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Abstract— We derive sharp thresholds for exact recovery
of communities in a weighted stochastic block model, where
observations are collected in the form of a weighted adjacency
matrix, and the weight of each edge is generated independently
from a distribution determined by the community membership
of its endpoints. Our main result, characterizing the precise
boundary between success and failure of maximum likelihood
estimation when edge weights are drawn from discrete dis-
tributions, involves the Renyi divergence of order 1

2
between

the distributions of within-community and between-community
edges. When the Renyi divergence is above a certain thresh-
old, meaning the edge distributions are sufficiently separated,
maximum likelihood succeeds with probability tending to 1;
when the Renyi divergence is below the threshold, maximum
likelihood fails with probability bounded away from 0. In
the language of graphical channels, the Renyi divergence pin-
points the information-theoretic capacity of discrete graphical
channels with binary inputs. Our results generalize previously
established thresholds derived specifically for unweighted block
models, and support an important natural intuition relating
the intrinsic hardness of community estimation to the problem
of edge classification. Along the way, we establish a general
relationship between the Renyi divergence and the probability
of success of the maximum likelihood estimator for arbitrary
edge weight distributions. Finally, we discuss consequences of
our bounds for the related problems of censored block models
and submatrix localization, which may be seen as special cases
of the framework developed in our paper.

I. INTRODUCTION

The recent explosion of interest in network data has
created a need for new statistical methods for analyzing
network datasets and interpreting results [29], [12], [21],
[15]. One active area of research with diverse applications in
many scientific fields pertains to community detection and
estimation, where the information available consists of the
presence or absence of edges between nodes in the graph,
and the goal is to partition the nodes into disjoint groups
based on their relative connectivity [13], [18], [32], [35],
[25], [31].

A standard assumption in statistical modeling is that
conditioned on the community labels of the nodes in the
graph, edges are generated independently according to fixed
distributions governing the connectivity of nodes within and
between communities in the graph. This is the setting of
the stochastic block model (SBM) [20], [37], [36]. In the
homogeneous case, edges follow one distribution when both
endpoints are in the same community, regardless of the
community label; and edges follow a second distribution
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when the endpoints are in different communities. A variety
of interesting statistical results have been derived recently
characterizing the regimes under which exact or weak re-
covery of community labels is possible (e.g., [26], [28], [24],
[1], [2], [4], [16], [17], [38]). Exact recovery refers to the
case where the communities are partitioned perfectly, and
a corresponding estimator is called strongly consistent. On
the other hand, weak recovery refers to the case where the
estimated community labels are positively correlated with the
true labels.

In the setting of stochastic block models with nearly-equal
community sizes and homogeneous connection probabilities,
Zhang and Zhou [38] derive minimax rates for statistical
estimation in the case of exact recovery. Interestingly, the
expression they obtain contains the Renyi divergence of order
1
2 between two Bernoulli distributions, corresponding to the
probability of generation for within-community and between-
community edges. Hence, the hardness of recovering the
community assignments is somehow captured in the hardness
of inferring whether pairs of nodes lie within the same
community or in different communities. This result has a
very natural intuitive interpretation, since knowing whether
each pair of nodes (or even each pair of nodes along the
edges of a spanning tree of the graph) lies in the same
community would clearly lead to perfect recovery of the
community labels. On the other hand, this constitutes a
somewhat different perspective from the prevailing viewpoint
of the hardness of recovering community labels being in-
nately tied to the success or failure of a hypothesis testing
problem determining whether an individual node lies in one
community or another [4], [28], [38]. Several other attempts
have been made to relate the sharp threshold behavior of
community estimation to various quantities in information
theory [3], [9], [11], [4], but the precise relationship is still
largely unknown.

The vast majority of existing literature on stochastic block
models has focused on the case where no other information
is available beyond the unweighted adjacency matrix. In an
attempt to better understand the information-theoretic quanti-
ties at work in determining the thresholds for exact recovery
in stochastic block models, we will widen our consideration
to the more general weighted problem. Note that situations
naturally arise where network datasets contain information
about the strength or type of connectivity between edges,
as well [30], [8]. In social networks, information may be
available quantifying the strength of a tie, such as the
number of interactions between the individuals in a certain
time period [34]; in cellular networks, information may
be available quantifying the frequency of communication
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between users [7]; in airline networks, edges may be labeled
according to the type of air traffic linking pairs of cities [6];
and in neural networks, edge weights may symbolize the
level of neural activity between regions in the brain [33].
Of course, the connectivity data could be condensed into an
adjacency matrix consisting of only zeros and ones, but this
would result in a loss of valuable information that could be
used to recover node communities.

In this paper, we analyze the “weighted” setting of the
stochastic block model, where edges are generated from ar-
bitrary distributions that are not restricted to being Bernoulli.
Our key question is whether the Renyi divergence of order
1
2 appearing in the results of Zhang and Zhou [38] con-
tinues to persist as a fundamental quantity that determines
the hardness of exact recovery in the generalized setting.
Surprisingly, our answer is affirmative. First, we show that
the Renyi divergence between the within-community and
between-community edge distributions may be used directly
to control the probability of failure of the maximum likeli-
hood estimator. Hence, as the Renyi divergence increases,
corresponding to edge distributions that are further apart,
the probability of failure of maximum likelihood is driven
to zero. Next, we focus on a specific regime involving
discrete weights (or colors), where the average number of
edges of each specific color connected to a node scales
according to Θ(log n). In this case, we show that the bounds
derived earlier involving the Renyi divergence are in fact
tight, and exact recovery is impossible when the Renyi
divergence between the weighted distributions is below a
certain threshold. Our results are also applicable in the more
general setting of more than two communities. Finally, we
discuss the consequences of our theorems in the context
of decoding in discrete graphical channels and submatrix
localization with continuous distributions.

The remainder of the paper is organized as follows: In
Section II, we introduce the basic background and math-
ematical notation used in the paper. In Section III, we
present our main theoretical contributions, beginning with
achievability results for the maximum likelihood estimator
in a weighted stochastic block model with arbitrarily many
communities. We then derive sharp thresholds for exact
recovery in the discrete weighted case, and then interpret our
results in the framework of graphical channels and submatrix
localization. We conclude in Section IV with a discussion
of several open questions related to phase transitions in
weighted stochastic block models. For detailed proofs of the
theorems in the paper, we refer the reader to the longer arXiv
manuscript [22].

II. BACKGROUND AND PROBLEM SETUP

Consider a stochastic block model with K ≥ 2 com-
munities, each with n nodes. For each node i, let σ(i) ∈
{1, 2, . . . ,K} denote the community assignment of the node.
A weighted stochastic block model consists of a random
graph generated on the vertices {1, 2, . . . , nK}, using the
community assignments σ, as well as a sequence of dis-
tributions p

(k1,k2)
n (= p

(k2,k1)
n ), for 1 ≤ k1, k2 ≤ K and

n ≥ 1. The support of the distributions may be continuous
or discrete. In the discrete case, we will often use the
terms weight, color, and label interchangeably. The weighted
random graph is generated as follows: Each edge (i, j) is
assigned a random weight W(i,j) ∼ p

(σ(i),σ(j))
n , independent

of the weights of all other edges. Such a stochastic block
model is called non-homogeneous, since the distributions of
the edge weights depend not only on whether the endpoints
of an edge belong to the same community, but also on which
communities they belong to.

In this paper, we will consider a homogeneous weighted
stochastic block model, which may be described simply
as follows: Given a sequence of distributions {pn} and
{qn}, every edge (i, j) is assigned a random weight W(i,j),
independently of all other edge weights, such that

W(i,j) ∼

{
pn if σ(i) = σ(j),

qn if σ(i) 6= σ(j).
(1)

The traditional (unweighted) stochastic block models consti-
tute a special case of weighted stochastic block models, since
we may encode edges with weights 1 or 0, corresponding to
the presence or absence of an edge.

Our ultimate goal is to infer the underlying communities
based on observing the weight matrix W . Several differing
notions of inference have been studied in the case of un-
weighted stochastic block models. In the “sparse regime,”
where the distributions pn and qn scale as

pn(0) =
1− a/n

n
, pn(1) =

a

n
, and

qn(0) =
1− b/n

n
, qn(1) =

b

n
,

for constants a, b ≥ 0, one cannot hope to recover the
communities exactly, since the graph is not connected with
high probability. The notion of “detection” or “weak re-
covery” considered in this regime consists of obtaining
community assignments that are positively correlated with
the true assignment. It has been shown in the case K = 2
that if

(a− b)2 > a+ b, (2)

it is impossible to obtain such an assignment1; whereas if

(a− b)2 < a+ b,

obtaining a positively correlated assignment becomes possi-
ble [27], [24].

In order to obtain exact recovery, a simple necessary
condition is that the graph must be connected, meaning
the probability of having an edge must scale according to
Ω
(

logn
n

)
. This regime was considered in Abbe et al. [2],

where the probabilities were given by

pn(0) =
1− a log n/n

n
, pn(1) =

a log n

n
, and

qn(0) =
1− b log n/n

n
, qn(1) =

b log n

n
,

1We appropriately modify the conditions to take into account that the
community size in our setting is n, as opposed to n/2.
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for constants a, b ≥ 0. In this regime, it was shown [2] that
exact recovery of communities is possible if∣∣∣√a−√b∣∣∣ > 1,

and impossible if ∣∣∣√a−√b∣∣∣ < 1.

Apart from exact recovery (also known as strong consis-
tency) and weak recovery, a notion of partial recovery (also
known as weak consistency) has also been considered [28],
[5], [38]. This notion lies between the other two notions
of recovery, and only requires the fraction of misclassified
nodes to converge in probability to 0 as n becomes large. A
very general result for the K = 2 case, characterizing when
exact and partial recovery are possible for the unweighted
homogeneous stochastic block model, is provided in Mossel
et al. [28]. Zhang and Zhou [38] consider the problem of
community detection in a minimax setting with an appro-
priate loss function, where the parameter space consists of
both homogeneous and non-homogeneous stochastic block
models, the number of communities may be fixed or growing,
and the community sizes need not be exactly equal. In
particular, for the case of homogeneous stochastic block
models where the community sizes are almost equal and
scale as n(1+o(1))

K , they show that the loss function decays
at the rate of e−(1+o(1))nI/K whenever nI

K → ∞. Here,
I is the Renyi divergence of order 1

2 between the two
Bernoulli distributions corresponding to between-community
and within-community edges. Furthermore, they show that
exact recovery is possible if the loss function is o(n−1),
whereas partial recovery is possible if and only if it is o(1).
The achievability bound derived in this way matches that of
Abbe et al. [2].

Heimlicher et al. [19] also conjectured that similar thresh-
old phenomena should exist in the case of the stochastic
block model with discrete weights. In particular, Heimlicher
et al. [19] consider the homogeneous case where K = 2
and the between-community and within-community connec-
tion probabilities scale as Θ

(
1
n

)
. Analogous to expression

(2), they conjectured a threshold in terms of the discrete
probabilities such that weak recovery is possible above this
threshold and impossible below the threshold. The impossi-
bility of reconstruction below the conjectured threshold was
established in Lelarge et al. [23], and efficient algorithms that
achieve weak recovery were provided for a constant above
the threshold.

In this paper, we consider the problem of exact recovery in
the homogeneous weighted stochastic block model with K ≥
2 communities. By definition, the estimator that minimizes
the probability of erroneous community assignments is the
maximum likelihood estimator: If the maximum likelihood
estimator fails to recover the communities with a certain
probability, then the probability of error of any other esti-
mator is also lower-bounded by the same probability. Thus,
to show impossibility of recovery, it is sufficient to show
that the maximum likelihood estimator fails with a nonzero

probability. Finally, note that as in the unweighted case, the
maximum likelihood estimator in the weighted case is easy
to describe in terms of a min-cut graph partition [23]. Let L
be the class of edge labels, and let pn and qn be distributions
supported on L which describe the probabilities of edge
labels for within-community and between-community edges.
For an edge with label ` ∈ L, we assign a weight of
log
(
pn(`)
qn(`)

)
. The maximum likelihood estimator then seeks

to partition the vertices into disjoint communities in such a
way that the sum of weights of between-community edges
is minimized.

III. MAIN RESULTS AND CONSEQUENCES

In this section, we present our main results concerning
achievability and impossibility of exact recovery, along with
several applications.

A. Renyi Divergence and Achievability

We begin with a result that controls the probability of
success for maximum likelihood estimation under the general
homogeneous model (1), when K = 2. Our first theorem
relates the probability of failure of maximum likelihood to
the Renyi divergence between the distributions for within-
community and between-community edge weights.

Theorem 3.1: Consider a stochastic block model with
two communities of size n, with connection probabilities
governed by the model (1). Then the probability that the
maximum likelihood estimator fails is bounded as

P(F ) ≤
n/2∑
k=1

exp
(

2k
(

log
n

k
+ 1
)
− 2k(n− k)I

)
, (3)

where I is the Renyi divergence of order 1
2 between the edge

weight distributions pn(x) and qn(x), given by

I =

{
−2 log

(∫∞
−∞

√
pn(x)qn(x)dx

)
, (continuous case),

−2 log
∑
`≥0
√
pn(`)qn(`), (discrete case).

Note that the general exponential bound in inequality (3)
decreases with I , which corresponds to the distributions
pn and qn becoming more separated. This corroborates the
intuition that the failure probability of maximum likelihood
P(F ) appearing on the left-hand side of inequality (3)
should decrease with I , since the problem becomes easier
to solve as the within-community and between-community
distributions become easier to distinguish.

Of course, Theorem 3.1 is particularly informative in
regimes where we can show that the right-hand side of in-
equality (3) tends to 0, implying that the maximum likelihood
estimator succeeds with probability tending to 1. To illustrate
this point, we have the following corollary:

Corollary 3.1: Suppose the Renyi divergence between pn
and qn satisfies

lim inf
n→∞

nI

log n
> 1.

Then the maximum likelihood estimator succeeds with prob-
ability converging to 1 as n→∞.
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We will discuss the implications of Corollary 3.1 in various
scenarios in the sections below. We also have a version of
Theorem 3.1 that is applicable to the case of more than two
communities. We state and prove the more general theorem
separately, since the argument for K = 2 is substantially
simpler.

Theorem 3.2: Consider a stochastic block model with
K communities of size n, with connection probabilities
governed by the model (1). Then the probability that the
maximum likelihood estimator fails is bounded as

P(F ) ≤
bn/2c∑
m=1

min

{(
enK2

m

)m
, KnK

}
e(−nm+m2)I

+

nK∑
m=bn/2c+1

min

{(
enK2

m

)m
, KnK

}
e−

2mn
9 I , (4)

where I is the Renyi divergence of order 1
2 between the edge

weight distributions pn(x) and qn(x). In particular, if

lim inf
n→∞

nI

log n
> 1, (5)

then the maximum likelihood estimator succeeds with prob-
ability converging to 1 as n→∞.

The proof of Theorem 3.2 builds upon the arguments of
Zhang and Zhou [38] and extends them to more general
distributions.

B. Thresholds for Weighted Stochastic Block Models
In this section, we derive a threshold phenomenon for

exact recovery in the case when pn and qn are discrete
distributions. Analogous to the scenario considered in [2],
we now concentrate on the regime where the probability of
having an edge scales as Θ

(
logn
n

)
. However, in addition to

Bernoulli distributions, our framework accommodates distri-
butions on a larger alphabet, denoted by the set {0, 1, . . . , L}
for L ≥ 1. Thus, instead of simply observing the presence or
absence of an edge, we may also observe the corresponding
color or weight of the edge. We define the distributions
{pn, qn} as follows: For two vectors a = [a1, a2, . . . , aL]
and b = [b1, b2, . . . , bL] in RL+, define

pn(0) = 1− u log n

n
, and pn(`) =

a` log n

n
, ∀1 ≤ ` ≤ L,

(6)

qn(0) = 1− v log n

n
, and qn(`) =

b` log n

n
, ∀1 ≤ ` ≤ L,

(7)

where u =
∑L
`=1 a` and v =

∑L
`=1 b`. We wish to determine

a criterion in terms of a and b that describes when it is
possible to to exactly determine the communities in this
model.

Our first result is the following theorem guaranteeing the
success of the maximum likelihood estimator:

Theorem 3.3: Suppose
L∑
`=1

(√
a` −

√
b`

)2
> 1. (8)

Then the maximum likelihood estimator recovers the com-
munities exactly with probability converging to 1 as n→∞.
We note that the expression on the left-hand side of in-
equality (8) is increasing in L, agreeing with the intuition
that the exact recovery problem becomes easier when more
edge colors are available: Given a graph with L edge colors,
we may always erase certain colors to obtain a new graph
with L′ < L colors, and then apply a maximum likelihood
estimator to the new graph. The probability of success of
this estimator must be at least as large as the probability of
success of a maximum likelihood estimator applied to the
original graph; in particular, if

L′∑
`=1

(√
a` −

√
b`

)2
> 1, (9)

implying that maximum likelihood succeeds with probability
converging to 1 on the graph with L′ colors, the probability
of success of maximum likelihood on the graph with L
colors must also converge to 1. Indeed, inequality (9) implies
inequality (8), since L′ < L. Similarly, we may check that by
the Cauchy-Schwarz inequality, the following relation holds:

√√√√ L∑
`=1

a` −

√√√√ L∑
`=1

b`

2

≤
L∑
`=1

(√
a` −

√
b`

)2
.

This captures the fact that if the maximum likelihood estima-
tor succeeds with probability converging to 1 on a graph with
L colors when we replace all occurring edges with a single
color, then the maximum likelihood estimator on the original
graph should also succeed with probability converging to 1.

Remark 3.1: Examining the proof of Theorem 3.3, we
may see that it is not necessary for the number of colors
L to be finite. Indeed, as long as we have

∞∑
`=1

(√
a` −

√
b`

)2
> 1,

in the infinite case, we will also have lim infn→∞
nI

logn > 1,
implying the desired result.

As demonstrated in the proof of Theorem 3.3, we have
the characterization

I =

(
L∑
`=1

(√
a` −

√
b`

)2) log n

n
+O

(
log2 n

n2

)
of the Renyi divergence. Hence, inequality (8) governs
whether I < logn

n or I > logn
n , for large n. As illustrated

in the computation appearing in the proof of Theorem 3.3,
the inequality I > logn

n implies that the right side of
inequality (3) tends to 0 as n → ∞. On the other hand,
the next theorem guarantees that if I < logn

n , we have
P(F ) bounded away from 0. Hence, the success or failure of
maximum likelihood occurs with respect to a sharp threshold
that is encoded within the Renyi divergence. In the next
theorem, we will make the additional assumption that

a`, b` > 0, ∀1 ≤ ` ≤ L, (10)
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meaning the probabilities of all L colors are nonzero both
within and between communities.

Theorem 3.4: Suppose the condition (10) holds. If

L∑
`=1

(√
a` −

√
b`

)2
< 1,

then for any K ≥ 2 and for sufficiently large n, the maximum
likelihood estimator fails with probability at least 1

3 .
Viewed from another angle, Theorems 3.3 and 3.4 imply

that the quantity
∑L
`=1

(√
a` −

√
b`
)2

determines a sharp
threshold for when exact recovery is possible in the K-
community weighted stochastic block model; when the quan-
tity is larger than 1, the maximum likelihood estimator
succeeds with probability converging to 1, whereas when
the quantity is smaller than 1, the maximum likelihood
estimator fails with probability bounded away from 0. Also
note that the quantity is a sort of Hellinger distance between
a and b, although a and b need not be the probability mass
functions of discrete distributions, since their components do
not necessarily sum to 1.

Remark 3.2: The assumption (10) appears to be an un-
desirable artifact of the technique used to prove Theo-
rem 3.4, which involves bounding appropriate functions of
the likelihood ratio between within-community and between-
community distributions. However, it appears that a substan-
tially different approach may be required to handle the case
when assumption (10) does not necessarily hold. Further-
more, note that our argument also requires the likelihood
ratio to be bounded by some constant M. Hence, although
our impossibility proof continues to hold when L is infinite,
we will need to assume a bound of the form

sup
`≥0

{
log

(
pn(`)

qn(`)

)}
≤M

to establish the impossibility result when L is infinite. (Such
a bound clearly holds for finite values of L.)

We also note that the results of Theorems 3.3 and 3.4
could be generalized further to include a mixture of discrete
and continuous distributions. In other words, the distributions
of pn(x) and qn(x) could follow arbitrary (discrete or
continuous) distributions for the nonzero values, as long as

pn(0) = 1− u log n

n
, and qn(0) = 1− v log n

n
.

This reflects the fact that the graph is still fairly sparse,
with average degree scaling as Θ(log n). However, whenever
two nodes are connected by an edge, the distribution of the
corresponding edge may follow a more general distribution.

C. Censored Block Models and Graphical Channels

We now discuss the relationship between our results and
the notion of graphical channels introduced by Abbe and
Montanari [3]. Recall that a graphical channel takes as input
a labeling of vertices on a graph, and each edge is encoded by
a deterministic function of the adjacent vertices. The edges
are then passed through a channel, and the output is observed.

Abbe et al. [1] analyze a specific instantiation of a discrete
graphical channel known as the censored block model. In this
case, the node labelings are binary, and edges are encoded
using the XOR operation on adjacent vertices. The channel is
a discrete memoryless channel with output alphabet {?, 0, 1},
and for fixed probabilities p, q1, q2 ∈ [0, 1], the transition
matrix of the channel is given by

? 0 1( )
0 1− p p(1− q1) pq1
1 1− p p(1− q2) pq2

.

In other words, an edge is replaced by ? with probability
1− p, and is otherwise flipped with probability q1 or 1− q2,
depending on whether the transmitted edge label is 0 or 1.
Clearly, the observed graph may be viewed as a special case
of the discrete model described in Section III-B, with K =
2 and L = 2, where ? represents an empty edge and the
two “colors” are represented by 0 and 1. This leads to the
following result, a corollary of Theorems 3.3 and 3.4:

Corollary 3.2: In the censored block model, suppose

lim inf
n→∞

{
pn

log n

[(√
1− q1 −

√
1− q2

)2
+ (
√
q1 −

√
q2)

2

]}
> 1.

Then the maximum likelihood estimator succeeds with prob-
ability converging to 1 as n→∞. On the other hand, if

lim sup
n→∞

{
pn

log n

[(√
1− q1 −

√
1− q2

)2
+ (
√
q1 −

√
q2)

2

]}
< 1,

then the maximum likelihood estimator fails with probability
bounded away from 0.
Sharp thresholds were derived for the censored block model
by Abbe et al. [1] and Hajek et al. [17] when K = 2
and q1 = 1 − q2 = ε, in the cases where ε = 1

2 and
ε ∈ [0, 1], respectively. It is easy to check that their thresholds
agree with ours. On the other hand, Corollary 3.2 does
not require the graphical channel to flip edge labels with
equal probability, and we may slightly relax the scaling
requirement p � log p

n in the statement of our corollary.
Furthermore, the theorems in Section III-B clearly hold for
more general graphical channels aside from the channel
giving rise to the censored block model; we may have more
than two labels for each node, corresponding to a larger
codebook, and the output alphabet of the channel may be
arbitrarily large. Translated into the language of graphical
channels, our results from Section III-B show the following:

Corollary 3.3: Consider a graphical channel, where node
inputs are binary and edges are encoded using an XOR
operation. The edges are passed through a discrete mem-
oryless channel that maps each edge to a discrete label ` ∈
{1, . . . , L}, with probability a` logn

n for edges encoded with 0
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and probability b` logn
n for edges encoded with 1, and erases

edges with probabilities 1−
∑L

`=1 a` logn

n and 1−
∑L

`=1 b` logn

n ,
respectively. Let I denote the Renyi entropy between the two
output distributions. If lim infn→∞

nI
logn > 1, the maximum

likelihood decoder succeeds with probability tending to 1.
If lim supn→∞

nI
logn < 1, the maximum likelihood decoder

fails with probability bounded away from 0.
As noted by Abbe and Sandon [4] in a slightly differ-

ent setting, the threshold for reliable communication in a
graphical channel is governed by a different quantity from
the mutual information between the input distribution and
the output of the channel, which arises from the analysis of
channel capacity in traditional channel coding theory. This
is because the encoding of the graphical channel is already
built into the stochastic block model framework, rather than
being optimized by the user. It is interesting to observe that
Renyi divergence and Hellinger distance are the information-
theoretic quantities that determine the “capacity” of graphical
channels in the case of equal-sized communities.

D. Thresholds for Submatrix Localization

The stochastic block model framework described in this
paper also has natural connections to the submatrix lo-
calization problem, in which our more general framework
involving arbitrary (discrete or continuous) distributions is
useful in deriving thresholds for exact recovery. The goal in
submatrix localization is to partition the rows and columns
of a random matrix A ∈ RnL×nR into disjoint subsets
{C1, . . . , CK} and {D1, . . . , DK}, where nL =

∑K
k=1 Ck

and nR =
∑K
k=1Dk. For each 1 ≤ k ≤ K, the entries

(i, j) ∈ Ck ×Dk are drawn i.i.d. from a distribution G with
mean µn > 0, and all other entries in A are drawn from the
recentered distribution G− µn.

Chen and Xu [10] derive impossibility and achievability
results for submatrix localization when |Ck| = KL and
|Dk| = KR; i.e., the row and column subsets have equal
size. Furthermore, the distribution G is assumed to be sub-
Gaussian with parameter 1. Chen and Xu [10] show that
the maximum likelihood estimator succeeds with probability
tending to 1 when

µ2
n ≥

c1 log n

min{KL,KR}
. (11)

Furthermore, if G ∼ N (µn, 1), the probability that maxi-
mum likelihood fails is bounded away from 0 when

µ2
n ≤

1

12
max

{
log(nR −KR)

KL
,

log(nL −KL)

KR

}
. (12)

Specializing to the case when KR = KL = n,
inequalities (11) and (12) imply the existence of a
threshold at µ2 = Θ

(
logn
n

)
, although the value of the

constant has not been determined precisely.

When KR = KL = n, the results in Section III-A may
be applied to obtain sufficient conditions under which the
maximum likelihood estimator succeeds for the submatrix
localization problem with probability converging to 1. We

have the following result, which follows directly from Corol-
lary 3.1 and the computation I =

µ2
n

2 in the case when
G ∼ N (µn, 1):

Corollary 3.4: Suppose KR = KL = n, and let I denote
the the Renyi divergence of order 1

2 between the distributions
G and G− µn. Suppose

lim inf
n→∞

nI

log n
> 1. (13)

Then the maximum likelihood estimator succeeds with prob-
ability converging to 1. In particular, when G ∼ N (µn, 1),
maximum likelihood succeeds if

lim inf
n→∞

nµ2
n

log n
> 4. (14)

In particular, note that the condition (14) matches inequal-
ity (11), with a value for the specific constant. Furthermore,
the sufficient condition (13) in Corollary 3.4 may be of
independent interest in obtaining thresholds for a general
version of the submatrix localization problem, where the
remaining entries in the martrix are drawn from a distribution
G′ rather than a shifted version of G. For instance, if G ∼
N (µn, σ

2
n) and G′ ∼ N (µ′n, σ

′2
n ), the sufficient condition

for exact recovery in Corollary 3.4 becomes

lim inf
n→∞

{(
(µn − µ′n)2

4σ̄2
n

+ log

(
σ′n
σn

)
− 2 log

(
σ′n
σ̄n

))
· n

log n

}
> 1,

where σ̄2
n :=

σ2
n+σ

′2
n

2 . Although we do not yet have
techniques for deriving impossibility results in the general
submatrix localization setting, we conjecture that the upper
bounds of Corollary 3.4 based on the Renyi divergence may
be tight here, as well.

IV. DISCUSSION

We have established thresholds for exact recovery in the
framework of weighted stochastic block models, where edge
weights may be drawn from arbitrary distributions. Whereas
previous investigations had concentrated on the setting of
unweighted edges, we show that the same techniques may
be extended to the weighted case. Furthermore, the Renyi
divergence of order 1

2 between the distributions of edges
coming from within-community and between-community
connections arises as a fundamental quantity governing the
hardness of the community estimation problem.

The conclusions of this paper leave open a number of open
questions regarding phase transitions in general weighted
stochastic block models. We conclude our paper by high-
lighting several interesting directions for future research.
• Thresholds for exact recovery under continuous

distributions. Although the error bound for maximum
likelihood derived in Theorem 3.1 does not impose any
conditions on the distributions pn and qn, the proofs of
the upper and lower bounds in Section III-B assume a
specific setting involving discrete distributions with the
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same support. However, situations may arise where the
observed edge weights are generated from continuous
distributions. The submatrix localization problem in
Section III-D provides one such example. It would
be interesting to see if the Renyi divergence between
pn and qn again plays a role in characterizing the
threshold for exact recovery in the continuous case.
However, a number of hurdles exist in extending our
proof of impossibility to continuous distributions. Just
as with discrete distributions, our proof technique does
not allow for distributions that are not absolutely contin-
uous with respect to each other. Furthermore, we have
assumed the existence of a finite upper boundM on the
likelihood ratio between pn and qn. Such a bound may
not exist even for absolutely continuous distributions;
for example, no such bound exists for pn = N (µn, 1)
and qn = N (0, 1) in the submatrix localization prob-
lem. Finally, the emergence and relevance of the Renyi
divergence term as a sharp threshold in this problem
may be attributed in part to the specific regime we
have considered, where the probabilities of connection
scale according to Θ(log n/n). Mossel et al. [28] have
shown that for Bernoulli distributions pn and qn in
slightly denser regimes, where the probabilities scale
according to Θ

(
log3 n
n

)
, the threshold is no longer

simply a function of the Renyi divergence.
• General thresholds for weighted distributions. Mos-

sel et al. [28] derive a very general theorem involving
thresholds for the binary stochastic block model when
K = 2. Defining

P (n, pn, qn) = P

(
n∑
i=1

Yi ≥
n∑
i=1

Xi

)
, (15)

where X ∼ pn and Y ∼ qn, and pn and qn are Bernoulli
distributions such that pn stochastically dominates qn,
Mossel et al. [28] prove that exact recovery of the two
communities is possible if and only if P (n, pn, qn) =
o
(
1
n

)
. On the other hand, there exists an estimator

for which the fraction of misclassified nodes converges
to 0 if and only if P (n, pn, qn) = o(1). It would
be interesting to derive such a statement when pn
and qn are general distributions, which could then be
used to prove our results in Section III-B as a special
case. Specifically, one might construct the analog of
expression (15) to be

P (n, pn, qn) = P

(
n∑
i=1

dn(Yi)−
n∑
i=1

dn(Xi) ≥ 0

)
,

and conjecture analogous results about exact and par-
tial recovery based on the rate at which P (n, pn, qn)
converges to 0.

• Efficient algorithms for exact recovery in weighted
stochastic block models. Hajek et al. [16], [17] and
Gao et al. [14] provide efficiently computable algo-
rithms that achieve the threshold for exact recovery in
the case of binary stochastic block models. Now that

we have characterized the threshold for a more general
class of weighted distributions, it would be interesting
to see if similar efficient algorithms may be derived to
obtain community assignments in the weighted case.
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