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Abstract

We study the average nearest neighbor degree a(k) of vertices with degree k. In many
real-world networks with power-law degree distribution a(k) falls off in k, a property ascribed
to the constraint that any two vertices are connected by at most one edge. We show that
a(k) indeed decays in k in three simple random graph null models with power-law degrees:
the erased configuration model, the rank-1 inhomogeneous random graph and the hyperbolic
random graph. We find that in the large-network limit for all three null models a(k) starts
to decay beyond n(τ−2)/(τ−1) and then settles on a power law a(k) ∼ kτ−3, with τ the degree
exponent.

1 Introduction

Complex networks are often studied through mathematical analysis of null models that can match
the network degree distribution. For scale-free networks, this degree distribution follows a power
law. In many real-world networks, like the Internet, social networks and biological networks, the
power-law exponent τ is found to be between 2 and 3 [1, 19, 28, 42]. In such scale-free networks,
high-degree vertices called hubs are likely present, and give rise to scale-free properties such as
ultra-small distances and ultra-fast information spreading. The hubs also crucially influence local
properties such as clustering [24, 39] and the occurrence of subgraphs [34]. Clustering can be
measured in terms of the probability c(k) that a degree-k vertex creates triangles. Both empiri-
cally [31,36] and theoretically [17,39] it was shown that c(k) falls off with k, and hence that hubs
are less likely to take part in triangles.

Whereas triangles and even larger subgraphs require to study the correlation between at least
three vertices, we study in this paper the degree correlation between pairs of two vertices in terms
of a(k), the average degree of a neighbor of a vertex of degree k. According to several studies [2,15],
this degree-degree correlation is an essential local network property, because it also falls off with
k and can largely explain the fall-off of c(k) [9, 15,38]. We provide support for this statement, by
identifying an explicit relation between a(k) and c(k) for large k. But the main goal of this paper
is to explain the full spectrum k 7→ a(k) for all k, and to provide theoretical underpinning for the
widely observed a(k) fall-off.

There exist a vast array of papers, empirical, non-rigorous and rigorous, on a(k) [2,3,9,10,15,
32,35,36,41,44]. The function k 7→ a(k) describes the correlation between the degrees on the two
sides of an edge, and classifies the network into one of the following three categories [33]. When
a(k) increases with k, the network is said to be assortative: vertices with high degrees mostly
connect to other vertices with high degrees. When a(k) decreases in k, the network is said to
be disassortative. Then high-degree vertices typically connect to low-degree vertices. When a(k)
is independent of k, the network is said to be uncorrelated. In this case, the degrees on the two
different sides of an edge can be viewed as fully independent, a desirable property when studying
the mathematical properties of networks. But the fact is that the majority of real-world networks
with power-law degrees and unbounded degree fluctuations (τ ∈ (2, 3)) show a clear decay of
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Figure 1: a(k) for the Youtube friendship network [30]

a(k) as k grows large [31, 36]. Figure 1 illustrates this for the Youtube friendship network [30].
Hence, scale-free networks are inherently disassortative, and hubs are predominantly connected to
small-degree nodes. In complex network theory, such a well established empirical fact then asks
for a theoretical explanation. Typically, this explanation comes in the form of a null model that
only matches the degree distribution and has the empirical observation as a property, in this case
disassortivity, or more specifically, the essential features of the curve k 7→ a(k).

The popular configuration model [11] generates random networks with any prescribed degree
distribution, but only results in uncorrelated networks when including self-loops and multi-edges.
Hence, the configuration model can never explain the a(k) fall-off. We therefore resort to different
null models that, contrary to the configuration model, generate random networks without self-loops
and multi-edges. The resulting simple random networks are therefore prone to the structural
correlations that come with the presence of hubs. We study a(k) for three widely used null
models: the erased configuration model, the rank-1 inhomogeneous random graph (also called
hidden variable model) and the hyperbolic random graph. We show that these models display
universal a(k)-behavior: For k sufficiently small, a(k) is independent of k. Thus, in simple scale-
free networks, small-degree vertices have similar neighbors. We then identify the value of k as of
which a(k) starts decaying. An intuitive explanation for the a(k) fall-off is that in simple networks,
high-degree vertices have so many neighbors that they must reach out to lower-degree vertices,
because networks typically only contain a small amount of high-degree vertices. This causes the
average degree of a neighbor of a high-degree vertex to be smaller. Thus, single-edge constraints
may cause the decay of a(k).

2 Main results

We first define the average nearest neighbor degree a(k,G) of a graph G in more detail. Let
(Di)i∈[n] be the degree sequence of the graph, where [n] = 1, . . . , n. Furthermore, let Nk denote
the total number of degree k vertices in the graph, and Ni denote the neighborhood of vertex i.
The average nearest neighbor degree of graph G is then defined as

a(k,G) =
1

kNk

∑
i:Di=k

∑
j∈Ni

Dj . (1)

Note that it is possible that no vertex of degree k exists in the graph. We therefore analyze

aε(k,G) =
1

k|Mε(k)|
∑

i∈Mε(k)

∑
j∈Ni

Dj , (2)

where Mε(k) = {i ∈ [n] : Di ∈ [k(1 − ε), k(1 + ε)]}. We will show that in the models we
analyze, Mε(k) is non-empty with high probability, so that aε(k) is well defined. Note that
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a(k,G) = a0(k,G). We now analyze aε(k,G), first for the erased configuration model in Subsec-
tion 2.1 and then for the rank-1 inhomogeneous random graph and the hyperbolic random graph
in Subsection 2.3.

2.1 The erased configuration model

Given a positive integer n and a degree sequence (D1, D2, . . . , Dn) such that the sum of the
degrees is even, the configuration model is a (multi)graph where vertex i has degree Di [11]. We
start with Dj free half-edges adjacent to vertex j, for j = 1, . . . , n. The configuration model is
then constructed by pairing free half-edges uniformly at random into edges, until no free half-
edges remain. Conditionally on obtaining a simple graph, the resulting graph is a uniform graph
with the prescribed degrees. This is why the configuration model is often used as a null model
for real-world networks with given degrees. When the degree distribution has an infinite second
moment however, the probability of obtaining a simple graph tends to zero as n grows large (see
e.g., [22, Chapter 7]). In this setting the configuration model cannot be used as a null model
for simple real-world networks anymore. The erased configuration model is the model where all
multiple edges are merged and all self-loops are removed [13]. Where the configuration model has
hard constraints on the degrees but does not create a simple graph, the erased configuration model
generates a simple graph while putting soft constraints on the degrees. In particular, we take the
original degree sequence to be an i.i.d. sample from the distribution

P(D = k) = ck−τ (1 + o(1)), when k →∞, (3)

where τ ∈ (2, 3) so that E[D2] =∞. We denote E [D] = µ. When this sample constructs a degree
sequence such that the sum of the degrees is odd, we add an extra half-edge to the last vertex.
This does not affect our computations. We denote the actual degree sequence of the graph after
merging the multiple edges and self-loops by (D(er))i∈[n], and we call these the erased degrees.

Stable random variables. The limit theorem of a(k,Gn) for the erased configuration model
contains stable random variables. A random variable follows a stable distribution if for any positive
numbers a1 and a2, there exists a real number b1 = b1(a1, a2) and a positive number b2 = b2(a1, a2)
such that

a1X1 + a2X2
d
= b1 + b2X, (4)

where X1 and X2 are independent copies of X. Stable random variables can be parametrized
by four parameters, and are usually denoted by Sα(σ, β, µ) (see for example [43, Chapter 4]).
Throughout this paper, we will only use stable distributions with σ = 1, β = 1, µ = 0 and we
denote Sα = Sα(1, 1, 0) to ease notation.

We now state the main result for the erased configuration model:

Theorem 2.1 (a(k,G) in the erased configuration model). Let (Gn)n≥1 be a sequence of erased
configuration models on n vertices, where the degrees are an i.i.d. sample from (3). Take εn such
that limn→∞ εn = 0 and limn→∞ n−1/(τ−1)kεn =∞ and let Γ denote the Gamma function.

(i) For k � n(τ−2)/(τ−1),

aεn(k,Gn)

n(3−τ)/(τ−1)

d−→ 1

µ

(
2cΓ( 5

2 −
1
2τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (5)

where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) � k � n1/(τ−1),

aεn(k,Gn)

n3−τkτ−3

P−→ −cµ2−τΓ(2− τ). (6)
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Figure 2: Illustration of the behavior of a(k,Gn) in the erased configuration model

Remark 2.1. The convergence in (5) also holds jointly in k and n, so that for m ≥ 1 and
1 ≤ k1 < k2 < · · · < km � n(τ−2)/(τ−1),

(aεn(k1, Gn), . . . , aεn(km, Gn))

n(3−τ)/(τ−1)

d−→ 1

µ

(
2cΓ( 5

2 −
1
2τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/21, (7)

where 1 ∈ Rm is a vector with m entries equal to 1.

Figure 2 illustrates the behavior of a(k,Gn). First, a(k,Gn) stays flat and does not depend
on k. After that, a(k,Gn) starts decreasing in k, which shows that the erased configuration
model indeed is a disassortative random graph. Theorem 2.1 shows that n(τ−2)/(τ−1) serves as
a threshold. Thus, the negative degree-degree correlations due to the single-edge constraint only
affect vertices of degrees at least n(τ−2)/(τ−1). This can be understood as follows. In the erased
configuration model the maximum contribution to a(k,G) (see Propositions 3.1 and 3.2) comes
from vertices with degrees proportional to n/k. The maximal degree in an observation of n i.i.d.
power-law distributed samples is proportional to n1/(τ−1) w.h.p. Therefore, if k � n(τ−2)/(τ−1),
such vertices with degree proportional to n/k do not exist w.h.p. This explains the two regimes.

For k small, a(k,Gn) converges to a stable random variable, as was also shown in [44] for k fixed.
Thus, for k small, different instances of the erased configuration model show wild fluctuations.
The joint convergence in k of Remark 2.1 shows that a(k,Gn) still forms a flat curve in k for one
realization of an erased configuration model when k is small. In contrast, a(k,Gn) converges to a
constant for large k-values, so that different realizations of erased configuration models will result
in similar a(k,Gn)-values.

2.2 Sketch of the proof

We now give a heuristic proof of Theorem 2.1. Conditionally on the degrees, the probability
that vertices with degrees Di and Dj are connected in the erased configuration model can be
approximated by [23]

1− e−DiDj/µn. (8)

Let v ∈ Mεn(k), and let Xik denote the indicator that vertex i is connected to v. The expected
degree of a neighbor of v can then be approximated by

aεn(k,Gn) ≈ k−1
∑
i∈[n]

DiP (Xiv = 1) ≈ k−1
∑
i∈[n]

Di(1− e−Dik/(µn)). (9)

The maximum degree in an i.i.d. sample from (3) scales as n1/(τ−1) w.h.p.. Thus, as long as
k � n(τ−2)/(τ−1), we can Taylor expand the exponential so that

aεn(k,Gn) ≈ 1

µn

∑
i∈[n]

D2
i . (10)
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Because (Di)i∈[n] are samples from a power-law distribution with infinite second moment, the
Stable Law Central Limit Theorem gives Theorem 2.1(i).

When k � n(τ−2)/(τ−1), we approximate the sum in (9) by the integral

aεn(k,Gn) ≈ cnk−1

∫ ∞
1

x1−τ (1− e−xk/(µn))dx = cµ2−τ
(n
k

)3−τ ∫ ∞
k/(µn)

y1−τ (1− e−y)dy,

using the degree distribution (3) and the change of variables y = xk/(µn). When k � n, we can
approximate this by

aεn(k,Gn) ≈ cµ2−τ
(n
k

)3−τ ∫ ∞
0

y1−τ (1− e−y)dy = −cµ2−τ
(n
k

)3−τ
Γ(2− τ). (11)

The proof of Theorem 2.1(ii) then consists of showing that the above approximations are indeed
valid. We prove Theorem 2.1 in detail in Sections 3.2 and 3.3.

2.3 Two more null models

We now turn to the rank-1 inhomogeneous random graph (or hidden variable model). This model
constructs simple graphs with soft constraints on the degree sequence [9, 16]. The graph consists
of n vertices with weights (hi)i∈[n]. These weights are an i.i.d. sample from the power-law distri-
bution (3). We denote the average value of the weights by µ. Then, every pair of vertices with
weights (h, h′) is connected with probability p(h, h′). In this paper, we take

p(h, h′) = min (hh′/(µn), 1) , (12)

which is the Chung-Lu version of the rank-1 inhomogeneous random graph [16]. This connection
probability ensures that the degree of a vertex with weight h will be close to h [9]. We show the
following result:

Theorem 2.2 (a(k,Gn) in the rank-1 inhomogeneous random graph). Let (Gn)n≥1 be a sequence
of rank-1 inhomogeneous random graphs on n vertices, where the weights are an i.i.d. sample
from (3). Take εn such that limn→∞ εn = 0 and limn→∞ n−1/(τ−1)kεn =∞ and let Γ denote the
Gamma function.

(i) For 1� k � n(τ−2)/(τ−1),

aεn(k,Gn)

n(3−τ)/(τ−1)

d−→ 1

µ

(
2cΓ( 5

2 −
1
2τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (13)

where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) � k � n1/(τ−1),

aεn(k,Gn)

n3−τkτ−3

P−→ cµ2−τ

(3− τ)(τ − 2)
. (14)

Theorem 2.2 is almost identical to Theorem 2.1. The proof of Theorem 2.2 exploits the deep
connection between both models, and essentially carries over the results for the erased configuration
model to the rank-1 inhomogeneous random graph. The similarity can be understood by noticing
that in the erased configuration model the probability that vertices i and j with degrees Di and
Dj are connected can be approximated by (8) which is close to min(1,

DiDj
µn ), the connection

probability in the rank-1 inhomogeneous random graph. Similar arguments that lead to (9) show
that aεn(k,Gn) can be approximated by

aεn(k,Gn) ≈ k−1
∑
i∈[n]

hi min(hik/µn, 1)dx. (15)
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This sum behaves very similarly to the sum in (9), so that the only difference between Theorem 2.1
and 2.2 is the limiting constants in (6) and (14). The main difference between both models is that
in the rank-1 inhomogeneous random graph the presence of all edges is independent as soon as the
weights are sampled. This is not true in the erased configuration model, because we know that a
vertex with sampled degree Di cannot have more than Di neighbors, creating dependence between
the presence of edges incident to vertex i. We show that these correlations between the presence of
different edges in the erased configuration model are small enough for a(k,Gn) to behave similarly
in the erased configuration model and the rank-1 inhomogeneous random graph.

The third null model we consider is the hyperbolic random graph. This model was introduced
in [29] and samples n vertices on a disk of radius R = 2 log(n/ν), where the density of the radial
coordinate r a vertex p = (r, φ) is

ρ(r) = α
sinh(αr)

cosh(αR)− 1
(16)

with α = (τ − 1)/2. The angle of p is sampled uniformly from [0, 2π]. Then, two vertices are
connected if their hyperbolic distance is at most R. The hyperbolic distance of points u = (ru, φu)
and v = (rv, φv) is defined by

cosh(d(u, v)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θuv), (17)

where θuv denotes the relative angle between φu and φv. This creates a simple random graph with
power-law degrees with exponent τ [29]. The parameter ν fixes the average degree of the graph.

The hyperbolic random graph creates simple sparse random graphs with power-law degrees,
but in contrast to the erased configuration model and the rank-1 inhomogeneous random graph,
can at the same time create many triangles due to its geometric nature [14,29]. In both the rank-1
inhomogeneous random graph and the erased configuration model, the connection probabilities of
different pairs of vertices are (almost) independent. In the hyperbolic random graph, this is not
true. When u is connected to v and u is connected to w, then v and w should also be close to one
another by the triangle inequality. However, if we define

t(u) = e(R−ru)/2 (18)

then we show that we can approximate the probability that two randomly chosen vertices u and
v are connected as

P (Xuv = 1 | t(u), t(v)) = min
( 1

π
cos−1(1− 2(νt(u)t(v)/n)2), 1

)
, (19)

which behaves similarly as the connection probability in the rank-1 inhomogeneous random graph.
Furthermore, by [7, Lemma 1.3], the density of 2 ln(t(u)) can be written as

f2 ln(t(u))(x) = τ−1
2 e−(τ−1)x/2(1 + o(1)), (20)

where the o(1) term is with respect to the network size n. Therefore,

P (t(u) > x) = P (2 ln(t(u)) > 2 ln(x)) = x−τ+1(1 + o(1)), (21)

so that on a high level the hyperbolic random graph can be interpreted as a rank-1 inhomogeneous
random graph with (t(u))u∈[n] as weights (see [7, Section 1.1.1] for a more elaborate discussion).

The next theorem shows that indeed the behavior of a(k,Gn) in the hyperbolic random graph
is similar as in the rank-1 inhomogeneous random graph:

Theorem 2.3 (a(k,Gn) in the hyperbolic random graph). Let (Gn)n≥1 be a sequence of hyperbolic
random graphs on n vertices with power-law degrees with exponent τ and parameter ν. Take εn
such that limn→∞ εn = 0 and limn→∞ n−1/(τ−1)kεn =∞ and let Γ denote the Gamma function.
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(i) For 1� k � n(τ−2)/(τ−1),

aεn(k,Gn)

n(3−τ)/(τ−1)

d−→ 2ν

π

(
2

3− τ
Γ( 5

2 −
1
2τ) cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (22)

where S(τ−1)/2 is a stable random variable.

(ii) For n(τ−2)/(τ−1) � k � n1/(τ−1),

aεn(k,Gn)

n3−τkτ−3

P−→ ν(τ − 1)2

(τ − 2)π

( π
2ν

)2−τ ∫ ∞
0

x1−τ min

(
1

π
cos−1(1− 2x2), 1

)
dx. (23)

2.4 Discussion

Universality. The behavior of a(k) is universal across the three null models we consider. The
erased configuration model and the rank-1 inhomogeneous random graph are closely related. They
are known to behave similarly for example under critical percolation [4,5], in terms of distances [40]
when τ > 3, and in terms of clustering when τ ∈ (2, 3) [39]. The hyperbolic random graph typically
shows different behavior, for example in terms of clustering [14, 21], or connectivity [7, 8]. Still,
the behavior of a(k) is similar in the hyperbolic random graph and the other two null models.
In all three null models, the main contribution to a(k) for k � n(τ−2)/(τ−1) comes from vertices
with degrees proportional to n/k (see Propositions 3.1 and 3.2). In the hyperbolic random graph,
we can relate this maximum contribution to the geometry of the hyperbolic sphere. A vertex
i of degree k has radius ri ≈ R − 2 log(k). Similarly, a vertex j of degree n/(νk) has radius
rj ≈ R−2 log(n/(kν)) = 2 log(k). Then, rj ≈ R− ri, so that the major contributing vertices have
radial coordinate proportional to R− ri.

Expected average nearest neighbor degree. In Theorems 2.1-2.3 we show that a(k,Gn)
converges in probability to a stable random variable when k is small. Thus, when we generate
many samples of random graphs, we will see that for fixed k, the distribution of the values of
a(k,Gn) across the different samples will look like a stable random variable. We can also study
the expected value of a(k,Gn) across the different samples. For the erased configuration model
for example, using similar techniques as in the proof of Theorem 2.1(ii), we can show that (see
Section 3.4)

lim
n→∞

E [a(k,Gn)]

(n/k)3−τ = −cµ2−τΓ(2− τ). (24)

The difference between the scaling of the expected value of a(k,Gn) and the typical behavior of
a(k,Gn) in Theorem 2.1(i) is caused by high-degree vertices. In typical degree sequences, the
maximum degree is proportional to n1/(τ−1). It is unlikely that vertices with higher degrees are
present, but if they are, they have a high impact on the average nearest neighbor degree of low
degree vertices, causing the difference between the expected average nearest neighbor degree and
the typical average nearest neighbor degree. Thus, the expected value of a(k,Gn) is not very
informative when k is small, since Theorem 2.1 shows that a(k,Gn) will almost always be smaller
than its expected value when k is small. Also note that including εn in (24) is not necessary, since
the expected value is not affected by the event that no vertex of degree k is present.

Figure 3 illustrates this difference in terms of the mean and median value of a(k,Gn) over many
realizations of the erased configuration model, the rank-1 inhomogeneous random graph and the
hyperbolic random graph. Here indeed we see that the expected average neighbor degree is scales
as a power of k over the entire range of k, where the median shows the straight part of the curve
from Theorem 2.1. Thus, it is important to distinguish between mean and median of a(k,Gn)
when simulating random graphs.
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Figure 3: a(k,Gn) for different random graph models with n = 106. The solid line is the median
of a(k,Gn) over 104 realizations of the random graph, and the dashed line is the average over
these realizations. The dotted line is the asymptotic slope kτ−3.

Vertices of degree k The definition (1) assumes that a vertex of degree k is present. For
large values of k, this is a rare event, by (3). Indeed, vertices of degree at most n1/τ are present
with high probability in the erased configuration model, whereas the probability that a vertex of
degree k � n1/τ is present tends to zero in the large network limit [44]. We avoid this problem
by averaging a(k,Gn) over a small range of degrees. Another option is to condition on the event
that a vertex of degree k is present. Our proofs for k � n(τ−2)/(τ−1) for the erased configuration
model can easily be adjusted to condition on this event. For k larger, we leave the behavior of
a(k,Gn) conditionally on a vertex of degree k being present open for further research.

Fixed degrees. In the proof of Theorem 2.1 we show that the fluctuations that come with
the stable laws for small k are not present when we condition on the degree sequence. Thus,
the large fluctuations in a(k,Gn) for small k are only caused by fluctuations of the i.i.d. degrees,
weights or radii. For a given real-world network, the network degrees are often preserved, and
many samples of erased configuration models or inhomogeneous random graphs are created with
the observed degree sequence. In this fixed-degree setting, the sample-to-sample fluctuations of
a(k) are relatively small.

Relation with local clustering. The local clustering coefficient c(k) of vertices of degree k
measures the probability that two randomly chosen neighbors af a randomly chosen vertex of
degree k are connected. In many real-world networks as well as simple null models, c(k) decreases
as a function of k [9,24,37,39,42]. The relation between the decay rate of c(k) and the decay rate
of a(k) has been investigated for the rank-1 inhomogeneous random graph, where it was shown
that c(k) < a(k)/k [38]. Using recent results for c(k) on the erased configuration model and
the rank-1 inhomogeneous random graph, we can make the relation between c(k) and a(k) more
precise. When k �

√
n, c(k) in the erased configuration model satisfies [24]

c(k) = c2Γ(2− τ)2µ3−2τn5−2τk2τ−6(1 + oP(1)). (25)

Then, by Theorem 2.1, when k �
√
n,

c(k) =
a2(k)

µn
(1 + oP(1)). (26)

Intuitively, we can see this relationship in the following way. Pick two neighbors of a vertex with
degree k. By definition, these vertices have degree a(k) on average. Since k �

√
n, by Theorem 2.2

a(k) �
√
n. Therefore, the probability of two vertices with weight a(k) to be connected is

approximately 1 − e−a(k)2/µn ≈ a(k)2/µn. Since the clustering coefficient can be interpreted as
the probability that two randomly chosen neighbors are connected, the clustering coefficient should
satisfy c(k) ∼ a(k)2/µn when k �

√
n. In particular, the decay of the clustering coefficient should

8
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Figure 4: The neighbors of a vertex of degree k have average degree a(k)

be twice as fast as the decay of the average neighbor degree. Analytical results on c(k) on the
rank-1 inhomogeneous random graph show that (26) is also the correct relation between clustering
and degree correlations in the rank-1 inhomogeneous random graph [39]. Future research might
explore the relation between c(k) and a(k) in other null models, such as the hyperbolic random
graph or the preferential attachment model. It would also be interesting to see if the difference
between expectation and typical behavior that is present in a(k) also occurs for the local clustering
coefficient c(k).

Correlations in the hyperbolic random graph. The relation between a(k) and c(k) in the
rank-1 inhomogeneous random graph and the erased configuration model is based on the fact that
in these two models, the connection probabilities of pairs of vertices (i, j), (i, k) and (j, k) are
(almost) independent. In the hyperbolic random graph, the geometry causes a strong dependence
between these connection probabilities. If vertices j and k are neighbors of i, they are likely to
be geometrically close to one another due to the triangle inequality. This makes the probability
that j and k are connected larger than in the rank-1 inhomogeneous random graph or the erased
configuration model. These correlations do not play a role when computing a(k), since a(k)
only involves the connection probability of two different vertices. When computing statistics of
the hyperbolic random graph that include three-point correlations, the equivalence between the
hyperbolic random graph and the rank-1 inhomogeneous random graph may fail to hold, as in the
example of c(k).

Interestingly, the number of cliques was also shown to be similar in the hyperbolic random
graph, the rank-1 inhomogeneous random graph and the erased configuration model [20], even
though cliques clearly involve three-point correlations. Cliques in the hyperbolic random graph
are typically formed between vertices at radius proportional to R/2 [20], so that their degrees
are proportional to

√
n [7]. These vertices form a dense core, which is very similar to what

happens in the erased configuration model and the rank-1 inhomogeneous random graph [27].
In the erased configuration model, many other small subgraphs typically occur between vertices
of degrees proportional to

√
n [26]. It would be interesting to see if the number of these small

subgraphs behaves similarly in the hyperbolic random graph.

3 Average nearest neighbor degree in the ECM

In this section, we prove Theorem 2.1. For k = o(n
τ−2
τ−1 ), we couple the degrees of neighbors of

a uniformly chosen vertex of degree k to i.i.d. samples of the size-biased degree distribution in

Section 3.2. When k � n
τ−2
τ−1 , this coupling is no longer valid. We then show in Section 3.3 that

a specific range of degrees contributes most to aεn(k,Gn).

3.1 Preliminaries

We say that Xn = OP (bn) for a sequence of random variables (Xn)n≥1 if |Xn|/bn is a tight sequence

of random variables, and Xn = oP(bn) if Xn/bn
P−→ 0. We often want to interchange the sampled
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degree of a vertex i, Di and its erased degree D(er)

i . By [13, Eq. A(9)]

D(er)

i = Di(1 + oP(1)), (27)

when Di = o(n). Let Ln denote the total number of half-edges, so that Ln =
∑
iDi. We define

the events
Jn = {|Ln − µn| ≤ n2/τ} An = {|Mεn | ≥ 1}. (28)

By [25, Lemma 2.3], P (Jn)→ 1 as n→∞. By [13, Theorem 2.1]

|Mεn(k)| = cn

∫ k(1+εn)

k(1−εn)

x−τdx(1 + oP(1)) = C̃n−1k1−τεn(1 + oP(1)), (29)

for some C̃ > 0, so that P (An)→ 1 for k � n1/(τ−1) by the choice of εn in Theorem 2.1.
In the rest of this section, we will often condition on the degree sequence. For some event E ,

we use the notation Pn (E) = P
(
E | (Di)i∈[n]

)
, and we define En and Varn similarly.

3.2 Small k: Coupling to i.i.d. random variables

In this section we investigate the behavior of aεn(k,Gn) when k = o(n(τ−2)/(τ−1)). We first pick
a random vertex v of degree k. We couple the degrees of the neighbors of v to i.i.d. copies of the
size-biased degree distribution D∗n, where

Pn (D∗n = k) =
k

Ln

∑
i∈[n]

1{Di=k}. (30)

We then use this coupling to compute aεn(k,Gn).

Proof of Theorem 2.1(i). We first condition on the degree sequence (Di)i∈[n]. Let v be a vertex
of degree k. In the erased configuration model, neighbors of v are constructed by pairing the
half-edges of v uniformly to other half-edges. The distribution of the degree of a vertex attached
to a uniformly chosen half-edge is given by D∗n. However, the degrees of the neighbors of v are
not an i.i.d. sample of D∗n due to the fact that the half-edges should attach to distinct vertices,
because the neighbors of v should be distinct vertices. We now show that we can still approximate
the degrees of the neighbors of v by an i.i.d. sample of D∗n by using a coupling argument. Denote
the degrees of the neighbors of v by B1, . . . , Bk, in the order in which we encounter them. Let
Y1, . . . , Yk be i.i.d. samples of D∗n. These samples can be obtained by sampling uniform half-edges
with replacement and setting Yi = Dv′i

, where v′i denotes the vertex incident to the ith drawn
half-edge. We use a similar coupling as in [6, Construction 4.2] to couple the Bi to Yi. Let (v′i)i∈[k]

denote vertices attached to k uniformly chosen half-edges (with replacement) and set V0 = v.
Then for i ∈ [k] the coupling is defined in the following way:

• If v′i /∈ Vi−1, then Bi = Yi and vi = v′i. Set Vi = Vi−1 ∪ v′i. We say that Bi and Yi are
successfully coupled.

• If v′i ∈ Vi−1, we redraw a uniformly chosen half-edge from the set of half-edges not incident
to Vi−1. Let vi denote the vertex incident to the chosen half-edge. Set Bi = Dvi and
Vi = Vi−1 ∪ vi. We then say that Bi and Yi are miscoupled.

Thus, informally, we select k uniformly chosen half-edges, and look at the vertices they point to.
If these vertices are all distinct, we have successfully coupled the neighbors of v to an i.i.d. sample
of D∗n. If not, we need to redraw some of these half-edges to ensure that all neighbors of v are
distinct. We now show that the coupling is successful with high probability. By [6, Lemma 4.3],
the probability of a miscoupling at step i can be bounded as

Pn (Bi 6= Yi | Fi−1) ≤ Ln−1
(
k +

i−1∑
s=1

Bs

)
, (31)
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where Fi = σ(Bj , Yj)j∈[i] denotes the sigma-algebra containing all information about the Yj and
Bj variables encountered up to step i. Thus, the expected number of miscouplings up to time t,
Nmis(t), satisfies

En [Nmis(t)] ≤
kt

Ln
+

1

Ln

t∑
i=1

i−1∑
s=1

En [Bs] . (32)

When Bs is successfully coupled, En [Bs | succesfully coupled] = En [D∗n] =
∑
iD

2
i /Ln. When

Bs is not successfully coupled, it is drawn in a size-biased manner from the vertices that are not
chosen yet. Then

En [Bs | Fi−1, miscoupled] =

∑
i/∈Vs D

2
i∑

i/∈Vs Di
≤

∑
i∈[n]D

2
i∑

i∈[n]Di −
∑
i∈Vs Di

=

∑
i∈[n]D

2
i∑

i∈[n]Di

(
1 +

∑
i∈Vs Di∑

i∈[n]Di −
∑
i∈Vs Di

)
. (33)

Since Dmax = OP

(
n1/(τ−1)

)
,
∑
i∈Vs Di = OP

(
sn1/(τ−1)

)
for all possible Fi−1. For t large, we

obtain from (3) that

P
(
D2 > t

)
= P

(
D >

√
t
)

=
c

τ − 1
t(1−τ)/2(1 + o(1)). (34)

Using (34) we can use the Stable Law Central Limit Theorem (see for example [43, Theorem 4.5.2])
to conclude that ∑

i∈[n]D
2
i

n2/(τ−1)
(

2c
(τ−1)(3−τ)Γ( 5

2 −
1
2τ) cos

(
π(τ−1)

4

))2/(τ−1)

d−→ S(τ−1)/2, (35)

where S(τ−1)/2 is a stable random variable. Thus, as long as s = o(n(τ−2)/(τ−1)),

En [Bs] = OP

(
L−1
n

∑
i∈[n]

D2
i

)
= OP

(
n(3−τ)/(τ−1)

)
. (36)

Then, for k = o(n(τ−2)/(τ−1))

En [Nmis(k)] =
k2

Ln
+

1

Ln
OP

(
n(3−τ)/(τ−1)

) k∑
i=1

(i− 1) = OP

(
k2n2 2−τ

τ−1

)
. (37)

Thus, as long as k = o(n
τ−2
τ−1 ),

En [Nmis(k)] = oP(1). (38)

Then, by the Markov inequality

Pn (Nmis(k) = 0) = 1− Pn (Nmis(k) ≥ 1) ≥ 1− En [Nmis(k)] = 1− oP(1). (39)

Thus, when k = o(n(τ−2/(τ−1))), we can approximate the sum of the degrees of the neighbors of
a vertex with degree k by i.i.d. samples of the size-biased degree distribution. Because D(er)

i =
Di(1 + oP(1)), conditionally on the degree sequence

aεn(k,Gn) =
1

k|Mεn(k)|
∑

i:∈Mεn (k)

∑
j∈Ni

D(er)

j =
1

k
En
[ ∑
j∈NVk

D(er)

j

]
= (1 + oP(1))En

[
DNVk (U)

]
,

where Vk denotes a uniformly chosen vertex in Mεn(k), and NVk(U) is a uniformly chosen neighbor
of vertex Vk. Here the second equality holds because the average nearest neighbor degree averages
over all neighbors of vertex j, and the third equality holds because it also averages over all vertices
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in Mεn(k), together with the fact that DVk = k(1 + o(1)) and D(er)

i = Di(1 + oP(1)) uniformly in
i. With high probability, we can couple the degrees of neighbors of a uniformly chosen vertex of
degree in [k(1− εn), k(1 + εn)] to i.i.d copies of D∗n. Then, conditionally on the degree sequence,

aεn(k,Gn) = (1 + oP(1))En [D∗n] = (1 + oP(1))L−1
n

∑
i∈[n]

D2
i . (40)

Note that this expression is independent of k. Combining this with (35) results in

aεn(k,Gn)

n(3−τ)/(τ−1)

d−→ 1

µ

(
2c

(τ − 1)(3− τ)
Γ( 5

2 −
1
2τ) cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2. (41)

The fact that (40) is independent of k proves the joint convergence of Remark 2.1.

3.3 Large k

Now we study the value of aεn(k,Gn) when k � n(τ−2)/(τ−1). We show that there exists a range
of degrees W k

n (δ) which gives the largest contribution to aεn(k,Gn). For ease of notation, we write
aεn(k) for aεn(k,Gn) in this section. We define

W k
n (δ) = {u : Du ∈ [δn/k, n/(δk)]} , (42)

and we write

aεn(k) =
1

k |Mεn(k)|
∑

i:∈Mεn (k)

∑
j∈Wk

n (δ)

D(er)

j +
1

k |Mεn(k)|
∑

i:∈Mεn (k)

∑
j /∈Wk

n (δ)

D(er)

j

=: aεn(k,W k
n (δ)) + aεn(k, W̄ k

n (δ)), (43)

where aεn(k,W k
n (δ)) denotes the contribution to aεn(k) from vertices in W k

n (δ), and aεn(k, W̄n(ε))
the contribution from vertices not in W k

n (δ). In the rest of this section, we prove the following
two propositions, which together show that the largest contribution to aεn(k) indeed comes from
vertices in W k

n (δ).

Proposition 3.1 (Minor contributions). There exists κ > 0 such that for k � n(τ−2)/(τ−1),

lim sup
n→∞

E
[
aεn(k, W̄ k

n (δ))
]

(n/k)3−τ = O (δκ) . (44)

Proposition 3.2 (Major contributions).

aεn(k,W k
n (δ))

(n/k)3−τ
P−→ cµ2−τ

∫ 1/δ

δ

x1−τ (1− e−x)dx (45)

We now show how these propositions prove part (ii) of Theorem 2.1.

Proof of Theorem 2.1 (ii). By the Markov inequality and Proposition 3.1,

aεn(k, W̄ k
n (δ))

(n/k)3−τ = OP (δκ) . (46)

Combining this with Proposition 3.2 results in

aεn(k)

(n/k)3−τ
P−→ cµ2−τ

∫ 1/δ

δ

x1−τ (1− e−x)dx+OP (δκ) . (47)

Taking the limit of δ → 0 then proves the theorem.

The rest of this section is devoted to proving Propositions 3.1 and 3.2.
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3.3.1 Conditional expectation

We first compute the expectation of aεn(k,W k
n (δ)) when we condition on the degree sequence.

Lemma 3.3. When k � n(τ−2)/(τ−1),

En
[
aεn(k,W k

n (δ))
]

=
1

k

∑
u∈Wk

n (δ)

Du(1− e−Duk/Ln)(1 + oP(1)). (48)

Proof. It suffices to prove the lemma under the event Jn from (28), since P (Jn) → 1. Thus we
may assume that Ln = µn(1 + o(1)). Let Xij denote the indicator i and j are connected. By (1)

En
[
aεn(k,W k

n (δ))
]

=
1

k |Mεn(k)|
∑

v:∈Mεn (k)

∑
u∈Wk

n (δ)

D(er)

u Pn (Xuv = 1) (49)

By [23, Eq. (4.9)]

Pn (Xuv = 1) = 1− eDuDv/Ln +O

(
D2
vDu +D2

uDv

L2
n

)
= (1− eDuDv/Ln)(1 + oP(1)), (50)

where the last step follows because Du ∈ n/k[δ, 1/δ] and by (27) Dv = k(1 + oP(1)) when v ∈
Mεn(k). Further using that D(er)

u = Du(1 + oP(1)) ,we can write (49) as

En
[
aεn(k,W k

n (δ))
]

=
(1 + oP(1))

k |Mεn(k)|
∑

v:∈Mεn (k)

∑
u∈Wk

n (δ)

Du(1− e−Duk/LneoP(Du/Ln))

=
1

k

∑
u∈Wk

n (δ)

Du(1− e−Duk/LneoP(Du/Ln))(1 + oP(1))

=
1

k

∑
u∈Wk

n (δ)

Du(1− e−Duk/Ln)(1 + oP(1)) (51)

for k � n, which proves the lemma.

3.3.2 Convergence of conditional expectation

We now show that En
[
aεn(k,W k

n (δ))
]

as computed in Lemma 3.3 converges to a constant when
we take the i.i.d. degrees into account.

Lemma 3.4. When k � n(τ−2)/(τ−1),

En
[
aεn(k,W k

n (δ))
]

n3−τkτ−3

P−→ cµ2−τ
∫ 1/δ

δ

x1−τ (1− e−x)dx. (52)

Proof. Define the random measure

M (n)[a, b] =
1

µ1−τn2−τkτ−1

∑
u∈[n]

1{Du∈[a,b]µn/k}. (53)

Since the degrees are i.i.d. samples from a power-law distribution, the number of vertices with
degrees in interval [a, b] is binomially distributed. Then,

M (n)[a, b] =
1

µ1−τn2−τkτ−1
|{u : Du ∈ [a, b]µn/k}| P−→ 1

(µn)1−τkτ−1
P (D ∈ [a, b]µn/k)

=
1

(µn)1−τkτ−1

∫ bµn/k

aµn/k

cx−τdx =

∫ b

a

cy−τdy =: λ[a, b], (54)
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where we used the change of variables y = xk/(µn). By Lemma 3.3,

En
[
aεn(k,W k

n (δ))
]

=

∑
u∈Wk

n (δ)Du(1− e−Duk/Ln)

k
(1 + oP(1))

=
µn

k

∑
u∈Wk

n (δ)
Duk
µn (1− e−Duk/Ln)

k
(1 + oP(1))

=
µ2−τn3−τ

k3−τ

∫ 1/δ

δ

t(1− e−t)dM (n)(t)(1 + oP(1)). (55)

Fix η > 0. Since t(1 − e−t) is bounded and continuous on [δ, 1/δ], we can find m < ∞, disjoint
intervals (Bi)i∈[m] and constants (bi)i∈[m] such that ∪Bi = [δ, 1/δ] and∣∣∣t(1− e−t)−

m∑
i=1

bi1{t∈Bi}

∣∣∣ < η/λ([δ, 1/δ]), (56)

for all t ∈ [δ, 1/δ]. Because M (n)(Bi)
P−→ λ(Bi) for all i, M (n)(Bi) = OP (λ(Bi)). Then,∣∣∣ ∫ 1/δ

δ

t(1− e−t)dM (n)(t)−
∫ 1/δ

δ

t(1− e−t)dλ(t)
∣∣∣

≤
∣∣∣ ∫ 1/δ

δ

t(1− e−t)−
m∑
i=1

bi1{t∈Bi}dM
(n)(t)

∣∣∣
+
∣∣∣ ∫ 1/δ

δ

t(1− e−t)−
m∑
i=1

bi1{t∈Bi}dλ(t)
∣∣∣

+
∣∣∣ m∑
i=1

bi(M
(n)(Bi)− λ(Bi))

∣∣∣
≤ ηM (n)([δ, 1/δ])/λ([δ, 1/δ]) + η + oP(η). (57)

Using that M (n)([δ, 1/δ]) = OP (λ([δ, 1/δ])) proves that∫ 1/δ

δ

t(1− e−t)dM (n)(t)
P−→
∫ 1/δ

δ

t(1− e−t)dλ(t) = c

∫ 1/δ

δ

x1−τ (1− e−x)dx, (58)

which proves the lemma.

3.3.3 Conditional variance of a(k)

We now show that the variance of aεn(k,W k
n (δ)) is small when conditioning on the degree sequence,

so that aεn(k,W k
n (δ)) concentrates around its expected value computed in Lemma 3.3.

Lemma 3.5. When n(τ−2)/(τ−1) � k � n1/(τ−1),

Varn
(
aεn(k,W k

n (δ))
)

En [aεn(k,W k
n (δ))]

2

P−→ 0. (59)

Proof. Again, it suffices to prove the lemma under the event Jn and An from (28). We write the
variance of aεn(k,W k

n (δ)) as

Varn
(
aεn(k,W k

n (δ))
)

=
1

k2|Mεn(k)|2
∑

i,j∈Mεn (k)

∑
u,v∈Wk

n (δ)

D(er)

u D(er)

w

× (Pn (Xiu = Xjv = 1)− Pn (Xiu = 1)Pn (Xjv = 1))

=
(1 + oP(1))

k2|Mεn(k)|2
∑

i,j∈Mεn (k)

∑
u,v∈Wk

n (δ)

DuDw

× (Pn (Xiu = Xjv = 1)− Pn (Xiu = 1)Pn (Xjv = 1)) . (60)
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Equation (60) splits into various cases, depending on the size of {i, j, u, v}. We denote the contri-
bution of |{i, j, u, v}| = r to the variance by V (r)(k). We first consider V (4)(k). We can write

Pn (Xiu = Xjv = 0) = Pn (Xiu = 0)Pn (Xjv = 0 | Xiu = 0) . (61)

For the second term, we first pair all half-edges adjacent to vertex i, conditionally on not pairing to
vertex u. Then the second term can be interpreted as the probability that vertex j does not pair to
vertex v in a configuration model with Ln−Di = Ln(1+o(1)) vertices, where the degree of vertex j
is reduced by the amount of half-edges from vertex i that paired to j. Similarly, the new degree of
vertex v is reduced by the amount of half-edges from vertex i that paired to v. Since the expected
number of half-edges from i that pair to vertex j is O(DiDj/Ln) = Djo(n

−(τ−1)/(τ−1)) [18], the
new degree of vertex j is Dj(1 + oP(n

−(τ−2)/(τ−1))), and a similar statement holds for vertex v.
Thus, by (50)

Pn (Xiu = Xjv = 0) = e−DiDu/Lne−DjDv/Ln(1 + oP(n
−(τ−2)/(τ−1))). (62)

This results in

Pn (Xiu = Xjv = 1) = 1− Pn (Xiu = 0)− Pn (Xjv = 0) + Pn (Xiu = Xjv = 0)

= 1 + (−e−
Duk
Ln − e−

Dvk
Ln + e−

Duk
Ln
−DvkLn )(1 + oP(n

−(τ−2)/(τ−1)))

= (1− e−Duk/Ln)(1− e−Dvk/Ln)(1 + oP(1)), (63)

where the last equality holds because Duk = Θ(n) and Dvk = Θ(n) for u, v ∈W k
n (δ). Therefore

V (4)(k) =
1

|Mεn(k)|2k2

∑
i,j∈Mεn (k)

∑
u,v∈Wk

n (δ)

DuDv(1− e−Duk/Ln)(1− e−Dvk/Ln)(1 + oP(1))

−DuDv(1− e−Duk/Ln)(1− e−Duk/Ln)(1 + oP(1))

=
∑

u,v∈Wk
n (δ)

oP

(
k−2DuDv(1− e−Duk/Ln)(1− e−Dvk/Ln)

)
= oP

(
En
[
aεn(k,W k

n (δ))
]2)

, (64)

where the last equality follows from Lemma 3.3. Since there are no overlapping edges when
{i, j, u, v} = 3, V (3)(k) can be bounded similarly.

We then consider the contribution from V (2), which is the contribution where the two edges are
the same. By Lemma 3.4, we have to show that this contribution is small compared to n6−2τk2τ−6.
We bound the summand in (60) as

D2
u

(
Pn (Xiu = 1)− Pn (Xiu = 1)

2
)
≤ D2

u. (65)

Thus, using that on An, |Mεn(k)| ≥ 1, V (2), can be bounded as

V (2) ≤ 1

k2|Mεn(k)|2
∑

i∈Mεn (k)

∑
u∈Wk

n (δ)

D2
u =

1

k2|Mεn(k)|
∑

u∈Wk
n (δ)

D2
u = O

(
n2

k4

) ∣∣W k
n (δ)

∣∣ . (66)

Since the degrees are i.i.d. samples from (3),
∣∣W k

n (δ)
∣∣ is distributed as a Binomial(n,C(n/k)1−τ )

for some constant C. Therefore,
∣∣W k

n (δ)
∣∣ = OP

(
n (n/k)

1−τ
)

. This results in

V (2) = OP

(
n4−τkτ−5

)
, (67)

which is smaller than n6−2τk2τ−6 when k � n
τ−2
τ−1 , as required.
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Proof of Proposition 3.2. Lemma 3.5 together with the Chebyshev inequality show that

aεn(k,W k
n (δ))

En [aεn(k,W k
n (δ))]

P−→ 1. (68)

Combining this with Lemmas 3.3 and 3.4 yields

aεn(k,W k
n (δ))

n3−τkτ−3

P−→ cµ2−τ
∫ 1/δ

δ

x1−τ (1− e−x)dx. (69)

3.3.4 Contributions outside W k
n (δ)

In this section, we prove Proposition 3.1 and show that the contribution to aεn(k) outside of the
major contributing regimes as described in (42) is negligible.

Proof of Proposition 3.1. We use that Pn(Xij = 1) ≤ min(1, DiDlLn
). This yields

E
[
aεn(k, W̄ k

n (δ))
]

= E
[
En
[
aεn(k, W̄ k

n (δ))
]]
≤ n

k
E
[
Dmin

(
1,
kD

Ln

)
1{D∈W̄k

n (δ)}

]
=
n

k

∫ δµn/k

0

x1−τ min
(

1,
kx

µn

)
dx+

n

k

∫ ∞
µn/(δk)

x1−τ min
(

1,
kx

µn

)
dx. (70)

For ease of notation, we assume that µ = 1 in the rest of this section. We have to show that the
contribution to (70) from vertices u such that Du < δn/k or Du > n/(δk) is small. First, we study
the contribution to (70) for Du < δn/k. We can bound this contribution by taking the second
term of the minimum, which bounds the contribution as∫ δn/k

0

x2−τdx =
δ3−τ

τ − 3
(k/n)τ−3. (71)

Then, we study the contribution for Du > n/(kε). This contribution can be bounded very similarly
by taking 1 for the minimum in (70)

n

k

∫ ∞
n/(δk)

x1−τdx =
δτ−2

τ − 2
(k/n)τ−3. (72)

Taking κ = min(τ − 2, 3− τ) > 0 then proves the proposition.

3.4 Expected average nearest neighbor degree

For k � n(τ−2)/(τ−1), it is easy to see that E [a(k,Gn)] satisfies (24). Indeed, Proposition 3.1
together with Lemma 3.4 and taking the limit of δ → 0 establish (24).

For k small, note that the limit in Theorem 2.1(i) has infinite mean, so that a similar scaling as
in Theorem 2.1(i) cannot be expected to hold for E [a(k,Gn)]. To prove Theorem 2.1(i), we used
that the maximal degree scales as n1/(τ−1) with high probability. When computing the expected
average nearest neighbor degree however, the rare event of the maximal degree being larger than
n1/(τ−1) forms a major contribution to E [a(k,Gn)]. In fact, we can follow the exact same lines as
the proofs of Proposition 3.1 and Lemma 3.4, so that (24) also holds for k small.

4 Proofs of Theorem 2.2 and 2.3

We now briefly show how the proof of Theorem 2.1 can be adapted for the rank-1 inhomogeneous
random graph and the hyperbolic random graph to prove Theorems 2.2 and 2.3. We denote by
Pn the probability conditioned on the weights in the rank-1 inhomogeneous random graph or
conditioned on the radial coordinates in the hyperbolic model.
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4.1 Inhomogeneous random graph

First, we show how to prove Theorem 2.2(i). Similar to (27), in the rank-1 inhomogeneous random
graph the degree of a vertex with weight h, Dh, satisfies Dh = h(1 + oP(1)) when h � 1 [39].
Furthermore, the largest weight is of order n1/(τ−1) with high probability. Thus, when h �
n(τ−2)/(τ−1), w.h.p. p(h, h′) = hh′/(µn) for all vertices. When u ∈Mεn(k), hu = k(1 + oP(1)), so
that conditionally on the weight sequence

aεn(k) =
1

k|Mεn(k)|
∑

u∈Mεn (k)

∑
i∈[n]

DiPn (Xiu = 1)

= (1 + oP(1))
1

k

∑
i∈[n]

hi
hik

µn
= (1 + oP(1))

∑
i∈[n]

h2
i

µn
, (73)

which is equivalent to (40) because the weights are also sampled from (3). This proves Theo-
rem 2.2(i).

Similarly to (42), we define for the rank-1 inhomogeneous random graph

W k,HVM

n (δ) = {u : hu ∈ [δµn/k, µn/(δk)]}. (74)

Then it is easy to show that Proposition 3.1 also holds for the rank-1 inhomogeneous random
graph with (74) instead of W k

n (δ). We use that Pn (Xij = 1) = min(hihj/(µn), 1). Because the
weights are sampled from (3), (70) also holds for the rank-1 inhomogeneous random graph, so that
Proposition 3.1 indeed holds for the rank-1 inhomogeneous random graph.

We now sketch how to adjust the proof of Proposition 3.2 to prove an analogous version for
the rank-1 inhomogeneous random graph, which states that

aεn(k,W kHVM
n (δ))

(n/k)3−τ
P−→ cµ2−τ

∫ 1/δ

δ

x1−τ min(x, 1)dx. (75)

Following the proofs of Lemmas 3.3-3.5, we see that these lemmas also hold for the rank-1 in-
homogeneous random graph if we replace the connection probability of the erased configuration
model of 1 − e−DiDj/Ln by min(hihj/µn, 1). Note that for the rank-1 inhomogeneous random
graph the contribution to (60) from 3 or 4 different vertices is 0, because the edge probabilities in
the rank-1 inhomogeneous random graph conditioned on the weights are independent. From these
lemmas, (75) follows. This then shows similarly to (47) that

aεn(k)

(n/k)3−τ
P−→ cµ2−τ

∫ ∞
0

x1−τ min(x, 1)dx =
cµ2−τ

(3− τ)(τ − 2)
. (76)

which proves Theorem 2.2(ii).

4.2 Hyperbolic random graph

We first provide a lemma that gives the connection probabilities conditioned on the radial coordi-
nates in the hyperbolic random graph.

Lemma 4.1. For a hyperbolic random graph, the probability that u and v are connected condi-
tionally on the radial coordinates can be written as

Pn (Xuv = 1) = min

(
1

π
cos−1(1− 2(νt(u)t(v)/n)2), 1

)
(1 + oP(1)). (77)

Proof. Suppose νt(u)t(v)/n ≥ 1. Then,

νt(u)t(v)

n
=
νeRe−(ru+rv)/2

n
=
n

ν
e−(ru+rv)/2, (78)
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so that ru + rv ≤ 2 log(N/ν) = R. Thus, by (17)

cosh(d(u, v)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θuv)

≤ cosh(ru + rv) ≤ cosh(R), (79)

so that the distance between u and v is less than R and u and v are connected.
Now suppose that νt(u)t(v)/n < 1, so that ru + rv > R. We calculate the maximal value of

θuv such that u and v are connected, which we denote by θ∗uv. When the angle between u and v
equals θ∗uv, the hyperbolic distance between u and v is precisely R. Thus, we obtain, using the
definition of the hyperbolic sine and cosine

eR − e−R

2
=

eru − e−ru

2

erv − e−rv

2
− eru + e−ru

2

erv + e−rv

2
cos(θ∗uv). (80)

Because t(u) is distributed as (21), the maximal type scales is OP

(
n1/(τ−1)

)
. Therefore, eru−rv =

(t(v)/t(u))2 = OP

(
n2/(τ−1)

)
. Also, e−R = O(n−2) so that (80) becomes

1
2eR = 1

4eru+rv (1− cos(θ∗uv)) +OP

(
n2/(τ−1)

)
. (81)

We then use that by the definitions of t(u), t(v) and R

eru+rv = eR
(

e(ru+rv−R)/2
)2

= eR
( n

νt(u)t(v)

)2

. (82)

This yields for (81) that

1− cos(θ∗uv) = 2
(νt(u)t(v)

n

)2

+OP

(
n−2 τ−2

τ−1
νt(u)t(v)

n

)
, (83)

so that
θ∗uv = cos−1(1− 2(νt(u)t(v)/n)2)(1 + oP(1)). (84)

Because u and v are connected if their angular coordinates are at most θ∗uv and the angular
coordinates of u and v are sampled uniformly, we obtain that

Pn (Xuv = 1) =
1

π
cos−1(1− 2(νt(u)t(v)/n)2)(1 + oP(1)). (85)

Using this lemma, we now prove Theorem 2.3.

Proof of Theorem 2.2. We first focus on k � n(τ−2)/(τ−1). By [29, Eq. (21)], En [Du] = ν(τ−1)
π(τ−2) t(u).

Thus, by [12, Theorem 2.7 and Lemma 3.5] Du = ν(τ−1)
π(τ−2) t(u)(1+oP(1)) when t(u)� 1. Therefore,

when u ∈Mεn(k), t(u) = π(τ−2)
ν(τ−2)k(1 + oP(1)) when k � 1. Since the types are distributed as (21),

the largest type is OP

(
n1/(τ−1)

)
. Therefore, if u ∈ Mεn(k), then t(u)t(v)/n = oP(1) for all v.

Taylor expanding (77) shows that for t(u)t(v)� n

Pn (Xuv = 1) =
2νt(u)t(v)

πn
(1 + oP(1)). (86)

Thus, similarly as in (73) we obtain with ζ = π/(2ν),

aεn(k) = (1 + oP(1))
ν(τ − 1)

π(τ − 2)k

∑
i∈[n]

t(i)
t(i)t(u)

ζn
= (1 + oP(1))

∑
i∈[n]

t(i)2

ζn
. (87)

Combining this with the distribution of the types (21) proves Theorem 2.3(i) (which is the same
as Theorem 2.2(i) where µ is replaced by ζ and c/(τ − 1) by 1).
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We now investigate the case k � n(τ−2)/(τ−1). Similarly to (42), we define for the hyperbolic
random graph

W k,HRG

n (δ) = {u : t(u) ∈ [δζn/k, ζn/(δk)]} (88)

with ζ = π/(2ν). Using that cos−1(1− 2x2)/π ≤ x combined with Lemma 4.1, we obtain

Pn (Xuv = 1) ≤ min (t(u)t(v)/(ζn), 1) . (89)

Combining this with the fact that the t(u)s are sampled from a distribution similar to (3) shows
that (70) also holds for the hyperbolic random graph, apart from a multiplicative constant. From
there we can follow the same lines as the proof of Proposition 3.1.

We can also prove an analogous proposition to Proposition 3.2 which states that

aεn(k,W k,HRG
n (δ))

(n/k)3−τ
P−→ ν(τ − 1)2

(τ − 2)π

( π
2ν

)2−τ ∫ 1/δ

δ

x1−τ min

(
1

π
cos−1(1− 2x2), 1

)
dx. (90)

Because the connection probabilities conditioned on the radial coordinates in the hyperbolic model
are given by Lemma 4.1, a variant of Lemma 3.3 holds which states that

En
[
aεn(k,W k

n (δ))
]

=
ν(τ − 1)

kπ(τ − 2)

∑
u∈Wk

n (δ)

t(u) min

(
1

π
cos−1(1− 2(νt(u)t(v)/n)2), 1

)
(1 + oP(1))

Similarly, a variant of Lemma 3.4 holds for the hyperbolic random graph, replacing the connection
probability 1− e−DiDj/(µn) of the erased configuration model by (77) and replacing the constant
c from (3) by its equivalent constant for the hyperbolic model of τ − 1 and µ by ζ (see (21)). Fur-
thermore, because conditionally on the radial coordinates, the probabilities that two distinct edges
are present are independent, Lemma 3.5 also holds for the hyperbolic random graph. Therefore,
similar steps that lead to (47) then show that

aεn(k)

(n/k)3−τ
P−→ ν(τ − 1)2

(τ − 2)π

( π
2ν

)2−τ ∫ ∞
0

x1−τ min

(
1

π
cos−1(1− 2x2), 1

)
dx (91)

which proves Theorem 2.3(ii).
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[15] Catanzaro, M., Boguñá, M. and Pastor-Satorras, R. (2005). Generation of uncor-
related random scale-free networks. Phys. Rev. E 71, 027103.

[16] Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected
degrees. Proc. Natl. Acad. Sci. USA 99, 15879–15882.
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Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106.

[30] Leskovec, J. and Krevl, A. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data 2014. Date of access: 14/03/2017.

[31] Maslov, S., Sneppen, K. and Zaliznyak, A. (2004). Detection of topological patterns
in complex networks: correlation profile of the internet. Phys. A 333, 529 – 540.

[32] Mayo, M., Abdelzaher, A. and Ghosh, P. (2015). Long-range degree correlations in
complex networks. Computational Social Networks 2, 4.

[33] Newman, M. E. J. (2002). Assortative mixing in networks. Phys. Rev. Lett. 89, 208701.
[34] Ostilli, M. (2014). Fluctuation analysis in complex networks modeled by hidden-variable

models: Necessity of a large cutoff in hidden-variable models. Phys. Rev. E 89, 022807.

20

http://snap.stanford.edu/data


[35] Park, J. and Newman, M. E. J. (2003). Origin of degree correlations in the internet and
other networks. Phys. Rev. E 68, 026112.

[36] Pastor-Satorras, R., Vázquez, A. and Vespignani, A. (2001). Dynamical and corre-
lation properties of the internet. Phys. Rev. Lett. 87, 258701.

[37] Ravasz, E. and Barabási, A.-L. (2003). Hierarchical organization in complex networks.
Phys. Rev. E 67, 026112.
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