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1. Introduction

Graphs and directed graphs (digraphs) are used as mathematical models
for social, physical, and other phenomena where relations between units are
observed. This paper applies especially to social science applications of
graphs, where stochastic models and statistical inference play an essential
role.

Mathematical random graph theory, which started with the classical
papers of Erdds and Rényi (1959, 1960), has been mainly devoted to studies
of various probabilistic properties of Bernoulli graphs and related models
(uniform graph models). The monograph by Bollobds (1985) provides an
excellent overview. Since these random graph models exhibit too little struc-
ture for satisfactory application to many empirical data sets, many other
models have been proposed in the literature. Two important types of models
for graphs and digraphs are blockmodels and stochastic models. An integra-
tion of these approaches to graph modeling was proposed by Fienberg and
Wasserman (1981) and Holland, Laskey, and Leinhardt (1983).

The purpose of blockmodeling is to partition the vertex set into subsets
called blocks in such a way that the block structure and the pattern of edges
between the blocks capture the main structural features of the graph. In
mathematical terminology, the block structure can be represented by the
colors of a colored graph; blocks and colors can be used as equivalent con-
cepts. Lorrain and White (1971) proposed blockmodeling based on the con-
cept of structural equivalence, which states that two vertices are structurally
equivalent (belong to the same block) if they relate to the other vertices in the
same way. The blocks can be regarded as equivalence classes of vertices. In
practice, social network researchers often use a more loose concept of
approximate structural equivalence, where some deviations (exceptional lines
or absences of lines, destroying the property of structural equivalence) are
permitted. If the vertices of a given graph are renumbered so that blocks
according to (approximate) structural equivalence correspond to sets of con-
secutive vertices, the adjacency matrix shows a block pattern: some blocks
have (predominantly) 1 entries, other blocks have (predominantly) 0 entries.

The popularity of deterministic blockmodeling results in part from the
fact that since the mid 1970’s two computer packages, CONCOR (Breiger,
Boorman, and Arabie 1975; Arabie, Boorman, and Levitt 1978; Schwartz
1977) and STRUCTURE (Burt 1976) have been available, both allowing us
to find a permutation of the rows and columns in the adjacency matrix leading
to an approximate block structure. Unfortunately, these programs are of an
exploratory nature and lack a statistical framework. Discussion can be found
in Wasserman and Anderson (1987), Faust (1988), and Scott (1991, pp. 134-
142). These references also treat some of the many other equivalence
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concepts in digraphs.

Fienberg and Wasserman (1981) and Holland, Laskey, and Leinhardt
(1983) extended the concept of blockmodeling to a stochastic version. A sto-
chastic blockmodel can be defined as a probability distribution (or family of
distributions) for graphs (or digraphs) of which the vertex set is partitioned
into subsets called blocks, which has the property that the probability distri-
bution for the graph is invariant under permutations of vertices within blocks.
Such a model can be described alternatively as a stochastic colored graph for
which the probability distribution is invariant under permutations of similarly
colored vertices. Under such a model, the probability that an edge is present
between two vertices depends only on the colors of the vertices. Wasserman
and Anderson (1987) defined vertices to be stochastically equivalent when
they belong to the same block in a stochastic blockmodel.

For the statistical application of blockmodels, an important distinction
is whether the blocks are known (e.g., through attributes of the vertices), or
have to be inferred from the edge pattern. The latter situation is much more
complicated, and sometimes called a posteriori blockmodeling. Wasserman
and Anderson (1987) and Anderson, Wasserman, and Faust (1992) studied a
posteriori blocking for blockmodels in the p, family. This is a log-linear
exponential family of probability distributions for digraphs, introduced by
Holland and Leinhardt (1981). This family includes vertex parameters
modeling the distribution of out- and in-degrees as well as an overall parame-
ter connected to the reciprocity of contacts between vertices. Holland and
Leinhardt (1981), Fienberg, Meyer, and Wasserman (1985), and others stu-
died various inferential aspects for log-linear models, both for single and for
multiple sociometric relations. Wasserman and Faust (1994) give an overview
of this model and techniques for estimation of the parameters. A version of
the p; model for undirected graphs with n vertices can be defined by the pro-
bability function

n
P(y; 0,0) = K(0,0) exp(0y 44 + X i yiy), ey
i=1
where y = {y;j}1<izj<» is the adjacency matrix (see Section 2) and
Yie =Zjc1 Yij» and Y, = Ligejzn Yijs Where 0 and o= (0, ... ,0,) are
parameters with £7_; o; = 0, while K(c,9) is a normalizing function.

A major problem in statistical inference for the p; model is that the
number of parameters increases with the number of vertices in the observed
data. This situation may lead to overfitting; in any case, the standard asymp-
totic properties of estimation methods such as maximum likelihood do not
hold automatically. Combining blockmodels with the p; model is one stra-
tegy used to overcome this problem. The vertex parameters of the p distribu-
tion are then defined in terms of the blocks to which the vertices belong rather



78 T. Snijders and K. Nowicki

than in terms of the identity of the vertices. Wasserman and Anderson (1987)
and Anderson, Wasserman, and Faust (1992) studied a posteriori blocking for
blockmodels in the p; family. They blocked the vertices by first calculating
ML estimates of the vertex parameters, and subsequently grouping the ver-
tices on the basis of multiple comparisons of the estimated parameters. This
method is reliable only if the p; model provides a satisfactory fit to the data;
this condition is not always sufficiently stressed in the literature. Anderson,
Wasserman, and Faust (1992; Section 4.1) give a review of several methods
for obtaining blocks.

Wang and Wong (1987) proposed blockmodels that are obtained by
adding block parameters to the basic p; model. Those authors proposed esti-
mators and tests but only for the situation that the block structure is known a
priori.

In this paper we study a posteriori blocking in a stochastic blockmodel
for graphs. Each of the vertices of the observed graph belongs to one block:
however, the block structure is not directly observed. Furthermore, the edges
are independent, conditional on the block structure. Our model is more gen-
eral than the analogue for undirected graphs of the model considered by
Wasserman and Anderson (1987) and Anderson, Wasserman, and Faust
(1992) because it is a blockmodel not subsumed in the p1 model. This
enhanced generality is purchased with a larger number of parameters: the
special case of model (1), where vertex parameters depend on m blocks has m
free parameters while the blockmodel considered below, for a given block
structure with m blocks, has m? parameters (cf. Definition 1 below).

We give maximum likelihood and Bayesian estimators for the parame-
ters of the model as well as procedures for recovering the block structure in
the case of two blocks. It turns out that maximum likelihood estimators are
not feasible for larger graphs (say, for more than 20 or 30 vertices). Bayesian
estimators, implemented using the Gibbs sampler (see Section 5), can be
used, however, as a practical possibility for larger graphs as well. Future
research will be directed toward extending these procedures to directed
graphs and to more than two blocks.

2. Some Notation for Graphs and Blocks

An undirected graph G consists of a pair (V(G),E(G)) of a set V(G) of
elements called vertices, and a subset E(G) of the collection of unordered
pairs from V(G). The elements of E(G) are called edges. A graph G on the
finite set V(G) = {1, ... ,n} of vertices can be represented by its adjacency
matrix y = {y;; }1<i#j<n, Where
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__ | 1 ifthere is an edge between vertices i and j
Yii= 10 otherwise,

where y; = 0 for all i, since loops between a vertex and itself are excluded.
Clearly, y;; = yj; foreach pair 1 <i #j<n.

Consider an undirected graph in which the vertices belong to m
different categories. Let those categories, referred to as blocks, be represented
by a vertex variable; designate outcomes of this variable as colors. We intro-
duce the vector x = (x;)7-;, where

x; = k if vertex i has color k,
forie {1,...,n}and ke {1,...,m}.

Thus, the colored graph C can be represented by the array (y,x); X is also
called the block structure of the colored graph. In this paper we shall con-
sider random graphs to be defined by probability distributions over the set of
undirected graphs G with a fixed vertex set V(G) = {1,...,n} and an arbi-
trary edge set. Random variables will be denoted by capital letters. For a ran-
dom colored graph, the number n of vertices will be assumed to be fixed, but
the adjacency matrix Y and the color vector X will be random.

3. Stochastic Blockmodels for Graphs

The definitions in Holland et al. (1983) for directed graphs can be
extended as follows to define stochastic blockmodels with independent edges
for undirected graphs G. The vertex set is {1,...,n}, and the random adja-
cency matrix is (¥;;).

1. The random variables Y;; for i < j are statistically independent; furth-
ermore, Y;; =Y, and ¥; =0.

2. There exists a partition of the vertex set {1,...,n} into blocks such that
for any vertices i, j, h with i #j #h, if i and & belong to the same
block, then Y;; and Y),; are identically distributed.

Condition 2 can be rephrased by stating that P(Y;; = 1) depends on the
vertices i and j through their colors. In this paper we consider a probabilistic
blockmodel for graphs with random vertex colors.

Definition 1. A random blockmodel is a family of probability distributions
for a colored graph C with vertex set {1,...,n} and color set {1,...,m}, defined

as follows.

1. The parameters are the vector © = (01, . . . ,0,,) of color probabilities
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and the matrix N = Myh<e<<n Of color-dependent edge probabili-
ties.

2. The vector of vertex colors consists of iid. rv’s (X;)'.;, where
PX;=k)=0fork=1,... ,m

3. Conditional on the vertex colors X;, the edges Y;; are independent,
with Y;; ~ Bernoulli (N, X,)-

If (y,x) represents such a colored graph C, the probability function is given by
P(yx;0m) =61 -0, J] nid-ng™™, @

1<k<l<m

where n = X721 I(x; = k) denotes the number of vertices in C having color ,

2 Vil =1 =1) €)

i#j<n

€ =
denotes the number of edges in C having one vertex of color k and the other
of color /, and

mny ifk#1

Ry = [
Ry

2 ifk =1,

while 8; = 1 for k = [ and &; = O for k # [. Furthermore, we denote

s= X Vi, ]
1si<j<n
the total number of edges.

The conditional distribution of the colored graph, given the vector of
colors (x;)7<1, is a stochastic blockmodel with independent edges in which
the colors xp,...,x, have the role of parameters. In the latter model the
number of parameters tends to infinity with n, whereas in our model with ran-
dom blocks the number of parameters is fixed at m(m + 3)/2, and the colors
x; occur as random variables. The situation where the number of parameters
increases with n (called a situation with incidental parameters) is undesirable
from a statistical point of view, because it often leads to inconsistent estima-
tion. Therefore we prefer to work with a model where the blocks are random
and the statistical parameters correspond to probabilities of colors rather than
to realized colors.

In applications of blockmodels, the edges often refer to a relation
which is more frequent within blocks than between blocks; e.g., friendship
relations between persons where blocks correspond to groups with similar
attitudes. In such cases, ny for k < [ will tend to be smaller than 1, and ny.
However, it is also possible to think of applicatiqns where the diagonal values
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N typically are smaller than off-diagonal ny (k < [), e.g., when the relation
is mutual sexual attraction and the blocks are defined by gender in a mainly
heterosexual population. Both these orderings are incompatible with the
blockmodel version of the p; model defined by (1). In such a model we have
that Ny = 1 — (1 + exp (0 + o + ;)" so that the values of off-diagonal pro-
babilities 1y necessarily are between the values of the corresponding diago-
nal probabilities. Wasserman and Galaskiewicz (1984) discuss a stochastic
blockmodel which is an extension of the p, model not subject to these order
restrictions, but they do not treat posterior blockmodeling.

Various stochastic properties of the random blockmodel have been stu-
died in the literature. In addition to the references given in Section 1, we men-
tion the following. Frank and Harary (1982), motivated by entropy calcula-
tions, discussed statistical inference for s, = £, 67 and s5 = X7, 6] under
the assumption that ny = (1 — o) Oy + B(1 — &y). They proposed several
moment-based estimators for s, and s3 under various restrictions on
01, ...,0,, a, and B. Frank (1988) obtained the expectation and the variance
for the number of edges and for the vector of triad counts. Frank (1988) and
Wellman, Frank, Espinoza, Lundquist, and Wilson (1991) consider statistical
inference for certain models for randomly colored graphs assuming that the
edges as well as the colors are observed. Janson and Nowicki (1991) studied
the asymptotic distributions of the vector of suitable normalized subgraph
counts and obtained, depending on the topology of the subgraph, convergence
to either the normal or the X? distribution.

4. Maximum Likelihood Estimation

We consider the colored graph model as given by (2) for m = 2 colors,
assuming that only the edge structure Y can be observed, i.e., the color vector
is unobserved (latent). Thus, the probability of observing edge pattern y is

P(y;0m)= Y P@y.x0n), &)
xe {1,2}"
where
8 |
P(y,X,e,n) = (1 - e) 1-— e (6)
m U e e e
A2 oy 2 M T M2 | (M2 |
XN "Nz N2 - - ~ )
N1 N2 N2

where n;, = X7, I (x; = k), ey is as defined in (3), Ny = 1 —ny for k,7 = 1,2,
and 0 now denotes P(X; =2)=1-P(X; =1). Note that n, + n, =n and
e + ez + ey =, defined in ).
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The parameters in this statistical model are not identifiable, which
means that several distinct parameter vectors can be associated with the same
probability distribution for Y. Indeed, replacing 6 by 1 — 6 and interchanging
N1; and Ny, will yield the same distribution; furthermore, if N1; = N2 = Nya,
then we are back at the Bernoulli graph model, and the value of 0 is
irrelevant. This lack of identifiability can be remedied formally by requiring
11 < MNy2. We shall not institute this requirement, but will instead take the
non-identifiability into account when interpreting results; moreover, algo-
rithms and statistical evaluations will have to take into account the possibility
of nonuniqueness of maximum likelihood and other estimators.

We now turn to the problem of estimation of the parameters in the
latent blockmodel. Unfortunately, because of the intractable form of the likel-
ihood function, explicit formulae for the maximum like- lihood estimators
cannot be obtained. Instead we must use numerical methods for maximizing
the likelihood function. Two numerical estimation methods are studied here:
(a) the direct numerical maximization of the likelihood function, and (b) the
EM algorithm (Dempster, Laird, and Rubin 1977).

4.1 The Direct Maximization

The expression given in (5)-(6) for P(y;0,n) is not convenient for
numerical calculations because the number of terms in the sum, 2", is
unpleasantly large. By combining terms it is possible to obtain an expression
containing a sum where the number of terms increases only polynomially
with n. Toward this end, write (6) as

P(y,x;0,n) = a(0,n17) b° M12) Ble11,€22.n2;0,M) , )
where

n
a@®nm) = (1-90)" ﬁl{IZ] ,
b)) = T~l_12_ ,
N2
Ble11.e22,m2;0,M) =
¢ M11,M12)d P M12,022)€™ O,M11, M2, o)™ Mo M1z M22) »
and where

N M2
cNuNi2)=—— """,
iy M2
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N2 M2
dMiN2)=—-——"7">,
T]ZZ n12

01
e(0,M11,M12,N22) = AR LR
(1-0my; N2

and

ﬁvzﬁvz

11 N22

fMniznNe)=—— .
N2

To simplify (5) we introduce, for a given graph G,
Frdom)=#{(x1,...,x%,):ny =k, eq1 =1, eyp =m},

which is the number of partitions of V(G) = {1,...,n} into two sets with n — k
and k vertices, respectively, such that subgraphs of G induced by these sets
have [ and m edges, respectively. We then have that F.(I,m) = F, (m,l), so
we need to calculate F(I,m) only for k < [n/2], where {r] denotes the largest
integer not exceeding r. The probability function (§) now can be rewritten as

P(y;0,m) = a(®,n11)b*(M12) ®)
B + B uty) " Zm(Frl,m)B(,m,k;0,M)
+ Fr(m,D)B(m,l,n —k;0,m)).

Maximum likelihood estimators for (6,n) can be calculated by applying a
standard numerical maximization routine to (8). A considerable part of the
necessary computer time is taken by the calculation of the numbers Fi(I,m),
even though this computation is done only once, before the maximization.
The number of steps in calculating F(l/,m) is an exponential function of 7,
which restricts the applicability of the direct numerical maximization of the
likelihood function to small values of 7.

4.2 The EM Algorithm

Dempster, Laird, and Rubin (1977) introduced the EM (expectation-
maximization) algorithm for the calculation of maximum likelihood estimates
in statistical problems with missing data. In our model, the vertex color vector
x can be regarded as missing data, and the EM algorithm offers an alternative
to the straight numerical maximization of (5) as a function of (0,n). Applica-
tion of Dempster et al. (1977) leads to the following algorithm. First, for
given data y, define
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0®' M | 6,n) = E(log p(y,X:6',n | y,6,m)).
The EM iteration (69),n®)) — (6%+D n®*D) now proceeds as follows:

E: Compute Q(8,n | 6@ n®);
M: Choose (0¥*Vn®*D) to be a value of (8,m) that maximizes
Q(6,n | V) @),

It follows from Dempster et al. (1977) that this iteration scheme converges to
the maximum likelihood estimate.
Since

log p(y,x;0,n) = log a(®,n11) + s log b(Ny3) + eq; log c¢(M11,M12)

+ €2 10g dN12,M22) + 12 10g e(0,M11,M12,M22) + 13 log SMi.M12.M22) .

where s is a function of y only, whereas e;; and €27 also depend on x, the E-
step consists of the calculation of the conditional expectations of the vector of
canonical sufficient statistics (N Z,N%,Eu E7). Denote these conditional
expectations by (n,,m,,e11,€2,). Thus, e.g., ; fori = 1,2, is given by

e; =E(E; | y,0,n) =

[n/2]
(@®M1)b°M12)/P(y;:0.n) 3, (1 + 8 o))
k=0

2 (eiFi(er,en)Pler1,e.k:0,m) +

€11,€2
e 3-ne-nFrlex.e11)Bler.e11.n —k;0,n)) .

For the specification of the M-step it may be noted that the family of
complete data distributions P(y,x;0,m) forms a curved exponential family, so
that the remarks in Dempster ez al. (1977, pp. 5-6) apply. It follows that the
M-step corresponds to maximum likelihood estimation of (8,m) under the
assumption that the outcome of the vector of canonical sufficient statistics
(N2,N3,E11,Eq,) for the complete data problem is given by (n5,m,,e11,2).
The result is
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N 2ey;
MNa="_"2_":
mop—njp
and
~ S—€11—-€n
Ni2=—" - ——"
nny, —my

The EM algorithm is, in our experience, considerably faster than the
direct maximization of (8) by standard multiparameter maximization
methods. Its use is restricted, however, by the fact that the number of opera-
tions required to calculate the numbers Fi(l,m) is an exponential function of
n.

5. Bayesian Estimation

The algorithms for maximum likelihood estimation of © and n, dis-
cussed in the preceding section, are not practical unless » is rather small, say,
not more than 20. An excellent alternative, practical also for larger graphs, is
offered by a Bayesian approach. Gibbs sampling, proposed by Geman and
Geman (1983) and explained by Gelfand and Smith (1990) and Casella and
George (1992), is a simulation method that can be used also for larger values
of n to calculate Bayes estimates of the parameters. For those who have such
strong objectivistic feelings that they would object to a Bayesian approach, it
may be a valid counter-argument that already for intermediate values of n, the
information contained in the data y about the parameters n (note that the
number of Bernoulli variables relevant for estimation of these parameters is a
quadratic function of n) and the vertex colors x is so large that the influence
of the prior is quite small. Bayes estimators and the posterior standard devia-
tions of the parameters can approximate for n — oo the maximum likelihood
estimators for © and 1y and their standard errors; see Lehmann (1983, Sec-
tion 6.7) or Press (1989, Theorem 3.2.1).

The Gibbs sampler is an iterative simulation scheme that operates by
repeatedly drawing in turn each of a set of unknown random variables or vec-
tors, each conditionally on the values of all the other random variables. For a
more extensive explanation we refer to the literature cited earlier. We apply
this scheme to (0,1),X1,...,X,,, treating (0,n) as a single random vector. This
approach leads to the following procedure. Let the prior density of the
parameter vector (6,n) be by £(0,n). Given current values X?), 6 n®, the
next values X®*D, 9¢+D n®+D are determined as follows:

1. 0@+ n@*D s drawn from the posterior distribution of (8,1)), given
the complete data (X?,y);
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2. XP*V is drawn from the conditional distribution of X 1 given the
values 9@+, n@+D, Y, xp,... .xP,

For each value i =2, ...,n —1in turn, X?*V is drawn from the con-
ditional distribution of X; given the values 67*D, n®+D y x{@+D for
h=1,...,i-LandXP forh=i+1,....n

X%*D is drawn from the conditional distribution of X, given the
values 0P +D n@+D y xp+D - x@4D

It follows from the convergence theorem in Geman and Geman (1983) that
for this iteration scheme, irrespective of the starting values, the distribution of
(0P n®) converges to the posterior distribution given the observed data y,
and the distribution of X® converges to the Bayesian posterior predictive
distribution with probability function

Jx 1y) o< [ Ply,x 1 6,m)£(0,n)d0dn .

The Gibbs sampler is so convenient because the conditional distribu-
tions from which X®*D and (6?*D n®+V) are drawn are quite simple. The
conditional distribution of X; given 0, n, y, and X, ....X; 1. X415 ... . Xps
can be derived from (6). For a given /, and for k = 1,2, define

m= Y IX =k
1Sjsn, j=i

and

= Y yilX=k.

1j<n, j#

Scrutiny of the influence of X; on probability (6) yields

PX; =21y, X;forj#i) B

PX; =11y, X;for j #1i)

N2z

ﬁlZ ﬁ22

M1
This ratio determines the probability distribution from which X?*D is to be
drawn in Step (2) of the Gibbs sampler.

The posterior distribution of (6,n), given the complete data, has density
proportional to f(0,n)P(y,x | 8,n) with P(y,x | 0,n) given in (6). One way of
dealing with the identifiability problem mentioned above for the parameters,
is to use a prior distribution with support {n;; €ny,}. If a flat prior is
required that indicates absence of special prior information, the uniform dis-
tribution on

®

e
0 ~niameman
—l_enumz N22
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{(0,M11,M12:M22) € [0,11* | N33 <M}

is a natural choice. Suppose that this is indeed the prior distribution. Since
the uniform distribution is identical to the Beta(1,1) distribution, well-known
results on the Bayesian analysis of binomially distributed data with Beta prior
distributions can be used to derive the posterior (see, e.g., Press 1989, p. 53).
The posterior distribution of (0,111,M12,M22) given the complete data (y,x) is
given by Beta distributions with parameters, respectively,

(7’[1 + 1, np + 1),

3

n
21] —-é11 + 1,611 +1

(mng—epp+1,epp+ 1),

n
22] — €9y + 1, €9y + 1

conditional on 1n1; <13y, but with otherwise independent elements.

Drawing a random vector from this posterior is awkward because of the
restriction {111 <Mz }. A simple way to obtain the posterior with this restric-
tion from the Gibbs sampler is the following. First note that if the uniform
distribution of (0,m) (without the restriction {n;; €My }) is used as a prior,
the joint posterior distribution of (x,8,m) is invariant under the transformation
that replaces 0 by 1 — 0, interchanges n;; and Mny,, and replaces x; by 3 — x;
(all ). Also note that 117 <My, holds for exactly one of the resulting pair of
outcomes of (x,0,m), unless 1y; =My, which has probability 0. The pro-
cedure now is that in Step 1 of the Gibbs sampler, the restriction {n;; £12}
is not made and, at the end of Step 1, the following is added:

1*. If n§*Y > n$%*Y, then interchange NE*D and %Y, and replace
07+D by 1 — ge+D,

The average of (6%, n®) over a large number of runs after convergence is a
good Monte Carlo estimate of the Bayes estimate (the posterior mean); the
standard deviation of (8%, n®) is an estimate of the posterior standard devia-
tion and hence an approximation of the standard error of estimation. We shall
see below that the empirical distributions of the X% can be used for the pred-
iction of the vertex colors.

The iteration steps of the Gibbs sampler are quite simple. Detecting
convergence, however, is not straightforward (as also observed by Casella
and George 1992, Section 5.1), because the process converges not to a single
value but to a stationary probability distribution. Gelman and Rubin (1992)
and their discussants debate this question; Gelman and Rubin propose to use
multiple starting points. We do not wish to go deeply into this discussion, but
we are convinced that it is very sensible to use multiple starting points, and
we have implemented the following procedure.
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1. Determine several (e.g., g = 10) “‘local’’ modes of the joint probabil-
ity function P(y,x | 6,1) as a function of (x,0,n), using the method of
Section 7.1 below;

2. Apply the Gibbs sampler g times with each of these ‘‘local’’ modes
as starting points; iterate the algorithm 10,000 times to achieve con-
vergence and then another 10,000 times to estimate the posterior pro-
bability distribution of (6,1) and of (X4, . .. ,X,);

3. If these g estimated probability distributions are quite close to each
other, then assume that the algorithm has converged; if not, rerun the
Gibbs sampler with more than 10,000 iterations.

In our experience, the 10 Gibbs sequences usually produced quite similar dis-
tributions.

6. Asymptotic Recovery of Colors

One of the main goals in posterior blockmodeling is to recover (or
predict) the colors x; from the observation of the edge pattern y. It turns out
that asymptotically for # — oo, it is possible, under certain weak conditions,
to recover the colors x; correctly with probability tending to 1. This property
will be called the asymptotically correct distinction of vertex colors. In our
experience, depending on the values of the parameters (0,1), a quite good
recovery of the colors for a latent two-blockmodel is possible for values
n =30 and higher. This finding is important because it implies that, if the
assumption contained in Definition 1 is valid and one uses a good procedure
for recovery of colors, statistical inference in a posteriori blockmodeling can
be almost as good as inference in blockmodeling with a priori given blocks.

More formally, this statement can be expressed as follows. This sec-
tion shows that there exists a function F(Y) such that P(X = F(Y) | 6,n) = 1
for all 0,1, as n —eo, Therefore, for any statistical procedure (test, estimator,
or whatever) T(X,Y) that can be derived for the model in which X as well as
Y are observed, there corresponds a procedure T(F(Y),Y) which is a function
only of Y and not of X, and which has asymptotically the same properties as
T(X,Y) in the sense that for all 0,7,

ImP(TFXY),Y)=TX,Y)10n)=1.

A procedure to accomplish the asymptotically correct distinction of
vertex colors in a two-blockmodel can be based on the degrees, as indicated
in the following theorem. This procedure was also proposed in Frank and
Nowicki (1993, Section 4). Grusho (1984) proved a similar result under more
restrictive model conditions.
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Theorem 1. Denote by y ), the ordered degrees: yy. <Y @2ys S S¥ ()
Let I be the index i with 1 <i <n —1 for which y ;1y+ — Y )+ is maximal (if
there are several such indices, let I be the smallest among them) and denote
D =y 4. Define
1 ify;, <D;
F) =14 iy, > D.

Let n — o while 0 and 1 are fixed, and assume that
ny/n—>0¢e (0,1),

N + (1-0Ny <Onyp +(1-6M;2. (10)
Then
PX;=F,(Y)fori=1,...,n1X=x)—>1.
Remarks.
1. The condition n,/n — 6 holds with probability 1 if the two-

blockmodel is valid.

2. If the reverse inequality sign > holds in (10), then the same conclu-
sion holds when the colors 1 and 2 in the definition of F; are inter-
changed. Therefore, condition (10) effectively excludes only a 1-
dimensional subset in the 4-dimensional parameter space.

The proof of this theorem is given in the Appendix.

The procedure can be expressed in the following words: order the
degrees and find the greatest gap between the degrees; vertices with a degree
higher than this gap are designated white, the remaining vertices are desig-
nated black.

Condition (10) is necessary and sufficient for the vertex colors to be
distinguishable correctly with probability tending to 1 on the basis of only the
degrees. It is, however, not a necessary condition for asymptotically correct
distinction per se. We now describe a slightly more complicated procedure
for the asymptotically correct distinction of vertex colors that works when-
ever the three probabilities Ny, N1z, and n,; are not all the same (if
MN11 = N2 = N2, then the graph really is a Bernoulli graph and one single
block rather than two is sufficient). This procedure makes use of the inner pro-
ducts Cjj = Zy4; ;Y ¥y Note that Cj; is the number of other vertices with
which both i and j are connected, which can also be expressed as the cardi-
nality of the intersection of the neighbourhoods of i and j. (There is a remote
similarity to the CONCOV procedure (see, e.g., Schwartz 1977), because
CONCOYV employs covariances between rows of the adjacency matrix while
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our procedure utilizes inner products; however, the remainder of CONCOV
and our procedure are completely different, among other reasons because
CONCOV works with iterated covariances.) According to some of our
Monte Carlo simulations, this second procedure works better in practice than
the procedure of Theorem 1. The procedure is a kind of clustering algorithm,
carried out by first ordering the vertices and then splitting the ordered set of
vertices into two blocks.

The sequential ordering of the vertices produces the vector s of the
ordered vertex numbers and an ordering vector d and works as follows. First,
we choose the pair of vertices i and j, say, with the maximum value of C; ; and
set 51 =14, sp=j and dy =d; =C;j. Next, suppose that we obtained
$1,...,8; and dq,...,d;. To determine s;,; calculate, for each remaining
vertexj ¢ {s1,...,5},

Cli=min(Cy; | he {s1,...,5]). (1)

Choose then vertex, r, say, such that C}, is maximal, and set Sis1 =1 and
diy1 = Ci*r-

The splitting step proceeds as follows: let d;,; — d, be the greatest gap
between two consecutive values in d. We then assign vertices {s1,....,s;} to
one block and all the remaining vertices to the other.

This approach produces the desired block structure. It is proven in the
Appendix that this procedure also produces an asymptotically correct

recovery of vertex colors.
7. Color Prediction for Finite n

The procedures of the previous section yield asymptotically for n — oo
the correct coloration, but are not necessarily satisfactory for small and inter-
mediate values of . In this section, we consider the problem of predicting the
colors X1, .. .,X, of the vertices 1, ...,n based on the observed graph y in
the setting of a fixed value for n. This problem of a posteriori stochastic
blockmodeling was studied by Wasserman and Anderson (1987) and Ander-
son, Wasserman, and Faust (1992) in the context of the log-linear p; model
for digraphs. Those authors proposed a classification of the vertices based on
similarity of vertex parameters estimated under the assumption that the p;
model holds. We do not make this assumption.

In this section we present three predictive approaches. The first is based
on a profile predictive likelihood and the second on a conditional predictive
likelihood. The third approach is Bayesian and is a direct result of the Gibbs
sampling procedure of Section 5.
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7.1 The Profile Predictive Likelihood

Prediction of X can be based on Mathiasen’s (1979) likelihood-based
function given by

Lyx ly)= seu%) P(y.x;0,m).

This function is motivated by replacing the unknown parameters
0.111,N12,N22 With their most likely values, given the complete data (y,x).
Because of the correspondence to the profile likelihood in parametric infer-
ence, L, has been called the profile predictive likelihood; see Bjgrnstad
(1990) for more details.

First, we observe that ML-estimators given the complete data are given

A nl A ~ n2
by9=n2/n,n11=eu/ 2 ,T|1z=e12/n1n2 andn22=e22/[2]. Thus
we obtain that

Lix1ly)=
n,

[ n ny n n; e [2]_811 e nin;=ey

nl | Me| o lu Pt y
| n n ni niny

2
’ ["22]"822 u . ez
) e ey |7 exn
n, ny nin; ny
l 2 2 2

If n is not too large, L,(x | y) can be calculated for all x, and the values for x
with the highest value for L,(x | y) can be chosen as likely partitions of the
vertex set into blocks. The disadvantage of this approach is that it assumes
the unknown parameters to be equal to their maximum likelihood estimates,
which may imply a misleading impression of precision, especially for low
values of 7.

For larger values of n, maximizing L,(x | y) by enumerating all x is not
practical. A feasible alternative numerical method for seeking the value of x
that maximizes L,(x | y) is based on the observation that such an x is also the
x-coordinate of the maximum of P(y,x; 0,M) as a function of x,0,1 for fixed y.
We define a “‘local’”’ mode of the likelihood P(y,x;0,n) as a value of (6,1,x),
where a change in (8,n) or in any of the x; separately does not lead to an
increase in the likelihood. Such ‘‘local’’ modes can found by alternating the
two following steps:
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1. Maximize P(y,x;0,n) over (8,n); this approach is the same as com-
puting the maximum-likelihood estimate for observed data y,x;
2. Foreachi = 1,...,n, maximize P(y,x;0,n) as a function of x; € {1,2}.

These steps can be taken from random starting points, or starting from the
values for x obtained by the procedures proposed in Section 6; the procedure
converges when the second step does not lead to any changes in the current
value of x. In our experience, this procedure is quite satisfactory when
applied to a reasonably large number (e.g., 100) of random starting points, but
it cannot be proved that this approach yields a global maximum of the func-
tion L,(x | y).

7.2 The Conditional Predictive Likelihood

Butler (1986) proposed the conditional predictive likelihood based on

the minimal sufficient statistic #(y,x) for (y,x), defined as
P(y,x;0
Lx|y)= M ]
Y= Pagxem

We refer to Butler (1986) for the motivation for this expression. The minimal
sufficient statistic for (y,x) is given by #(y,x) = (N,,E11,E22,E12).

To calculate the probability function of £(y,x) we note that, conditional
on the fact that there are ny = n — n, vertices of color 1, E; has the binomial
distribution with parameters ('l21) and 1n;;. A similar reasoning can be applied

to Ep; and Eq;. Moreover, Eqy, Eq, and E,, are independent, conditional on
n,. Hence the conditional probability function for E11,E,,E 1, given n, is

P(eq1,e2,e12 | ny)
=P(eq1 | ny)P(ex | np)Pleqy | ny)
ni ny
() ['11”2] (5)

€11 €12 €22

€1 €12 €n

&) Ch
~\2/ nn, ~\2
X M1 N1z N2

N22

17]22

N11
N

N2
N2

Further, recall that N, is binomially distributed with parameters # and .
Hence, the conditional predictive likelihood is given by
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nq ny
Lxly) = [n] (2) [”1"2] (2)

nay e €12 €22
Butler (1986) suggests that this function is more reliable than L,(xly)in
predicting the partitioning of the vertex set into blocks. To find the maximum
of L.(x | y), procedures similar to those of Section 7.1 can be followed: max-
imization by complete enumeration (feasible only for small n), or determina-
tion of “local’’ maxima by maximizing successively over each of the coordi-
nates Xx;.

7.3 Bayesian Prediction

The Gibbs sampler of Section 5 can be used not only for parameter esti-
mation but also for color prediction. The limiting distribution of X®’, when
the algorithm of Section 5 is followed, is the Bayesian posterior predictive
distribution with probability function

fx Ly) o< [P(y,x | 6,m)f8)d6dn .

This expression is just the conditional distribution of the vertex colors X
given the observed edges Y, when the parameters (6,1) have prior density
function £(0,n).

Hence the relative frequencies of {X®) =k} for k = 1,2 are Monte
Carlo estimates of the Bayesian posterior predictive probabilities for X; = k
and can be used for predicting the vertex colors. A satisfactory two-block
structure may be assumed to have been found if these relative frequencies are
close to 0 or 1 for all vertices. It can be concluded that the Gibbs sampler
automatically produces a color prediction.

In many examples that we tried, the second procedure of Section 6
(based on the matrix C), followed by the iteration steps of Section 7.1 to
obtain a “‘local’”’ mode of P(y,x;0,n), yielded a block structure x that was
also the mode of the posterior predictive distribution of X as estimated by the
Gibbs sampler.

8. Example: Hansell’s Student Data

Here we will discuss Hansell’s (1984) classroom data previously stu-
died in the context of stochastic blockmodels by Wang and Wong (1987). Our
example consists of the sociomatrix of friendship among 27 classmates: 13
male and 14 female sixth-graders in an inner-city Baltimore elementary
school; see Hansell (1984) or Wang and Wong (1987) for more details. Since
the original data are asymmetric, we have chosen to symmetrize the data in
our analysis by assuming the presence of friendship between two students
whenever at least one of the two students expressed liking for the other.



94

T. Snijders and K. Nowicki

Table 1: Adjacency matrix of Hansell’s friendship data.

111111111122222222
123456789012345678901234567

O O T W IN

B B D DO DO DD RO B b= = e e b o e e e
TSR WN = SO -TID U W — O WO

-111100111000011000110000060
1-1111000000001100000000000
11-100001000110000011001000
111-11111110100110100000000
1101-1111101011111010111100
01011-110101110111010110100
000111-01000100000010000000
1001110-1110100100000000000
10111011-000100000000000000
100111010-01000100000000000
0001000100-0000110010000000
00001100010-000000110000000
001101111000-00010001000000
0010110000000-1111101001100
11001000000001-101111111100
110111010110011-11101111101
0001110000101101-1110010100
00001100000001111-111100100
000100000001011111-01101100
1010111000110010110-0001000
10100000000011110110-010110
000011000000001101100-11101
0000110000000011100011~-11060
00101000000001110011011-100
000011000000011111101111-00
0000000000000000000010000-0
00000000000000010000010000-
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The adjacency matrix given in Table 1 presents data blocked according
to sex; individuals labeled 1-13 are male students, while those labeled 14-27
are female students. Among same-sex pairs, the fraction of friendship ties is
0.53 for male students and 0.56 for female students. Among opposite-sex
pairs, the fraction of friendship ties is 0.23.

In our analysis we wish to divide the students into two groups based on
their friendship pattern, and investigate whether the partitioning of the class
into two subgroups based on friendship ties differs from the partitioning based
exclusively on gender. (Wang and Wong (1987) used another block-related
approach by trying to improve the fit provided by the p model through mak-
ing use of the extra nodal information about the gender of the students.)

A preliminary block division of students can be carried out by applying
the second procedure from Section 6, based on the matrix C. We obtain the
block structure

xP = (111122111111122222212212211).

Using multiple starting points of the Gibbs sampler (block structure x
and local modes as defined in Section 7.1) led to the conclusion that the block
structure found does not depend on the starting point. The use of x1 as the
starting point led to the posterior means:

6 = 0479, ﬁll = 0326,
1/:llz =0.248, ﬁzz =0.763,

with the estimated posterior covariance matrix:

0.0148 —-0.0013 -0.0036 —0.0033

s = [-0.0013 0.0038 —0.0005 0.0015
%1~ [-0.0036 —0.0005 0.0054 0.0006] "

-0.0033 0.0015 0.0006 0.0064

The square roots of the posterior variances may be treated as standard errors
of the estimated parameters:

S.E@®) =0.122, S.E.(fin)=0.062,
S.E.(fi1p) = 0.073, S.E.(fiz) = 0.080.

For individuals labeled 5-6, 14-19, and 21-25, the posterior predictive proba-
bility of belonging to block 2 was .89 or more with the exception of indivi-
dual 21 (0.81). For the others, the posterior predictive probability of belong-
ing to block 1 was .93 or more with the exception of individual 20 (0.80).
These results imply a quite clear-cut posterior block structure. Block 2 has a
high within-block density; the densities within Block 1 and between the
blocks are much lower.
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This finding can now be compared with blocking induced by gender.
The posterior blocking does not entirely follow gender lines, because male
students labeled 5 and 6 belong now to the ‘‘female’” group and female stu-
dents labeled 20 and 26-27 belong now to the ‘‘male’” group. Table 1 shows
that these individuals indeed have different friendship patterns from the oth-
ers: 5 and 6 have relatively many female friends, 20 has more male than
female friends, while 26 and 27 have few friends of either gender.

9. Discussion

In this paper we have presented a statistical approach to probabilistic
posterior blockmodeling. We restricted attention to the simple case of a two-
blockmodel for an undirected graph. This allows us to uncover what is, and
what is not, possible in such an approach in the simplest situation. Implemen-
tation possibilities depend strongly on the number 7 of vertices. A maximum
likelihood solution appeared to be practically feasible only for small values of
n (up to about 20). It turned out that a Bayesian solution, using the Gibbs
sampling algorithm, can be satisfactorily applied also for large »n. For inter-
mediate and large values of n, the Bayesian estimator (i.e., the posterior
mean) with a high probability comes very close to the maximum likelihood
estimator. The posterior predictive distribution can be used to estimate the
block structure.

We also obtained the result that if a probabilistic two-blockmodel
holds, the block structure (represented by the vector x) can be correctly
recovered with probability tending to 1, as n increases. We found indeed,
when applying the Gibbs sampler to artificial data generated according to a
probabilistic two-blockmodel, that for n > 30 and 6 not too close to O or 1, the
posterior predictive probability distribution for X tended to be concentrated
closely around the true value.

From this work on the simple situation of a two-blockmodel for an
undirected graph, we conclude that maximum likelihood estimation of the
parameters is not worth the trouble of being developed for multiple-
blockmodels for undirected or directed graphs. Qur future research will be
directed toward using the Gibbs sampling method for blockmodels for
undirected and directed graphs with an arbitrary number of blocks.

Appendix

Proof of Theorem 1.

Suppose that x; = 1; then the conditional distribution of Y;, given the
colors xq,..,%, is the convolution of Bin(n; —1,n;) and Bin(n,,1n12).
Well-known large deviations theorems imply that if S has the binomial
Bin (m,p) distribution, then
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P(1S/m—p | >¢&)<2exp(-2me?)

(see, e.g., Feller 1968, section VIIL.4).
Define p;(x) = E(Y;, /(n — 1) | X = x); then

Ny = 1)/(n=1) +pany/(n-1) forx; =1,

Pi¥)= 1 non, /(n—1) + Mg, — 1)/(n — 1) forx; =2.

Now let € be an arbitrary positive number. Applying the large deviations
theorem separately to Y% and to Y9, where Y% denotes the number of edges
from i to all other vertices of the same color as i and Yi? the number of edges
to differently colored vertices, and using Boole’s inequality, yields

PUY, /n-1D-pxI>elX=x)

<2exp (- €2(n —1)*/(2ny))

+2exp (—€X(n - 1)2/Q2ny))

<dexp(—€2(n-1)/2).
Using Boole’s inequality again, it follows that

PO Y, /n-1)-p;x)| >eforatleastonei | X =x) 12)
<dnexp (- (n—-1e?/2) - 0.
Now let
oy =0Mgy + (1 =0y, 0 =0Mpy + (1-6)Myy,
and
e=lo;—-op /4.

The assumptions imply that € > 0. It follows from (12) that for n sufficiently
large,

Pl Y /n-1)—a, | >eforatleastonei | X=x)—0. (13)

In words, the probability is almost 1 that all normalized degrees Y;./(n — 1)
of vertices with color k (k = 1,2) are closely clustered around the value oy.
Hence, with probability tending to 1, the distances between normalized
degrees of vertices with the same color are all less than 2¢g, while all distances
between normalized degrees of differently colored vertices are greater than
2¢. This result implies that, with probability tending to 1, the greatest gap
between the degrees will separate the vertices of color 1 from those of color
2. In other words, (13) implies that, with probability tending to 1, X; = F;(Y)
fori=1,....n. ®
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Convergence proof for the second procedure of Section 6.

We sketch a proof of the result that the second procedure of Section 6
yields an asymptotically correct recovery of vertex colors. Some details that
are similar to parts of the preceding proof are not repeated. It is assumed that
not all three of ny1, N1, and 1y, are identical. As in Theorem 1, it is assumed
that n,/n -6 € (0,1).

As a first remark, note that under the blockmodel conditional on x, the
distributions of the C;; are convolutions of two binomial distributions with
expected values

(ny —2m} +nmb, if x;=x;=1;
E(Cy | X=x)={ (n = 1My M1z + (13 — Dnppnyy if X; % x55
nind + (nz - 23, if % =x; =2

Denote the limits of these expected values, divided by n, by
wp = (1-6ng; + én;,
Hiz = (1 -0z + N2z,

and

Hp = (1-6n%, + 6n3,.
Then

M1 + M2z — 212 = (1= 0)(My; —N12)? + 0Nz —M22)? > 0.

Just as in the proof of Theorem 1 it can be shown that, for n — oo, the values
C;j/n tend with probability 1 to y for k =x;, I = xj, and that this conver-
gence in probability is uniformin 1 <i#j <n.

The second procedure of Section 6 is based on the property that

K12 <max (K11, H22) »

which follows from inequality (9). Assume, arbitrarily, that [1;; > ;. Then
M1z < Hq1.

The reordering that is the first step of the procedure yields an order of
the vertices for which the matrix with elements (Cij/n) has, apart from
asymptotically infinitesimal deviations, the block structure

Wi Ey Wi2Ern—r)

R 14
H12E sy M2 E utyn-r) (14

where E,; denotes the ¢ X s matrix with all elements 1. For vertices j with
color 1,
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dj/n=Hy,
while for vertices j with color 2,

d;/n = min (12, 122) < W11 -

This result implies that, with probability 1, for large », the largest gap
between the d; must occur precisely between the blocks in the block structure
(14); this block structure coincides with the vertex coloring for the reordered
vertices. =
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