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Broken scaling in the forest-fire model
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We investigate the scaling behavior of the cluster size distribution in the Drossel-Schwabl forest-fire model
(DS-FFM) by means of large scale numerical simulations, partlyroassively parallel machines. It turns out
that simple scaling is clearly violated, as already pointed out by Grassl@égérassberger, J. Phys. 28,
2081(1993], but largely ignored in the literature. Most surprisingly, the statistics do not seem to be described
by a universal scaling function, and the scale of the physically relevant region seems to be a constant. Our
results strongly suggest that the DS-FFM is not critical in the sense of being free of characteristic scales.
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I. INTRODUCTION (i) Relaxation: Choose one site at random. If it is empty
continue with the first step. Otherwise make “empty” all the

The Drossel-Schwabl forest-fire mod@S-FFM) [1] is sites in the cluster the site chosen belongs to. In this case the
one of the paradigms of nonconservative self-organized critiupdate is considered to be successful. Continue with the first
cality (SOQ [2]. Its importance comes primarily from the step.
fact that the model has nonconservative microdynamics. It, Here a cluster is defined in the usual fashion as the set of
therefore, answered the question whether conservation isccupied sites that are connected via nearest neighbor inter-
necessary for criticality in driven systems. actions, i.e., two sites belong to the same cluster if they are

The claim that the DS-FFM is critical comes from the fact nearest neighbors or there is a path between them along the
that it shows power-law-like behavior for several geometri-sites that belong to the same cluster. We have applied peri-
cal properties of the dissipation events. The average size afdic boundaries in all our simulations and restricted our-
these is divergent in the so-called SOC limit, where all timeselves to the two-dimensional square lattice.
scales get separated so that the rate of the external drive The cluster removed in the second step is called the
becomes infinitely slow and the total inflow diverges. If one“burnt cluster.” To measure the overall distribution of clus-
assumes stationarity, this is trivial to profe3,4]. However, ters within the system, one usually measures the size of the
as usual in numerical simulations, it is not possible to invesburnt cluster[4], the distribution of which is biased by a
tigate the model in the limit of divergent drivé)~0 in the  factor s. To see that, we defina(s) to be the ensemble-
notation below, as finite size limits the correlation length averaged, site-normalized density of clusters of siiethe
and, therefore, destroys any possible criticaldy. It is re-  system. Then, the probability that a randomly chosen site is
markable that most of the literature available for this modelkonnected to a cluster of sizds sn(s), as in standard per-
is mainly concerned with finding critical exponents and iden-colation[5]. This distribution is probably the most important
tifying supposedly critical quantities. It seems that no authorgn the model. Other quantities are the distribution of the
question whether the model is critical at all and if so inburning time that is defined as the maximum Manhattan dis-
which sense. In this paper we carefully investigate the “scaltance(shortest path on the square latlideom the initially
ing function” of the cluster size distribution and show that it chosen site of a burnt cluster to all other sites in the same
is indeed an open question whether the model is truly criticluster, and the correlation functions as defined and dis-
cal: Not only is there no way to prove its criticality, there is cussed in Refl6]. In this paper we concentrate solely on the
also numerical evidence that the model does not becomgistributionn(s).
scale-free. Using a new implementation of the mod&l we are able
to simulate the system on very large scales and at the same
time keep track of theentire distribution n(s), instead of
measuring the biased distributiem(s), as done usuallj4].

The model has been described several times and in greBetween two updates the changesnifs) are only of the
detail elsewher¢l,3,4]. Therefore, the description presented order 18, so it is a highly correlated quantity. However, by
here is rather succinct. The model is defined on ausing standard cluster labeling technig(i8s it is possible
d-dimensional lattice of linear siZe, where each lattice site to calculate the full histogram(s) essentially without in-
can be in one of two states, “occupied” or “empty.” The creasing the computing time, which depends almost exclu-
lattice is then updated according to the following rules. sively on# and is essentially independent of the system size.

(i) Driving: Choose randomly #/ sites, one after the Compared to the standard simulation, we gain up to two
other. If its state is empty turn it into occupied. orders of magnitude in performang&9]. A similar method

was recently introduced for standard percolatioh Using

the same amount of computing time the results are signifi-
*Email address: gunnar.pruessner@physics.org cantly less noisy than those of the standard implementation
TEmail address: h.jensen@ic.ac.uk (for example, Ref[10], which we have used as the reference

II. DEFINITION OF THE MODEL AND METHODS
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to check the validity of our resultsLarge system sizes en- TABLE |. Static quantities for different choices af and 14.
able us to rule out any finite size effects as described belowihe estimation of the standard deviation of the tree dengsjty
The results have been partly cross checked using a different (p) =(p°)—(p)", where the average runs over the ensemble is

random number generatdall results presented here make unfortunately based only on a small subset of the configurations

the ranl algorithm fronil1] has been used a fraction of the lattice. However, it is apparent that it behaves like

Finite size effects have been ruled out by the foIIowingllL' as expected for a system without finite size effects. The density

direct method: For each value ofélA significantly larger Of clusters of size 1n(1), serves as the normalization of The
system was simulated with exactly the same value fér 1/ average cluster size is denoted(sy, for definition see Eq4), but

The linear sizeL was typically increased by a factor 2. The due to a truncation in the histogram, for some of the simulations in
smallest systems we used wete=1000, the Iarges.tl_ the range 2008 1/6<16 000 the number presented is actually the

—32000. By comparing the histograms of different Systemaverage size of the burnt cluster. In the stationary state it is—apart

. . . . ; - rom statistical fluctuations—also given by {Xp))/(6{p)) [4].
sizes in conjunction with the standard deviation Calcmate.({/alues of 18 andL printed in bold indicate results shown in Fig. 3;

fof: the(rjnb 'tf.'s. pos_SIbIeﬁto decide ch;ether adsystehm SIZ€ 1$he other results are only for comparison. All data are based on 5
a _ecte y _m'te size effects or not. _ompare to other SIMUs 16 (successfylupdategsee Sec. )Ifor the transient and statis-
lations published 12,13 that also claim not to suffer from tics, apart from those printed in italics that are based on short runs

finite size effects, our system sizes are huge. This simples 106 ypdates for the transient anck1L0° updates for statistigs
method of “redoing” all simulations and using lattices that
(p) Vo%(p) n(@) (s

are much larger than actually needed has the obvious disadyy L
vantage of being inefficient, but there is probably no more &

(1—=(p)) &{p)

direct way of identifying finite size effecfd4]. This waste 125 1000 0.3797 0.0060 0.04553 204.07 204.18
of computing power is overcompensated by the efficiency ofi25 1000 0.3798 0.0058 0.04552 203.81 204.15
the algorithm and self-averagii@5]. 125 4000 0.3798 0.0014 0.04553 203.88 204.10
125 4000 0.3798 0.0015 0.04552 203.77 204.10
Il. RESULTS 250 1000 0.3876 0.0083 0.04451 395.03 395.06
The focus of this paper is the presumably universal sca?®0 1000 0.3875 0.0082 0.04452 394.08 395.15
ing function of the distributiom(s). Similar to the correla- 2°0 4000 0.3877 0.0022 0.04454 394.97 394.89
tion function one expects 250 4000 0.3877 0.0021 0.04454 395.29 394.91
500 1000 0.3932 0.0117 0.04380 764.73 771.75
n(s;0)=s""G(s/so(0)) (1) 500 1000 0.3932 0.0119 0.04380 764.81 77177
if “simple scaling” applies, which is already known not to be 500 4000 0.3934 0.0031 0.04382 771.12 770.88
the case in the presence of finite size effed8]. The 500 4000 0.3934 0.0030 0.04382 771.90 770.87
L-dependence of this quantity is omitted in the following 1000 1000 0.3972 0.0169 0.04328 1495.36  1517.91
wherever the context allows it. It is worthwhile to note that 1000 1000 0.3971 0.0168 0.04328 1490.05 1518.00
this is usually thedefinitionof the exponent-. The function 1000 4000 0.3976 0.0043 0.04331 1510.85 1515.00
G is the(presumably universal scaling function that depends 1000 4000 0.3976 0.0043 0.04331 1513.13 1514.81
only on the ratics/sy( ), wheresy(6) is theonly scale of the 1000 8000 0.3976 0.0021 0.04332 1510.10  1514.91
dlStrlbUtlon This Scale. depends Only on the external pararnzooo 4000 0.4005 0.0060 0.04296 2976.34 2993.35
eters’l n our case. ts:?fg'et ;}C,a','”?_ a'c'jo""s t""I”Othteg Sc‘ﬂea 0 4000 0.4005 0.0062 0.04297 2990.50  2993.15
e o200 6000 04006 0003 004z57 258557 2925
therefore, it does not make a big difference whether we in#000 4000 0.4026 0.0089 0.04273 5929.24  5935.91
vestigaten(s) or 4000 4000 0.4025 0.0089 0.04273 5930.97 5938.03
4000 8000 0.4026 0.0048 0.04274 5931.32 5935.15
~ n(s; 0) 4000 8000 0.4026 0.0046 0.04273 5935.36 5936.47
nS0= e 8000 4000 0.4040 0.0135 0.04255 11786.97  11799.72
8000 4000 0.4041 0.0135 0.04255 11788.90  11799.07
:MS—T 2 8000 8000 0.4041 0.0068 0.04257 11801.31 11795.98
G(1/s4(0)) 8000 8000 0.4041 0.0068 0.04257 11792.82  11795.38
That this particular choice of the normalization does not af-16000 4000 0.4052 0.0199 0.04244 23430.01  23481.82
fect the overall results can be seen in Table |, where thé6000 8000 0.4054 0.0096 0.04243 23466.93  23467.22
absolute value oh(1,0) is listed for different values of). ~ 16000 8000 0.4054 0.0098 0.04243 23446.10  23465.64
Also shown in this table is the first moment of the distribu- 16000 160000.4054 0.0052 0.04245 23449.31  23466.57
tion or the average density of trees, which is defined as 32000 16000 0.4066 0.0075 0.04232 46443.83 46701.82
32000 320000.4066 0.0032 0.04233 46731.44  46698.51
p=> sn(s;0), (3) 64000 320000.4078 0.0042 0.04220 91148.64  92952.40
S
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and the second moment of the distribution, 1.05 - ‘ ‘ ;
a L,=4000, L,=8000
1%=2000
2 2
ES:s n(s; ) 3100 |t gl *
(s)=——, (4) e
25 sn(s; 6) 0.95

b L,=1000, L,=8000 N
which is the average size of the cluster connected to a ran- 1.0 102000 ' wﬁ«%\m

domly chosen occupied site.
Before presenting the actual results, we first discuss the
numerical quality of the results.

. ‘ ‘ ‘
A. Avoiding finite size effects 1w 10 0 0 1w "
Throughout this paper we initially performedka.0° suc- _ - - )
cessful updateg@s defined in Sec.)las transientand, there- FIG. 1. Ratior(s;6,Ly,Lo)=n(s;6,L4)/n(s;6,L;) with 1/6
fore, rejected thepnand the same number for producing sta- =2000 for two paird_;,L, with error bargstandard dewapon of_l;
tistics, apart from runs for calculating error bars, where onlyf€ €17or bars as well as the data shown are exponentially binned
10P updates have been used for statistics, as shown below. Tge data are from short runs Elapdates for statistigsFinite size
is known that the transient can be very IC[@ [note that the “effects have been considered negligible under the condition that
time unit in Ref.[6] is expressed in our units by multiplying (almost al) error bars for this ratio have covered(tharked by a

o . hed ling in th | @ L=4 L,= :
it with (1/6)/pL?], but in all cases presented the number ofdashed lingin the relevant rangeta) L,=4000 andL,=8000

A . .~ almost no finite size effects, the deviation from 1 is probably due to
initial steps seemed to be more than sufficient. Numerlcaﬁoise_ Note the fine scale of the ordinats) L,=1000 andL,

checks indicate that the cluster size distribution is very stable. gq. Systematic, strong finite size effects $or10°. The scale
against the size of the transient, i.e., even a transient that {§ the ordinate is five times larger than (&). Data of this quality
presumably too short produces reasonable resulta(f®)r. have been dismissed.

All systems have been initialized by a random indepen-
dent distribution of trees with density 0.41.

The standard deviation of the binned histogram is no
completely trivial to calculate. In particular, its computation
requires a significant amount of CPU time, and was, there
fore, only calculated for the smaller system sizap to L

=8000) and in shorter run@nly 10° updates for statistics, ~ Anciher indicator for the absence of finite size effects is

but 5x 10 for transient. We resorted to visual examination the scaling of the standard deviationgoflf the lattice can be

for the larger systems when comparings; 6,L) for differ-  gplit into independent parts, i.e., if subsets of the lattice can
ent system sizes. Figured and Xb) show the ratio of

us to implement the algorithm for parallel machines. The
Side effect of using multiple CPUs at the same time is a
significant reduction of the simulation time especially for
large values of ¥, a fact which compensates the complica-
tions of parallel coding.

n(s;6,L) for two different system sizes. A deviation of this 10° : : ‘

ratio from 1 indicates a difference in the statistics and, there- =4000,8000

fore, the presence of finite size effects. Figufe) shows a 10° - 10=2000

typical case that we accepted as a reasonable agreement

HereL,;=4000 andL,=8000 do not seem to differ for &/ 10° -

=2000. Figure (b) shows a case of finite size corrections

that we have dismisse@hote the different scales in the two ;: 10° |

graphs. It differs from Fig. Xa) only by L,=1000. £ - : :
Figure 2 illustrates the strong agreemennés; 6) at the :'@ ! " 7

same value of for the same two different sizésas in Fig. S L] |

1(a). The two sets of data are virtually indistinguishable, but |

in this kind of plot it is also almost impossible to see a 192 | | L=1000,8000 ]

difference between the data bf =1000 andL,=8000, as L 16=2000 ]

shown in the inset of Fig. 2. This is also the case with the 107 .. .. . N

rescaled data below, and the use of very large systems 1 161 1b’ "‘f "‘f "‘75 1'05

throughout this paper might, therefore, be “overcautious” in
avoiding finite size effects, although such large sizes are ob-
viously required for an accuratpuantitativeanalysis of this FIG. 2. The binned histogram(s; 6,L) for two different values
model. However, when it comes only to qualitative analysisof L and fixedé as in Fig. 1a). In this plot the two histograms are
such a judgment seems to be justified. On the other hand, ajttually indistinguishable. However, note that the deviations shown
increase in system size hardly increases the computing timen Fig. 4b) would also hardly be visible in this type of plot, as
and affects “only” the memory requirements, which forced shown in the inset.
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2 . . . lapse, i.e., choosing* in such a way that horizontal shifts
Vo =250 1000 4000 16000 64000 [corresponding to the choice of the sca}€d) in the scaling
1/6-125 4 N function] make all curves collapse. This is shown in Fig. 3,
LY wherer* =2.1 was chosen so that the maxima for the second
bumps are almost equally high: denoting their position on the
abscissa for each value éfby s,,,,(6), we have chosem*
such that

N(Smax 0); 0)ST%,( 6) ~const. (5)

n(s)/n(1) s

: According to Eq.(1) the constant is simply the maximum
value of G, namely,G(Smad 6)/so(6)), Where the value of the
3 argument is, therefore, the same for @ll
The value ofr* is close to(but not within the error dfthe
exponent found in the literaturer=2.14(3) [3,4] (7
=2.15(2) in Ref.[16], 7=2.159(6) in Ref.[6]), which is
shown in the same figure for comparison. However, it is
s impossible to force the minim@ee the down pointing marks
) ) ~ in Fig. 3 to the same height while maintaining the constraint
FIG. 3. The rescaled and binned histografs; 6)s™, where  nat the maxima remain aligned, i.e., these minima cannot be

7 =2.10 for 1$=125,250,500. ..,32000,64 000(as indicatel 5 featyre of the same universal scaling function. Otherwise
in a double logarithmic plot. The linear siteis chosen according Eq. (1) would hold and the quantity

to the bold printed entries in Table | and large enough to ensure

absence of finite size effects. The error bars are estimated from

shorter runs. The rightmost histografdotted in all figures, ¥ N(Smin(0); )T (6), (6)
=64000) could not be cross checked by another (sae texk

Maxima are marked by arrows pointing upwards, minima are . .
marked by arrows pointing downwards. The dashed lines belong t§/N€résmin(¢) denotes the position of the minima, would as-

different exponents, whose values are specified as the sum of tf&ime the same value for &l| because they are local minima
slope in the diagram and*, i.e., a horizontal line would corre- Of G, which are supposed to be the same foréall
spond to an exponent 2.1. The short dashed line represents esti- Since these minima cannot be included in the simple scal-
mated exponents for different regions of the histograr@2 within ~ ing defined in Eq(1), they must be explicitly excluded by
approximately{20,200 and 2.19 within[200,2000), the other ex- introducing a lower cutoff, so that simple scaling supposedly
ponents are from literature, namely, 23%in Refs.[3,4] and sets in only above these cutoffs, excluding especially the
223/9%=2.45 in Ref.[12]. Since it was impossible to relate these minima. However, such a lower cutoff would apparently
exponents to any property of the data, the exact position of the lineRave to diverge for #— «—something that is certainly be-
associated with them was chosen arbitrarily. yond any established concept of scaling. Even when accept-
ing this peculiar scaling behavior, a data collapse for the
be considered as independent, the standard deviatign of sgcond bump still seems to be unsatisfactory, as shown in
should scale like 1 for different values oL at given 15. 719 4- , _
Such a behavior can be seen in Table I, although the standard !f ©n€ accepts a divergent lower cutoff of the scaling func-
deviation ofp could be calculated only roughly. This might

tion, one has to face the fact that this would describe the

explain the slight mismatch for a~32000, L behavior ofn in a region that becomes physically less and
=16 000,32 000. less interesting in the limit B/~«, because the vast major-

For the highest values of @/we could not yet do the ity of events are situated at smaland as the second bump
comparison to another system, so the curve for the largeshoves out to infinity, the scaling function hence covers a
value of 18 in Fig. 3 is dotted, as their quality is not known. smaller and smaller part af. However, only a region of,
However, it is reasonable to assume that it is not affected byhich covers a nonvanishing fraction of events capbgsi-
finite size effects. cally relevant

Concentrating now on the behavior ofup to the mini-
B. The scaling function mum (see arrows pointing downwards in Fig), ®ne finds
that this region is also badly described by a function like Eq.
vl o 1  plot enables s ot oy 10 fnd the expo- (1 11512 8, e ueson of i regin s supposedy
nentr, but also to f!nd thg unlvers.al fL.mCtICﬁIES defm.ed N | ower cutoff and ad dependent upper cutoff needs to be
Eq.(1). Arough, naive estimate afis given byn(s; 0) fitted  found. At first view it looks appealing to choose these two
againsts™”, which gives a value of*~2.1 in our case. marks such that they cover the set of data, where the curves
Plotting nown(s; 8)s™ double logarithmically should allow fall on top of each other. In this case the lower cutoff would
us to find the “true” value ofr by performing a data col- be 1 and the upper cutof,,ye, would have a value smaller

Comparing the different histograntgs; 6) for different
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2 .
Increasing 18
Zd
‘o £
= (]
g -
" g
1
; Increasing 1/
0.8 . s , s )
107 10 10° 10° 107 10° 10'
/8,4, $/5,,,(0)
FIG. 4. The rescaled and binned histograngs;6)s™, FIG. 5. The rescaled and binned histogrags; 6)s"s®, versus
VS S/Spma(f), Where 7#=210 for 1H=125,250,500...,  S/Smin(f), Where 74,=2.19 for 1#=4000,8000,16 000,32000,

32000,64 000 in a double logarithmic plot. The scadgg(6) by ~ 64000 in a double logarithmic plot. The scaigg,(6) by which the
which the histograms have been shifted are the maxima marked ifistograms have been shifted are slightly different from the minima
Fig. 3, so that a data collapse would be possible. The arrow indimarked in Fig. 3, to make the collapse as good as possible. The
cates the order of the data in increasing.1/ squares and the filled circles mask 10 ands= 200, respectively,

for orientation and relation to other figures. The arrows indicate the
than the minima marked by downwards pointing arrows inorder of the data in increasingl/
Fig. 3. However, this would be described by a function like

axes, reveals 8 since a scale is intrinsically given by the

~ features off(s). One would only need to rescale and tilt it

n(s; 6)=f(S)G(S/Snaive), (! until it fits the plot of Fig. 3 and one could thus identifys1/

rather than Eq(1). Note theparameter independefiinction Only ,if f(;) were spale-free, ie., a strai'ght line in a double
f(s) describes the shape of the curve, whiles/s, ) is a  odarithmic plot, this would not be possible.

sharp cutoff function. Equatio7) does not allow for an

exponent, wherd(s) is an arbitrary function. Writing it as C. Two length scales

- _ . Thatn contains features to define at least two scales that
f(s)=s""(ap+ higher-order corrections (8)  apparently diverge in B with different exponents, becomes

) ) clear when analyzing the scaling of the minima and maxima
definesr to be the steepest descent of this part of the curve,g marked in Fig. 3, using the definitions

and gives a value betweet,=2.22 andrg,= 2.19(see Fig.

3). .

This concept appears to be rather naive—on the other Smin( ) (1/)min, 9
hand, it is hard to assume that Ed) can still hold: it would
correspond to Eq(7) with f(s) replaced bys’, which is a Smad 0) % (1/6)%max (10)

straight line in a double logarithmic plot. Therefore, Ef).

can apply only to a region in Fig. 3 where the data that fall¢ course, the exact position of the extrema?rﬁfs; g)s™

on top of each other form a straight line. Those features no&epends on its tilt, i.e., on the choice of. However, their
already collapsing would then collapse when properly t“tedscaling in 1/6 does not depend strongly on this choice. In
(choosing the rightr) and shifted(choosing the rights,). particular,x,, andx,., are different for all choices of*. A
Introducing a lower cutoff as=10 and discarding the data . of Smin(6) versus 10 for different values of* is shown
for 1/6=<2000 then leads to a data collapse in a narrow rang Fig. 6.| For small values of #/the minimum is not pro-

as shown in Fig. 5. Itis vvlortr]lwhlle lmentloglr;)g that evet? for hounced enough to survive for large valuesrof so these
some 16:s<200, namely, for values ob between the . es do not give a data point. Using a linear fit of

squares and the filled circles, none of the data collapse. Tf"ggsmin(a) versus log(14) of the minimum as found in the

exponent used in this “collapse” isy,=2.19, as mentioned yoqeajed ¢+) and binned histogram, gives an “exponent”

above.
. . . betweenx,,,=0.93 andx,,;;=0.98. The same procedure ap-
By considering the functiofi(s) it becomes apparent that &Iied to tr:nelznmaxima givrgg an “exponent’ in the rangg.,

n, and therefore the model, cannot be scale free: it dependsq 18 andx,,,=1.22, as shown in Fig. 7. One may expect
on the ﬁxed, minOSCOpiC scak=1. This entails that it is that Xmmin tends towards(max for decreasingr*, as Snin in-

always possible to tell #by looking only at theshapeof n; creases and might enter the scaling regiorsgf,, but nei-
a diagram showing only this shape, without any scales on th&her exponent exhibits a systematic variation, and the quality
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1/6=2000
4000

P 1/86=1000
4

N

n(syn(1) s’

10 10 10 10
M

110" 10 107 10°

s

FIG. 6. The position of the minimum in the binned and rescaled
histogram for different values af* =2.04,2.08,2.10,2.12,2.16. The

. ; FIG. 8. Th | [ hi aifs; 6)s™ i
exponents shown in the plot are for comparison only. G. 8 e rescaled and binned histogras; 0)s™ (again

7 =2.10), for a modified model, where the largest cluster in the

. . system is removed after each driving step, for 6 1/
of the fit certainly suffers from the rough procedure that=1000,2000,4000 (as indicatell with linear sizes L

searches for the extrema in tienned h|_stqgram. Th|§ IS — 2000,2000,4000. The inset shows the same data on the scale of
unfortunately necessary because of statistical fluctuations, IBig. 3 for comparison. The data for @ 1000,2000,4000 of the
conjunction with the absence of error bars for all data pOIntsoriginal model as shown in Fig. 3 are dotted. The peculiar behavior

~ The scale of the clustersynmaxis related to the correla- o the different height scaling of the minimum and the maximum is
tion length& by the fractal dimension, i.e., (see Ref[4]) again visible.

Smin/may® £ min/max (12) IV. DISCUSSION

Since £x1/6, one should expect= Xmin/max! 4min/max- 1He Prima faciethe DS-FFM looks like a percolation process,
minima are supposed to be dominated by smaller, fractadnd one might naively think that it is indeed a percolation
events(see Ref[12]), so umin=1.96(1)[4] and, therefore, process that organizes itself to the critical density: sites are
Vmin€[0.47,0.5Q. The maxima are more likely to be domi- occupied randomly and independently afad least in the
nated by compact fires, s@y,[0.59,0.61. It is unclear  thermodynamic limik there is only one cluster that is re-
how the two exponents,max are related exactly to the moved with nonvanishing probability, namely, the largest. In
exponents of the two correlation lengths found by Honeckethis way the density of occupied sites is automatically re-
and Pesche[6] for the connected correlation function  duced below the percolation threshold whenever the thresh-
=0.576(3) and for the tree-tree correlation function old is reached. It is puzzling how remarkably close the tree
=0.541(4). density in the DS-FFM is to the density eimptysites in
critical site percolation on a square lattifpggy~0.4078

and 1- ppe=0.40725379(13) (Ref. [9]) respectively.
However, the removal process involved in the DS-FFM in-
troduces spatial correlations that are not present in the stan-
dard percolation. These correlations are expressed, for ex-

10°

0 ample, in the form of a patchy tree density distributja].
The purpose of this paper i©tto add yet another model
2 to the enormous variety of SOC models. However, in order
m" 10° | to investigate certain features of the given model and identify

the underlying mechanisms, it makes sense to modify it
slightly. The outcome for the histogram of the DS-FFM is
modified such that thé&rgestcluster is removed after each
driving step, as shown for a few values of1h Fig. 8. The
distinctive feature of a minimum that scales differently from
: : the maximum is again present, as the peaks of the maxima
10 10 10 10 have approximately the same height, while the height of the
% local minima varies among different values®fThe inset of

FIG. 7. The position of the maximum in the binned and rescaledthis figure shows the histogram on the same scale as Fig. 3
histogram for different values af* =2.04,2.08,2.10,2.12,2.16. The together with the data of the original modelbtted with the
exponents shown in the plot are for orientation only. corresponding values @&. One can understand that they do
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5 . . \ . Since the feature of different scaling survives the modifi-
gros027as cations described above, it seems reasonable to assume that
4 P s any relaxation rule that favors the largest cluster leads to the
o=0.

p=0.3075

peculiar behavior. Its disappearance at high densities can be
explained by the extremely small cutoff in the distribution,

‘o 3 which leads to a domination of the statistics by very small
S clusters, while a single, enormously large one dominates the
£ burning (the average size of the burnt cluster o ppec
i’- 2 / was 355811 However, much more careful and detailed in-
S AL vestigations of models, such as the modification described
. g above are required to gain a full understanding of the under-
/ . S0 0 lying mechanisms. In particular, this should include a modi-

! : fication of the rules such that the feature disappears.
T A Honecker and Peschpb] have calculated the correlation
7100 10 17 10 10" 10° length not only for the probability that two sites belong to the
s same cluster, but also for the probability that two sites are
_ occupied at all. The correlation function for the latter is of
FIG. 9. The rescaled and binned histograifs; p)s™ (again  course a peak in ordinary percolation, as there are no spa-
™ =2.10) for a modified model, where the largest cluster in thetial correlations for the distribution of occupied sites by con-
system is removed in each relaxation step and the correspondirgtruction. However, in the DS-FFM the correlation length for
number of trees is filled back into the system afterwards. The threghis quantity, £, is finite and seems to diverge when ap-
small values ofp chosen ap=0.3975, 0.4005 0.4025 correspond proaching the critical point. It is highly remarkable that Ho-
(up to the last digit to the values of the tree density forél/ necker and Peschel concluded from their simulations that
=1000,2000,4000, respectively, see_ Table I. The Ilnea_r _'slzeLwas this correlation Iength diverges slightiyowerthan the cor-
=1000,2000,4000. The corresponding data of the original modejg|ation length of the probability for two sites to belong to
are shown dotted. The peculiar behavior of the different height Scalfhe same cluste,. This seems to indicate that for suffi-
. . . . . . e . S
'rlgvs;j‘(fnT;EgT;nvgzOrlntgfem?g:g:j%;ﬁ?322;"5'2?0}80(;;6\2232l ciently large scales the spatial correlation of the occupation
7 _p_ pP ~ y probability becomes arbitrarily small, so that on sufficiently
for p=pperc—for these data it is relevant to mention the(s) was |46 scales the DS-FFM occupation is uncorrelated and
measuredifter the relaxation. The filled circles show the exact re- therefore, tends to standard percolation. In other words it’
sults for the lattice animalg,17,19 at p=pperc- seems to be possible to rescale or “renormalize” the DS-

not fall on top of each other because the relaxation rule in th&FM to make the occupation correlation arbitrarily small.
modified model erases much larger clusters than in the origil Nis would introduce higher order interactions, as known
nal model. from standard real space renormalization group and would
again thelargestcluster is removed during relaxation and in DS-FFM and standard percolation. However, if this “map-
addition the driving is changed such that the density of treeg?ing” is valid, one should find the exponent for the diver-
p, is the same before each relaxation; the trees removed dugence ofés/¢ to be the same as in standard percolation, but
ing the relaxation are just filled in randomly afterwards. Thisthis is precluded by numerics.

model differs from standard percolation only by its updating It has been suggested at least twj6¢12], that the DS-
schemd20]. In order to compare the outcome with the origi- FFM is a superposition of cluster distributiongecg p) Of

nal model, the values of have been chosen close to the standard percolation for a whole range of concentratjgns
values given in Table I. Indeed, the feature of different scalWweighted by a certain distribution functiow(p), i.e.,

ing of the extrema is still present, but it disappears comd 5dp W(p)n(s,p). Obviously, such an assumption neglects
pletely if the density is increased {@pe=0.592 746[9], spatial correlations. We recall the following result from stan-
which is shown in the same figure as the large bump. Thiglard percolation theor}5],

curve does not vary much if a much smaller system size is

simulated at this density, so we expect it essentially to be free B Y

of finite size corrections. Since it representsoarelatedper- n(s,p)es™"C(=s/(p—=pc)~ ), (12)
colation process, it is just consistent that this bump does not

cover the exact results for the lattice animals of standard _

percolation[5,17,1§ at p=pper., Shown as filled circles in whereC denote; the cutoff funct_pq and the exppnemtand
Fig. 9. The dotted curves in the figure show the correspondZperc have their standard definitions. Assuming that the
ing data of the original model. Again they do not match apartV€ighting functionw(p) is analytic around the critical con-
from the region of very smat. Unfortunately, the simula- Centration in standard percolatign, Eq.(12) leads to

tions of the so-modified model are very expensive in CPU

time, because the mass of the largest cluster needs to be L

refilled after each relaxation, so that only 50 000 updates for f dpw(p)n(s,p)ecs™ (Tperc )., (13
transient and statistics could be done. 0
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This gives rise to an exponent=223/9%2.45; however, scales, but probably with somewhat less statistics. This paper

this is definitely not supported by numeritsee Fig. 3. does not focus solely on the peculiar behavion¢s) .
It remains completely unclear how to characterize the
scaling of the DS-FFM in two dimensions. Apparently it is ACKNOWLEDGMENTS
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