp[NΣ] of clusters, separated from each other in the configuration
space. The rate of growth Σ of the number of clusters is usually called the complexity,
it decreases when α grows and vanishes at the satisfiability threshold. In the clustered
phase each cluster contains the same exponential number of solutions (with a rate of
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growth called internal entropy). The structure of xorsat is sufficiently simple for a clear-
cut definition of the clusters to be possible. In fact the clustering transition corresponds
to a percolation transition in the associated factor graph, where an extensive two-core
discontinuously appears.

The structure of the satisfiable phase of the random satisfiability ensemble is
richer [11, 30]. At the clustering transition [7, 10] the exponentially numerous clusters
have, contrary to xorsat, a large diversity of internal entropies. This leads, for k ≥ 4, to
another transition, the condensation one at αc. When αd < α < αc the measure (3) is
split into an exponential number of clusters, while for αc < α < αs almost all solutions
are contained in a sub-exponential number of clusters. These various phase transitions
can be characterized in terms of the strength of the correlations between variables. The
clustering αd is related to the appearance of long-range point-to-set correlations, or in
other words to the possibility of reconstruction of the value of a variable given the values of
all the variables at a large distance from it [31]. At the condensation transition non-trivial
correlations are already revealed by the correlation functions between a finite number of
variables [11].

2.2. Oracle-guided algorithm and ensemble of decimated CSPs

The study presented in this paper is based on the analysis of an ideal procedure to find
the solutions of a CSP, which we discuss here more precisely. Consider a satisfiable CSP
instance, and the uniform measure μ(·) over its solutions defined in (3). Let us also
introduce a subset D of the variables, and a partial configuration of these variables τD

compatible with at least one solution of the instance. We can thus define a conditional
version of μ, μ(·|τD), which is the uniform measure over the solutions of the formula
compatible with τD:

μ(σ|τD) =

⎧⎪⎨
⎪⎩

1

Z(τD)

M∏
a=1

ψa(σ∂a) if σD = τD

0 otherwise.

(4)

The normalization Z(τD) counts the number of solutions compatible with the partial
assignment of variables in D.

A possible procedure for sampling from μ(·) goes as follows. Choose arbitrarily
a permutation of {1, . . . , N}, denoted i(1), . . . , i(N), and call Dt = {i(1), . . . , i(t)} for
t = 1, . . . , N , D0 = ∅. Construct now sequentially a configuration τ , assigning at time t
the value τi(t); to this aim draw σi(t) according to the marginal of the conditioned measure
μ(·|τDt−1

), and set τi(t) = σi(t). It is easy to see that after t steps of the algorithm the
partial configuration τDt

is distributed according to the marginal law of μ(·). In particular
the final configuration τ obtained when the N variables are assigned is a uniformly chosen
solution of the CSP.

This simple algorithm would thus provide a uniform sampler of the solution set
of any CSP; it is, however, only meant as a thought experiment. Indeed, computing
exactly the probabilities μ(σi(t)|τDt−1

) is in general a #P-complete problem, with no
polynomial algorithm known until now, and we shall thus content ourselves with faster
yet approximate means for computing these marginal probabilities. Before introducing
them let us discuss further the idealized procedure.

doi:10.1088/1742-5468/2009/09/P09001 7
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The analytical description of the dynamics followed by this ideal process seems very
difficult: at each time step the probability of the evolution τDt−1

→ τDt
depends in a

non-trivial way on all the choices made in the previous steps. However the description
of the process at a given point of its evolution is very simple. As noted above τDt

is
distributed according to the marginal of μ(·). One can state this in a slightly different
way: τDt

can be obtained by drawing uniformly a solution τ from μ(·), retaining the
configuration of the variables in Dt, and discarding the rest of the configuration. We shall
further assume that the permutation i(1), . . . , i(N) is drawn uniformly at random, such
that Dt is a random set of t variables among N . In the thermodynamic limit we shall
define θ = t/N , the fraction of assigned variables, and consider for simplicity that DθN is
built by retaining independently each variable with probability θ (we only make an error

of order 1/
√

N on the fraction of variables thus included in D).
These considerations lead us to the definition of an ensemble of CSP instances

parameterized by α and θ, generalizing the original one which corresponds to θ = 0.
Explicitly this ensemble of formulae corresponds to the following generation process:

(1) draw a satisfiable CSP with parameter α;

(2) draw a uniform solution τ of this CSP;

(3) choose a set D by retaining each variable independently with probability θ;

(4) consider the residual formula on the variables outside D obtained by imposing the
allowed configurations to coincide with τ on D.

Let us emphasize that, apart from simple cases like the xorsat model, these ensembles
do not coincide in general with randomly uniform formulae conditioned on their degree
distributions. The fact that the generation of the configuration τ depends on the initial
CSP induces non-trivial correlations in the structure of the final formula.

We shall see in the following how to adapt the statistical mechanics techniques to
compute the typical properties of such generalized formulae, and in particular to determine
the phase transition thresholds in the (α, θ) plane. One characterization of these random
ensembles is the quenched average residual entropy:

ω(θ) = lim
N→∞

1

N
EF EτED[ln Z(τD)], Z(τD) =

∑
σ

M∏
a=1

ψa(σ∂a)I(σD = τD), (5)

where the three expectation values correspond to the three steps of the definition above.
This quantity is similar, yet distinct, from the Franz–Parisi quenched potential [26]. The
definition of the latter also involves a ‘thermalized’ reference configuration τ , but is given
by the free energy of the measure on the configurations at a given Hamming distance
from τ . In other words the two real replicas σ and τ are coupled uniformly across the
variables in a Franz–Parisi quenched potential, whereas in the definition of ω they are
coupled infinitely strongly on D where they are forced to coincide, and not at all outside
D. The computations presented in the rest of this paper can, however, be easily adapted
to obtain the usual quenched potential.

We shall characterize the reduced measure μ(·|τD) more precisely by computing other
quantities besides ω(θ). The existence of clusters in this measure will be tested by the
computation of the long-range point-to-set correlations and the complexity of the typical
clusters.
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2.3. Bethe–Peierls approximation for decimated CSPs

We recall in this section the Bethe–Peierls approximation for statistical models defined on
factor graphs and show how to adapt it to partially decimated CSPs. Let us first consider
a probability measure with a weight function which can be factorized as in equation (3),
with ψa some a priori arbitrary positive functions. The Bethe approximation for the
computation of the partition function Z consists in extremizing the following expression:

ln Z = −
∑

i,a∈∂i

ln

(∑
σi

νa→i(σi)ηi→a(σi)

)
+

∑
a

ln

⎛
⎝∑

σ∂a

ψa(σ∂a)
∏
i∈∂a

ηi→a(σi)

⎞
⎠

+
∑

i

ln

(∑
σi

∏
a∈∂i

νa→i(σi)

)
(6)

over the unknown {νa→i, ηi→a}. These are probability measures on the alphabet of σi,
defined on the directed edges of the factor graph, which we shall call messages for reasons
that will become clear below. The extremization of the Bethe approximation for ln Z
leads to a set of equations between the messages:

νa→i(σi) = f({ηj→a}j∈∂a\i), ηi→a(σi) = g({νb→i}b∈∂i\a), (7)

where the (edge-dependent) functions f and g are defined by

νa→i(σi) =
1

za→i

∑
σ∂a\i

ψa(σ∂a)
∏

j∈∂a\i

ηj→a(σj), ηi→a(σi) =
1

zi→a

∏
b∈∂i\a

νb→i(σi), (8)

with za→i and zi→a ensuring the normalization of νa→i and ηi→a. When the factor graph
is a tree the log partition function is exactly given by (6) evaluated on the unique solution
of the stationarity equations (8), see for instance [24]. The messages νa→i (resp. ηi→a)
are then the marginal probabilities for σi of a modified measure corresponding to a factor
graph where all factor nodes around i except a have been removed (resp. only a has
been removed). From the knowledge of the messages solution of (8) one can compute
the marginal probability of the variables in the full factor graph law (3), for instance the
marginal probability of variable i is

1

zi

∏
a∈∂i

νa→i(σi), (9)

with again zi fixed by normalization. In general factor graphs do contain loops, in that
case (6), (8), (9) are only approximations, at the basis of the so-called belief propagation
algorithm discussed in more details below.

The Bethe approximation can be easily adapted to the case where the configuration is
forced to the value τD on a subset of the sites i ∈ D, that is to the conditional measure (4).
The estimation of the conditioned log partition function follows from (6)

ln Z(τD) = −
∑

i/∈D,a∈∂i

ln

(∑
σi

ν
τD
a→i(σi)η

τD
i→a(σi)

)
+

∑
a

ln

⎛
⎝∑

σ∂a

ψa(σ∂a)
∏
i∈∂a

η
τD
i→a(σi)

⎞
⎠

+
∑
i/∈D

ln

(∑
σi

∏
a∈∂i

ν
τD
a→i(σi)

)
, (10)
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where the messages {ητD
i→a, ν

τD
a→i} depend on the imposed partial configuration τD. They

indeed obey the same equations (8), complemented with the boundary conditions
η

τD
i→a(σi) = δσi,τi

when i ∈ D.

2.4. Practical approximate implementation of the thought experiment

The ideal sampling algorithm described in section 2.2 cannot be practically implemented,
because the computation of the marginals of the probability law μ(σ|τD) has generically
a cost exponential in the number of variables. One can, however, mimic this procedure,
using a faster yet approximate estimation of the marginals of μ(σ|τD) by means of the
belief propagation algorithm. This modification of the ideal sampler, which will be called
BP guided decimation in the following, thus corresponds to (for a given CSP instance):

(1) choose a random order of the variables, i(1), . . . , i(N), call D0 = ∅, Dt =
{i(1), . . . , i(t)};

(2) for t = 1, . . . , N :

(a) find a fixed point of the BP equations (7) with the boundary conditions ηi→a(σi) =
δσi,τi

when i ∈ Dt−1;
(b) draw σi(t) according to the BP estimation of μ(σi|τDt−1

) given in (9);
(c) set τi(t) = σi(t).

The belief propagation part of the algorithm corresponds to step 2(a). It amounts to
searching for a stationary point of the Bethe approximation for the log partition function,
in an iterative manner. The unknowns of the Bethe expression, ηi→a (resp. νa→i), are
considered as messages passed from a variable to a neighboring clause (resp. from a
clause to a variable). In a random sequential order a message, say ηi→a, updates itself
by recomputing its value from the current messages sent by its neighbors {νb→i}b∈∂i\a,
according to the equation in (8). If the factor graph of the formula was a tree, these
iterations would converge in a finite number of updates to the unique fixed point solution
of (8). On generic factor graphs there is no guarantee of convergence of these iterations, in
practical implementations one has thus to precise the definition of the algorithm, giving
criteria to stop the iterations of the BP updates; we shall come back to this point in
section 5.5.

The definition of the probability measure conditioned on the choice of the reference
configuration τD (4) and the subsequent derivation of the BP equations only make sense
if the formula admits at least one solution compatible with τD. In the analysis of the
ideal algorithm this is automatically the case as soon as the initial formula is satisfiable.
However, this can fail in the course of the BP guided decimation algorithm because the
marginals used to generate the configuration τ are only approximate. The BP equations
are no longer well defined when there are no solutions of the formula compatible with
τD. This shows up, for instance, in the computation of the message sent by a variable i
to a clause a; whenever the product

∏
b∈∂i\a νb→i(σi) vanishes for all possible values of σi

the message ηi→a can no longer be normalized; a contradiction has occurred between the
strong requests imposed by the clauses in ∂i \ a. The BP guided decimation algorithm
has then to stop and fails to construct a solution of the formula.

This mechanism which unveils the contradictions in the choice of τD, and the fact
that no solution is compatible with it, is actually equivalent to the unit clause propagation

doi:10.1088/1742-5468/2009/09/P09001 10

http://dx.doi.org/10.1088/1742-5468/2009/09/P09001


J.S
tat.M

ech.
(2009)

P
09001

On the cavity method for decimated random constraint satisfaction problems

(UCP) algorithm well known in computer science. For concreteness let us recall its
functioning in the case of satisfiability formulae. UCP takes in input a list of variables
and a list of clauses. If all clauses have length greater or equal to two it stops. Otherwise
it chooses one of the unit clauses (i.e. of length 1). The variable in this unit clause must
be fixed to the value satisfying the clause for the constructed configuration of variables to
be a solution of the formula. The logical implications of this assignment are then drawn.
All the clauses where the fixed variable appeared with the same sign as in the unit clause
can be removed from the formula, as they are automatically satisfied. All clauses where
it appeared with the opposite sign are effectively reduced in length, as the fixed variable
will never satisfy them. This process is iterated as long as unit clauses are present in the
formula. If clauses of length 0 are produced during the propagation of logical implications,
then the input formula was not satisfiable: the logical implications required at least one
of the variables to take simultaneously its two possible values. If no contradictions occur,
the set of variables that appeared in unit clauses during the process are termed logically
implied, their value being uniquely determined by the input formula.

It turns out that an equivalent formulation of the UCP rule for drawing logical
implications can be given in terms of a message-passing procedure known as warning
propagation (WP) [16]. The messages {ni→a, va→i} that WP sends along edges of the
factor graph are projections of those of BP, where the only information retained is whether
a value of the variable σi is authorized (ηi→a(σi) > 0) or not (ηi→a(σi) = 0):

ni→a(σi) = I(ηi→a(σi) > 0), va→i(σi) = I(νa→i(σi) > 0). (11)

The projection of the BP equations (7) leads to recurrence equations on the WP messages

va→i = f({nj→a}j∈∂a\i), ni→a = g({vb→i}b∈∂i\a). (12)

Monotonicity arguments can be used to show that these recurrence equations, initialized
with the permissive value of the messages ni→a(σi) = 1, converge to a unique fixed point
independent on the order of updates of the messages. Moreover this fixed point contains
the same information as revealed by UCP: a contradiction occurs in UCP if and only if
there is a variable i such that∏

a∈∂i

va→i(σi) = 0 ∀σi. (13)

If no contradiction occurs the set of variables logically implied by UCP corresponds to
the variables i such that there is only one authorized value σi for it,

∃ ! σi:
∏
a∈∂i

va→i(σi) = 1. (14)

This correspondence was explicitly shown in the case of satisfiability formulae in [22]. In
our practical implementation of the BP guided decimation algorithm we check, after each
assignment of a variable τi(t), whether a contradiction in the partial configuration τDt

can be detected by UCP/WP. According to the pseudocode above we do not immediately
assign the variables which are logically implied by τDt

; please note, however, that this does
not modify at all the subsequent steps of the algorithm, as the BP equations effectively
take into account the effect of these logical implications. We also emphasize the fact that
in general there are variables which can only take one value under the law μ(·|τD), yet
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that are not unveiled as logically implied by UCP/WP; if this were the case UCP would
always be successful on any satisfiable formula (and incidentally one would have P = NP),
which is of course well known to be wrong.

As a final remark on the BP guided decimation algorithm, let us emphasize another
difference with the theoretical analysis. In practice we apply the algorithm to a
uniformly generated formula of CSP, with α < αs, which are typically satisfiable in the
thermodynamic limit, but we cannot systematically exclude unsatisfiable instances as in
the analysis of the ideal algorithm.

3. Analysis of the thought experiment with the cavity method

3.1. Reminder on the usual cavity method

The goal of the cavity method is to compute the typical properties in the thermodynamic
limit of graphical models defined on random factor graphs, and in particular the
average entropy of the associated random CSP. In the simplest situation, known as
the replica symmetric (RS) case, the hypothesis of the method is that the Bethe–
Peierls approximation is asymptotically exact for the large random factor graphs of the
ensemble considered. For concreteness we explain it in a setting encompassing the k-
(xor)sat formulae, that is where each of the M = αN constraints imply k randomly
chosen variables. The prediction for the average log partition function then follows by
averaging (6):

lim
N→∞

1

N
E[ln Z] = −αkE

[
ln

(∑
σ

ν(σ)η(σ)

)]

+ αE

[
ln

( ∑
σ1,...,σk

ψ(σ1, . . . , σk)η1(σ1) · · ·ηk(σk)

)]

+ E

[
ln

(∑
σ

ν1(σ) · · ·νl(σ)

)]
. (15)

Let us detail the justification and the meaning of the right-hand side of this relation. We
have first used the translational invariance in the definition of the random ensemble: each
term in the sums of equation (6) contributes on average in the same way. Moreover we
have introduced the random variable η (resp. ν), whose distribution can be constructed
as follows: drawing a random factor graph, finding the solution of the BP equations (7),
picking a random edge i–a of the factor graph, and setting η = ηi→a (resp. ν = νa→i). The
averages on the right-hand side of (15) are thus over independent copies of η and ν, over
the random constraint function ψ, and over a Poisson random variable l of mean αk. This
last quantity is the degree of an uniformly chosen variable inside such a factor graph.

The equations fixing the distributions of the random variables η and ν can be obtained
either looking for the stationary points of (15) or interpreting the BP equations (7) in the
random graph perspective. Both reasoning leads to the distributional equations

ν
d
= f(η1, . . . , ηk−1), η

d
= g(ν1, . . . , νl). (16)
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These equations have to be interpreted as equalities between distributions of random
variables. The ηi (resp. νi) are independent copies of the random variable η (resp. ν), l
is a Poissonian random variable of parameter αk, and f and g have been defined in (7)
and (8), f being itself random because of the choice of the constraint function ψ.

The RS cavity method is based on the assumption of asymptotic correctness of the
Bethe–Peierls approximation, which can be rephrased as the existence of a single pure
state (or cluster) in the probability law μ. A complementary statement of the RS method
concerns the local description of the law μ. Let us consider an arbitrary variable node
i0, and its depth L neighborhood, that is the set of variables at graph distance smaller
than or equal to L from i0. In such random graph ensembles this neighborhood is, with
high probability, a Galton–Watson random tree with Poissonian offspring of mean αk
for the variable nodes (the constraint nodes being of course always of degree k). In the
RS case the marginal of the law μ for the variables in this neighborhood converges in
distribution to the law of a finite tree of depth L, the only effect of the rest of the graph
being summarized in a single message η acting on the boundary (the depth L variables),
drawn independently with the fixed point distribution solution of equation (16). In other
words the depth L variables would be considered independent if the constraints inside the
depth L neighborhood around i0 were removed.

In the context of random CSPs the RS assumption is only valid for small values of
the density of constraints α. When this parameter grows the solution space splits into
a large number of pure states (clusters), which induces non-trivial correlations between
the variables of the graphical model. The cavity method at the level of the first step of
replica symmetry breaking (1RSB) is able to describe this situation [32]. Let us sketch
some of its important features without entering into technical details. The assumption
of the 1RSB method is that the Bethe–Peierls approximation can still be used, but only
for the probability measures restricted to a single pure state; to each such pure state is
associated a solution of the BP equations (7). In order to handle the proliferation of
pure states one introduces, on each directed edge of a given factor graph, a probability
distribution, with respect to the choice of the pure states, of the corresponding BP
messages. The 1RSB equations linking these distributions on adjacent edges depend on
the Parisi parameter m, which controls the relative importance of the pure states in the
sampling of the corresponding BP messages, according to their internal sizes. A slightly
more explicit interpretation of the 1RSB equations has been given in [11, 30]. There it
was shown that the distribution over pure states can be viewed as a distribution over
‘far-away’ boundary conditions, with a specific probability measure over these boundary
conditions depending on m. A special role is played by the value m = 1. In this case the
‘far-away’ boundary conditions are themselves drawn from the original Gibbs measure.
The clustering transition, that is the appearance of a non-trivial solution of the 1RSB
equations at m = 1, can thus be related to the existence of long-range correlations of a
particular type (so-called point-to-set) in the Gibbs measure, as first discussed in [31].
These correlations measure the influence on a variable i0 of fixing a subset B of variables,
for instance B(i0, 
) the set of variables at distance exactly 
 from i0, to a reference
value drawn from the equilibrium probability measure. Using the notation of conditional
probability defined in equation (4) the typical long-range point-to-set correlation is

C∞ = lim
�→∞

lim
N→∞

E

∑
σi0

|μ(σi0|τB(i0,�)) − μ(σi0)|, (17)
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where the expectation is over the equilibrium configuration τ and the factor graph model.
In an unclustered regime the influence of the distant boundary vanishes, C∞ = 0, while
in the presence of clustering C∞ > 0. In the latter case one can moreover compute the
complexity of relevant clusters, that is the logarithm of the degeneracy of the clusters
which bears the vast majority of the weights of the probability measures (at the leading
exponential precision) by computing the difference in entropy of the conditional and
original measures, μ(·|τB(i0,�)) and μ(·). The so-called condensation transition is signaled
by a vanishing of this complexity. We shall come back in the next subsection to the
technical details of the 1RSB m = 1 computations, generalizing it to the case of partially
decimated formulae.

3.2. Cavity method for decimated CSP

We turn now to the extension of the cavity method to partially decimated factor graphs.
Our goal is to compute the residual entropy (5) by averaging the Bethe expression (10)
with respect to the distribution of the conditional messages {ητD

i→a, ν
τD
a→i}. The randomness

of these objects has several origins: (i) the choice of the factor graph, (ii) the generation
of the reference configuration τ from the uniform measure μ and (iii) the selection of the
decimated variables in D, each independently with probability θ. The difficulty of this
computation arises from the correlation between (i) and (ii), the measure μ being itself
defined in terms of the factor graph. This dependence can, however, be handled within
the context of the cavity method. Let us suppose indeed that the local properties of the
original measure μ(·) are well described by the assumptions of replica symmetry, that is for
α < αc.

3 We can thus perform the computation in the random tree model that corresponds
locally to the random graph one. In this case the generation of the reference configuration
τ of a tree factor graph model can be done recursively, in a broadcasting way, thanks to
the Markov property of such probability laws. The value of the root τi0 is first drawn with
its marginal probability computed from the incoming messages according to (9). Then the
configuration of the neighbors of i0 can be drawn conditioned on the value of τi0 , and the
process can be iterated away from the root. Once the reference configuration τ has been
generated in such a way, the messages {ητD

i→a, ν
τD
a→i} can be computed, their dependence

on τ arising from the condition η
τD
i→a(σi) = δσi,τi

for variables i in the decimated set D. At
this point, for a given tree, reference configuration τ and set D, each directed edge of the
factor graph bears a pair of messages, for instance (νa→i, ν

τD
a→i) on the edge from constraint

a to variable i. We can now define the random variable (ν, ντ )� which has the distribution
of (νa→i, ν

τD
a→i) when one takes into account the randomness in the choice of the tree, of

the set D and of the reference configuration τ , the latter being conditioned on τi = τ .
Moreover the positive integer 
 indexes the depth of the random tree construction. We
shall also introduce random variables having the same distribution as (ηi→a, η

τD
i→a). For

the sake of clarity in the following we actually introduce two versions of these random
variables, (η, ητ)� and (η, η̃ τ )�, the former being additionally conditioned on i /∈ D. The
equations defining these random variables by recurrence on 
 can now easily be written:

(η, η̃ τ )�
d
=

{
(η, ητ )� with probability 1 − θ

(η, δτ ) otherwise,
(18)

3 The local properties are indeed of a RS type also in the clustered uncondensed regime α ∈ [αd, αc] [11].
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where we defined δτ (σ) = δτ,σ and

(η, ητ)�
d
=(g(ν1, . . . , νl), g(ντ

1 , . . . , ντ
l )), (19)

where l is a Poisson random variable of parameter αk and (ν1, ν
τ
1 ), . . . , (νl, ν

τ
l ) are

independent copies of (ν, ντ )�. Finally one has

(ν, ντ )�+1
d
=(f(η1, . . . , ηk−1), f(η̃ τ1

1 , . . . , η̃
τk−1

k−1 )), (20)

where the (ηi, η̃
τi
i ) are independent copies of (η, η̃ τi)�, and the configuration τ1, . . . , τk−1

is drawn according to

P [τ1, . . . , τk−1|τ ] =
1

z
ψ(τ, τ1, . . . , τk−1)η1(τ1) · · ·ηk−1(τk−1). (21)

Let us emphasize that the function ψ used in the broadcasting generation of τ1, . . . , τk−1

is the same (random) constraint function as the one used to compute f in (20), and that
the messages ηi are the same in (20) and (21). We shall discuss a numerical procedure
for solving these equations on the example of satisfiability formulae in section 5. The
prediction of the cavity method for the average residual entropy (5) can finally be expressed
in terms of these random variables:

ω = −αk(1 − θ)E

[∑
τ

ν(τ)η(τ)∑
τ ′ ν(τ ′)η(τ ′)

ln

(∑
σ

ντ (σ)ητ (σ)

)]

+ αE

[ ∑
τ1,...,τk

ψ(τ1, . . . , τk)η1(τ1) · · · ηk(τk)∑
τ ′
1,...,τ ′

k
ψ(τ ′

1, . . . , τ
′
k)η1(τ

′
1) · · ·ηk(τ

′
k)

× ln

( ∑
σ1,...,σk

ψ(σ1, . . . , σk)η̃
τ1
1 (σ1) · · · η̃ τk

k (σk)

)]

+ (1 − θ)E

[∑
τ

ν1(τ) · · · νl(τ)∑
τ ′ ν1(τ ′) · · · νl(τ ′)

ln

(∑
σ

ντ
1 (σ) · · ·ντ

l (σ)

)]
, (22)

where as before l is a Poisson random variable of parameter αk and the various (ηi, η
τi
i )

are independent copies of the corresponding random variables, with the 
 → ∞ limit kept
understood.

We shall now discuss an important issue that we kept under silence, namely the
definition of the initial condition (η, ητ)�=0. Let us first make the connection between
the computation just presented and the m = 1 1RSB description of non-decimated
formulae, that is consider for a while the case θ = 0. We shall call I0 the initial condition

(η, ητ )�=0
d
=(η, η), with η a random variable solution of the RS fixed point equation (16).

It is easy to show that with such an initial condition (η, ητ)�
d
=(η, η) for all values of 
, and

that (22) reduces to the RS prediction (15) for the average entropy. If on the contrary one

considers the initial condition I1 defined by (η, ητ)�=0
d
=(η, δτ ) and iterates the recursion

equations (18)–(20), one reproduces the m = 1 computations in the form of [30, 31]. This
should not be a surprise: the interpretation of the m = 1 1RSB formalism presented
above was precisely the study of the effect of a far-away boundary, which is implemented
here in this initial condition and in the limit 
 → ∞. In an unclustered phase the two
initial conditions lead to the same random variable (η, η) in the large 
 limit, the effect
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of the far-away boundary vanishes at long distance and the correlation function (17) is
equal to 0. If, in contrast, the two initial conditions do not lead to the same limit when

 diverges the correlation function remains positive, signaling the presence of clustering
in the solution space. In that case the value of (22) computed with the initial condition
I1 is the internal entropy of the relevant clusters, the difference between (15) and (22) is
ascribed to the complexity, the degeneracy of the relevant clusters. We now come back
to the decimated case θ > 0. The two initial conditions are still relevant and have the
same interpretation with the measure μ(·) replaced by μ(·|τD). Suppose indeed that the
point-to-set correlation criterion were to be tested for the typical properties of μ(·|τD).
Then one would compute the generalization of (17):

C∞(θ) = lim
�→∞

lim
N→∞

E

∑
σi0

|μ(σi0|τD∪B(i0,�)) − μ(σi0 |τD)|, (23)

where the expectation would include an average over the set D of θN variables. This
is precisely what is realized by the two initial conditions followed by the recursion
relations (18)–(20) for this value of θ. Again we shall conclude on the absence of clustering
in μ(·|τD) when the two initial conditions have the same 
 → ∞ limit, and obtain a typical
complexity of the clusters from the difference in the values of (22) for the two different
initial conditions.

3.3. The cavity computation of the average number of logically implied variables

Another quantity which can be interesting to compute is the amount of logical
implications, in the UCP/WP sense explained in section 2.4, induced by the choice of
the partial reference solution τD. Let us define as

φ(θ) = θ + lim
N→∞

1

N
EF EτED[nb. directly implied variables], (24)

the average fraction of variables which have been explicitly assigned or which can be
logically deduced from these assignments. A motivation for the study of this quantity, as
explained in [22], is that (dφ/dθ)− 1 is the average number of newly implied variables as
a single assignment step is performed. The size of this set of variables, and in particular
its possible divergence with the formula size when φ(θ) is discontinuous, should thus be a
measure of the sensitivity of the decimation procedure with respect to small errors made
by the BP version of the procedure with respect to the ideal one.

The computation of φ(θ) can be performed, within the RS assumptions on the local
structure of the probability law μ(·), in the locally equivalent random tree model. For a
generic CSP one can reproduce the reasoning above, replacing the conditional messages
η

τD
i→a by their WP counterparts n

τD
i→a according to the projection defined in (11). This

leads to the similar definition of sequences of random pairs of variables, (η, ñτ )�, (η, nτ )�

and (η, vτ )�, which obeys recursion equations analogous to equations (18)–(20):

(η, ñτ )�
d
=

{
(η, nτ )� with probability 1 − θ

(η, δτ) otherwise,

(η, nτ )�
d
=(g(ν1, . . . , νl), g(vτ

1, . . . , v
τ
l )), (25)

(ν, vτ )�+1
d
=(f(η1, . . . , ηk−1), f(ñ

τ1
1 , . . . , ñ

τk−1

k−1 )). (26)
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The function φ(θ) can then be computed as

φ(θ) = E

[∑
τ

η(τ)I(ñτ = δτ )

]
, (27)

in the 
 → ∞ limit. This form of the computation is valid for any CSP; in some particular
cases one can, however. devise a more efficient (and numerically more precise) formulation,
using the specific form of the constraint rules to replace the WP message in the second
entry of the random pair by a probability of implication. We refer the reader to [22] for
further details on this computation for random satisfiability formulae.

4. Application to the XORSAT ensemble

We apply in this section the general formalism developed above to the ensemble of xor-
satisfiability formulae. As we shall see great simplifications occur for this simple model,
and the study of both the decimated ensemble of random formulae and of the BP guided
decimation algorithm can in fact be performed with simpler methods [28, 29, 33]. It is,
however, an instructive toy model to begin with before handling the more involved case
of satisfiability formulae, and has deep connections with information theory, in particular
with the low density parity check codes. The analysis of the ‘Maxwell decoder’ in [34] is
actually very tightly related to the content of this section.

4.1. BP equations

The constraints of an xorsat CSP have been defined in equation (1). The set of solutions
of such a CSP exhibits some simplifying symmetries, even in the decimated case where
some variables are fixed to a given value. It is indeed easy to realize that a non-decimated
variable is either fixed to +1 in all the solutions, or fixed to −1, otherwise it takes the value
+1 in exactly half of the solutions and −1 in the other half. Consequently the BP messages
νa→i and ηi→a can be restricted to a set of three possible types, which we shall encode
with three-valued numbers ua→i and hi→a according to the following correspondence:

νa→i(σi) =

⎧⎪⎨
⎪⎩

δσi,+1 ⇔ ua→i = 1

δσi,−1 ⇔ ua→i = −1
1
2

⇔ ua→i = 0,

ηi→a(σi) =

⎧⎪⎨
⎪⎩

δσi,+1 ⇔ hi→a = 1

δσi,−1 ⇔ hi→a = −1
1
2

⇔ hi→a = 0.

(28)

With these notations the BP equations (8) can be rewritten as

ua→i = Ja

∏
j∈∂a\i

hj→a, hi→a =

⎧⎪⎨
⎪⎩

0 if ub→i = 0 ∀b ∈ ∂i \ a

+1 if ∃b ∈ ∂i \ a with ub→i = 1

−1 if ∃b ∈ ∂i \ a with ub→i = −1.

(29)

The second expression is well defined as long as no contradictions are detected, which
means that the conditions in the last two lines are not fulfilled simultaneously. The
boundary condition for a decimated variable i ∈ D is h

τD
i→a = τi for all neighboring

interactions a ∈ ∂i.
Due to the symmetry of the model the BP equations (29) can actually be regarded

as WP equations that express the simplifications of the unit propagation rule. The first
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equation reflects the fact that a constraint imposes the value of one of its variables if
and only if the k − 1 other variables are fixed (either by decimation or by propagation of
logical implications), while the second means that a variable is fixed as soon as one of its
neighboring clauses imposes its value.

4.2. The cavity method computations

Following the general formalism introduced in section 3 for the treatment of decimated
CSPs and the parameterization of the BP messages in terms of u and h, we have to find

the distributions of the random variables (h, hτ )�, (u, uτ)� and (h, h̃τ )� for τ = ±1. These
are the solutions of equations (18)–(20) specialized to the functions f , g and ψ of the
xorsat model. The relevant solution of this equation takes a particularly simple form
which allows for an analytic solution. The results of [28, 29] imply indeed that the set of
solutions of a non-decimated k-xorsat formula is described by the trivial solution of the
RS equation, u = h = 0. Moreover the value of the conditional message hτ cannot be
equal to −τ : by definition hτ describes the measure where the reference solution has been
drawn conditional on its value at the root being τ , whereas hτ = −τ would mean that
all solutions compatible with the values of the reference on some subset of variables D
have −τ at the root, which is in contradiction with the hypothesis. As a consequence the
solution of (18)–(20) can be looked for under the form

(h, hτ )�
d
=

{
(0, 0) with probability 1 − x�

(0, τ) with probability x�,

(u, uτ)�
d
=

{
(0, 0) w.p. 1 − y�

(0, τ) w.p. y�,
(h, h̃τ )�

d
=

{
(0, 0) w.p. 1 − φ�

(0, τ) w.p. φ�.

(30)

Inserting these forms in (18)–(20) leads to the following equations:

φ� = θ + (1 − θ)x�, x� = 1 − exp[−αky�], y�+1 = φk−1
� , (31)

which can be closed under a single recursion equation on φ�:

φ�+1 = θ + (1 − θ)
(
1 − e−αkφk−1

�

)
. (32)

The fixed point equation φ�+1 = φ� has between one and three distinct solutions on [0, 1],
depending on the values of α and θ (examples of the various situations are provided in
figure 1). A quick analysis of the equation shows that for α < α∗, with

α∗ =
1

k

(
k − 1

k − 2

)k−2

, (33)

equation (32) admits a single solution for all values of θ. If, in contrast, α > α∗, there
exists a range of θ, denoted [θ−(α), θ+(α)], where equation (32) admits three solutions in
[0, 1]. In that case we shall call φ(θ) (resp. ψ(θ)) the smallest (resp. the largest) of these
three solutions. Some examples of these curves are shown in figure 2 and the lines θ±(α)
are displayed in figure 3.

The expression of ω given in equation (22) can be computed using the ansatz (30)

ω = (ln 2)[αk(1 − θ)(1 − xy) − α(1 − φk) − (1 − θ)((αk)(1 − y) − exp[−αky])], (34)
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Figure 1. Illustration of the recurrence equation (32) for 3-xorsat. Left panel:
α = 0.5 < α∗(k = 3) = 2/3, right panel: α = 0.8 > α∗. On each of the plots the
three curves are for different values of θ (increasing from bottom to top).

Figure 2. Fixed point solution(s) of equation (32) for k = 3. Left panel:
α = 0.5 < α∗(k = 3) = 2/3, right panel: α = 0.8 > α∗. The solid line is φ(θ),
the dashed line in the right panel is ψ(θ) and the largest fixed point solution of
equation (32).

where the limit 
 → ∞ is kept as understood. Using the relations between x, y and φ
stated in (31), one can express this residual entropy in terms of φ:

ω̂(φ) = (ln 2)[1 − φ − α + αk(1 − φ)φk−1 + αφk]. (35)

When α < α∗ the fixed point solution of (32) is unique, hence ω(θ) = ω̂(φ(θ)) is a smoothly
decreasing function of θ, as plotted on the left panel of figure 4. For larger values of α,
i.e. α > α∗, we have seen above that there exists a range of parameters θ ∈ [θ−(α), θ+(α)]
where two solutions of (32), φ(θ) and ψ(θ), coexist. In the right panel of figure 4 one
can see that the two branches of the entropy, ω̂(φ(θ)) and ω̂(ψ(θ)), cross each other at
an intermediate value θc(α) ∈ [θ−(α), θ+(α)], which is also plotted as a function of α in
the phase diagram figure 3. It is natural (and we shall argue in the following that it is
the correct choice) to consider that in the region of coexistence the relevant branch is the
one leading to the largest entropy, ω(θ) = max[ω̂(φ(θ)), ω̂(ψ(θ))], which thus exhibits a
discontinuity in its slope when θ crosses θc.

A direct justification of this choice will be given in the next subsection; here we argue
in its favor on the basis of the cavity method. The two boundary conditions discussed
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Figure 3. Phase diagram in the (α, θ) plane for the ensemble of 3-xorsat
decimated random formulae; the three critical lines meet at α∗(k = 3) = 2/3.

Figure 4. Residual entropy ω(θ) for 3-xorsat. Left panel: α = 0.5, right panel:
α = 0.8. The solid line is the true entropy ω(θ) = max[ω̂(φ(θ)), ω̂(ψ(θ))], while
the dashed lines are the two irrelevant branches, min[ω̂(φ(θ)), ω̂(ψ(θ))].

in section 3.2 corresponds to φ�=0 = 0 (I0) and φ�=0 = 1 (I1). When the fixed point
solution of (32) is unique both initial conditions lead to the same limit φ(θ) in the large

 limit, which leads to the conclusion that there is no clustering in the solution space of
the decimated formula for these values of α and θ.

In the region of coexistence these two initial conditions yield, respectively, φ� → φ(θ)
and φ� → ψ(θ) as 
 diverges. One is thus led to assign the difference ω̂(φ(θ))− ω̂(ψ(θ)) to
the complexity of the decimated formula, that is the contribution of the entropy due to the
presence of clusters in the measure μ(·|DθN). This interpretation is valid only when the
complexity is positive, that is in the range [θ−, θc]. A condensation transition occurs when
the threshold θc is crossed. In the region [θc, θ+] only a subextensive number of clusters
are relevant and the total entropy is equal to their internal entropy. The latter being
given by the thermodynamic computation with the initial condition I1, one concludes
that ω(θ) = ω̂(ψ(θ)) for θ ∈ [θc, θ+].

4.3. A more direct computation and its interpretation

It is instructive to rederive the above results on xor-satisfiability decimated formulae by
more direct means. Let us first show that for this computation one can assume that the
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formula is unfrustrated (i.e. Ja = 1 for all constraints) and that in the reference solution τ
all variables are fixed to τi = 1. Suppose indeed that the formula has been generated with
random Ja = ±1. As we have conditioned the ensemble of formulae on satisfiable ones,

there is at least one solution, call it σ(0). By the gauge transformation σi ↔ σ′
i = σiσ

(0)
i , the

solutions σ of the original problem are in bijection with the solutions σ′ of the unfrustrated
model. Consider furthermore a reference solution τ of the unfrustrated model and a set
D of variables, such that the decimated problem to solve is∏

i∈∂a

σ′
i = 1 ∀a, σ′

i = τi ∀i ∈ D. (36)

Applying now the gauge transformation σ′
i ↔ σ′′

i = σ′
iτi, noting that τ is a solution of the

unfrustrated model, one reduces the problem to∏
i∈∂a

σ′′
i = 1 ∀a, σ′′

i = 1 ∀i ∈ D. (37)

Having got rid of the signs in the constraints and in the reference solution, the size and
the structure of the set of solutions of the decimated problem can be deduced from the
underlying hypergraph of constraints [28, 29, 33].

The initial hypergraph is drawn uniformly with αN clauses of length k among N
variables. A fraction θ of the variables are fixed to +1, and can thus be eliminated
from the constraints which are reduced in size. Unit clause propagation can then be run
to propagate these simplifications. The details of this computation are deferred to the
appendix; we only quote here the results. When UCP stops, there are N(1−φ(θ)) variables
unassigned, with φ(θ) the smallest fixed point solution of (32). The simplified formula
contains constraints of all lengths κ ∈ [2, k]; more precisely, there are αN

(
k
κ

)
(1− φ)κφk−κ

clauses of length κ. The unassigned variables have a Poisson degree distribution with
average αk(1 − φk−1).

At this point the structure of the solutions of this reduced formula can be studied
with the leaf removal algorithm [28, 29]. The details are again deferred to the appendix.
One finds that the presence of an extensive 2-core is equivalent to equation (32) admitting
more than one solution, i.e. if α > α∗ and in the interval θ ∈ [θ−, θ+]. If this is the case,
the larger solution ψ gives the fraction of the variables which are either fixed at the end
of UCP, or in the backbone of the UCP-reduced formula. The difference between the
number of variables and the number of clauses in the 2-core is N(ω̂(φ)− ω̂(ψ))/(ln 2). In
the interval θ ∈ [θ−, θc] this quantity is positive, hence it is interpreted as the entropy
of the number of solutions of the 2-core, i.e. the complexity of the reduced formula. In
[θc, θ+] the negative complexity is due to rare events. Typically the 2-core only contains
a sub-exponential number of solutions, hence the discontinuity in slope of ω(θ) at this
condensation transition θc. For α ≥ αd (the usual dynamical threshold) the original
formula already has a 2-core, hence θ− = 0 in this case. Similarly θc = 0 for α ≥ αc, the
satisfiability transition of the standard ensemble.

Let us remark that the density of clauses of length 2 in the UCP-reduced formula
is (1/2)αk(k − 1)(1 − φ)φk−2. When θ reaches θ+ from below this density reaches 1/2
and thus the sub-formula made of length 2 clauses percolates. Indeed θ+ is the point
of disappearance of the solution φ(θ) from equation (32), hence by the implicit function
theorem the derivatives with respect to φ of the two sides of equation (32) are equal at
that point.
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Figure 5. Left panel: probability of success of BP guided decimation on 3-xorsat
random formulae. The solid line is the analytical prediction [36, 37] in the infinite
size limit (cf equation (39)), which vanishes for α > α∗ and the symbols are the
results of numerical simulations on 800 formulae of size N = 2 × 104 variables
for each value of α. Right panel: the solid line is the curve θ+(α); symbols
indicate the mean and variance (over unsuccessful runs) of the fraction of variables
assigned before a contradiction is detected, from numerical simulations on 800
formulae of size N = 2 × 104 variables for each value of α.

4.4. Numerical experiments on BP guided decimation

We present in this section the results of numerical experiments performed with the BP
guided decimation algorithm. According to the definitions given in the general setting,
these experiments consisted in generating a random xorsat formula (with Ja = ±1 with
probability one-half) and assigning step by step the value of the variables. The variables
were assigned in an uniformly random order. Each time a variable is assigned the BP
equations (29) are iterated until convergence is reached or a contradiction is detected
(that is, a variable i receives at least two contradicting messages u = +1 and −1 from the
neighboring clauses). As long as no contradiction is found, the value of the next variable
to be assigned is drawn according to the BP estimation of its marginal probability. In
this simple model this BP marginal is either completely unbiased (when all incoming
messages u from the neighboring clauses vanish), in which case the value of the variable is
±1 with equal probability, or completely biased, and the assignment is nothing more than
the validation of an implication of previous choices. A run of this algorithm is successful
if it assigns the value of the N variables without encountering any contradiction; the
configuration obtained at the end of the process is then a solution of the formula.

In the left panel of figure 5 we present the probability of successful runs, with respect
to the choice of the formula and to the randomness in the course of the run (order of
the variables and free choices for unbiased marginals). It goes to a finite value in the
thermodynamic limit (which can be computed analytically, see below) for α < α∗, and to
0 for α > α∗. A further piece of information is given in the right part of figure 5 about the
number of steps performed by the algorithm (i.e. the number of variables assigned) before
it stops. Let us call this random variable Thalt and the associated fraction θhalt = Thalt/N .
We plotted the mean and variance (represented by error bars) of θhalt, computed only on
unsuccessful runs. For α < α∗ one finds that θhalt converges in the thermodynamic limit to
a non-trivial random variable. In contrast, in the regime where the algorithm fails w.h.p.

doi:10.1088/1742-5468/2009/09/P09001 22

http://dx.doi.org/10.1088/1742-5468/2009/09/P09001


J.S
tat.M

ech.
(2009)

P
09001

On the cavity method for decimated random constraint satisfaction problems

(i.e. for α > α∗) the variance of θhalt vanishes at large N (this result was obtained by
performing the simulations at various sizes, which is not shown on the plot). In this case
θhalt concentrates around its mean, which is found to coincide with the function θ+(α)
defined above (see in particular the inset of the right panel of figure 5).

These numerical observations can now be interpreted in the light of the analytical
computations performed above, which were mimicking the decimation process using the
perfect marginals instead of the BP estimation. The threshold α∗ above which the BP
guided decimation algorithm fails w.h.p. coincides with the point where the evolution
in the (α, θ) phase diagram has to cross the transition lines drawn in figure 3, and in
particular to penetrate the region [θc(α), θ+(α)] where the 2-core of the residual formula
only admits a sub-exponential number of solutions when the perfect marginals are used for
the decimation. In this case the algorithm is naturally very sensitive to the small mistakes
made by the BP algorithm, which destroy the few solutions of the 2-core. The fact that
the residual formula is no longer satisfiable remains, however, unnoticed until a fraction
θ+(α) of the variables have been assigned. At this point the fraction φ(θ) of decimated
and logically implied variables has a finite discontinuity (see right panel of figure 2), which
means that the assignment of a few new variables triggers an avalanche of implications of
extensive size. The extensive subgraph of newly implied variables will contain implication
cycles which, if some mistakes have been done in the previous assignment steps, will lead
to contradictions. More quantitatively, it was underlined above that θ+(α) marked the
percolation of the sub-formula of length 2 clauses which supports the propagation of the
logical implications.

The simplifying symmetries of the xor-satisfiability formulae are such that BP guided
decimation is here almost equivalent to the unit clause propagation algorithm with random
heuristic (and also to the random pivoting Gaussian elimination algorithm of [35]). The
only slight difference between the two lies in the order in which the variables are treated,
the logical implications being propagated as soon as they are detected in UCP. In the
BP description of the algorithm the implication is effectively taken into account by the
propagation of the messages, even if the variable is not explicitly declared as assigned.
The behavior of UCP on xor-satisfiability formulae has been studied in [33]: the results we
just found are in agreement with the ones of this paper. In particular the phase diagram
in figure 3 reproduces the left panel of figure 3 in [33], apart from the difference in the
definition of the vertical time axis explained above. The equivalence with UCP allows
also the computation of the probability of success in the thermodynamic limit for α < α∗.
A detailed derivation for satisfiability formulae can be found in [36, 37]; we state here the
result without proof:

Psucc = exp

[
−

∫ 1

0

dt

4(1 − t)

f(t)2

1 − f(t)

]
with f(t) = αk(k − 1)tk−2(1 − t). (38)

For k = 3 this expression can be further simplified:

Psucc = exp

[
3α

4
− 1

2

1√
(α∗/α) − 1

arctan

(
1√

(α∗/α) − 1

)]
. (39)

This function is plotted as a solid line in the left panel of figure 5 and agrees with the
results of the numerical experiments.
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5. Application to the SAT ensemble

We turn in this section to the case of random satisfiability formulae. We shall first
apply the analytical cavity formalism to this particular model, then present the results
of numerical experiments with the BP guided decimation algorithm and confront the two
approaches.

5.1. BP equations

Let us begin by expliciting the BP equations (8) for the satisfiability constraints
defined in (2). As the variables σi are binary the messages {νa→i(σi), ηi→a(σi)} can be
parameterized with a single real for each, which we shall denote {ua→i, hi→a}, under the
form

νa→i(σi) =
1 − Ja

i σi tanhua→i

2
, ηi→a(σi) =

1 − Ja
i σi tanh hi→a

2
. (40)

As we included the coupling constant Ja
i in these definitions a positive value of, for

instance, hi→a does not indicate a bias of σi towards the value +1 in the absence of
clause a, but rather towards the value −Ja

i that does satisfy a. The message sent by a
clause to one of its variables is then found to be

ua→i = f({hj→a}j∈∂a\i), f(h1, . . . , hk−1) = −1

2
ln

(
1 −

k−1∏
i=1

1 − tanhhi

2

)
. (41)

To give the explicit form of the other set of BP equations it is advisable to introduce
some further definitions. We shall call ∂+i (resp. ∂−i) the set of clauses in ∂i which are
satisfied by σi = +1 (resp. σi = −1), that is ∂σi = {a ∈ ∂i|Ja

i = −σ}. Moreover we
let ∂+i(a) (resp. ∂−i(a)) denote the set of clauses in ∂i \ a agreeing (resp. disagreeing)
with a on the value i should take. In formulae, ∂+i(a) = {b ∈ ∂i \ a|J b

i = Ja
i },

∂−i(a) = {b ∈ ∂i|J b
i = −Ja

i }. With these notations the message sent by a variable
to a clause is

hi→a =
∑

b∈∂+i(a)

ub→i −
∑

b∈∂−i(a)

ub→i, (42)

while the marginal probability of a variable i is from (9)

μi(σi) =
1 + σi tanh(Hi)

2
, Hi =

∑
a∈∂+i

ua→i −
∑

a∈∂−i

ua→i. (43)

Finally, when a subset of variables D is fixed to a reference configuration τD, the BP
equations (41) and (42) are complemented with the boundary condition h

τD
i→a = −Ja

i τi∞
when i ∈ D. Note that in all the numerical implementations of these equations we keep the
hyperbolic tangent of the messages u and h which are free from this apparent singularity
in the definition of h around a decimated variable.
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5.2. The usual cavity method

The replica symmetric version of the cavity method for non-decimated random
satisfiability formulae, following the general formalism recalled in section 3.1, corresponds
to a probabilistic interpretation of the BP equations (41) and (42) applied to random
factor graphs. As the cardinality of ∂i \ a converges to a Poisson random variable of
parameter αk and the sign Ja

i in the constraints definition are ±1 with probability one-
half, it follows that |∂+i(a)| and |∂−i(a)| converge to two independent Poisson random
variables with parameter αk/2, denoted l+ and l− below. One has thus to look for the
solution of the distributional equations corresponding to (41) and (42) for the random
variables h and u:

h
d
=

l+∑
i=1

ui −
l−∑
i=1

vi, u
d
= f(h1, . . . , hk−1). (44)

In these equations h1, . . . , hk−1 are independent copies of h and u1, . . . , ul+ and v1, . . . , vl−

are independent copies of u.
A numerical determination of the fixed point distributions solutions of these equations

can be achieved by the population dynamics method, revived in this context by [32].
This consists in representing the random variable u (resp. h) by a sample of N elements
u1, . . . , uN (resp. h1, . . . , hN ). The sample representing h is initialized arbitrarily, for
instance hj = 0 for all j ∈ [1,N ]. Then the two samples are updated alternatively
as follows. A new sample representing u is obtained from the representation of h by,
independently for each j ∈ [1,N ]:

• drawing k − 1 indices i1, . . . , ik−1 independently, uniformly in [1,N ];

• setting uj = f(hi1, . . . , hik−1
).

Subsequently the sample of h is updated, for each j, by

• drawing l+ and l−, two Poisson random variables of mean αk/2;

• drawing l+ + l− indices i+1 , . . . , i+l+ , i−1 , . . . , i−l− independently, uniformly in [1,N ];

• setting hj =
∑l+

n=1 ui+n
−

∑l−
n=1 ui−n

.

The replica symmetric description of the solution space of random satisfiability
formulae (first obtained with replica computations in [38]) is only valid for low enough
values of α. The 1RSB analysis at m = 1, described in generic terms in section 3.1,
has been performed on the satisfiability ensemble in [11, 30]. For k ≥ 4 one finds a
clustering transition at αd and a condensation one at αc, before the satisfiability transition
αs determined in [7]–[9] (for instance, αd ≈ 9.38, αc ≈ 9.55 and αs ≈ 9.93 for k = 4).
In the intermediate regime [αd, αc] the complexity of the relevant clusters is positive
and vanishes at αc, a point beyond which most of the solutions are contained in a sub-
exponential number of clusters. The value k = 3 happens to be a particular case for which
the intermediate regime with a positive complexity is absent, which we shall not consider
in the following.
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5.3. The computation of ω(θ)

Let us now apply the formalism of section 3.2 to an ensemble of decimated random
satisfiability formulae. Using the parameterization (40) of the messages the random

variables (η, η̃ τ )�, (η, ητ)� and (ν, ντ )� becomes random pairs of reals, respectively (h, h̃τ )�,
(h, hτ )� and (u, uτ)� for τ = ±1. In the same spirit as we include the coupling constants
in the definitions (40) of the fields u and h, we also ‘gauge’ the definition of these random
variables such that u+ (resp. u−) corresponds to the message u

τD
a→i where τD is drawn

conditional on τi satisfying (resp. not satisfying) clause a. The recursion equations (18)–
(20) then are

(h, h̃τ )�
d
=

{
(h, hτ )� with probability 1 − θ

(h, τ∞) otherwise,

(h, hτ )�
d
=

(
l+∑
i=1

ui −
l−∑
i=1

vi,

l+∑
i=1

uτ
i −

l−∑
i=1

v−τ
i

)
,

(45)

where l± are two independent Poisson random variables of parameter αk/2 and the (ui, u
τ
i )

and (v, vτ
i ) are independent copies of (u, uτ)�. Finally equation (20) translates into

(u, uτ)�+1
d
=

(
f(h1, . . . , hk−1), f(h̃τ1

1 , . . . , h̃
τk−1

k−1 )
)

, (46)

where the configuration of the variables τ1, . . . , τk−1 is drawn with one of the two following
probability laws according to the value of τ :

Prob[τ1, . . . , τk−1|τ = +, h1, . . . , hk−1] =
k−1∏
i=1

1 + τi tanhhi

2
, (47)

or

Prob[τ1, . . . , τk−1|τ = −, h1, . . . , hk−1] =
1 − I(τ1 = · · · = τk−1 = −1)

1 −
∏k−1

i=1 (1 − tanhhi)/2

×
k−1∏
i=1

1 + τi tanh hi

2
. (48)

The fields hi are the same for the computation of u in (46) and in the probability law of the

τis expressed in (47) and (48). The two initial conditions correspond to (h, hτ )�=0
d
=(h, h)

for the initialization called I0, and (h, hτ )�=0
d
=(h, τ∞) for I1. Finally the average entropy

of the decimated random formulae is from (22)

ω = −αk(1 − θ)E

[∑
τ

1 + τ tanh(u + h)

2
ln

(
1 + tanh uτ tanh hτ

2

)]

+ αE

[ ∑
τ1,...,τk

1 − I(τ1 = · · · = τk = −1)

1 −
∏k

i=1(1 − tanh hi)/2

k∏
i=1

1 + τi tanhhi

2

× ln

(
1 −

k∏
i=1

1 − tanh h̃τi
i

2

)]
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+ (1 − θ)E

[∑
τ

1 + τ tanh(
∑l+

i=1 ui −
∑l−

i=1 vi)

2

× ln

(∑
σ

l+∏
i=1

1 + σ tanh uτ
i

2

l−∏
i=1

1 − σ tanh v−τ
i

2

)]
. (49)

A numerical determination of the distribution of the random variables (h, hτ )� and
(u, uτ)� can be performed by a population dynamics algorithm. We introduce two
populations of N triplets of reals, {(hi, h

+
i , h−

i )}Ni=1 and {(ui, u
+
i , u−

i )}Ni=1, such that, for
instance, the empirical distribution of (hi, h

+
i ) after 
 steps of the algorithm is a good

approximation of the random variable (h, h+)�. In the initialization step of the algorithm
the his are drawn according to the fixed point solution of equation (44), which is obtained
from a preliminary RS population dynamics procedure. For the initial condition I0

(resp. I1) one sets h+
i = h−

i = hi (resp. h±
i = ±∞) for all i ∈ [1,N ]. Then the following

two kinds of updates are iterated 
 times. A new sample of {(ui, u
+
i , u−

i )}Ni=1 is obtained
by, independently for each j ∈ [1,N ]:

• drawing k − 1 indices i1, . . . , ik−1 independently, uniformly in [1,N ];

• setting uj = f(hi1, . . . , hik−1
);

• independently for n = 1, . . . , k − 1;

* with probability θ set h̃+
n = +∞ and h̃−

n = −∞;

* otherwise set h̃+
n = h+

in
, and h̃−

n = h−
in

;

• generating a configuration τ1, . . . , τk−1 from the law Prob[τ1, . . . , τk−1|τ =
+, hi1 , . . . , hik−1

] defined in equation (47);

• setting u+
j = f(h̃τ1

1 , . . . , h̃
τk−1

k−1 );

• generating a configuration τ1, . . . , τk−1 from the law Prob[τ1, . . . , τk−1|τ =
−, hi1 , . . . , hik−1

] defined in equation (48);

• setting u−
j = f(h̃τ1

1 , . . . , h̃
τk−1

k−1 ).

Subsequently the sample of {(hi, h
+
i , h−

i )}Ni=1 is updated, for each j, by

• drawing l+ and l−, two Poisson random variables of mean αk/2;

• drawing l+ + l− indices i+1 , . . . , i+l+ , i−1 , . . . , i−l− independently, uniformly in [1,N ];

• setting hj =
∑l+

n=1 ui+n
−

∑l−
n=1 ui−n

, h+
j =

∑l+
n=1 u+

i+n
−

∑l−
n=1 u−

i−n
and h−

j =
∑l+

n=1 u−
i+n
−∑l−

n=1 u+

i−n
.

After a large number of these iterations have been performed the determination of the
residual entropy (49) is easily obtained: the expectation values can be interpreted as
empirical averages over the population.

We have implemented this numerical procedure and performed the computation for
various values of α and θ. The results for k = 4 are as follows. For small enough values
of α the large 
 limit of the recursion relations (45) and (46) is found to be independent
of the initial condition I0 or I1 used, and the residual entropy density ω(θ) is a smoothly
decreasing function. This quantity is plotted for α = 8.8 in the left panel of figure 6.
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Figure 6. Residual entropy ω(θ) of 4-sat random formulae. Left panel: α = 8.8,
ω(θ) is smoothly decreasing. Right panel: α = 9.3, the inset is a zoom around
the singular point of ω(θ).

For larger values of α there appears a regime θ ∈ [θ−(α), θ+(α)] in which the two initial
conditions leads to different fixed point solutions of (45) and (46), signaling the presence
of non-trivial long-range point-to-set correlations in the decimated formula. The two
branches of ω(θ) are plotted in the right panel of figure 6 for α = 9.3, and are found to
cross each other at θc(α) ∈ [θ−(α), θ+(α)]. For θ ∈ [θ−(α), θc(α)] the branch with the
highest value of ω corresponds to the I0 initialization, the situation being reversed for
θ ∈ [θc(α), θ+(α)]. As explained in the simpler xorsat example, we interpret these results
as following from the existence of a positive complexity of relevant clusters in the regime
[θ−, θc]. In this case the highest branch of ω(θ) is the total entropy of the decimated
formula, while the difference between the two branches is its complexity. In contrast
for [θc, θ+] the upper branch is the only relevant one; the total entropy is dominated by
the sub-exponential number of clusters around a typical reference solution τ . The three
critical lines are displayed in the (α, θ) of figure 7, which also shows that, as follows from
their definitions, θ−(α) (resp. θc(α)) reaches the horizontal axis θ = 0 at the usual dynamic
transition αd (resp. condensation threshold αc). We estimated the location of the critical
point where θ± and θc merge to be α∗ = 9.05, θ∗ = 0.045, by interpolation of the results
obtained for values of α slightly larger.

5.4. The computation of φ(θ)

We proceed now with the computation of the fraction of logically implied variables,
following the lines sketched in section 3.3 (the same results were presented in [22] with a
slightly different formulation).

Let us first discuss the warning propagation equations for satisfiability formulae.
According to the projection equations (11) one has to identify the situations in which
a single value of a variable σi is allowed by a BP message. For the messages sent by a
clause to a variable this can only happen when the variable is forced to satisfy the clause,
i.e. νa→i(σi) = δσi,−Ja

i
, in which case we define the WP message to be ua→i = 1, otherwise

ua→i = 0. A message ηi→a sent from a variable to a clause can allow both values of variable
σi, or force it to the value satisfying a (ηi→a(σi) = δσi,−Ja

i
), or to the value dissatisfying

it (ηi→a(σi) = δσi,Ja
i
). It is only the latter case that shall be propagated by the WP
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Figure 7. Phase diagram of 4-sat random formulae in the (α, θ) plane, from
bottom to top θ−(α), θc(α) and θ+(α). Symbols result from the population
dynamics algorithm, lines are guides to the eyes.

equations. We thus affect the value hi→a = 0 in the first two situations and hi→a = 1 in
the latter. The WP equations are, with these definitions:

ua→i =
∏

j∈∂a\i

hj→a, hi→a = 1 −
∏

b∈∂−i(a)

(1 − ub→i). (50)

For a variable i ∈ D the boundary condition is hi→a = I(τi = Ja
i ).

In order to compute the average fraction of logically implied variables, within the
assumptions of the RS cavity method on the local description of the uniform probability

measure μ(·), we introduce the sequences of random variables (h, h̃τ )�, (h, hτ )� and (u, uτ)�

as defined in section 3.3. It turns out that not all the values of τ have to be considered.
Consider, for instance, the random variable (u, uτ)�. Its distribution is by definition the
one of (ua→i, u

τD
a→i), in the random tree model of depth 
, rooted at variable i which appears

solely in the clause a. Depending on τ the reference configuration τ is drawn conditional
on τi either satisfying (if τ = +1) or not satisfying (τ = −1) the constraint a. In the latter
case u

τD
a→i is necessarily equal to 0: at least one of the variables in ∂a \ i must satisfy a in

τ , and this variable cannot be forced to its opposite value by τD. We can hence restrict
our attention to (u, u+)�, which is found to obey

(u, u+)�+1
d
=(f(h1, . . . , hk−1), ζ h̃−

1 · · · h̃−
k−1),

ζ
d
=

{
1 with probability

∏k−1
i=1

1−tanh hi

2

0 otherwise.

(51)

The probability that the random variable ζ equals 1 is indeed the probability that,
conditional on τi satisfying the root clause a, the configuration of the k−1 other variables
in ∂a \ i are drawn to the values unsatisfying a.

For similar reasons the right-hand side of this equation does not depend on (h, h̃+)

and we can complete this equation with the recursion on (h, h̃−) and (h, h−), which is

(h, h̃−)�
d
=

{
(h, h−)� with probability 1 − θ

(h, 1) otherwise,

(h, h−)�
d
=

(
l+∑
i=1

ui −
l−∑
i=1

vi, 1 −
l−∏
i=1

(1 − v+
i )

)
,

(52)
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Figure 8. Fraction φ(θ) of assigned and logically implied variables in 4-sat random
formulae; left: α = 7.0, right: α = 8.4.

where as usual l± are two Poisson random variables of parameter αk/2 and the (ui, u
+
i )

and (vi, v
+
i ) are independent copies of (u, u+)�. Finally the average fraction of either

decimated or directly implied variables can be obtained as

φ(θ) = E[(1 − tanh h)h̃−]. (53)

These recursion equations can be solved numerically using the same kind of population
dynamics as explained above, updating in turns populations of pairs {(hi, h

−
i )}Ni=1 and

{(ui, u
−
i )}Ni=1. The two kinds of initial conditions already discussed correspond here to

(h, h−)�=0
d
=(h, 0) for I0, and (h, h−)�=0

d
=(h, 1) for I1.

This numerical resolution leads to the following results for k = 4. At small enough
values of α the two initial conditions lead to the same large 
 limit and the function φ(θ) is
smoothly increasing (see left panel of figure 8). For larger values of α there exists a range
of parameter [θ′−(α), θ′+(α)] where the quantity (53), computed from the initial condition
I1, is strictly greater than the one reached from I0. In this coexistence regime we shall
call ψ(θ), in analogy with the notations used for the xorsat model, the upper branch
obtained from I1, see, for instance, the right panel of figure 8. The function φ (resp. ψ)
is discontinuous at θ′+ (resp. θ′−). These two thresholds are the two upper curves in the
phase diagram of figure 9, which also contains for comparison a repetition of the phase
diagram of figure 7. The two regimes for the behavior of φ(θ) are separated by the value
α′
∗ ≈ 8.05.

At this point the reader might be puzzled by the apparent contradiction between these
results and those of the previous subsection. Consider indeed some parameters α > α′

∗
and θ ∈ [θ′−(α), θ′+(α)]. We claimed in the previous subsection that the large 
 limit of
the random variable (h, hτ )� was independent of the initial condition in 
 = 0, whereas
we just found that (h, h−)� does depend on it. As the latter variable is a projection of
the former, this statement is at first sight paradoxical. This apparent contradiction can,
however, be resolved by a closer inspection of the relationship between the two random
variables. One has indeed

(h, h−)�
d
= lim

ε→0
(h, I(tanh h− ≤ −1 + ε))�, (54)
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Figure 9. Phase diagram of 4-sat random formulae in the (α, θ) plane. The three
lines in the bottom of the figure are those of figure 7, while the upper two are
θ′−(α) < θ′+(α) defined in section 5.4 from the discontinuities of φ(θ) and ψ(θ).
The filled circles show the location θmax(α) of the slowest convergence of the BP
iterations in the BP guided decimation algorithm, see section 5.5.2.

while the two apparently contradictory statements are

lim
�→∞

(h, h−)I0
�

d
= lim

�→∞
(h, h−)I1

� , lim
�→∞

(h, h−)I0
�

d

�= lim
�→∞

(h, h−)I1
� . (55)

The resolution of the paradox relies on the non-commutativity of the limits 
 → ∞ and
ε → 0. More explicitly, under the initialization I0 there is a positive probability for a field
tanh h− to have −1 as its large 
 limit, yet remaining strictly superior to −1 as long as 

is finite. If the limit ε → 0 is taken before 
 → ∞ these fields do not participate in h−,
which is thus found to be smaller in the initialization I0 with respect to I1. Yet if the limit

 → ∞ is performed first this positive fraction of the fields tanhh− (with initialization
I0) reach their limit −1, hence making possible the first statement of equation (55). We
checked explicitly this phenomenon by constructing a coupling of the two initializations
and solved it with the population dynamics algorithm.

5.5. Numerical experiments on BP guided decimation

We have run the belief propagation guided decimation algorithm for many random 4-sat
formulae. The sizes of the formulae studied are N = 103, 3 × 103, 104, 3 × 104, with α
varying between 6.0 and 9.2. The number of formulae analyzed varies with α, but it is
always larger than 2000 for N = 103, larger than 1200 for N = 3 × 103, larger than 400
for N = 104 and between 360 and 25 (increasing α) for N = 3 × 104.

5.5.1. Details on the practical implementation. Some technical details about the numerical
implementation of the BP guided decimation algorithm were given in [22] (see also
appendix A of [30] for details of the representation of BP messages and probabilities).
The main numerical bottleneck in applying the BP guided decimation algorithm is the
convergence of the iterative method for solving the BP equations, described in section 2.4.
This iterative scheme is known to be a fast way of finding a fixed point of the BP equations,
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although sometimes it may not converge. Lack of convergence may be due to different
reasons: in case long-range correlations develop, multiple BP fixed points appear and
the convergence of BP to one of these fixed points cannot be guaranteed; on the other
hand, when a single BP fixed point exists, convergence problems can be typically cured
by the use of a damping term [20]. In all our numerical simulations we have used a
damping term of intensity 0.1, that is, when we update a message x, we do not assign
to it directly the new value xNew, but rather the weighted sum 0.9 ∗ xNew + 0.1 ∗ x. We
have verified that, under these conditions, the convergence (if any) is always exponentially
fast in the number of iterative steps (although sometimes with an exponent very small).
Because of the exponentially fast convergence, our arbitrary choice of considering BP
equations solved when the maximal change in any BP message is below 10−4 turns out
to be very reasonable: indeed an accuracy of 10−8 can be reached by simply doubling the
running time. Anyhow, in order to avoid entering a never-ending loop we have also fixed
a maximum number of iterations equal to 1000; when this limit is reached, non-converged
BP messages are used to compute marginals and to proceed with the decimation.

The last comment about technical issues regards the initialization of BP messages
before the iterative solving procedure is applied. In the beginning, when the formula is still
not decimated, BP messages are initialized in a random way assigning to each tanh(hi→a) a
random value uniformly distributed between −0.2 and 0.2. After each variable decimation,
one can choose to keep the BP messages obtained from the last iterative procedure or to
re-initialize them along the same random way described above. In principle, if a single
BP fixed point exists and if this is reached by the iterative method, then the starting
point should be irrelevant. Moreover, one would expect that the BP fixed points of two
formulae differing in just a variable are very close, and that starting from the one already
reached should help convergence (with respect to starting from random messages). This
intuition turns out to be wrong. We have strong numerical evidence that a random re-
initialization of BP messages after each decimation strongly enhances the performance of
the algorithm. A possible explanation is the following. Our numerical procedure does not
produce a perfect estimation of the marginal probabilities (in particular when the stopping
criterion used is the maximal number of iterations); if messages are not re-initialized small
errors may easily accumulate in the same direction, while a random re-initialization of BP
messages results in a partial neutralization of these errors.

5.5.2. Algorithm performance and convergence probabilities. As a first result, we show in
figure 10 the success probability for the BP guided decimation algorithm, i.e. the fraction
of formulae which have been solved by this algorithm. The numerical data clearly
point to an algorithmic threshold αa very close to the theoretical prediction of the point
α∗ = 9.05 (marked by a vertical line in figure 10) above which phase transitions occur
in the thermodynamic properties of the decimated ensemble of random formulae. For
α < αa a large N formula is solved with positive probability by the BP guided decimation
algorithm. The appearance of a jump in the function φ(θ) at α � 8.1 (see below for a
more detailed analysis of φ(θ)), with a consequent avalanche of directly implied variables
during the decimation of formulae with α > 8.1, does not have any visible effect on the
success probability. This phenomenon has, however, a trace in the random variable θhalt,
which is the fraction of variables assigned before the discovery of a contradiction during
the unsuccessful runs. The distribution of this random variable is shown in figure 11 for
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Figure 10. Success probability of the BP guided decimation algorithm as a
function of α for random 4-sat formulae of various sizes. The vertical line
marks the value α∗ = 9.05 beyond which the analytical computations predicted
a condensation transition in the residual entropy ω(θ).

Figure 11. Distribution of the halting time of the BP guided decimation
algorithm on 4-sat random formulae with α = 8.4 (left panel) and α = 9.2
(right panel). Vertical lines show the value of θ′+(α) where φ(θ) is discontinuous.

two values of α (below and above αa). One can see a maximum in this distribution for
values of θ slightly smaller than θ′+(α), the point of discontinuity of φ(θ).

In the following we are going to present data only in the region α < αa. In order to
reduce finite size effects we will concentrate only on formulae which have been actually
solved by our algorithm. The study of the convergence probability and of the average
convergence time for the iterative method used to solve the BP equations provides very
useful information, as it allows us to identify the most difficult formulae, which should
appear close to the threshold. In figure 12 we show both the probability that the BP
fixed point is not reached after 1000 iterations (upper panels) and the average number of
iterations required to converge (lower panels). Non-converged instances count with 1000
in the average. Four values of α are shown (from left to right), α = 7.0, 8.0, 8.4 and 8.8,
and θ > 0.5 is not shown since in that region nothing of interest takes place.

doi:10.1088/1742-5468/2009/09/P09001 33

http://dx.doi.org/10.1088/1742-5468/2009/09/P09001


J.S
tat.M

ech.
(2009)

P
09001

On the cavity method for decimated random constraint satisfaction problems

Figure 12. Probability of non-convergence in 1000 iterations (upper panels) and
average number of iterations required to reach convergence (lower panels) for the
BP part of the BP guided decimation algorithm, as a function of the fraction θ
of decimated variables. From left to right α = 7, α = 8, α = 8.4 and α = 8.8.

We see that, for small values of α, by increasing the size of formulae the probability
that BP does not converge in 1000 steps reduces considerably, thus suggesting that in the
large N limit the typical running time of BP is below 1000 for any θ value. In contrast,
for larger values of α, the probability that BP does not converge is not varying very much
with N and seems to remain positive even in the large N limit, thus suggesting that the
typical number of iterations required to make BP converge is larger than 1000 for some
values of θ.

The overall picture we get from figure 12 is very clear. For any α value, the decimation
procedure initially produces formulae which are more and more difficult to solve and
the running time of BP thus increases with θ. The running time (or equivalently the
probability of not converging in a fixed number of iterations) has a maximum at a value
θmax(α) and then decreases again. By increasing α, θmax(α) decreases and the running
time at θmax increases. It is natural to expect that the maximum running time should
diverge at the threshold αa; moreover, if one assumes that this phenomenon is related to
the critical point α∗ marking the end of the (first-order) condensation transition line θc(α)
for α > α∗, one should expect that θmax(α) is a precursor of the transition line θc(α) in the
phase α < α∗. The data of θmax(α) plotted with filled circles in figure 9 are in agreement
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Figure 13. Residual entropy as a function of the fraction θ of decimated variables
for α = 7 (upper curves) and α = 8.4 (lower curves). The symbols correspond
to the analytical predictions presented in section 5.3, the lines to the numerical
simulations of the BP guided decimation algorithm for various sizes.

with this intuition, showing in particular that θmax(α) reaches values very close to θ∗ for
the largest values of α the algorithm is able to handle.

5.5.3. Entropy of decimated formulae. We measured the entropy of decimated formulae
along the execution of the BP guided decimation algorithm, using the Bethe
approximation stated in (10). When comparing these results with the analytic prediction
presented in section 5.3, a lot of care is required in dealing with cases where BP did
not converge to a fixed point. Indeed in these cases the marginal probabilities do not
satisfy the consistency constraints and the resulting value for the entropy may be quite
far from the correct one. In order to avoid this problem we have adopted a drastic, but
safe, approach: we take the average over only those formulae for which the algorithm
always converged before reaching the 1000 iterations limit. A possible criticism to this
approach is that we are taking the average over the simplest formulae, thus obtaining a
biased estimate for the residual entropy. If this criticism is well founded we should observe
a dependence of the average residual entropy upon the value of the maximal number of
iterations. Actually we do not observe any variation by doubling the maximal number of
iterations.

In figure 13 we plot the residual entropy as a function of θ for three different sizes
(lines) together with the analytical predictions of section 5.3 (points with errors). For
α = 7.0, even the N = 103 data are almost superimposed on the analytical result. In
contrast, for α = 8.4 finite size effects are much more evident and only N = 104 data start
to be compatible with the analytical computations in the thermodynamic limit.

It is also worth noticing that the function ω(θ) shows its point of maximum curvature
close to θmax. More in general the curvature of ω(θ) seems to be somehow related to the
typical running time of BP.

5.5.4. Forced variables and multiple WP fixed points. We also keep track of the fraction of
logically implied variables in the partially decimated formulae, measuring it with the WP
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Figure 14. The fraction φ(θ) of assigned and logically implied variables for 4-sat
formulae of density α = 7 and 8.4. The insets detail the results at α = 8.4 for
the decimation and backward algorithm, see the text for details.

algorithm (equivalent to UCP as explained in section 2.4). In the main panel of figure 14
we plot the function φ(θ) computed analytically (solid curves). For α = 7.0 the function
φ(θ) is smoothly increasing and the numerical data follow this curve so nicely that only
the N = 103 data is hardly visible, the rest being perfectly superimposed to the analytical
curve. For α = 8.4 the function φ(θ) is multivalued in the interval [θ′−(α), θ′+(α)] and
the two curves plotted in the main panel correspond to the two branches φ(θ) and ψ(θ)
defined in section 5.4. The numerical data for α = 8.4 are shown in the insets for clarity.
The left inset corresponds to the decimation algorithm (which indeed increases θ during
the run). The right inset reports the data gathered while running the backward algorithm
which works as follows.

After a successful run of the BP guided decimation algorithm we use the solution
τ constructed as the reference one, and variables are unfixed one by one in the reverse
fixing order: in this way at any θ value the residual formula is exactly the same that the
decimation algorithm had to work with. The only differences between the two algorithms
are the initial values for the WP and BP messages: in the backward algorithm all messages
are set initially according to the solution found in θ = 1, namely tanh hi→a = −Ja

i τi and
hi→a = I(τi = Ja

i ) for all edges. Then the updates of WP and BP are run as usual for
the edges outside the decimated ones. The numerical data shown in the insets suggest
that, although finite size effects are huge, in the large N limit the decimation (resp. the
backward) algorithm follow the lower branch φ(θ) (resp. upper branch ψ(θ)) curve shown
in the main panel. As predicted by the analytical computation, for α > α′

∗ � 8.05 the
fraction of variables which are frozen (either assigned or directly implied by WP), φ(θ), has
a hysteresis loop when the number of assigned variables θ is increased and decreased across
the interval [θ′−(α), θ′+(α)], the backward algorithm used when decreasing θ corresponding
to the I1 boundary condition of the infinite tree computation. The hysteresis loop obtained
by looking at the WP messages is reported with a full line in figure 15 (where data for
N = 3 × 104 and α = 8.4 are used).
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Figure 15. Fraction of frozen variables as a function of θ, for α = 8.4. The full
lines correspond to the WP results in the decimation and backward algorithm,
the dashed lines to the analysis of the BP messages.

The apparent paradox discussed at the end of section 5.4 shows up here again, at
the level of the single sample analysis instead of the computation on the infinite tree: the
forward and backward procedure allows us to construct two distinct fixed points of the
WP equations on the same partially decimated formula (see points A and B in figure 15),
while the success probability of the algorithm is still positive for this value of α and the
residual entropy of figure 13 has no singularity. In addition to the above discussion on
the non-commutativity between the projection from WP to BP and the limit of infinite
depth tree/number of iterative updates, it is worth noting that with the initial condition
used in the backward algorithm the warning propagation procedure corresponds actually
to the whitening construction (see, for instance, [39]), starting from the solution found at
the end of the forward algorithm. The interpretation of the number of frozen variables
in A and B is thus different: A corresponds to the variables which are logically implied
(in the UCP sense) in the partially decimated formula. On the other hand, B counts the
number of constrained variables in the core [39] of the reference solution of the partially
decimated formula (the one reached by the decimation). The existence of distinct WP
fixed points would be a sign of a positive SP complexity if one assumed these fixed points
to be exponentially numerous. Even when this assumption is correct it does, however,
not lead to a contradiction with the nonexistence of thermodynamically relevant clusters
or long-range correlations as defined in (23). The former corresponds indeed to a 1RSB
computation with Parisi parameter m = 0 and the latter to m = 1. We checked indeed
that computing the residual entropy with the backward algorithm yields the same result
as with the decimation one, whereas in the presence of an extensive thermodynamical
complexity we would have obtained only the contribution from the internal entropy of the
cluster around the reference solution.

More indications come from the study of BP fixed point messages. In figure 15
we plot the fraction of variables that receive BP messages forcing it to a unique value
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(BP frozen) and the fraction of variables which are extremely biased under the BP
messages, i.e. the less probable value has a probability smaller than 10−10 (BP prob
< 10−10). The fraction of BP frozen variables again shows hysteresis: in the decimation
algorithm BP frozen variables perfectly coincide with WP frozen variables, while in the
backward algorithm BP frozen variables are a little more than WP frozen variables because
of the numerical impossibility of keeping marginals arbitrarily small. What is more
interesting is that the fraction of extremely biased variables (BP prob < 10−10) does not
show any sign of hysteresis: the same smooth curve is followed by the decimation algorithm
as well as by the backward algorithm. This observation suggests that BP marginals
obtained by the two algorithms are exactly the same, except for (almost) completely
frozen variables.

5.6. Large k behavior

We have seen that the behavior of the ensemble of decimated random formulae is richer in
the satisfiability case than for xor-satisfiability, with in particular the appearance of two
sets of critical lines, one describing the thermodynamic properties, ω(θ), and the other
the singularities of the logical implications, φ(θ). The common wisdom is, however, that
when the length k of the clauses gets large the satisfiability model gets simpler, notably
allowing some tight rigorous results [40]–[43], and in fact becomes very similar to the
xor-satisfiability one. We shall hence briefly discuss now the large k limit of our results
for the decimated ensembles.

Let us begin with the xor-satisfiability case; the results of section 4 having an explicit
form, they can be easily turned in asymptotic expansions for large k. For instance, the
threshold α∗ given in equation (33) is found to behave as (e/k)(1 + O(k−1)), while the
clustering threshold αd is (ln k/k)(1 + O(ln ln k/ ln k)) and the condensation threshold αc

go to 1 in the large k limit. One can also study the behavior of the transition line θc(α)
in the last of these three asymptotic scales (i.e. for α constant with respect to k). After
a short computation, which consists in expanding the fixed point solutions φ(θ) and ψ(θ)
of equation (32), and the associated entropies (35), one finds that the two leading orders
are θc(α) ∼ 1 − α − αe−αk.

Large k asymptotic expansions of the non-decimated (θ = 0) ensemble of k-
satisfiability were performed for the clustering and condensation thresholds in [30] and
in [9] for the satisfiability one. The leading order of the clustering threshold is 2k(ln k/k),
while both condensation and satisfiability occur for values of α around 2k ln 2 (see [9, 30] for
the subleading corrections, which are different for αc and αs). Consider now the fraction
of decimated or implied variables φ(θ), computed for the satisfiability ensemble according
to equations (51) and (52). In the large k limit a crucial simplification occurs thanks to
the concentration, at the leading order, of the h and u random variables solutions of the
RS equation (44) around 0. From this fact it follows easily (compare with equations (30)
and (31)) that the functions φ(θ) and ψ(θ), for satisfiability random formulae of clause
density α, approach the corresponding functions of xor-satisfiability formulae of clause
density α/2k. In consequence this correspondence holds for the lines θ′±(α), and the critical
point α′

∗ of satisfiability is expected to scale as (e2k/k)(1+O(k−1)). The asymptotic study
of the thermodynamic lines θ±(α) is slightly more involved because of the continuous
nature of the second member of the pair in the random variable (h, hτ ), whereas it can
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Figure 16. Critical lines θ±(α) and θ′±(α) for k-satisfiability, left: k = 4, right:
k = 5. The dashed lines are the k-xor-satisfiability critical lines, with a rescaling
of 2k on their clause density.

Table 1. Values of the thresholds α∗ and α′
∗, and the associated fraction of

decimated variables θ∗ and θ′∗, for random k-satisfiability formulae, k = 4, 5.

k α∗ θ∗ α′
∗ θ′∗

4 9.05 0.045 8.05 0.35
5 16.8 0.188 14.7 0.46

only take two values in (h, hτ ). One can, however, notice that a consistent ansatz in the
large k limit is to assume (h, tanhhτ ) ≈ (h, τhτ ), that is all nonstrictly forcing messages
are approximated as completely unbiased. If this hypothesis is correct the distinction
between θ+(α) (resp. θ−(α), α∗) and θ′+(α) (resp. θ′−(α), α′

∗) should vanish in the large
k limit. We have not attempted to obtain a formal proof of this statement but repeated
the determination of the satisfiability phase diagram for k = 5. The results presented in
figure 16 (and in table 1 for the values of the thresholds) confirms the intuition stated
above. The two sets of critical lines are much closer for k = 5 than k = 4, and also in
better agreement with the xor-satisfiability values (dashed lines, with a rescaling factor of
2k on the α axis). Finally an expansion of the residual entropy at the leading order leads
us to conjecture that asymptotically θc(α) ∼ 1 − (α/αc(k)), as obtained explicitly in the
xor-satisfiability case. The data of θc(α) obtained by the population dynamics algorithm
for k = 5 (not shown) are already in good agreement with this asymptotic form.

We have also performed BP guided decimation simulations for k = 5 and found an
algorithmic threshold αa between 16 and 16.5. This range is clearly above the appearance
of the jump in φ(θ), thus confirming the results presented in section 5.5.2 for k = 4, but
it is also a little bit below the thermodynamic triple point (mainly because, for k = 5, the
constraint on the maximum number of iterations produces a more drastic effect).

6. Conclusions

In this paper we have introduced analytical tools that allow computations similar to the
Franz–Parisi quenched potential for diluted mean-field systems. We have precisely defined
ensembles of partially decimated random CSP and refined their analytical description
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initiated in [22]. These methods have been applied to xor-satisfiability random formulae,
putting known results [28, 29, 33, 34] in a slightly different perspective, and to the
satisfiability case which presents a much richer phase diagram. These computations are
expected to describe the behavior of an hypothetical ideal decimation algorithm based on
an oracle able to compute exact marginal probabilities in large graphical models.

We have then confronted these results with the outcomes of extensive simulations of
the BP guided decimation algorithm, which is a practical, approximate implementation
of the ideal procedure. In the case of xor-satisfiability formulae the interpretation of the
comparison is very clear and can, in fact, be confirmed by rigorous calculations. The
satisfiability problem is much more difficult; the interpretation of the results of the BP
decimation should be based on a precise description of the ‘small’ errors made by BP,
which somehow accumulate along the decimation for large enough values of α and cannot
avoid conflicting choices in the decimated variables. Lacking such a refined control of
BP we have to turn to a more intuitive explanation, based on the analysis of the ideal
algorithm. The algorithmic threshold αa for BP decimation on random 4-satisfiability
formulae is found to be very close to the value α∗ above which clustering and condensation
transitions do occur in the (α, θ) plane. One is thus led to conjecture more generally that
the presence of a condensed regime, in which BP is expected to fail because of replica
symmetry breaking effects, will coincide with the BP decimation threshold for generic
CSP.

It is fair to say that we first found the numerical results reported in this work quite
surprising. We initially expected [22] the BP guided decimation algorithm to fail when
φ(θ) develops a jump, that is when the assignment of a single variable produces an
avalanche of O(N) forced variables: in this situation, we expected that a contradiction
would be generated with high probability. Our numerical results clearly show this is not
the case: the algorithm we have studied is able to fix at the same time a finite fraction
of variables without entering a contradiction. Moreover, as soon as a thermodynamical
condensation transition is taking place, for α ≥ α∗, the success probability falls down to
zero sharply. The most natural explanation for these observations is that the marginals
used by the algorithm to fix variables are extremely close to the true marginals for any
α < α∗ (and this is clearly very good news for the use of BP even very close to the
clustering threshold) and not so good above α∗. Still some small differences between
BP marginals and true marginals are expected even below α∗, mainly given by 1/N
corrections to the Bethe approximation [44, 45] and to the precision used to solve BP
equations (ε < 10−4 in our case). Then, why these small differences between true marginals
and BP estimations do not affect the success probability of the algorithm before α∗,
while they become relevant above α∗? Maybe because the nature of these errors changes
crossing α∗. Roughly speaking, below α∗ they have a statistical origin and produce random
perturbations of intensity 1/N and ε (in a sense that should be precised): if these errors

are largely uncorrelated, when summing O(N) of these we still get errors of order 1/
√

N

and ε
√

N , which are very small. In contrast, above α∗, deviations from true marginals are
systematic, because of long-range correlations: in this case errors are strongly correlated
and summing O(N) of these produces a contradiction with high probability.

Let us also sketch a few possible directions for future research. Apart from the
computation of the usual Franz–Parisi potential, the analytical formalism can be adapted
to other CSP models besides the satisfiability and xor-satisfiability cases treated here.
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For instance, the case of coloring should be relatively easy because of the triviality of the
RS description (as in xorsat), and relates to the recent study of [46, 47]. It would also be
interesting to perform simulations of the BP decimation algorithm on coloring formulae
(this was done in [48] but with a bias in the choice of the decimated variable) and check
whether our conjecture on the closeness of αa and α∗ holds in this case.

A more rigorous analysis of the BP guided decimation algorithm would be welcome,
and should be easier to perform in the large k limit. Until very recently the highest
clause densities where algorithms were rigorously shown to succeed in finding solutions
were O(2k/k) [36]. Our rough analysis suggests that the threshold of success for BP
guided decimation should be on that scale too, with αa(k) ∼ e2k/k. It has been shown
very recently in [42] that a polynomial time algorithm can find solutions of formulae with
densities up to 2k ln k/k, which correspond to the scale of the dynamic threshold αd(k).

On the algorithmic side many variations on the simplest procedure studied in this
paper are more efficient (and notably the survey propagation algorithm [7, 16]), yet seems
much more difficult to tackle analytically. A slight modification of the BP decimation
algorithm where the order of the assignments is not uniformly random but treats in priority
variables with the most biased marginals already changes substantively the highest value
of α where formulae are solved with positive probability [11]. Other interesting directions
to explore would be more efficient procedures for the resolution of the BP equations (for
instance double-loop algorithms [49]), the use of reinforcement strategies [50] instead of
explicit decimation, or the coordinated decimation of groups of variables [51].
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Appendix: Details on the computations of section 4.3

We present in this appendix some details of the computations discussed in section 4.3.
The properties of decimated xorsat formulae will be derived through the analysis
of two algorithms which act on the formula and which can be described by the
differential equation method [52]–[54]. Two successive steps will be performed: the logical
implications of the decimation of a fraction θ of the variables are first drawn with unit
propagation. Then the structure of the set of solutions of the reduced formula is analyzed
by the leaf removal algorithm. This approach has been developed for k-xorsat formulae
in [28, 29] and generalized to arbitrary degree distributions in [33]; we reproduce here their
results for the sake of self-containedness.

A.1. Unit propagation

As explained at the beginning of section 4.3 we can assume here the formula to be an
unfrustrated (Ja = 1) set of M = αN equations of the form (1), each involving k indices
chosen uniformly at random among the N variables. A fraction θ of the variables are
then set to +1, and can then be removed from the clauses where they appeared. Let us
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call Rκ = Nρκ the number of clauses with κ non-decimated variables, and Ll = Nλl the
number of variables which appear in l clauses (note that a decimated variable does not
appear in any clause after the above simplification step). One obtains

λl = (1 − θ)e−αk (αk)l

l!
+ θδl,0, (A.1)

ρκ = α

(
k

κ

)
(1 − θ)κθk−κ for κ ≤ k. (A.2)

Consider now the action of the unit propagation algorithm. As long as clauses of length
κ = 1 are present in the formula, one of them is chosen randomly, the single variable
it contains is fixed to +1, and is then removed from the other clauses it appeared in.
The formula obtained after T steps of this procedure is uniformly random, conditional
on the values of {Rκ(T ), Ll(T )}, so that the analysis of the process amounts to following
these random variables. At each time step T → T + 1 they vary by a bounded random
increment whose distribution depends only on the current values {Rκ(T ), Ll(T )} and
not on the previous history of the process. As a consequence the reduced quantities
ρκ(t) = Rκ(T = Nt)/N and λl(t) = Ll(T = Nt)/N concentrate around their average
values [52]–[54], solutions of the following set of differential equations:

d

dt
λl(t) = δl,0 −

lλl(t)∑
l′ l

′λl′(t)
, (A.3)

d

dt
ρκ(t) = −δk,1 +

(∑
l l(l − 1)λl(t)∑

l lλl(t)

)[
(κ + 1)ρκ+1(t)∑

κ′ κ′ρκ′(t)
− κρκ(t)∑

κ′ κ′ρκ′(t)

]
. (A.4)

These expressions arise because the variable selected in the unit clause is present in l
clauses with probability proportional to lλl(t); apart from the unit clause, the l − 1 other
occurrences of the variable take place in clauses of length κ with probability proportional
to κρκ(t).

In order to solve these equations we introduce the generating function of the initial
distribution of degrees of the variables, λ(x) =

∑
l λlx

l. Equation (A.3) is solved for any
l ≥ 1 by λl(t) = λla(t)l, where a(t) is the solution of

d

dt
a(t) = − 1

λ′(a(t))
, with the initial condition a(t = 0) = 1. (A.5)

One can then insert this expression of λl(t) in (A.4) and solve to obtain

ρκ(t) =
∑
κ′≥κ

(
κ′

κ

)
ρκ′

(
λ′(a(t))

λ′(1)

)κ (
1 − λ′(a(t))

λ′(1)

)κ′−κ

− δκ,1λ
′(a(t))(1 − a(t)). (A.6)

The differential equations (A.3) and (A.4) only make sense if ρ1(t) > 0: the procedure
stops when no more unit clause can be selected, i.e. at the reduced stopping time
t∗ = min{t : ρ1(t) = 0}.

For the initial degree distribution given in (A.1) one obtains for the derivative of the
generating function: λ′(x) = αk(1 − θ)e−αk(1−x), hence by integration of (A.5)

a(t) = 1 − 1

αk
ln

(
1 − θ

1 − θ − t

)
. (A.7)
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Plugging this result in the expression (A.6) of ρ1(t), one finds that t∗ is the smallest
solution of

αk(θ + t)k−1 = ln

(
1 − θ

1 − θ − t

)
. (A.8)

Defining finally φ = θ+t∗, one realizes that φ is the smallest solution of equation (32): this
quantity gives the fraction of variables that are either fixed by the decimation or by the
propagation of logical implications. When all these implications are taken into account,
the degree distributions of the reduced formula are

λl(t∗) = (1 − φ)e−αk(1−φk−1) (αk(1 − φk−1))l

l!
for l ≥ 1, (A.9)

ρκ(t∗) = α

(
k

κ

)
(1 − φ)κφk−κ for κ ≥ 2. (A.10)

As a consequence the number of non-trivial clauses is

M ′ = N
k∑

κ=2

ρκ(t∗) = αN
(
1 − φk − k(1 − φ)φk−1

)
. (A.11)

A.2. Leaf removal

We shall now analyze the set of solutions of random unfrustrated formulae with degree
distributions given by (A.9) and (A.10). Following [28, 29], we consider the action of the
leaf removal algorithm on such a hypergraph. Each leaf removal step consists in picking at
random one variable of degree 1 (a leaf) and remove the single clause it appeared in. This
simplification is repeated until no leaf is left in the graph, which provokes the stopping
of the algorithm. There are two possible situations at that point: either all clauses have
been removed, or there remains a non-empty 2-core, that is the maximal subgraph of
the original formula in which all variables have degree at least 2. In both cases the
total entropy is given (in units of log 2) by the initial number of variables minus the initial
number of clauses. In the former case the set of solutions is unclustered, while in the latter
the solutions are split into an exponential number of clusters. Each cluster corresponds
to one solution of the 2-core formula, hence the complexity, i.e. the exponential rate of
the number of clusters, is given by the difference between the number of variables and
of clauses in the 2-core. Each cluster contains an exponential number of solutions, this
internal entropy being associated to the degeneracy arising from the freedom in the choice
of the value of the leaf variables when reinserted in the formula in the reverse order with
respect to their removal.

The evolution of the degree connectivities during the execution of the leaf removal
algorithm can be computed in a very similar manner with respect to the unit propagation
case sketched above. With a slight abuse of notation we denote again by Nλl(t) and Nρκ(t)
the average number of variables and constraints of degrees l and κ after Nt steps of the
leaf removal algorithm. These quantities obey the following set of differential equations:

d

dt
ρκ(t) = − κρκ(t)∑

κ′ κ′ρκ′(t)
, (A.12)

d

dt
λl(t) = −δl,1 + δl,0 +

(∑
κ κ(κ − 1)ρκ(t)∑

κ κρκ(t)

)[
(l + 1)λl+1(t)∑

l′ l
′λl′(t)

− lλl(t)∑
l′ l

′λl′(t)

]
. (A.13)
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These equations are essentially the same as (A.3) and (A.4) with the role of λ and ρ being
exchanged (in the leaf removal algorithm one picks a variable of degree 1; in unit clause
propagation it is a clause of degree 1). They can thus be solved with the same technique.
Let us define the generating function of the clause lengths at the beginning of the leaf
removal, ρ(x) =

∑
κ ρκx

κ. At all times ρκ(t) = ρκb(t)
κ, where b(t) is a solution of

d

dt
b(t) = − 1

ρ′(b(t))
, with b(t = 0) = 1. (A.14)

The distribution of the variable degrees is then found to be

λl(t) =
∑
l′≥l

(
l′

l

)
λl′

(
ρ′(b(t))

ρ′(1)

)l (
1 − ρ′(b(t))

ρ′(1)

)l′−l

− δl,1ρ
′(b(t))(1 − b(t)). (A.15)

The stopping time of the leaf removal algorithm is given by t∗ = min{t : λ1(t) = 0}. A
non-trivial 2-core exists at this stopping time if and only if b(t∗) > 0. As the function b(t)
is decreasing in time (see equation (A.14)), the value b∗ = b(t∗) can also be defined as the
largest solution in [0, 1] of

ρ′(b∗)(1 − b∗) =
ρ′(b∗)

ρ′(1)

∞∑
l=1

lλl

(
1 − ρ′(b∗)

ρ′(1)

)l−1

. (A.16)

Let us now apply these results to the degree distributions (A.9) and (A.10) of the
formula obtained at the end of the unit propagation. These imply the following form of
the derivative of the clause length generating function:

ρ′(x) = αk(1 − φ)
(
(φ + x(1 − φ))k−1 − φk−1

)
. (A.17)

The solution of equation (A.16) is either b∗ = 0 or the largest strictly positive solution of

1 − b∗ = exp[−αk (φ + b∗(1 − φ))k−1 − φk−1]. (A.18)

Defining b∗ = (ψ − φ)/(1 − φ), one realizes that the equation on b∗ is equivalent to ψ
being the largest solution of equation (32). We have thus justified one of the statements
made in section 4.3: when there is only one solution to equation (32), ψ = φ or in other
terms b∗ = 0. This means that the leaf removal algorithm does not stop before having
emptied the complete formula, there is no 2-core and the solution space is not clustered.
In contrast the existence of the multiple solutions ψ > φ corresponds to b∗ > 0 and hence
to the presence of a non-trivial 2-core in the hypergraph of constraints. This latter case
corresponds to α > α∗ and θ ∈ [θ−(α), θ+(α)].

Let us conclude with the justification of the expressions of the entropy and complexity
given in section 4. We have seen that the number of non-implied variables at the end of
the unit propagation procedure is N(1 − φ), while the number of non-trivial clauses is
given in equation (A.11). In the region of the (α, θ) plane where there is a single solution
of equation (32) the entropy (35) is given (in units of ln 2) by the difference between the
number of variables and constraints, in agreement with the results of [28, 29]. When a
non-empty 2-core subsists at the end of the leaf removal algorithm, one can compute from
the solution of (A.12) and (A.13) at the stopping time t∗ the number of variables and
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clauses in the 2-core:

Ncore = N
[
ψ − φ − αk(1 − ψ)(ψk−1 − φk−1)

]
, (A.19)

Mcore = Nα
[
ψk − φk − kφk−1(ψ − φ)

]
. (A.20)

It is then easy to verify that ω̂(φ)− ω̂(ψ) = ln(2)(Ncore−Mcore)/N . When this quantity is
positive, that is in the interval [θ−(α), θc(α)], it is equal to the entropy density associated
with the exponential number of solutions of the 2-core. In contrast when it is negative the
2-core with more clauses than variables has only a sub-exponential number of solutions
(recall that we conditioned from the beginning on the formula being satisfiable and on
the reference configuration unveiled being a solution). One can show in this case that
the entropy arising from the variables outside the 2-core is given by ω̂(ψ), hence the total
entropy of the decimated formula is always given by max[ω̂(φ), ω̂(ψ)], the largest branch
as plotted in the right panel of figure 4.
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[31] Mézard M and Montanari A, 2006 J. Stat. Phys. 124 1317
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