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Abstract – Modeling epidemic dynamics plays an important role in studying how diseases spread,
predicting their future course, and designing strategies to control them. In this letter, we introduce
a model of SIR (susceptible-infected-removed) type which explicitly incorporates the effect of
cooperative coinfection. More precisely, each individual can get infected by two different diseases,
and an individual already infected with one disease has an increased probability to get infected by
the other. Depending on the amount of this increase, we prove different threshold scenarios. Apart
from the standard continuous phase transition for single-disease outbreaks, we observe continuous
transitions where both diseases must coexist, but also discontinuous transitions are observed,
where a finite fraction of the population is already affected by both diseases at the threshold. All
our results are obtained in a mean-field model using rate equations, but we argue that they should
hold also in more general frameworks.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – From the Plague of Athens to the
14th century Black Death, the 1918–1919 Spanish flu,
and to the recent HIV pandemic, infectious diseases have
caused more deaths than any other factor, such as wars
or famines [1]. Mathematical models are thus extremely
important for understanding the outbreak and subsequent
dynamics of epidemics [2,3]. Such models have been stud-
ied in particular by statistical physicists, who relied on
the notion of universality in critical phenomena to de-
scribe valid features of real epidemics in terms of highly
idealized and simplified models.
A pioneering work in this direction was carried out by

Kermack and McKendrick [4], who introduced in 1927
the “susceptible-infective-removed” (SIR) model, in which
each individual can be in one of three states (or “compart-
ments”) S, I, and R. Infected individuals are “removed”
(i.e., recover or die) with fixed rate, while susceptible ones
can get infected with a rate that is proportional to the frac-
tion of infecteds. “Removed” individuals, finally, stay as
they are and do not take part any more in the dynamics.
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When treating this on a spatial grid with nearest-neighbor
infection, starting with all sites being susceptible except
for one infected would lead to a percolation cluster of re-
moved sites [5,6]. As the infection rate passes through
the percolation threshold, the average relative cluster size
increases gradually from zero, implying that the onset of
the epidemic is a continuous or “second-order” phase tran-
sition. In the mean-field treatment of [4], basically the
same is true: an infinitesimal fraction of initially infected
individuals will have no effect if the process is subcritical,
while it leads to a finite fraction of removed individuals if
the threshold is passed. This fraction is zero at threshold
and increases continuously above it.

In recent years such models of epidemic spreading have
been much studied on networks [7,8]. Also, there was
much interest in mechanisms that might lead to discon-
tinuous phase transitions where the epidemic involves a fi-
nite fraction of the epidemic already at threshold. Models
that show (or were claimed to show) that the latter in-
clude “explosive percolation” [9], the Dodds-Watts model
for cooperative complex contagion [10] (see also [11–13]),
cascades on interdependent networks [14–16], models with
long-range infection [17,18], and models with structured
immunity [19].

50001-p1



Li Chen et al.

Surprisingly little work was, however, devoted in the
statistical physics literature to the dynamics of multiple
diseases. The competition between epidemics that are
mutually exclusive or antagonistic was studied in [20–23].
But much more interesting is the case of cooperative mul-
tiple diseases, where the presence of one disease makes
the other(s) more likely to spread. Such “syndemics” [24]
or “coinfections” are well documented in the epidemio-
logical literature. Cases include the increased incidence
of tuberculosis during the 1918–1919 Spanish flu [25,26]
and the fact that persons infected by HIV have a higher
risk to be infected by other pathogens, including hepatitis
B and C [27], TB [28] and malaria [29].

In such cases, as in other cases of positive feedback, one
can expect much more violent outbreaks. Indeed, coop-
erative coinfections have been studied in the mathematics
literature [29–31]. In [29] the case of HIV and malaria was
modeled by a compartmental model in terms of ODEs sim-
ilar to eq. (1), but the intention there was to describe the
syndemic as realistic as possible, introducing a large num-
ber of parameters and disregarding any phase transitions.
Recently [32], a model more in spirit of the present paper
was proposed (albeit with completely different formalism).
But it deals only with strongly asymmetric cases where
only one of the diseases can influence the other, while we
are mostly interested in symmetrical cases with mutual
cooperativity, where more interesting phenomena are ex-
pected. Closest in spirit to the present work are [30,31].
There it was shown, by using also ODEs similar to eq. (1),
that cooperativity can lead to “backward bifurcations”,
which are just first-order mean-field transitions in physics
jargon.

In the present letter, we propose what we believe to
be the simplest SIR-type model with two diseases (called
A and B) that leads to first-order transitions. In this
model, the infection rate for disease A is increased, if the
individual has or had disease B and vice versa. When
recovering from disease A, say, an individual is “removed”
from the population that is susceptible to A, but it still can
be infected by B. We shall only treat this model in mean-
field approximation (described by rate equations similar
to those in [4]). Moreover, we shall mostly deal only with
a very special case where there is symmetry between A
and B, and where present and past infections by B have
the same effect on the infection by A. In spite of these
limitations we find a surprisingly rich behavior with two
novel outbreak mechanisms, one continuous and the other
discontinuous.

Model. – Consider a population of fixed size, where
every individual can be in one of three possible states
—susceptible, infective, and recovered/removed—with re-
spect to each of the two diseases, called A and B in the
following. This gives nine possible states for each indi-
vidual, denoted by S,A,B,AB, a, b, aB,Ab and ab. Here
capital letters refer to actual infections, while lower-case
letters refer to previous infections. Thus, e.g, a person in

Fig. 1: Flow chart in two-disease coinfection with A,B sym-
metry and restrictions on the infection rates as discussed in
the text. Capital letters A and B represent infective states,
lower-case letters a and b stand for “recovered” ones. Infecting
neighbors are not indicated explicitly, but it is assumed that all
individuals infected with disease A, say, have the same chances
to pass A on to another individual. Thus, every infection pro-
cess occurs with a rate proportional to the fraction X of the
population having the corresponding disease.

state aB has recovered from (and is thus immune to) dis-
ease A, but has presently disease B. Single letters refer
to states where the person is still susceptible with respect
to the other disease. We assume a well-mixed population
with normal first-order “chemical” kinetics. Designing the
nine states by an index i = 0, . . . 8 and by xi the corre-
sponding fraction (with

∑8
i=0 xi = 1), the dynamics can

thus be written as

dxi

dt
=

∑

j

μij(xj − xi) +
∑

jk

νijkxk(xj − xi), (1)

where μij is the rate with which state i recovers sponta-
neously to state j and νijk is the rate for i to change into
j due to infection by k.
In the following we shall make several simplifying as-

sumptions:
1) Diseases A and B have the same infection and recovery
rates, and also the initial conditions are symmetric under
the exchange A ↔ B.
2) All infected states have the same recovery rate, which
we set equal to one; state AB cannot go directly to ab,
but must first go to aB or Ab.
3) Infection rates for disease A, say, depend only on the
fact whether the target has (or has had) B or not, but are
independent of whether the infector has (had) B or not.
Thus, we have only two different infection rates: Rate α
for a target that is still susceptible for both diseases, and
rate β for targets which have or have had the other disease.
Thus, we end up with the flow pattern depicted in fig. 1.

At the end of the paper we shall briefly discuss more gen-
eral cases where some of these restrictions are released.
Due to assumptions 1) and 3), all bilinear terms in

eq. (1) are proportional to the fraction

X = [A] + [AB] + [Ab] = [B] + [AB] + [aB] (2)
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Fig. 2: (Color online) Order parameter R = 1 − S∞ plotted
against α for (a) ε = 0.005 and (b) ε = 10−4. Each curve
corresponds to a different level of cooperativity C. The dotted
lines in panel (a) indicate the upper and lower limits R+ and
R− of the jumps at the first-order transitions.

in the population that has the corresponding disease.
Defining in addition

S = [S] and P = [A] + [a] = [B] + [b], (3)

eq. (1) can be rewritten as

Ṡ = −2αSX,

Ṗ = (αS − βP )X,

Ẋ = (αS + βP )X −X. (4)

Thus, we have been able to reduce our model to three
ODEs with two control parameters α, β. The cooperativity
is defined as the ratio C = β/α. In particular, we are
interested in the t → ∞ limit of solutions of eq. (4) with
initial conditions S0 = 1 − ε and X0 = P0 = ε/2. This
corresponds to an initial population where most of the
individuals (except for a small fraction ε) are susceptible to
both diseases, while the rest has either A or B. Including
in the initial state also recovered individuals or individuals
with both diseases would not give more insight. For t → ∞
all activity has to die out, whence X∞ = 0. Our “order
parameter” is the asymptotic fraction R = 1− S∞ of the
population that has had at least one of the two diseases.
We expect interesting phenomena when C > 1, since only
then X can have an intermediate growth phase even when
the single-disease infection rate α is smaller than 1. For
C = 1 the two diseases evolve independently, and for 0 <
C < 1 we expect only minor modifications of the threshold
behavior from independence.

Numerical results. – In fig. 2, we show results ob-
tained by integrating eqs. (4) numerically. We see the
following main features:
a) For C < 2 and ε → 0 there can be epidemic out-

breaks only when α > 1, corresponding to the well-known
behavior of the single-disease SIR model. For α ≈ 1, the
order parameter grows linearly with α, R ∼ α − 1, show-
ing that the transition is continuous with order parameter
exponent 1. For ε > 0 the transition is rounded.
b) When C = 2 the transition is still continuous with

threshold α∗ = 1 (in the limit ε → 0), but now the order
parameter exponent is 1/2.

c) For C > 2 we observe first-order transitions, when
1/2 < α < 1. These transitions are sharp, even when
ε > 0. On the other hand, when ε → 0 these transitions
occur for fixed C at values α∗(C, ε) that increase as ε → 0,

lim
ε→0

α∗(C, ε) = 1 (5)

for any finite C.
The behavior expressed in eq. (5) and illustrated in

fig. 2(b) is an artifact of our mean-field approximation.
Due to the latter, the cluster of infected neighbors created
by a sick individual is immediately dispersed in the entire
population, reducing thereby the chances for multiple in-
fections. In any local model (i.e. on a regular lattice) we
would expect that this cluster stays localized for long time,
so that even an infinitesimal fraction of infective “seeds”
could lead to a large epidemic.
d) Let us denote by R−(α∗, C, ε) and R+(α∗, C, ε) the

lower and upper values of the jumps at the first-order
transitions. When α∗ decreases to 1/2, they meet at
R±(1/2, C, ε)=0. When it increases, they both increase
at first with α∗. Later they meet, for all finite ε > 0, at
nontrivial values αc(ε) < 1 and Rc(ε) ∈ (0, 1). At these
points the transition is continuous, with the order param-
eter exponent equal to 1/2.
e) No epidemics are possible (for small ε) when α <

1/2, as also predicted analytically by the theory discussed
below.
f) As long as α∗ < α < 1, the values of R are indepen-

dent of ε within numerical accuracy, but depend weakly
on C. All values of R are below the limit curve

R+(α) = lim
ε→0

lim
C→∞

R(α,C, ε) (6)

which scales as R+(α) ∼ α− 1/2 for α ↘ 1/2.

Time dependence and theoretical explanations.
– In order to better understand the dynamics, we first
define Y (t) = αS(t) + βP (t), whose time dependence is

Ẏ = [(β − 2α)αS − β2P ]X (7)

= [2(β − α)αS − βY ]X (8)

According to eq. (4), Ẋ = (Y − 1)X . Therefore, X(t)
can only grow when Y (t) > 1. But, due to eq. (7), Y can
grow for small ε only iff β > 2α. This explains immediately
why normal SIR threshold behavior is seen if and only if
C < 2. Assume now that α < 1 and that C is sufficiently
large so that (β−2α)α > 1. Then Y will start to grow for
sufficiently small ε. If it grows to a value 1, there will be an
outbreak. This might be prevented by two mechanisms:
Either S decreases so fast and Y increases so fast that
the first factor on the r.h.s. of eq. (8) becomes zero, or X
—the second factor in eq. (8)— vanishes. As we shall see,
these two alternatives give rise to first- and second-order
phase transitions.
To proceed we use the exact inequality αS ≤ Y in order

to eliminate S from eq. (8), and obtain for small times (as

50001-p3



Li Chen et al.

0.6 0.8 1 1.2

10
−4

10
−3

10
−2

10
−1

Y

X

(a) 

C=1 

0.6 0.8 1  1.2

10
−4

10
−3

10
−2

10
−1

Y
X

C=3.2 

(b) 

0.6 0.8 1  1.2

10
−4

10
−3

10
−2

10
−1

Y

X

(c) 

C=15 

0.6 0.8 1  1.2

10
−4

10
−3

10
−2

10
−1

Y

X

(d) 

C=160 

Fig. 3: (Color online) Phase portraits of near-critical trajecto-
ries obtained by plotting X(t) against Y (t), for four different
levels of cooperativities. The initial conditions are the same as
in fig. 2(a). Blue solid lines indicate the cases with epidemic
outbreaks (supercritical), in contrast to red dashed lines (sub-
critical). The latter never cross the threshold Y = 1 (black
dashed lines). Within each panel, different trajectories corre-
spond to different infection rates α.

long as Y < 1)

1− Y

Y
Ẏ ≤ −(β − 2α)Ẋ. (9)

This can be integrated to give an upper bound
X+(Y ) on X that decreases monotonically with Y . If
X+(Y = 1) < 0, we know that there cannot be an out-
break. If X+(Y = 1) > w, where w is a positive constant
independent of ε, we must have a first-order phase
transition for sufficiently small ε (where the inequality
becomes practically tight), provided Ẏ > 0 when Y = 1.
Finally, if X+(Y = 1) ≥ 0 but Ẏ = 0 when Y = 1, we
have a second-order transition.
These cases are illustrated in fig. 3. In each panel of

this figure, we show trajectories of the flow by plotting
X(t) against Y (t). Panel (a) shows a standard SIR tran-
sition where the critical point corresponds to α = 1 and
Y decreases monotonically. Panel (c) shows the generic
case of strong cooperativity, where Y increases beyond
Y = 1, provided that X does go to zero before. If Y
passes through Y = 1, it continues to Y � 1 (even close
to the transition point), indicating a first-order transition.
Panels (b) and (d) show cases where Y goes only infinites-
imally beyond Y = 1 at the transition point, correspond-
ing to second-order transitions. Panel (d) shows the case
of ultra-strong cooperativity, corresponding to the upper-
most curve in fig. 2(a), where α∗ = 1/2. Panel (b), finally,
corresponds to the special case of moderately weak coop-
erativity where R−(α∗, C, ε) = R+(α∗, C, ε), so that the
jump hight in fig. 2 just vanishes.
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Fig. 4: (Color online) Order parameter R plot for a general case
where both diseases have different infection rates, and where
also the chances for getting infected depend on whether the
target still has the other disease or has already recovered from
it. More specifically we used initial conditions [S] = 0.995,
[A] = 0.002, [B] = 0.003, with infection rates α for S → A;
α′ = 0.9α for S → B; β = Cα for A → AB; β′ = 2Cα′ for
B → AB; γ = 0.7β for a → aB; and γ′ = 0.8β′ for b → Ab.

Up to now we have dealt with the special case with
perfect symmetry between the two diseases, and where the
infection rate increase due to cooperativity is the same
for targets that are still infected and those which have
already recovered from the other disease. In more general
cases, where all parameters in eq. (1) are different, we
cannot give similarly detailed mathematical results, but
we still can make numerical simulations. We have found
similar behaviors in all cases. One such case is shown in
fig. 4. There we still assume that all recovery rates are
equal, but all other symmetry restrictions are removed.
We see the same type of phase transitions as in fig. 2.
We thus conjecture that the behavior discussed above is
indeed robust and prevails also in more general cases.

Conclusions. – As we have shown, the cooperativity
of coinfections can not only decrease the thresholds for
epidemic outbreaks, but it can also change the outbreak
from continuous (“second order”) to discontinuous (“first
order”). This may pose a much more serious problem in
real situations. In second-order transitions the size of the
epidemic grows gradually as conditions become more fa-
vorable for an outbreak, and one has precursors which may
be used to initiate countermeasures. In a first-order tran-
sition such precursors are absent, and the epidemic devel-
ops immediately its full size, once the threshold has been
overcome, leaving much less time to react. Intuitively, the
discontinuity of the phase transitions results from the fact
that the “basic reproduction ratio” [2,19] (which applies
to infinitesimally small initial epidemic seeds) is smaller
than the reproduction ratio that applies when the frac-
tion of infecteds is finite.

Our results were only obtained in a very crude mean-
field treatment, and moreover our analytical results dealt
only with very special cases. But we checked numerically
that they were robust in a wider setting, and we conjecture
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that similar phenomena are seen when more sophisti-
cated mathematical modeling is used, such as spreading
of the epidemics on spatial grids or methods similar to
belief propagation on (locally) loopless networks [7,12,16].
Obviously much more work has to be done, and the
present letter should be seen only as a first small step to-
wards mathematically modeling more general and realistic
situations.

In preliminary studies of a stochastic version [33] we
found no first-order transitions on regular d-dimensional
lattices in d = 2 and d = 3, if infections are local (between
nearest or next-nearest neighbors), but they do occur in
d = 4. They also occur in d = 2, if infection can happen
with probability P (x) between nodes that are a distance
x apart, provided P (x) ∼ |x|−d−σ for large x with small
enough σ. As expected, we found first-order transitions
also in Erdös-Rényi (ER) and small-world networks. In
all these cases, we assumed that both diseases spread on
the same set of links. If we had used two independent net-
works, spreading on ER networks would have been iden-
tical to mean field. It is only the assumption that both
diseases use the same network which makes spreading on
ER networks different from mean field, and which allows
epidemics in the first-order regime to spread already from
infinitesimal seeds.

Finally, we should point out that cooperative coinfec-
tions are not only important for epidemiology in the nar-
row sense, but also for the spreading of computer malware,
rumors, fashions, innovations, political opinions [34] or so-
cial unrest [35].
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