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Abstract
The properties of the first (largest) eigenvalue and its eigenvector (first
eigenvector) are investigated for large sparse random symmetric matrices that
are characterized by bimodal degree distributions. In principle, one should be
able to accurately calculate them by solving a functional equation concerning
auxiliary fields which come out in an analysis based on replica/cavity methods.
However, the difficulty in analytically solving this equation makes an accurate
calculation infeasible in practice. To overcome this problem, we develop
approximation schemes on the basis of two exceptionally solvable examples.
The schemes are reasonably consistent with numerical experiments when
the statistical bias of positive matrix entries is sufficiently large, and they
qualitatively explain why considerably large finite size effects of the first
eigenvalue can be observed when the bias is relatively small.

PACS numbers: 02.50.−r, 89.20.−a, 89.75.Hc

(Some figures may appear in colour only in the online journal)

1. Introduction

Since their introduction by Wigner for approximating the complex Hamiltonian of heavy
nuclei, random matrices have been used in various fields of physics and other disciplines. The
list of applications includes nuclear theory [1], quantum chaos [2], localization in electron
systems [3], finance [4], complex networks [6], wireless communication [5], combinatorial
problems in computer science [7] and more.

In general, the purpose of random matrix theory (RMT) is to investigate the statistical
properties of physical quantities that are defined by samples drawn from a given ensemble
of random matrices. A major topic is the evaluation of the asymptotic eigenvalue spectrum,
which is the typical distribution of eigenvalues as the number of rows and/or columns of
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the matrices N → ∞. For a Gaussian orthogonal ensemble (GOE), whose matrix entries are
independently distributed obeying identical Gaussian distributions of zero mean, the spectrum
follows the Wigner semicircle distribution [8]. Another type of asymptotic spectrum, termed
the Marc̆enko–Pastur distribution, comes from the covariance matrix of rectangular matrices
whose entries are independently sampled from identical Gaussian distributions of zero mean
[9]. Recent developments on sparsely connected disordered systems have led to significant
progress in being able to analyze the spectrum of sparse random matrices [10–21].

Evaluation of the first (largest) eigenvalue and its eigenvector (first eigenvector) is another
major topic of RMT. For a GOE, the first eigenvalue converges to 2 when the variance
of the matrix entries is provided as N−1 in the limit of N → ∞, and the finite size
correction follows the Tracy–Widom distribution when N is large but finite [22]. As for
the covariance matrix of dense random rectangular matrices, the asymptotic behaviors of the
first eigenvalue/eigenvector have been examined analytically and numerically in situations
where one can set the strength of preferential directions underlying the random rectangular
matrices [23, 24]. For sparse matrices, convergence to the Tracy–Widom distribution was
recently proved for the first eigenvalue in the case of fixed degrees, which denote the numbers
of nonzero entries per row/column in matrices, and entries of random signs [25]. There
are also various studies on the second eigenvalue of adjacency matrices of fixed degrees
[26, 27]. However, as far as the authors know, the first eigenvalue problem for ensembles of
sparse matrices has not been sufficiently examined yet, despite there being analyses of their
spectrum. Moreover, the need for an accurate solution to the first eigenvalue problem seems
to be growing, because the first eigenvector is useful for extracting valuable information
in the field of data analysis [28, 29] and in constructing approximate solutions of various
combinatorial problems [7, 30].

In light of this potential need, we herein investigate the asymptotic properties of the
first eigenvalue/eigenvector for ensembles of sparse symmetric matrices. A preliminary
investigation indicated that the properties are considerably influenced by the fluctuation of
degrees [31]. In order to be able to control the influence of the degree fluctuation and the
properties of the first eigenvector in a simple manner, we focus on matrix ensembles that are
characterized by a bimodal degree distribution and a biased binary distribution of nonzero
matrix entries.

This paper is organized as follows. In the following section, we explain the model that we
will examine. Section 3 introduces the methodological bases for analyzing the model. Although
the model we investigate seems quite simple, analyzing it exactly in general situations is
technically difficult. Nevertheless, one can still analytically solve the problem in two specific
cases, which are shown in section 4. On the basis of lessons derived from the solvable cases, we
develop approximate assessment schemes for handling a more general situation in section 5.
The final section is devoted to a summary.

Some contents in the following are shared with a conference paper [31]. Precisely, the
model to examine is identical, and the methodology in section 3.2 and the solvable example in
section 4.1 were shown for the first time in the conference paper. The other parts are, however,
newly provided in this paper.

2. Model definition

We consider a sparse network of N nodes indexed by i = 1, 2, . . . , N. The network is
characterized by a bimodal distribution p(k) = p1δk,c1 + p2δk,c2 of degree k(= 0, 1, 2, . . .),
which stands for the number of links from each node to other nodes. Here, we assume that
p1, p2 ∈ [0, 1] satisfy p1 + p2 = 1 and c1 � c2. Moreover, δx,y = 1 if x = y, and it vanishes,
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otherwise. We denote the average degree as c = p1c1 + p2c2, and suppose that the network is
constructed randomly for aspects other than degree. A practical scheme for generating such a
network is basically as follows [32].

(S) Set ki = c1 and ki = c2 for N p1 and N p2 indices of i = 1, 2, . . . , N, respectively, and
make a set of indices U to which each index i attends ki times. Accordingly, steps (A)–(C)
are iterated as follows.

(A) Choose a pair of two different elements from U randomly.
(B) Denote the values of the two elements as i and j. If i �= j and the pair of i and j has not

been chosen up to that moment, make a link to the pair, and remove the two elements
from U . Otherwise, return them back to U .

(C) If U becomes empty, finish the iteration. Otherwise, if there is no possibility that any more
links can be made by (A) and (B), return to (S).

Once we have generated the network, we assign entries Ji j = ±1 to the links generated
by the above procedure, sampling ±1 randomly and independently from a biased binary
distribution:

pJ(Ji j|�) = 1 + �

2
δJi j,1 + 1 − �

2
δJi j,−1. (1)

We set Ji j = 0 if i and j are not connected in the network. This yields a sample J = (Ji j) of
sparse random symmetric matrices that we will focus on.

The objective of our study is to investigate how the properties of the first eigenvalue
�/eigenvector V = (V1,V2, . . . ,VN )T, where T denotes the matrix transpose operation, of the
random matrix J depend on the system parameters c1, c2, p1 = 1 − p2 and � as N tends to
infinity. A simple consideration guarantees that � is upper bounded by c2 for any realization
of J (appendix A). On the other hand, when p1 = 1 and � = 1, which means each row/column
of J has c1 entries of unity exactly, � = c1 and V ∝ (1, 1, . . . , 1)T hold. This implies that the
inverse participation ratio (IPR) of V , IPR ≡ (

∑N
i=1 V 4

i )/(
∑N

i=1 V 2
i )2, converges to zero, and

therefore V extends over almost all nodes as N tends to infinity in the vicinity of this parameter
setting. However, earlier studies have indicated that V can be localized in the vicinity of a few
nodes being characterized by a finite IPR when a small number of nodes of larger degree c2

are added to the sparse network and if c2 is sufficiently large [11, 12, 17]. One of our interests
is to clarify how such a change in the profile of V is related to the value of �.

3. Analytical bases: replica and cavity methods

3.1. Replica method

Formulating the first eigenvalue problem as

� = 1

N
max
v

{vTJv} subj. to |v|2 = N (2)

will form the basis of our analysis. Here, maxX { f (X )} denotes maximization of a function
f (X ) with respect to X . The solution to this problem accords with V . Identifying −(1/2)vTJv

as the Hamiltonian of the dynamical variable v yields the partition function,

Z(β; J) =
∫

yvδ(|v|2 − N) exp

(
βvTJv

2

)
. (3)

This offers another way to express the first eigenvalue: � = 2 limβ→∞(Nβ)−1 ln Z(β; J). The
typical first eigenvalue can be obtained by averaging the logarithm of the partition function
over the random matrix J.
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The above considerations naturally lead one to consider trying a solution using the
replica method [33]. Hereafter, let us generally denote [O(X )]X as the average of O(X )

with respect to random variable X . In the replica method, we first evaluate analytical
expressions of the moment of Z(β; J), [Zn(β; J)]J, for ∀n = 1, 2, . . . ∈ N utilizing an
identity Zn(β; J) = ∫ (∏n

a=1 dvaδ(|va|2 − N)
) × exp

(
(β/2)

∑n
a=1(v

a)TJva
)
, which is valid

for only n ∈ N. The integration variables va (a = 1, 2, . . . , n) are sometimes termed
‘replicas’ since they can be regarded as n copies of the original variable v that share
the identical external random coupling J. Although the identity is valid for only n ∈ N,
the expressions of [Zn(β; J)]J evaluated with the saddle-point method for N 	 1 under
appropriate assumptions about the permutation symmetry of the replica indices a = 1, 2, . . . , n
are likely to hold for n ∈ R as well. Therefore, we can employ the analytical expressions
for computing the average of the logarithm of the partition function by utilizing the
identity N−1 [ln Z(β; J)]J = limn→0(∂/∂n)N−1 ln [Zn(β; J)]J. In particular, under the replica
symmetric (RS) ansatz, which implies that the saddle point is invariant under any permutation
of the replica indices, this yields an expression for the typical first eigenvalue as

[�]J = extr
q(·),q̂(·),λ

{
c

2
I1[q(·)] − cI2[q(·), q̂(·)] + I3[q̂(·), λ] + λ

}
, (4)

where

I1[q(·)] ≡
∫

dA1 dH1q(A1, H1)

∫
dA2 dH2q(A2, H2)

×
[(

A2H2
1 + 2JH1H2 + A1H2

2

A1A2 − 1
− H2

1

A1
− H2

2

A2

)]
J

, (5)

I2[q(·), q̂(·)] ≡
∫

dA dHq(A, H)

∫
dÂ dĤq̂(Â, Ĥ)

(
(H + Ĥ)2

A − Â
− H2

A

)
, (6)

and

I3[q̂(·), λ] ≡ p1

∫ c1∏
μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)

( ∑c1
μ=1 Ĥμ

)2

λ − ∑c1
μ=1 Âμ

+ p2

∫ c2∏
μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)

( ∑c2
μ=1 Ĥμ

)2

λ − ∑c2
μ=1 Âμ

. (7)

Here, [· · ·]J denotes the average with respect to (1). Hereafter, we shall not distinguish between
� and [�]J because � → [�]J should hold with a probability of unity for N → ∞
because of the self-averaging property. The variational functions q(A, H) and q̂(Â, Ĥ) are joint
distributions that come from the RS saddle-point calculation, whereas λ originates from the
constraint of the δ-function in (3). The notation extrX { f (X )} generally stands for extremization
of f (X ) with respect to X . A derivation of (4)–(7) is shown in appendix B.

3.2. Cavity method

An alternative approach, termed the cavity method [34], is of utility for understanding the
physical implications of the seemingly artificial extremization variables q(A, H), q̂(Â, Ĥ) and
λ. In the spirit of mean field theory, directly approximating the multivariate optimization
problem of (2) by a bunch of single-variable problems as

max
vi

{−Aiv
2
i + 2Hivi

}
(8)
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(i = 1, 2, . . . , N) is another promising scheme for computing �, wherein the coefficients Ai

and Hi are to be determined in a self-consistent manner. In the cavity method, this is done
by determining the cavity fields Ai→ j and Hi→ j, which denote the coefficients of (8) for the
j-cavity system, where a node j of the neighbor of a focused node i is removed, by using the
belief propagation algorithm [35, 31, 36]:

Âi→ j = 1

Ai→ j
, Ĥi→ j = JjiHi→ j

Ai→ j
, (9)

Ai→ j = λ −
∑

k∈∂i\ j

Âk→i, Hi→ j =
∑

k∈∂i\ j

Ĥk→i. (10)

Here, λ is a Lagrange multiplier for introducing the constraint |v|2 = N of (2), while new
auxiliary variables Âi→ j and Ĥi→ j are sometimes termed the cavity biases. ∂i denotes the
neighbor of i and ∂i\ j stands for a set defined by removing node j from ∂i. After determining
the cavity fields/biases, the coefficients of the approximate objective functions are found to be

Ai = λ −
∑
k∈∂i

Âk→i, Hi =
∑
k∈∂i

Ĥk→i. (11)

In a random sparse network, the typical lengths of cycles in the network grow as O(ln N), which
means that the system can be locally regarded as a tree, ignoring any feedback effects. This
allows us to characterize the macroscopic properties of the objective system by utilizing
the distributions of the cavity fields/biases q(A, H) = (

∑N
i=1 |∂i|)−1 ∑N

i=1

∑
j∈∂i δ(A −

Aj→i)δ(H −Hj→i) and q̂(Â, Ĥ) = (
∑N

i=1 |∂i|)−1 ∑N
i=1

∑
j∈∂i δ(Â− Âi→ j)δ(Ĥ −Ĥi→ j), where

|S| stands for the number of elements in the set S. Equations (9) and (10) indicate that q(A, H)

and q̂(Â, Ĥ) are determined in a self-consistent manner:

q̂(Â, Ĥ) =
∫

dA dHq(A, H)

[
δ

(
Â − 1

A

)
δ

(
Ĥ − JH

A

)]
J

, (12)

q(A, H) = r1

∫ c1−1∏
μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)δ

⎛⎝A−λ+
c1−1∑
μ=1

Âμ

⎞⎠ δ

⎛⎝H−
c1−1∑
μ=1

Ĥμ

⎞⎠
+ r2

∫ c2−1∏
μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)δ

⎛⎝A−λ+
c2−1∑
μ=1

Âμ

⎞⎠ δ

⎛⎝H−
c2−1∑
μ=1

Ĥμ

⎞⎠ , (13)

where r1 ≡ c1 p1/c represents the probability that one terminal node has degree c1 when a
link is chosen randomly from the connectivity network and similarly for r2 ≡ c2 p2/c. On the
other hand, (11) means that the joint distribution of Ai and Hi of (8) is

Q(A, H) = p1

∫ c1∏
μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)δ

⎛⎝A−λ+
c1∑

μ=1

Âμ

⎞⎠ δ

⎛⎝H−
c1∑

μ=1

Ĥμ

⎞⎠
+ p2

∫ c2∏
μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)δ

⎛⎝A−λ+
c2∑

μ=1

Âμ

⎞⎠ δ

⎛⎝H−
c2∑

μ=1

Ĥμ

⎞⎠ , (14)

which leads to the extremization condition with respect to the Lagrange multiplier:

1 =
∫

dA dHQ(A, H)

(
H

A

)2

. (15)

5
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It is noteworthy that (12), (13) and (15) exactly constitute the extremization condition of
(4). This allows us to interpret q(A, H), q̂(Â, Ĥ) and λ in (4) as distributions of the cavity
fields/biases and the Lagrange multiplier, respectively. This interpretation indicates that the
supports of q(A, H), q̂(Â, Ĥ) and Q(A, H) cannot be extended to the region of either A < 0 or
Â < 0 in order to make the approximate single-body maximization problems (8) well posed.
This condition plays a crucial role in the later analysis.

4. Two solvable examples

Now we are ready to tackle the first eigenvalue problem. However, solving the problem
exactly is still difficult since it involves functional equations of (12) and (13). Therefore, we
shall first analyze two solvable examples in order to get insights into constructing appropriate
approximation schemes.

4.1. Single-degree model

The first example is the case in which p1 = 1 exactly holds, which means that all nodes possess
the same degree c1. We will refer to this example as the single-degree model. Equations (12)
and (13) imply that marginal distributions q(A) = ∫

dHq(A, H) and q̂(Â) = ∫
dĤq̂(Â, Ĥ)

generally constitute a set of closed equations, while q(H) = ∫
dAq(A, H) and q̂(Ĥ) =∫

dÂq̂(Â, Ĥ) do not. In particular, in the case of p1 = 1, for which r1 = 1 and r2 = 0
hold, this allows us to assume that the distributions are of the forms q(A) = δ(A − a) and
q̂(Â) = δ(Â − â). Inserting these into (4) yields

� = extr

{
c1

(
am2 + �m2

1

a2 − 1

)
− c1

(
m2 + 2m1m̂1 + m̂2

a − â

)
+ c1

(
m̂2 − m̂2

1

) + c2
1m̂2

1

λ − c1â
+ λ

}
,

(16)

where m1 and m2 are the first and second moments (about the origin) with respect to
q(H|A) = q(H), and similarly for m̂1 and m̂2. The extremization is carried out with respect
to all variables except for �. After some algebra, the extremization conditions of (16) can be
summarized as

â = 1

λ − (c1 − 1)â
, (17)

m̂1 = �(c1 − 1)m̂1

λ − (c1 − 1)â
, (18)

(c1 − 1)(c1 − 2)m̂2
1

(λ − (c1 − 1)â)2 =
(

1 − c1 − 1

(λ − (c1 − 1)â)2

)
m̂2, (19)

c1
(
m̂2 − m̂2

1

) + c2
1m̂2

1

(λ − c1â)2
= 1. (20)

Equation (18) indicates that the solutions can be classified into two types depending on whether
m̂1 vanishes or not:

• m̂1 �= 0: equation (18) means that �(c1 − 1)/(λ − (c1 − 1)â) = 1 holds for m̂1 �= 0. This,
in conjunction with (17), gives

λ = (c1 − 1)� + 1

�
, (21)

and â = 1/(�(c1−1)). Inserting these values into (19) and (20) yields nonzero values of m̂1

and m̂2, and the positivity of m̂2 makes this solution valid only for � > �c = 1/
√

c1 − 1.

6
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Figure 1. Theoretical predictions and experimental results for the single-degree model of c1 = 3.
(a) The first eigenvalue. (b) M = N−1

∣∣∣∑N
i=1 Vi

∣∣∣ of the first eigenvector V = (Vi). Symbols
represent averages over 1000 experiments for N = 250, 500 and 1000 systems from the bottom
and the top in (a) and (b), respectively. The solid curves are the theoretical predictions (23) and
(25) for (a) and (b), respectively. (c) Symbols denote IPR of V for � = 0 and 1 from the top. A
slope of O(N−1) is shown as a broken line for reference.

• m̂1 = 0: equation (19) means that (c1 − 1)/(λ − (c1 − 1)â)2 = 1 holds for m̂1 = 0. This,
in conjunction with (17), gives

λ = 2
√

c1 − 1, (22)

and â = 1/
√

c1 − 1. Inserting these and m̂1 = 0 into (20) yields the value of m̂2.

In both cases, � = λ after extremization. Therefore, the first eigenvalue of the single-
degree model can be written as

� =
{
(c1 − 1)� + 1/�, � > �c,

2
√

c1 − 1, � � �c.
(23)

Inserting the functional forms of q(A) = δ(A − a) and q̂(Â) = δ(Â − â) into (12) and
(13) allows us to assume that q(H|A) = q(H) and q̂(Ĥ|Â) = q̂(Ĥ) are of the Gaussian forms,
and similarly for Q(H) = ∫

dAQ(A, H). This makes it possible to analytically express the
distribution of entries of the first eigenvector V utilizing the solution of (17)–(20) as

P(V ) = 1

N

N∑
i=1

[δ(V − Vi)]J =
∫

dA dHQ(A, H)δ

(
V − H

A

)
= 1√

2π(1 − M2)
exp

(
− (V − M)2

2(1 − M2)

)
, (24)

where the mean value is given as

M =
{

c1(c1 − 1)�2m̂1/((c1 − 1)2�2 − 1), � > �c,

0, � � �c.
(25)

Since Gaussian distributions generally yield finite moments for all orders, (24) indicates
that IPR of the single-degree model vanishes as O(N−1) as N → ∞, and therefore V
typically extends over almost all nodes. Figure 1 compares the theoretical predictions and
experimental results for the single-degree model. The good fit to the experimental data supports
our theoretical treatment.

7
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Equation (25) indicates that V for � > �c is macroscopically polarized in the direction
of (1, 1, . . . , 1)T, although the objective function vTJv is invariant under the transformation
of v → −v. This is analogous to the spontaneous symmetry breaking observed in models of
ferromagnetism, and therefore we will term the solutions of this type ferromagnetic solutions.
On the other hand, (22) corresponds to the critical condition that equation (17), which is a
function of â, has complex solutions for a given λ. The complex solutions of â are generally
associated with the eigenvalue distribution of J [16], and (17) actually matches the larger band
edge of the asymptotic eigenvalue spectrum of the single-degree model. Therefore, solutions
of this type will be referred to as band edge solutions.

4.2. Defect model

Another solvable model can be created by adding only one node of a larger degree c2 > c1 to
the single-degree model. We refer to the larger degree node as the center, indexed as i = 0. Let
us pay attention to the tree structure rooted at the center 0. In the following, we approximately
handle the network as an infinite tree rooted at 0 since feedback effects are expected to be
negligible in large random sparse networks as mentioned in section 3.2. Equations (9) and (10)
indicate that for a given λ, all of the A-cavity biases heading for the center are given as the
smaller solution of (17). Using this, the second-order coefficient of the center node is provided
as

A0 = λ − c2â. (26)

This means that A0 � 0 is a required condition for determining the first eigenvalue, yielding

� = λ = c2√
c2 − c1 + 1

. (27)

The expression of (27) was also obtained recently in a mathematically rigorous manner for
� = 1 [37]. We will term solutions of this type defect solutions because of their physical
implications shown by the following naive analysis [11].

Since the tree is free of cycles, one can always convert the eigenvalue problem into one for
unit nonzero entries of Ji j = 1 by making a gauge transformation. Let us denote the distance
between node i and 0 as d. Due to the spatial symmetry, the entries of the first eigenvector Vi

only depend on d. Therefore, we will rewrite their values as Vd , which allows us to express
the eigenvalue equation as

λV0 = c2V1,

λVd = Vd−1 + (c1 − 1)Vd+1 (d = 1, 2, . . .) (28)

after the gauge transformation.
The Perron–Frobenius theorem indicates that Vd is of an identical sign for ∀d � 0.

In addition, the normalization constraint of |V |2 = N requires the boundary condition
limd→∞(c1 − 1)dV 2

d < ∞. This choice of solution reproduces the expression of the first
eigenvalue (27) and leads to

Vd = (c2 − c1 + 1)−d/2V0. (29)

This indicates that the first eigenvector is localized in the vicinity of the center yielding a finite
IPR,

IPR = (c2 − 2c1 + 2)2(c2 − c1 + 2)

4(c2 − c1 + 1)((c2 − c1 + 1)2 − c1 + 1)
, (30)

while the first eigenvector for the single-degree model extends over all nodes making IPR
vanish as N → ∞ for both the ferromagnetic and band edge solutions.
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Figure 2. Theoretical predictions and experimental results for the single-defect models of c1 = 3
and c2 = 4 ∼ 7. (a) The first eigenvalue. (b) IPR of the first eigenvector. The squares, triangles,
asterisks and circles of both figures represent averages over 100 experiments for N = 8000 (odd c2)
or 8001 (even c2) systems of c2 = 4, 5, 6, and 7, respectively. The lines are theoretical predictions.

The analysis shown above means that the existence of a few nodes of larger degree can
change the first eigenvalue/eigenvector significantly, as also pointed out in the earlier literature
[11, 12]. Nodes of sufficiently larger degree act as defects receiving more cavity biases than
nodes of their surroundings, which boosts the first eigenvalue due to the positivity condition
of (26) creating a localized eigenvector. In the current case, this occurs for sufficiently small
� if c2 > 2(c1 − 1) and for ∀� � 1 if c2 � c1(c1 − 1). Figure 2 compares the theoretical
predictions and the results of numerical experiments for (a) the first eigenvalue and (b) IPR
of the first eigenvector in the case of c1 = 3 while varying c2 from 4 to 7. The numerical
experiments were carried out for randomly generated networks of finite sizes, while the theory
is based on the tree approximation. In spite of this difference, the theoretical curves of these
plots are good matches for the numerical ones.

In practice, our analysis implies that sufficient precautions must be taken when one utilizes
the first eigenvector as a heuristic solution for extracting certain information from a sparse
matrix J. Even if information on a certain preferential direction is embedded in J as the first
eigenvector, the information can be easily hidden by adding only one node of a sufficiently
larger degree. To avoid such possibilities, the earlier literature [30] suggested a preprocessing
removing nodes of extraordinarily large degree.

Equation (26) indicates that the eigenvalue of the defect solution becomes larger as the
cavity biases coming to the center increase. In addition, the right-hand side of (17) shows that
the cavity biases heading for the center increase as the degrees of surrounding nodes grow.
This means that if the number of nodes of the large degree is fixed, the first eigenvalue will
be maximized when they are aggregated in the vicinity of the center. As a simple model for
representing such situations, let us consider cases in which all nodes within a certain radius
g(= 0, 1, 2, . . .) from the center have the larger degree c2, while the degrees of the other
nodes have c1. The case of g = 0 corresponds to the single-defect model. The analysis above
indicates that the first eigenvalue of this aggregated defect model can be estimated by solving
the recursive equation

V1 = (λ/c2)V0,

Vd+1 =
{
(λVd − Vd−1)/(c2 − 1) (d = 1, . . . , g)

(λVd − Vd−1)/(c1 − 1) (d = g + 1, . . .)
(31)

9
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Figure 3. ln(Vd ) versus d for the recursive equation (31) for the cases c1 = 3 and c2 = 7.
Circles represent the solution obtained from the expression for 1 � d � g of (31). Lines
stand for the slope of ln(â∗(λ)). (a) λ is chosen so that ln(Vg+1) − ln(Vg) = ln(â∗(λ)) holds
for g = 2. Asterisks represent the correct solution of (31) for d � (g + 1) + 1 = 4. The
requirement offers λ = � = 4.1350. (b) The case of λ = 2

√
c2 − 1 = 4.8990. For λ � 2

√
c2 − 1,

ln(Vd+1) − ln(Vd ) > ln(â∗(λ)) holds for ∀d � 0. Therefore, there is no g that satisfies (32).

under the condition that Vd is of an identical sign for ∀d � 0 and limd→∞(c1 − 1)dV 2
d < ∞.

Given λ, the solution that satisfies this condition is generally represented as Vd = const ×
(â∗(λ))d for d � g+1, where â∗(λ) is the smaller solution of (17). The condition under which
(31) possesses a solution of this type is expressed as

Vg+1

Vg
= Vg+2

Vg+1
= â∗(λ), (32)

which can be used to get the first eigenvalue � of the aggregated defect model. The IPR of
the first eigenvector also comes from (31).

Figure 3(a) illustrates how to arrive at (32). This figure characterizes the first eigenvalue �

by the condition that the difference ln(Vg+1) − ln(Vg) accords with the target value ln(â∗(λ)).
For λ ∈ (2

√
c1 − 1, 2

√
c2 − 1), the left and right terminals of which correspond to the

band edge solutions of single-degree models of degree c1 and c2, respectively, the difference
ln(Vd+1)− ln(Vd ) of the solution of the expression for 1 � d � g of (31) (circles) can generally
vary from a larger value to smaller values than ln(â∗(λ)) as d increases from 0. This is because
the roots of the characteristic equation of the recursive equation are complex numbers, and
therefore the solution governed by this recursive equation vanishes in the manner of a damped
oscillation as d grows. This means that, for a given g � 0, there always exists a certain
value of λ ∈ (2

√
c1 − 1, 2

√
c2 − 1) that satisfies (32). On the other hand, in the region of

λ � 2
√

c2 − 1, the characteristic equation yields roots of positive numbers that are larger than
ln(â∗(λ)), which means that ln(Vd+1) − ln(Vd ) is always larger than ln(â∗(λ)). This makes it
impossible for (32) to hold (figure 3(b)). Consequently, the first eigenvalue of the aggregated
defect models increases from the value of (27) to 2

√
c2 − 1 as g grows from 0 to ∞, while the

IPR of the first eigenvector decreases from the value of (30) to zero.
The convergence behavior of � is roughly evaluated as follows. For λ = 2

√
c2 − 1 − ε,

where 0 < ε 
 1, the imaginary part of the roots of the characteristic equation of the expression
for 1 � d � g of (31) scales as O(ε1/2). The radius g that satisfies (32) for given λ is supposed
to be in the same range as the period of the damped oscillation caused by the complex roots.
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Figure 5. Theoretical predictions and experimental results for the aggregated defect models of
c1 = 3 and c2 = 7. (a) The first eigenvalue. (b) IPR of the first eigenvector. Symbols denote
averages over 100 experiments for N = 1000–32 000. Lines represent theoretical predictions.

This leads to g ∼ O(ε−1/2), and yields an asymptotic relation � ∼ 2
√

c2 − 1 − O(g−2) for
g 	 1 (figure 4).

Figure 5 shows the first eigenvalue (a) and IPR of the first eigenvector (b) for c1 = 3 and
c2 = 7 in the case of � = 0. Experimental results for N = 1000 ∼ 32 000 exhibit excellent
agreement with the theoretical prediction.

5. Approximation for the general case

Let us consider a more general situation in which both p1 and p2 are O(1). The framework
developed in section 3 would in principle be valid even in such cases; one would be able
to accurately evaluate the typical first eigenvalue by utilizing the solution of (12) and (13).
Unfortunately, this is difficult in practice. First of all, analytically finding the solution is a
hopeless task. Even numerical methods using the standard discretization approach, with the
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current level of computational resources, have trouble in achieving enough accuracy because of
quantization errors. Statistical fluctuations also prevent a sampling approach using population
dynamics despite that it performs pretty well in evaluating the bulk profile of the asymptotic
eigenvalue spectrum [16, 17].

We will avoid such difficulties by taking an alternative strategy. Specifically, we will
develop an approximate evaluation scheme that can be handled without solving the functional
equations. This scheme does not suffer from either quantization errors or statistical fluctuations,
although its estimate may be structurally biased.

5.1. Effective medium approximation

The first approximation involves restricting the variational functions in (4) to those of the
forms q(A, H) = δ(A−a)q(H) and q̂(Â, Ĥ) = δ(Â− â)q̂(Ĥ) as assumed in the single-degree
model. We call this the EMA since a similar scheme is referred to by this name in a study of
evaluating the asymptotic eigenvalue spectrum [11]. This approximation yields

� = extr

{
c

(
am2 + �m2

1

a2 − 1

)
− c

(
m2 + 2m1m̂1 + m̂2

a − â

)
+ p1

c1
(
m̂2 − m̂2

1

) + c2
1m̂2

1

λ − c1â
+ p2

c2
(
m̂2 − m̂2

1

) + c2
2m̂2

1

λ − c2â
+ λ

}
. (33)

The implications of the variables are similar to those of (16), and the extremization is carried
out with respect to all variables except �. The extremization condition of (33) yields the
following self-consistent equations:

â = 1

â + 
−1
, (34)

m̂1 = �(1 − â 2)

(
r1(c1 − 1)

λ − c1â
+ r2(c2 − 1)

λ − c2â

)
m̂1, (35)

(
2â

1 − â 2

(
r1(c1 − 1)

λ − c1â
+ r2(c2 − 1)

λ − c2â

)
−

(
r1(c1 − 1)

(λ − c1â )2
+ r2(c2 − 1)

(λ − c2â )2

))
m̂2

1

=
(

r1c1

(λ − c1â )2
+ r2c2

(λ − c2â )2
− â 2 + 1

(1 − â 2)2

)
m̂2, (36)

p1
c1m̂2 + c1(c1 − 1)m̂2

1

(λ − c1â )2
+ p2

c2m̂2 + c2(c2 − 1)m̂2
1

(λ − c2â )2
= 1, (37)

where


 ≡ r1

λ − c1â
+ r2

λ − c2â
. (38)

Similarly to the case of the single-degree model, equation (35) indicates that the solutions can
be classified into two types depending on whether m̂1 vanishes or not:

• m̂1 �= 0: equation (35) means that

�(1 − â 2)

(
r1(c1 − 1)

λ − c1â
+ r2(c2 − 1)

λ − c2â

)
= 1. (39)

This and (34) together determine λ and â. Inserting the determined λ and â into (36) and
(37) yields m̂1 and m̂2. We will refer to this estimate as the ferromagnetic approximation
(FA).
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• m̂1 = 0: equation (36) means that

r1c1

(λ − c1â )2
+ r2c2

(λ − c2â )2
= (â 2 + 1)

(1 − â 2)2
. (40)

This and (34) determine λ and â. Equation (40) coincides with the critical condition of λ

that (34) possesses a solution with a complex â (see appendix C), which gives the larger
band edge of the asymptotic eigenvalue spectrum under EMA. Therefore, we will call this
estimate the band edge approximation (BEA). Inserting the values of λ and â into (37)
yields m̂2.

5.2. Aggregated defect approximation

In addition to the above, the analysis of the defect models offers another criterion for the first
eigenvalue. According to the cavity interpretation, â is an exemplary value of the cavity biases
Âi→ j. Therefore, the requirement that (26) must not be negative for any node of the network
leads to the condition

λ = c2â, (41)

which corresponds to the single-defect approximation (SDA) in the estimate of the eigenvalue
spectrum [11, 12]. However, this, being combined with (34) and (38), always yields a solution
of â = 1 and λ = c2, which corresponds to the trivial upper bound of � for the current bimodal
degree model.

For improving on this result, we can generalize the SDA to a higher level of approximation
by replacing (41) with (32) and identifying the solution of (34) as â∗(λ). We shall refer to the
estimate based on this idea as the aggregated defect approximation (ADA). A similar idea was
mentioned in an earlier study on the eigenvalue spectrum [12].

Similar to the argument presented in section 4.2, the estimate of the first eigenvalue
becomes larger as g grows from 1 to infinity. In particular, the ADA estimate converges to that
of the band edge solution of the single-degree model of c2, 2

√
c2 − 1, as g → ∞. Aggregations

of the larger degree nodes of arbitrary sizes appear with a probability of unity as N tends to
infinity as long as both p1 and p2 are O(1). This indicates that 2

√
c2 − 1 is the appropriate

estimate of ADA for the current model of N → ∞ irrespective of the details of the degree
distribution.

However, this does not mean that the estimate is practically relevant for explaining
the results of experiments on computationally feasible system sizes. The number of nodes
of the larger degree c2 surrounding the center of an aggregated defect of radius g is
ng ≡ c2 + c2(c2 − 1) + c2(c2 − 1)2 + · · · + c2(c2 − 1)g−1 = c2((c2 − 1)g − 1)/(c2 − 2).
Using this formula, the probability of a node being the center of the aggregated defect is
Pg � p2 × r

ng
g , when both p1 and p2 are O(1). The typical size of the largest aggregation

in a network of N nodes can be roughly found using the condition NPgmax � 1. This yields
ngmax ∼ O(ln N) and therefore the maximum radius gmax typically scales as O(ln ln N). This,
in conjunction with the argument of section 4.2, indicates that the first eigenvalue behaves as
� ∼ 2

√
c2 − 1 − O((ln ln N)−2). The ln ln-dependence on N implies that � can be arbitrarily

close to 2
√

c2 − 1 as N → ∞, but a very large N is necessary for experimentally observing
the convergent behavior.

5.3. Comparison with experimental results

The largest value among the estimates of FA, BEA and ADA is an approximate estimate of �.
To examine the utility of our approximation scheme, we compared the estimated values of �
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Figure 6. Theoretical predictions and experimental results in the cases of c1 = 3, c2 = 7 and
p1 = 1 − p2 = 0.9. (a) The first eigenvalue. Symbols represent averages over 100 experiments
for N = 1000, 2000, 4000, 8000, 16 000 and 32 000 systems from the bottom. Lines represent the
theoretical predictions by BEA and ADAs of g = 1 and 2 from the bottom while the curve stands for
that by FA. The results of ADA indicate that the first eigenvalue converges to 2

√
c2 − 1 = 4.8990

as N tends to infinity. However, due to the ln ln-dependence of gmax on N, a very large N would be
necessary for experimentally confirming the convergence. (b) IPR of the first eigenvector. Symbols
represent averages over 100 experiments for N = 1000, 2000, 4000, 8000, 16 000 and 32 000
systems from the top. Lines represent the theoretical predictions of ADAs of g = 1 and 2 from the
top.

with the results of numerical experiments for the cases of c1 = 3, c2 = 7 and p1 = 1−p2 = 0.9
by varying N from 1000 to 32 000. The results are depicted in figure 6(a). Symbols represent
the averages of the first eigenvalues for 100 realizations of matrices.

As for the choice of parameters, BEA offers an estimate �BEA = 3.9146. As shown
in figure 6(a), the estimate of FA, �FA, generally bifurcates from that of BEA at a critical
value �c, which is evaluated as 0.6762 for the current parameter choice, as � grows larger
from below. The results of the experiments show fairly good accordance with the estimate of
FA as � approaches 1 in the region of � > �c. On the other hand, those for � < �c grow
gradually as N increases. This is probably because the typical size of the maximum aggregation
of the larger degree nodes that dominates the first eigenvalue in the network increases very
slowly, as estimated above. ADA estimates �ADA to be 3.9676, 4.2119 and 4.8990 for g = 1,
2 and ∞, respectively. The condition of NPgmax � 1 gives gmax � 0.6281 ∼ 0.8575 for
N = 1000–32 000. This implies that an ADA of g = 1 is closest to those of the experiments.
Actually, it exhibits reasonable consistency with data on larger system sizes N = 8000, 16 000
and 32 000, even though the current estimate of gmax is based on a rough argument.

Figure 6(b) plots the average of IPR for the first eigenvector. The results of the experiments
(symbols) are considerably smaller than the theoretical predictions of ADA of g = 1, 2 (lines).
When a network is randomly generated, multiple aggregations of the larger degree nodes appear
simultaneously, which reduces the value of IPR. This may be the reason for the significant
discrepancy between the theoretical and experimental results.

6. Summary

We investigated the properties of the first (maximum) eigenvalue and its eigenvector (first
eigenvector) by using methods of statistical mechanics for sparse symmetric random matrices
characterized by a bimodal degree distribution. Employing the replica method, we provided
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a general formula for evaluating the typical first eigenvalue in the large system size limit.
Unfortunately, the replica-based scheme involves functional equations, which are difficult
to solve accurately. Therefore, we developed approximate evaluation schemes based on the
results for two solvable cases and techniques previously proposed for estimating the eigenvalue
spectrum. Our schemes are reasonably consistent with the results of experiments when the
statistical bias of the positive matrix entries is sufficiently large, and they qualitatively explain
why considerably large finite size effects can be observed when the bias is relatively small.

Promising future research includes an exploration of degree correlated models [18, 38] as
well as a refinement of the approximation schemes.
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Appendix A. A proof of � � c2

The Perron–Frobenius theorem guarantees that the inequalities

� = 1

N
max
v

{ ∑
i, j

Ji jviv j

}
subj. to |v|2 = N

� 1

N
max
v

{ ∑
i, j

|Ji j||vi||v j|
}

subj. to |v|2 = N

= 1

N
max
v

{ ∑
i, j

|Ji j|viv j

}
subj. to |v|2 = N (A.1)

hold for an arbitrary symmetric matrix ∀J = (Ji j). Therefore, we only have to consider the
cases in which all nonzero entries are unity. Given such a sample matrix J for which N p1

nodes have degree c1 while the other N p2 nodes have degree c2, we shall add entries of unity,
so as to make all nodes have degree c2 while keeping the matrix symmetric. We denote the
resultant matrix J′ = (J′

i j). We also write the first eigenvector of J as V = (Vi), assuming a
normalization of |V |2 = N. The Perron–Frobenius theorem ensures that ∀Vi is non-negative
as well. This indicates that the inequality

� = 1

N

∑
i j

Ji jViVj � 1

N

∑
i j

J′
i jViVj

� 1

N
max
v

{ ∑
i j

J′
i jviv j

}
subj. to |v|2 = N (A.2)

holds since entries of V , J and J′ are all non-negative and the number of nonzero entries of J′

is larger than that of J. The last expression of (A.2) is maximized by v = (1, 1, . . . , 1)T for
any realization of J′, which yields N−1 ∑

i j J′
i jviv j = c2. Therefore, � � c2 always holds for

our ensemble of random matrices.
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Appendix B. Replica approach to finding the first eigenvalue

Although we shall focus on the bimodal degree distribution for simplicity, extending the
following calculation to general degree distributions is straightforward. To calculate the
moment of the partition function (3), we first express the matrix entries as Ji j = Jji = L〈i j〉B〈i j〉,
where 〈i j〉 denotes the unordered pair of i and j. L〈i j〉 is set to unity if there is a link for 〈i j〉,
and it vanishes, otherwise, and B〈i j〉 is a binary value sampled from (1). Permutation symmetry
in indexing the nodes allows us to choose a joint distribution of {L〈i j〉} ∈ {0, 1}N(N−1)/2,

pL({L〈i j〉}) = N−1
N p1∏
i=1

δ

( ∑
j �=i

L〈i j〉 − c1

)
N∏

i=N p1+1

δ

( ∑
j �=i

L〈i j〉 − c2

)

= N−1
N p1∏
k=1

∮
dZkZ−(c1+1)

k

2π i
×

N∏
l=N p1+1

∮
dZlZ

−(c2+1)

l

2π i

N∏
i=1

Z
∑

j �=i L〈i j〉
i (B.1)

reflecting our assumptions on the graph generation. Here, N denotes a constant to normalize
pL({L〈i j〉}), i = √−1, and we have utilized a contour integral expression δ(x) =∮

dZZ−(x+1)/(2π i) for the integer x. The joint distribution of {B〈i j〉} ∈ {+1,−1}N(N−1)/2

is pB({B〈i j〉}) = ∏
〈i j〉 pJ(B〈i j〉|�) by definition.

Next, we evaluate the average of Zn(β; J) with respect to these distributions by uti-
lizing an identity Zn(β; J) = ∫ (∏n

a=1 dvaδ(|va|2 − N)
) × exp

(
(β/2)

∑n
a=1(v

a)TJva
) =∫ (∏n

a=1 dvaδ(|va|2 − N)
) × exp

( ∑
〈i j〉

∑n
a=1 βL〈i j〉B〈i j〉va

i v
a
j /2

)
. This identity is mathemat-

ically valid only for n ∈ N. In this evaluation, the following expression appears:

G(n) =
∑

{L〈i j〉},{B〈i j〉}
pB({B〈i j〉})

N∏
i=1

Z
∑

j �=i L〈i j〉
i exp

⎛⎝∑
〈i j〉

n∑
a=1

βL〈i j〉B〈i j〉va
i v

a
j

2

⎞⎠
=

∏
〈i j〉

⎛⎝1 + ZiZ j

n∏
a=1

∑
B〈i j〉=±1

pJ(B〈i j〉|�) exp

(
βB〈i j〉va

i v
a
j

2

)⎞⎠
= exp

⎛⎝∑
〈i j〉

ln

⎛⎝1 + ZiZ jexp

(
n∑

a=1

βBva
i v

a
j

2

)⎞⎠⎞⎠
� exp

⎛⎝∑
〈i j〉

ZiZ jexp

(
n∑

a=1

βBva
i v

a
j

2

)⎞⎠
� exp

⎛⎝N2

2

∫
du1Q(u1)

∫
du2Q(u2)exp

(
n∑

a=1

βBua
1ua

2

2

)⎞⎠ , (B.2)

where exp(βBu1u2/2) ≡ ∑
B=±1 pJ(B|�) exp(βBu1u2/2), uk ≡ (

u1
k, u2

k, . . . , un
k

)
(k = 1, 2),

and we have introduced an order parameter function,

Q(u) ≡ 1

N

N∑
i=1

Zi

n∏
a=1

δ
(
va

i − ua
)
. (B.3)

We shall also introduce a conjugate function Q̂(u) for utilizing an identity for ∀u
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1 =
∫

dQ(u)δ

(
1

N

N∑
i=1

Zi

n∏
a=1

δ
(
va

i − ua
) − Q(u)

)

=
∫

N dQ(u) dQ̂(u)

2π
exp

(
Q̂(u)

(
N∑

i=1

Zi

n∏
a=1

δ
(
va

i − ua
) − NQ(u)

))
, (B.4)

and employ another identity

δ(|va|2 − N) =
∫

β dλa

4π
exp

(
−βλa

2

(
n∑

i=1

(
va

i

)2 − N

))
. (B.5)

These, in conjunction with employment of the saddle-point method for the integration with
respect to Q(u), Q̂(u), and λa (a = 1, 2, . . . , n), lead us to an expression for the average of
Zn(β; J):

1

N
ln[Zn(β; J)]J = extr

Q(·),Q̂(·),{λa}

{
1

N
lnG(n) −

∫
duQ(u)Q̂(u)

+p1 ln

(∫
du exp

(
−

n∑
a=1

βλa(ua)2

2

)
Q̂c1 (u)

)

+p2 ln

(∫
du exp

(
−

n∑
a=1

βλa(ua)2

2

)
Q̂c2 (u)

)
− 1

N
lnN +

n∑
a=1

βλa

2

}
(B.6)

for n ∈ N.
In the calculation of (B.6), we assume that the saddle point is dominated by functions of

the form

Q(u) = T
∫

dA dHq(A, H)

(
βA

2π

)n/2

exp

(
−βA

2

n∑
a=1

(
ua − H

A

)2
)

, (B.7)

and

Q̂(u) = T̂
∫

dÂ dĤq̂(Â, Ĥ) exp

(
n∑

a=1

(
βÂ

2
(ua)2 − βĤua

))
, (B.8)

where T and T̂ are normalization factors so as to make q(A, H) and q̂(Â, Ĥ) distribution
functions. We also assume that λa = λ (a = 1, 2, . . . , n) holds at the dominant saddle point.
These correspond to the replica symmetric ansatz [33] in the current system. The saddle-point
method gives N−1 lnN = (c/2) ln(Nc) − p1 ln c1! − p2 ln c2!. Inserting these into (B.6) and
extremizing the resultant expression with respect to T and T̂ yields

1

N
ln[Zn(β; J)]J = extr

q(·),q̂(·),λ

{
c

2
ln (K1 [q(·); n]) − c ln (K2 [q(·), q̂(·); n])

+ p1K31 ln ([q̂(·), λ; n]) + p2 ln (K32 [q̂(·), λ; n]) + nβλ

2

}
, (B.9)

where

K1 [q(·); n] ≡
∫

dA1 dH1q(A1, H1)

∫
dA2 dH2q(A2, H2)

×
[

exp

(
nβ

(
A2H2

1 + 2JH1H2 + A1H2
2

2(A1A2 − 1)

− H2
1

2A1
− H2

2

2A2

))]
J

(
A1A2

A1A2 − 1

)n/2

, (B.10)
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K2 [q(·), q̂(·); n] ≡
∫

dA dHq(A, H)

∫
dÂ dĤq̂(Â, Ĥ)

× exp

(
nβ

(
(H + Ĥ)2

2(A − Â)
− H2

2A

))
×

(
A

A − Â

)n/2

, (B.11)

K3k [q̂(·), λ; n] ≡
∫ ⎛⎝ ck∏

μ=1

dÂμ dĤμq̂(Âμ, Ĥμ)

⎞⎠ × exp

(
nβ

( ∑ck
μ=1 Ĥμ

)2

λ − ∑ck
μ=1 Âμ

)

×
(

2π

β
(
λ − ∑ck

μ=1 Âμ

))n/2

, (k = 1, 2). (B.12)

Although we estimated [Zn(β; J)]J for n ∈ N with the saddle-point method, the expressions
(B.9)–(B.12) are likely to hold for n ∈ R as well. Therefore, we employ them to evaluate
[�]J = 2 limβ→∞(βN)−1 [ln Z(β; J)]J = 2 limβ→∞ limn→0(∂/∂n)(βN)−1 ln [Zn(β; J)]J,
which yields (4)–(7).

Appendix C. Critical condition on emergence of complex solution for (34)

Let us consider a linear perturbation â → â + iδâ around a fixed point of (34) for a given λ,
which yields

δâ = − 1

(â + 
−1)2

(
δâ − 1


2

∂


∂ â
δâ

)
= 1

(
â + 1)2

(
∂


∂ â
− 
2

)
δâ. (C.1)

This means that a critical condition so that (33) possesses a complex solution is provided as

1 = 1

(
â + 1)2

(
∂


∂ â
− 
2

)
. (C.2)

Equation (38) indicates that
∂


∂ â
= r1c1

(λ − c1â )2
+ r2c2

(λ − c2â )2
(C.3)

and


 = â

1 − â 2
(C.4)

hold. Inserting these into (C.2) results in an expression equivalent to (40).
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[5] Tulino A M and Verdú S 2004 Random Matrix Theory and Wireless Communications (Hanover, MA: Now

Publishers)
[6] Bandyopadhyay J N and Jalan S 2007 Phys. Rev. E 76 026109
[7] Alon N and Kahale N 1997 SIAM J. Comput. 26 1733
[8] Mehta M L 2004 Random Matrices 3rd edn (Pure and Applied Mathematics vol 142) (Amsterdam: Elsevier)
[9] Marc̆enko V A and Pastur L A 1967 Mat. Sb. 72 507

[10] Bray A J and Rodgers G J 1988 Phys. Rev. B 38 11461
[11] Biroli G and Monasson R 1999 J. Phys. A: Math. Gen. 32 L255
[12] Semerjian G and Cugliandolo L F 2002 J. Phys. A: Math. Gen. 35 4837
[13] Nagao T and Tanaka T 2007 J. Phys. A: Math. Theor. 40 4973

18

http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.1103/PhysRevLett.64.1851
http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://dx.doi.org/10.1103/PhysRevE.76.026109
http://dx.doi.org/10.1137/S0097539794270248
http://dx.doi.org/10.1103/PhysRevB.38.11461
http://dx.doi.org/10.1088/0305-4470/32/24/101
http://dx.doi.org/10.1088/0305-4470/35/23/303
http://dx.doi.org/10.1088/1751-8113/40/19/003


J. Phys. A: Math. Theor. 45 (2012) 325001 Y Kabashima and H Takahashi

[14] Nagao T and Rodgers G J 2008 J. Phys. A: Math. Theor. 41 265002
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