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Our purpose here is to show how various deterministic
models for the structure of interpersonal relations in small
groups may all be viewed as special cases of a single model:
namely, a transitive graph (t-graph). This exercise serves three
purposes. First, the unified approach renders much of the
mathematical discussion surrounding these various models
quite transparent. Many of the arguments boil down to

nothing more than defining certain equivalence relations and
looking at the resulting equivalence classes. Second, our focus
on the general model may stimulate the search for other
useful specializations besides those indicated here. We discuss
two ways of specializing the model-restrictions on edges and
on triads-but other methods can be used. Third, we propose
to adopt transitivity as the key structural concept in the
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analysis of sociometric data. Other models then become

&dquo;transitivity plus something else.&dquo; This provides a framework
for the analysis of the fine structure of sociometric data.

Transitivity is not a new idea in the study of interpersonal
relations. It is, for example, fundamental’to Heider’s balance
theory. The association between transitivity and &dquo;balance&dquo; in
positive interpersonal sentiment is explicit in several passages
of Heider’s writing. For example, he remarks that, &dquo;In the

p-o-x triad, the case of three positive relations may be
considered psychologically ... transitive&dquo; (Heider, 1958:

206; compare also: Heider, 1946: 109). The formalization of
Heider’s theory into the model of &dquo;structural balance&dquo; by
Cartwright and Harary (1956) is, in fact, a very special case
of a transitive graph and does not deal with the full generality
of Heider’s conception as we interpret it here. While Heider
was concerned with cognitive balance involving at most three
entities, we are interested in the structural consequences of
transitive graphs of actual interpersonal relations among
many individuals.

Rapoport has used the notion of a &dquo;transitivity bias&dquo; in
the analysis of sociometric data (e.g., Rapoport, 1963). His
approach is a probabilistic rather than a deterministic one.
Furthermore, for Rapoport, transitivity is only one of a
variety of &dquo;biases&dquo; that affect the structural tendencies in a

network; while we are concerned with seeing how far we can
go with a deterministic transitive structure.

DESCRIPTION OF A GENERAL TRANSITIVE GRAPH

NOTATION

We adopt the following notation throughout the paper.
The set, X, is composed of individuals x, y, z, u, v, w.... A
binary relation, C, is defined on X. The notation, x C y,
indicates that x expresses positive sentiment toward y, or,
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briefly, that &dquo;x chooses y.&dquo; Equivalently, C defines a directed
graph on the elements of X-a directed edge goes from x to y
if and only if x C y. The relational and graph theoretical
interpretations of C will be used interchangeably. Three other
relations may be defined on X in terms of C. These are:

(1) xMyifandonlyifxCyandyCx.
(2) x A y if and only if x C y and not y C x.

(3) x N y if and only if neither x C y nor y C x.

The relations M, A, and N have simple sociometric interpreta-
tions : M denotes mutual choices; A denotes asymmetric or
unreciprocated choices; and N denotes null or mutual

non-choices. The relations M and A determine C and N so
that we may take either (X, C) or (X, M, A) as the basic data
and derive the other relations from them. If x M y then we

say that x and y are joined by an M-edge. Similarly for

A-edges and N-edges. If there are no pairs of distinct
individuals for which x M y holds then we shall say that M is

empty. The same goes for A and N. Finally, we shall have
cause to refer to certain subsets of X (such as, M-cliques).
These will be denoted by capital letters, U, V, W ... , and
relations defined on these subsets will be denoted by capital
letters followed by a superscript asterisk, for example, A*,
N*.

MATHEMATICAL DEFINITION OF A TRANSITIVE GRAPH

Definition 1: (X, C) is a transitive graph (t-graph) if and
only if for all x, y, z in X:

(a) xCx
(b) if x C y and y C z then x C z.

For us, the condition (a), reflexivity, is merely a

convention to avoid trivial exceptions and no substantive
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concern is given to it. In the graph theoretic interpretation,
condition (a) implies that there are loops at each vertex, but
we always ignore these loops. Note that a t-graph is closely
related to the notion of a partial order which is a t-graph for
which M is empty (i.e., for no distinct elements of X does
x M y hold).

THE STRUCTURE OF A TRANSITIVE GRAPH1 1

Theorem I summarizes several easily proved properties of
M, A, and N when (X, C) is a t-graph. Its proof is omitted.

Theorem 1 : If (X, C) is a t-graph, then for all x, y, z in X:

(a) x M x

(b) x M y implies that y M x

(c) x M y and y M z imply that x M z

(d) x A y implies that not y A x

(e) x A y and y A z imply that x A z

(f) not x N x

(g) x N y implies that y N x.

Conditions (b), (d), and (g) do not require (X, C) to be a
t-graph. Parts (a), (b), and (c) of Theorem I assert that when

(X, C) is a t-graph, then M is an equivalence relation on X
(reflexive, symmetric, and transitive). Thus M partitions X
into a system of mutually exclusive and exhaustive subsets
with the property that x and y are in the same subset if and

only if x M y. To indicate that these subsets are defined by M
and to give them a name consonant with their social
structural interpretation we call them the M-cliques of X and
note that an M-clique may be of size one. Each group
member who is involved with another in a mutually positive
pair relation is in an M-clique with that member and is

involved in a mutually positive pair relation with every other
member of that M-clique.
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The notion of mutuality as identifying subgroup member-
ship is common in the sociometric and social psychological
literature. A clear theoretical statement appears in Homans

(1950) and it is formally modeled in terms of mutuality in
Cartwright and Harary (1956), Davis (1967), and Davis and
Leinhardt ( 1971 ).
The M-cliques are compatible with A and N in a sense that

is summarized in the next theorem.

Theorem 2: If (X, C) is a t-graph and if u and v are in the same
M-clique, then for all x in X :

(a) uAxifandonlyifvAx
(b) x A u if and only if x A v

(c) u N x if and only if v N x.

lboof: We shall prove only the &dquo;if’ part of (a) as the other

arguments are similar. Suppose u M v and u A x. Then we

certainly have v C u and u C x, so by transitivity we must also
have v C x. Could it happen that x C v obtains also? Suppose so.
Then x C v and v C u imply that x C u contrary to the

assumption that u A x. Therefore v A x holds. Q.E.D.

The content of Theorem 2 may be described by saying
that in a t-graph all individuals in an M-clique are structurally
equivalent in the sense that they all stand in the same relation
to any other individual in the group. Thus, if any member of
an M-clique chooses an individual outside of that clique, all
of his fellow members also choose that individual and if one

clique member fails to choose an individual outside the clique
then none of his fellow clique members chooses that

individual. The main implication of Theorem 2 is that an

ordering relation, A*, may be defined on the M-cliques
themselves, as follows:

Definition 2 : If U and V are two distinct M-cliques of X,
then define U A* V if and only if u A v for all u in U and v in
V. Also set U A* U for all M-cliques, U.

The ordering, A*, of the M-cliques is by definition
reflexive. From Theorem 1, parts (d) and (e), it follows that
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A* is also anti-symmetric and transitive. Therefore, A* is a
partial order on the M-cliques of X. The next theorem
summarizes the above discussion in terms of the structure of
a t-graph. Its proof is evident from the previous discussion
and is omitted.

Theorem 3: If (X, C) is a t-graph then the elements of X may be
partitioned into M-cliques with the following properties:

(a) within each M-clique all pairs of individuals are joined by
M-edges;

(b) between any two distinct M-cliques all pairs of individuals are
either all joined by A-edges with the same direction or all joined
by N-edges;

(c) the M-cliques when ordered by A* form a partial order.

A rather less intuitive statement of Theorem 3 may be found
in Ore (1962: 151). Each part of Theorem 3 has a simple
sociometric interpretation. In part (a) the internal structure
of each M-clique is characterized by mutual positive senti-
ment between each pair of clique members. In part (b) the
relations between pairs of M-cliques is characterized either by
a status ranking of one clique over the other (the case of
A-edges) or by no status ranking (the case of N-edges).
Finally in part (c) the entire system of M-cliques is

characterized as forming a consistent structure in the sense of
a partial ordering.

AN EXAMPLE OF A TRANSITIVE GRAPH

The class of distinct t-graphs is very large and there is little
hope of accurately describing all of the possibilities in the
general case. However, in the following example we try to
illustrate the variety that is available with simple structures.
Figure I illustrates a single group that contains ten M-cliques:
LT1, U2, V, V2 , V3 , V4 , W 1, W2, W3, W4 . The M-cliques
may be of varying sizes, of course, but no group member may
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belong to more than one. Cliques U1 and U2 are unranked
relative to any of the other cliques. The cliques VI, V2 , V3 ,
and V4 form a system of &dquo;levels&dquo; such that everyone on a
lower &dquo;level&dquo; chooses everyone above him. The cliques WI,
W2 , W3, and W4 are involved in a ranking system but they do
not form such clear-cut &dquo;levels&dquo; since the individuals in W4
do not choose those in W2 .

Figure I provides an illustration of the variety of organiza-
tional patterns which may result after the conditions for a
t-graph have been satisfied. It indicates as well how transi-

tivity in positive interpersonal sentiment can result in

stratification as well as clustering. This point is particularly
important because of the tendency of theorists to view

stratification and clustering as two separate dimensions of
social structure (see, for example, Homans, 1950; Brown,
1965). While status relationships have previously been identi-
fied with asymmetry and clustering with mutuality in

positive interpersonal sentiment (Davis and Leinhardt, 1971),
the t-graph model indicates that these are simply different
expressions of a single social organizational principle.
Furthermore, if a t-graph is considered to be a generalization
of Heider’s balance theory, then the figure illustrates how
balance leads to the development of hierarchies as well as
cliques.

SPECIAL CASES OF T-GRAPHS OBTAINED BY

RESTRICTING THE TYPES OF EDGES AND TRIADS

This section is devoted to examining a variety of special
cases of t-graphs. Thus all of the structures mentioned in this
section are examples of t-graphs that satisfy further condi-
tions beyond transitivity. We examine only two possible
classes of restrictions one might impose on a t-graph. The
first concerns restrictions on the types of dyads (or edges)
that can appear in the t-graph. The second concerns
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restrictions on the types of triads that can appear. Other

types of t-graphs are mentioned briefly in the section &dquo;Other
Types of T-Graphs&dquo; (p. 121 ).

RESTRICTIONS ON THE EDGES

If a t-graph has only one type of edge (i.e., all dyads are
the same type), then the form of the t-graph is completely
determined. &dquo;M-edges only&dquo; implies that the t-graph consists
of a single completely connected M-clique. &dquo;A-edges only&dquo;
implies that the t-graph forms a transitive tournament, that
is, a complete linear ordering of all individuals (compare
Landau, 1951-1953). &dquo;N-edges only&dquo; ensures that the t-graph
is a totally disconnected set of points.

More interesting possibilities arise when the t-graph is
allowed to possess edges of two but not all three types. For
example, if only M- and A-edges are allowed, then Theorem 3
implies that the t-graph forms a quasi-series (Hempel, 1952).
This type of structure consists of a linearly ordered series of
M-cliques as indicated in Figure 2. The possibilities that may
arise when only M- and N-edges are allowed are summarized
in the following corollary of Theorem 3:

Corollary 1: If (X, C) is a t-graph and A is empty, then X may be
partitioned into M-cliques such that:

(a) within each M-clique, all individuals are joined by M-edges,
(b) between any two distinct M-cliques all individuals are joined by

N-edges.

Corollary 1 describes Davis’ &dquo;clusterable graph&dquo; (Davis,
1967). This model as well as the structural balance model of
Cartwright and Harary (1956) is usually stated in terms of
signed graphs rather than digraphs as done here. However, if
positive edges are identified with M, and negative edges
identified with N, a signed graph may be considered as a
special case of a digraph for which A is empty. This
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Figure 2: SCHEMATIC REPRESENTATION OF A QUASI-SERIES. BOXES
REPRESENT M-CLIQUES AND THE ARROWS DENOTE THE

RELATION A*.

interpretation of a signed graph is a purely conceptual device
and should not be confused with the practical question of
turning sociometric data-which are usually directed graphs-
into signed graphs. (In this situation, M-edges are usually
scored positive, N-edges are usually negative, but A-edges
may be scored either positive or negative depending on one’s
point of view.)
As indicated in the section &dquo;Mathematical Definition of a

Transitive Graph&dquo; (p. 109), no essential simplification of the
structure of a t-graph occurs if no M-edges are allowed. The
resulting structure may be a fully general partial order. Table
1 summarizes the result of restricting the edges of a t-graph.
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TABLE 1

Graph types resulting from restricting the edges of a t-graph.

RESTRICTIONS ON THE TRIADS

Figure 3 illustrates the sixteen essentially different (non-
isomorphic) triad configurations that may obtain in a

directed binary graph. The triads are labeled in the manner
used in Holland and Leinhardt (1970). The three numbers
refer to the quantity of M, A, and N-edges in the triad,
respectively. The letters U, D, T, and C further distinguish
the triad types. A few technical points are worth mentioning.
First, a triad is intransitive if for at least one of the six

possible ordered triples of the individuals that make it up, say
(x, y, z), it occurs that x C y and y C z but not x C z. Thus a
triad may be intransitive from one, two, or all three or the
individuals’ points of view. Second, a triad may contain up to
six transitive ordered triples. Third, if any one of the

following three configurations obtains,

x C y and not y C z or
not x C y but y C z or
neither x C y nor y C z,

then the transitivity condition says nothing regarding x C z.
These configurations are called vacuously transitive. In Figure
3, the transitive and vacuously transitive triads appear on the
left while the intransitive triads appear on the right. The
binary relation, C, will be transitive if and only if the graph
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Figure 3: ALL 16 TRIAD TYPES ARRANGED VERTICALLY BY NUMBER OF
CHOICES MADE AND DIVIDED HORIZONTALLY INTO THOSE

WITH NO INTRANSITIVITIES AND THOSE WITH AT LEAST ONE.

contains no intransitive triads. Thus a t-graph is characterized
by possessing only those triad types that fall on the left side
of Figure 3. It is evident that restricting the allowable dyads
also restricts the allowable triads-for example, when A is
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empty the only possible triads that any graph (transitive or
not) may possess are the types 300, 201, 102, and 003.

The next model considered is structural balance. Davis’
characterization of clusterable graphs is that no triad of the
201-type exists in the graph. From our point of view this
characterization is equivalent to assuming that C is transitive
and A is empty. The structure theorem of Cartwright and
Harary (1956) states that a signed graph is balanced

(separates into two cliques) if and only if there are no

negative 3-cycles. This means no triads of type 201 or 003.
From our point of view, structural balance assumes that A is
empty and C is transitive plus an added condition that has
the effect of restricting the number of possible M-cliques to
two at most.

A restriction on the triad types that has the effect of
limiting the number of M-cliques seems difficult to justify
and this may account for the difficulty of empirically
verifying the dichotomization of groups predicted by struc-
tural balance. A corresponding restriction can be found for
the case when N rather than A is empty. As we have seen
when N is empty, the t-graph must be a quasi-series. It will be
restricted to a quasi-series with only two levels if the triad
type’030T is prohibited.
The final structure we discuss is the model proposed by

Davis and Leinhardt (1971). Generalizing a system of

completely ranked individuals (transitive tournament) to a
system of ranked cliques with one clique per level (quasi-
series) suggests the further generalization to ranked clusters
of cliques-possibly more than one clique per level. This is
tlie; model described by Davis and Leinhardt. They called it a
partial order but we shall refer to it as a system of ranked
clusters. Although the conditions for this model are remark-
ably close to the definition of transitivity, it does not reach
the full generality of a t-graph. Ranked clusters allow M, A,
and N all to be non-empty, unlike any of the special cases
described so far. M-edges exist between members of an

 at UNIV OF CALIFORNIA SANTA CRUZ on April 4, 2015sgr.sagepub.comDownloaded from 

http://sgr.sagepub.com/


[120]

M-clique as usual; N-edges exist between the M-cliques on a
given level, while A-edges exist between M-cliques on

different levels. Note that N-edges in the ranked clusters
model link cliques of equal status while in the general t-graph
cliques linked by such edges are not necessarily comparable.
This difference in interpretation of the role N-edges play is
crucial. Davis and Leinhardt give a characterization of their
model in terms of its triads, and their interpretation of
N-edges leads them to exclude a triad included in a general
t-graph. In particular, they prove that a directed graph may
be arranged into a system of ranked clusters of cliques if and
only if it does not contain any of the intransitive triads (the
entire right side of Figure 3) or any 012 triads. From our
point of view, their theorem may be stated as follows:

Theorem 4: (Davis and Leinhardt, 1971) A directed graph (X, C), is
a system of ranked clusters if and only if it is a t-graph and it has
no 012 triads.

The proof of Theorem 4 given by Davis and Leinhardt uses
the cluster theorem of Davis (1967). Another line of proof
assumes that (X, C) is a t-graph, and examines the implication
of no 012 triads for that structure. The following definition
and lemma elucidate the essential logic of the argument:

Definition 3 : If U and V are two distinct M-cliques of X,
then define U N* V if and only if u N v for all u in U and v in
V. Also set U N* U for all M-cliques, U.

Lemma 1: Let (X, C) be a t-graph and suppose it has no 012 triads,
then N* is an equivalence relation on the M-cliques.

Proof: By definition N* is reflexive; also Theorem 1 (g) implies that
N* is symmetric. It remains to show that N* is transitive.

Suppose U N* V and V N* W for three M-cliques. Since U and
W and M-cliques by Theorem 3 they either have all A-edges or
all N-edges between them. Suppose they have an A-edge; e.g.,
u A w for some u in U and w in W. Then we have v in V such
that u N v, v N w, and u A w. Hence, the triad u, v, w is of
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type 012 contrary to hypothesis. The same argument applies if
w A u holds. Thus U and W have all N-edges between them so
that U N* W. Q.E.D.

The argument to establish the &dquo;if ’ part of Theorem 4
proceeds by using N* to partition the M-cliques into

mutually exclusive and exhaustive clusters of cliques. Within
a cluster of cliques all of the cliques are joined by N-edges
and between the clusters all of the cliques are joined by
A-edges. Theorem 3 ensures that the A-edges from all the

cliques in a given cluster go in the same direction so that the
clusters are ranked from lowest to highest. The &dquo;only if part
of Theorem 4 follows a straightforward enumeration of the
possible triads.
From the point of view of a t-graph the Davis-Leinhardt

model of ranked clusters consists of an additional assumption
that has the effect of drastically reducing the number of
possible structures. In particular, a t-graph may contain
disconnected components, but a system of ranked clusters
cannot. The often noted &dquo;sex cleavage&dquo; (Gronlund, 1959;
Leinhardt, 1968; Moreno, 1953) of children’s classroom

groups would be an allowable situation under the t-graph
model but would disconfirm a model which prohibited the
occurrence of 012 triads.

OTHER TYPES OF T-GRAPHS

The restrictions we have discussed so far are all of the form
&dquo;no subgraphs of size x of the type y.&dquo; Our attention has
been focused on subgraphs of size 2 and 3 (dyads and triads).
Many of the important classes of graphs cannot be described
in these terms. For example, the condition that a graph be
connected cannot be described by saying that it does not

possess any subgraphs of a fixed size in particular isomorph-
ism classes. Semilattices, t-graphs proposed by Friedell

(1967) as models of organizations, cannot contain discon-
nected components, but can contain 012 triads unlike the
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Davis-Leinhardt model. Semilattices are examples of struc-
tures that cannot be characterized by the nonexistence of
particular subgraph types.

EMPIRICAL SUPPORT FOR THE T-GRAPH MODEL

Recently, Davis (1970) has carried out an analysis of 742
sociomatrices from diverse small groups. His data provide
tentative empirical support for the t-graph model. For each
triad type, Davis computes the percent of sociomatrices in his
data bank for which the observed number of triads of the

given type exceeds the number expected by chance given the
distribution of M, A, and N edges in the sociomatrix.

(Formulae for these expected values appear in Holland and
Leinhardt, 1970.) He then uses these thirteen’ proportions as
the dependent variables to be explained by models of small
group structure. The overall results of Davis’ analysis appear
in Table 2. We have made several modifications including the
change to our triad nomenclature and the addition of three
new columns:

(1) the column headed &dquo;transitivities&dquo; contains the number of
ordered triples (or points of view) in each triad type for which
the transitivity condition holds and is nonvacuous; (2) the
column headed &dquo;intransitivities&dquo; records the number of times in
each triad that a contradiction to transitivity exists; (3) the last
column contains the difference between these two quantities.

These columns aid in interpreting Davis’ results, for they
make it clear that the more intransitive the triad, the less
frequently it appears. The columns also indicate an apparent
counterbalancing effect resulting from the number of transi-
tivities in a triad. The difference between the number of

transitivities and the number of intransitivities predicts very
nearly the observed order of infrequency. Those triads with
more transitivities are more frequent than chance expecta-
tion, and those with more intransitivities are less frequent
than chance expectation in proportion to the difference in
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TABLE 2

DEFICITS OF TRIADS IN 742 SOCIOMATRICES

a. From : Davis, 1970, Table 1, &dquo;Total&dquo; column: &dquo;Percent of Matrices with Triad

Frequency Less Than Chance Expectation.&dquo;

b. Number of matrices with expected value of 1.00 or greater. Triad predictions
were not tested when expectation of a triad fell below 1.00 in a matrix.

these two characteristics. The only triad-type that violates
this proposition is the 210, but we hasten to point out that
our choice of the difference between transitivities and
intransitivities was arbitrary and that it might be better to
give the one intransitivity of the 210 triad more weight than
we have.
One substantive interpretation of these results is that there

is a tendency in sociometric data away from imbalance (i.e.,
intransitivity) and that when imbalance does occur it is

resolved through transitive closure rather than through the
development of vacuous transitivity.

NOTES

1. Transitive graphs are discussed in Harary, Norman, and Cartwright (1965:
chs. 10 and 11).

2. Davis has thirteen triad types rather than the sixteen given in Figure 3
because he groups types 111U and 111D together, types 021U and 021D
together, and types 120U and 120D together.
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