
VOLUME 71, NUMBER 17 PHYSICAL REVIEW LETTERS 25 OCTOBER 1993

Self-Organized Critical Forest-Fire Model: Mean-Field Theory and Simulation Results
in 1 to 6 Dimensions
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We argue that the critical forest-fire model (FFM) introduced by Drossel and Schwabl [Phys. Rev.
Lett. 69, 1629 (1992)] is a critical branching process in the mean-field approximation where the number
s of trees burned in a forest fire is power-law distributed with exponent z, =5/2. The mean-field model
of the FFM in finite dimension is the percolation model and, as in percolation, the upper critical dimen-
sion is 6. Simulations show that the FFM becomes increasingly percolationlike with increasing dimen-
sion d and is, within error bars, fully consistent with the percolation results when d ~ 3.

PACS numbers: 64.60.Ak, 05.40.+j, 05.70.jk, 05.70.Ln

Recently Drossel and Schwabl [ll proposed a new, crit-
ical version of the forest-fire model originally introduced
by Bak, Chen, and Tang [2]. The model is defined on a
d-dimensional hypercubic lattice of linear size L. A lat-
tice site is either empty, a tree, or a burning tree. At
every time step the configuration evolves according to the
following rules: (1) A tree grows in an empty site with
probability p. (2) A site with a burning tree becomes an

empty site. (3) A tree becomes a burning tree if one or
more of its neighbors is a burning tree. (4) A tree
without burning neighbors catches fire spontaneously
with probability f.

The lightning probability f was introduced in Ref. [1],
where it was shown that this addition makes the forest-
fire model critical in the limit f/p 0, provided the
duration of individual forest fires is much smaller than
the time scale of growing trees, i.e., f«p«1/T((s)),
where T((s)) is the time during which a forest of the
average size (s) is burned down. Furthermore, scaling
laws were derived leading to the conclusion that the
power-law exponent i, characterizing the size distribu-
tion of forest fires equals 2 in any dimension d. However,
the derivation relies on the assumption that the cutoff in

the cluster size distribution s~ and the average size of
forest fires (s) have the same scaling exponent. This is
not true in general: In percolation theory, for example,
the cutoff diverges with an exponent I/a while the aver-

age cluster size diverges with an exponent y=(3 —z, )/o;
see, e.g. , Ref. [3]. The assumption 1/tr=y results in

r, =2, but this is correct only in 1D for the percolation
problem.

We show below that in a mean-field description the
size of forest fires is power-law distributed with exponent
z, =5/2. One would expect the mean-field description to
be exact either above an upper critical dimension d„or in
the limit d ee, and one may ask how z, (d) approaches

its mean-field value as d increases.
First, we give a mean-field version, or, more precisely,

a random neighbor version, of the forest-fire model: We
disregard the lattice geometry and consider instead an en-

semble of Ã sites on which trees may grow. The system
evolves according to the dynamical rules defined above,
but at each time step every site with a burning tree is as-

signed z "neighbor" sites to which the fire will spread to
the extent that there are trees on these sites. This neigh-
bor relationship is oriented: fire may spread only one way

through it. Neighbor sites are chosen at random from the
ensemble and rechosen anew at every time step. Thus the
name "random neighbor" model. The repeated rechoos-

ing of random neighbors may sound complicated, but is

actually a decisive simplification when it comes to calcu-
lations. The parameter z is called the coordination nurrt

ber and is identified with 2d —1 when the random neigh-

bor model is used as an approximation to the system on a

hypercubical lattice. Let p, (z), p, (z), and pf(z) denote
the densities of empty sites, trees, and burning trees at
time r. The mean-field equations for the forest-fire mod-

el are the rate equations for these densities supplemented
with the normalization constraint. For the small values

of the lightning rate f we will consider, we may
assume —and later find correct —that the number of
burning trees at any given time is small compared to the

total number of trees. "Small" here means Npf ~ JNp, .

With this assumption, no tree is ignited by more than one
burning tree, and the rate equations read

p, (z + 1) = (1 —p )p, (z ) +pf (z ),
p, (z+1)=[1 f—zpf(z)]p, (z)—+pp, (z),

pf (z + 1 ) = [f+ zpf (z ) ]p, (z ),
p, (z )+p, (z)+pf(z) =1.
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The time evolution of these equations has an attractive
fixed point. Its existence and stability may be understood
as follows: With many trees in the forest, fire will propa-
gate easily, and more trees will disappear than are grown.
With few trees in the forest, fire will propagate with
difticulty, die out fast, and more trees will grow than
disappear. While oscillations between these two situa-
tions certainly occur locally in finite dimensions, the
mean-field equations have an attractive fixed point, and
consequently the system will reach a stationary state.

Introducing

k =f(1+p)/p, (2)

z' —z
k+O(I ') (3)

Only the solution with the minus sign is meaningful, the
other giving p& & 1.

Let us describe the forest fire as a random branching
process: One burning tree can ignite from 0 to z other
trees, depending on how many of its z neighbor sites are
occupied by trees. By assumption, the fire is so sparse at
any time that no tree is ignited by more than one burning
tree. Consequently, a space-time map of a forest fire has
the topology of a tree, each node representing a burning
tree, and branches from such a node representing the
spreading of the fire to neighbor sites. Since the fire can
spread from one burning tree to any number b of trees
between 0 and z, the average number of trees ignited by
one burning tree is

z z
(b) = g b p'(1- p )'

b-0 b,

1 k+zO(k ),
z —

1
(4)

where, in the first identity, we have used that a randomly
chosen site contains a tree with probability p, . Since k is

proportional to f, in the limit of f 0 (b) l. In this
limit the mean-field theory of the forest-fire model will be
nothing but a critical branching process —critical because
(b) =1 means a burning tree on the average ignites exact-
ly one tree. Thus the fire continues forever, on the aver-
age. If kAO then (b) (1 and the system is subcritical,
and a fire will die out in a finite time. For random
branching processes, the number N(s) of processes with s
nodes is known asymptotically for large values of s:

N(s) ~ s ' "exp( —s/sg) . (5)

Here r, =5/2, and the cutoff in cluster size distribution s~
diverges when (b) 1; see, e.g. , Ref. [4]. Simulations of
the random neighbor model are consistent with our

we solve the stationary version of Eq. (1) with Taylor
series in k, and find for the density of trees

z+1+k ~ d(z —1) +2(z+1)k+k
p~

=

analytical results and the assumption, NpI+-JNp„ they
are based on.

Now let the geometry of the model (i.e. , the neighbor
relations) be given by an underlying lattice of finite di-
mension d. This will change the process in two ways: (1)
A fire will self-interact, resulting in difTerent critical ex-
ponents, and (2) the dynamical process might induce
correlations between sites. In an attempt to keep some
features of the mean-field theory, we assume that sites
are not correlated, and that the lattice has an average
density of trees p, . Then we have a percolation problem:
A fire will burn exactly the cluster of trees it was started
in, and the known cluster-size distribution of the percola-
tion problem is our mean-field estimate for the size distri-
bution for forest fires in finite dimensions. In particular,
the known exponents of percolation theory are our mean-
field estimates for exponents in the forest-fire model.

The density of trees can be derived self-consistently us-

ing the knowledge of the exponents from percolation
theory: In a statistically stationary state the rate of flow
into the system (the rate of growth) equals the rate of
fiow out of the system (the rate of burning), that is, if (s)
denotes the average size of a forest fire initiated by a
lightning, then

pp, L, 4 =&s)Ip, l,",
and using p, =1 —p, we have

(7)

since the average cluster in percolation theory diverges
with the exponent y. This gives an estimate of the densi-

ty of trees as a function of p and f However. , we can also
estimate y using the measured value of p, . For this esti-
mate to be consistent, the correlation length in the per-
colation problem should be much smaller than the lattice
size so that fluctuations in p& are negligible. Since the
fractal dimension of clusters in the percolation problem is

smaller than the embedding dimension when d ~ 2 [5],
we expect that density fluctuations indeed will be unim-

portant.
This approximate mapping of the forest-fire problem

into percolation theory also suggests that the forest-fire
problem has an upper critical dimension d„with value 6,
like the percolation problem. Note that our first descrip-
tion of the forest-fire model as a random branching pro-
cess and its second description in terms of percolation
theory are identical when d ~ d„=6, because percolation
theory is exactly described by mean-field theory above its

upper critical dimension. The mean-field theory of the
percolation problem is identical to the one we devised for
the forest-fire model when z is identified with 2d —1.

It can easily be shown for random branching processes
which do not self-interact that their extent s scales with

their duration t as s ~ r, on the average [4]. If a random
branching process propagates in a finite dimensional
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space, the radius of the cluster of sites it affects will obvi-
ously scale as r ~ t ' since the process may be thought of
as a random walk with branching and death. Conse-
quently, if a random branching process can take place in

a finite dimensional space and not self-interact, we have
s ~ r . Thus we expect to find s ~ r when the self-
interaction becomes unimportant. This last relationship
is a well known result for percolation clusters in dimen-
sions d ~ 6, where loops (self-interactions) become rela-
tively unimportant. This indicates, that a branching,
self-interacting process has an upper critical dimension
d„~ 6.

Similar arguments can be made for the Bak-Tang-
Wiesenfeld sandpile model [6]: Since avalanches (the
branching process) self-interact, the critical dimension
should be larger than or equal to 6. It is possible to for-
mulate a random neighbor process of the sandpile model
which results in a power-law exponent of z, =5/2 [7].
The same exponent appears in several models: The sand-
pile on the Bethe lattice [8], the sandpile model with local
(stochastic) nonconservative relaxation rules that globally
conserves the dynamical variable [9], and in a globally
coupled (conservative) spring-block model [10].

To check the validity of our arguments and results, we
have simulated the forest-fire model in dimensions 1 to 6.
Figure 1 shows our results for the size distribution in

various dimensions. We find that the size of fires is
power-law distributed with an exponent that does indeed
change with dimension, as shown in Table I [11].

Table I also shows the value of the exponent z t~"')(d)
characterizing the cluster-size distribution in percolation
at the percolation threshold. The exponent z, (d) for
forest fires barely differs from that of percolation. To the
extent it does diAer, it seems to converge to it with in-

creasing d, the results above two dimensions being fully
consistent with the percolation results within one stan-
dard deviation. A result by P. Grassberger also indicates
that the exponents do differ for d=2. He did a large-
scale simulation with L =8192 and p/f =4000 and found
z, =2.15~0.02 which differs from z,~"' =187/91 by
4-5 standard deviations [5].

This is also supported by the estimates we obtain for
the y exponent using Eq. (7): Since the proportionality
factor is unknown, we measured p, in four systems with
different values of p/f in order to determine y. From the
theory of percolation we know that the proportionality
factor depends only very weakly on the distance from

p, . Note that p, is to be interpreted as the limit of
p, when f/p 0. In 3D we find y=1.74(10) [with p,
=0.222(2)] which is to be compared with the percolation
result y

~"~ = 1.80 in 3D. In 2D, however, we find
y=2.03(10) [with p, =0.409(2), see also [5]] which is

far from the percolation result of y
~" =43/18. Again,

the result in 2D is inconsistent with percolation theory,
but in 3D (and higher dimensions) the results are indis-
tinguishable from that of percolation theory.
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Additional support is oAered by the measurements of
the density of trees given in Table II for d =1, 2, 3, 4, 5,
and 6. This density may be compared with the results
one would expect in a random neighbor approximation

TABLE I. First row: dimension d of space. Second row:
measured critical exponent z, (d) for size distribution of forest
fires. The analytical result for the 1D forest-fire model is i, =2
[1 ll. Third row: exponent z,ti "i(d) for the cluster size distri-
bution at percolation threshold ([3],p. 52). For d~ 3 the error
bars on these exponents is on the last digit, while the results in
d=1 and 2 are exact.

z, (d) 1.95(5) 2.16(5) 2.24(5) 2.33(5) 2.39(5) 2.47(5)
z i " (d) 2 187/91 2. 18 2 31 2.41 5/2

FIG. l. (a) The size distribution of fires N(s) for different
dimensions. %'e only display the region used to determine the
power-law exponent. The data are shifted along the y axis in
order to separate the graphs. p/f =20000 in 1D while

p/f =133 in all the other simulations. 1D with L =106, 2D
with L =1000, 3D with L =200, 4D with L =50, 5D with
L =25, and 6D with L =10. (b) The power-law exponents z, in
the forest-fire model (open symbols) and the percolation model
(solid symbols).

2739



VOLUME 71, NUMBER 17 PH YSICAL REVIEW LETTERS 25 OCTOBER 1993

TABLE II. First row: dimension d of lattice. Second row:
density p& of trees in forest-fire model. Third row: random
neighbor result for density of trees. Fourth row: density of oc-
cupied sites at site-percolation threshold ([3],p. 17).

pi 0.90(1) 0.38 (I ) 0.22 (I ) 0.15 (I ) 0.12(I ) 0. 10( I )
I/(2d —I ) I 0.33 0.20 0.14 0.11 0.091
p, (site) I 0.5927 0.3116 0.197 0.141 0. 107

p, = I/z with z =2d —I which is also given in the table.
The coordination number z is identified with 2d —

1 be-
cause a fire cannot propagate backwards to a site it came
from in the previous time step when p, the probability per
time step of growing a new tree, is small as it is here.

In conclusion, we have demonstrated that the sizes of
forest fires are power-law distributed with an exponent
z, (d) which depends on the dimension d of space for
d ~ 6. This dependence on d is similar but not equal to
that previously found in the exponent for the critical clus-
ter size distribution in percolation theory. The two ex-
ponents converge with increasing dimension and are in-
distinguishable for d ~ 3 because of the finite numerical
precision of our results. We conjecture that the upper
critical dimension for the forest-fire model d„=6, as it is
for percolation.
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