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The analysis of the modular structure of networks is a major challenge in complex networks
theory. The validity of the modular structure obtained is essential to confront the problem of
the topology-functionality relationship. Recently, several authors have worked on the limit of
resolution that different community detection algorithms have, making impossible the detection
of natural modules when very different topological scales coexist in the network. Existing mul-
tiresolution methods are not the panacea for solving the problem in extreme situations, and also
fail. Here, we present a new hierarchical multiresolution scheme that works even when the net-
work decomposition is very close to the resolution limit. The idea is to split the multiresolution
method for optimal subgraphs of the network, focusing the analysis on each part independently.
We also propose a new algorithm to speed up the computational cost of screening the mesoscale
looking for the resolution parameter that best splits every subgraph. The hierarchical algorithm
is able to solve a difficult benchmark proposed in [Lancichinetti & Fortunato, 2011], encouraging
the further analysis of hierarchical methods based on the modularity quality function.

Keywords: Complex networks, community structure, multiple resolution, modularity.

1. Introduction

The quality function called modularity has been largely used in the assessment of the modular structure of
networks [Girvan & Newman, 2002; Newman & Girvan, 2004; Newman, 2004a; Clauset et al., 2004; Duch
& Arenas, 2005; Danon et al., 2005] and for data clustering and exploration [Newman, 2006; Granell et al.,
2011]. Modularity is a global descriptor of a complex network that measures the difference between a given
partition of the network and the same partition in an ensemble of the randomized versions of the original
network preserving the local strength of every node. The optimization of modularity is coherently related
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to the definition of modules in the network; a module is defined as the result of the optimal modularity
partition. In 2007, Fortunato & Barthélemy [Fortunato & Barthélemy, 2007] pointed out a drawback in
this function consisting in a certain resolution limit (generalized later in [Kumpula et al., 2007; Good
et al., 2010]), beyond which optimization of modularity is unable to identify certain modules, even those
easily detectable at first sight, such as cliques almost disconnected from the rest of the network. This
effect is known as the resolution limit of modularity. This problem arises because modularity fixes a global
scale that could be appropriate for some networks but not for others, specially not suitable for those
networks conformed by coexisting densely large and small communities. After this work, a multiresolution
method was introduced in [Arenas et al., 2008], which preserved the use of modularity with the addition
of a parameter to control the resistance of nodes to form communities. The idea is that the analysis of
communities may be performed at different scales of description, and the resolution limit is overcome just
by moving to the right scale. Other methods to overcome the resolution limit are found in [Reichardt &
Bornholdt, 2004; Pons & Latapy, 2011; Traag et al., 2011; Berry et al., 2011; Ronhovde & Nussinov, 2009,
2010].

A recent work by [Lancichinetti & Fortunato, 2011] shows that even those methods devoted to avoid
the resolution limit, indeed have a resolution limit, and propose the use of an algorithm composed of
several approaches called OSLOM [Lancichinetti et al., 2011] to really avoid such resolution problem.
The proof that multiresolution schemes still have a resolution limit is performed analytically on the RB
(after Reichardt-Bornholdt) method, and extended qualitatively using examples to the AFG (after Arenas-
Fernández-Gómez) method and the recent CPM (Constant Potts Model) method.

We have performed extensive simulations using the AFG method and conclude that the authors of
[Lancichinetti & Fortunato, 2011] are right, the AFG method also has a resolution limit, and that the
benchmark they propose (see Fig. 1), consisting of a giant Erdös-Rényi (ER) network and two small
cliques, connected between them by just one link, is impossible to separate in the configuration of one
cluster for the giant ER network and one cluster for each of the cliques, in the current proposal of the AFG
method. Even though the synthetic benchmarks where multiresolution methods could fail are far from the
structure of real networks, it is still challenging to investigate what are the problems and how to solve
them.

In this paper we focus in the AFG method, analyzing its performance in resolution limiting situations,
and proposing alternatives to eliminate or, if not possible, diminish the effect of this limit to minimum. An
alternative is presented, a hierarchical application of the resolution screening, that avoids the resolution
limit. The hierarchical application of a multiresolution method consists in to focus the screening on different
clusters of the network as soon as these clusters are detected.

2. Multiresolution AFG method

In a previous work, the authors proposed a method that allows the full screening of the topological structure
at different resolution levels using the original formulation and semantics of modularity as defined in [Girvan
& Newman, 2002]. The original modularity allows the comparison of different partitions of the network.
Given a network partitioned into communities, being Ci the community to which node i is assigned, the
mathematical definition of modularity is

Q[wij , C] =
1

2w

∑
i

∑
j

(
wij −

wiwj

2w

)
δ(Ci, Cj) , (1)

where wij is the weight of the link between nodes i and j (zero if no link exists), wi =
∑

j wij is the strength

of node i and 2w =
∑

iwi is the total strength of the network [Newman, 2004a]. The Kronecker delta
function δ(Ci, Cj) takes the value 1 if node i and j are into the same community and 0 otherwise. Several
authors have attacked the problem of modularity optimization, with considerable success, by proposing
different heuristics [Newman, 2004b; Clauset et al., 2004; Guimerà & Amaral, 2005; Duch & Arenas, 2005;
Pujol et al., 2006; Newman, 2006], see [Fortunato, 2010] for a review.

The AFG method was designed to evaluate the community structure of networks using a kind of
magnifying glass of the topology [Arenas et al., 2008]. The mathematical form of this prescription is given
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Fig. 1. Benchmark proposed by [Lancichinetti & Fortunato, 2011] to test the resolution limit of multiresolution methods.
The large component is a ER network of 400 nodes with k = 100 linked to two cliques of 13 nodes each, sharing only one link
between them. The goal is to separate these three subgraphs using a community detection algorithm aimed to detect multiple
resolutions.

by

QAFG[wij , C, r] = Q[wij + rδij , C] , (2)

where the resistance r is the parameter controlling the resolution of the partitions we want to find, and
wij + rδij is the new weights matrix after the addition of a self-loop with value r to each node. When r
is zero, we recover the standard modularity Q. The definition of QAFG preserves the original semantics of
modularity.

A refinement of the AFG method may be found in [Granell et al., 2011, 2012 in press], where the
original formulation of modularity Eq. (1) is replaced by its extension to networks with positive and
negative weights [Gómez et al., 2009; Traag & Bruggeman, 2009]. Although the differences are usually
small, this is necessary since the access to the macroscale needs the use of negative values of the resistance,
even if the original network has only positive weights. Thus, the adequate formulation of modularity Eq. (1)
for undirected weighted signed networks which should be used is

Q[wij , C] =
1

2w+ + 2w−

∑
i

∑
j

[
wij −

(
w+
i w

+
j

2w+
−
w−i w

−
j

2w−

)]
δ(Ci, Cj) . (3)

where

w+
i =

∑
j,wij>0

wij , (4)

w−i =
∑

j,wij<0

|wij | , (5)
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are the positive and negative strengths of node i, and

2w+ =
∑
i

w+
i , (6)

2w− =
∑
i

w−i , (7)

are the positive and negative total strengths respectively. Please note that these four strengths are defined
to be non-negative. The extension to directed networks [Arenas et al., 2007] is simply obtained by the
substitutions in Eq. (3)

w±i → w±,outi =
∑
k

w±ik , (8)

w±j → w±,inj =
∑
k

w±kj . (9)

For the sake of simplicity, we will refer to the undirected case for the rest of the paper. In the particular
case that the original network does not have negative weights, r < 0 and wii = 0, ∀i, Eq. (2) reads

QAFG[wij , C, r] =
1

2w +N |r|
∑
i

∑
j

[
wij + rδij −

(
wiwj

2w
− r2

N |r|

)]
δ(Ci, Cj) (10)

=
2w

2w −Nr
Q[wij , C] +

r

2w −Nr

(
N − 1

N

∑
s∈C

n2s

)
, (11)

where N is the total number of nodes, ns is the number of nodes in community s of the partition C, and the
nodes and total strengths refer to the original network before the addition of the self-loops. It is interesting
to realize that, since all the negative strengths are equal to the absolute value of r, the contribution of the
resistance to modularity is equivalent to a constant Potts model [Traag et al., 2011].

Resolving the substructure of networks using a unique parameter as proposed in the AFG has still a
resolution problem. As pointed out by [Lancichinetti & Fortunato, 2011], when very different sized modules
coexist, multiresolution methods will tend to break the larger groups before finding the smaller ones. The
phenomenon is easy to understand with an example: let us imagine an image with a real size elephant
and an ant, to see the details of the ant we have to get so close to the image that the elephant image
disintegrates in smaller parts, and only part of the elephant is seen when focusing on the ant. In terms of
modularity, we are trying to unravel those areas which are denser in terms of links with respect to other
areas in the network. A way to determine if we could have resolution problems is to plot a link density
map and detect if there are sharp contrasts. If very different topological scales coexist, there will also be
jumps in the clustering coefficient. In the example provided by [Lancichinetti & Fortunato, 2011], which
consists of an ER network of 400 nodes with average degree 100 linked to two cliques of 13 nodes only by
a unique link between them (see Fig. 1), the clustering coefficient presents a drastic separation of scales,
see Fig. 2. This indicates small zones of the network very densely connected and a wide area not so dense,
corresponding to the cliques and the ER, respectively.

3. Hierarchical Multiresolution method

Our approach to solve the resolution problem takes advantage of the capability of the AFG method to find
meaningful communities from the initial steps of the mesoscale analysis. More precisely, we propose the
use of an iterative scheme which combines the optimization of modularity close to the macroscale of the
network with its splitting in subgraphs, one for each of the previously found communities.

Supposing that our network is undirected, weighted, with positive weights and no self-loops, the pre-
scription of our algorithm is the following:

(1) Start out from the macroscale partitionM, which has only one community containing all nodes. Then,
find the upper bound of this macroscale, which is the minimum value of the resistance parameter (rmin)
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Fig. 2. Clustering coefficient for the benchmark of Fig.1. Note the sharp transition in the relative local density of links
represented by the clustering coefficient. This is indeed a hint to the coexistence of very different topological scales in the
network.

needed to find a partition C of the network with optimal modularity QAFG[wij , C, rmin] formed by more
than one community.

(2) Split the network in the subgraphs defined by the partition C just found.
(3) Repeat the previous steps with each subgraph until no further subdivisions are needed.

This algorithm defines a hierarchical organization of the nodes, where the values of rmin at each splitting
define the ultrametric distances between nodes, i.e. the heights in the dendrogram at which every pair of
nodes first meet.

The calculations of rmin and C may be performed simultaneously, therefore avoiding the costly scanning
of the whole mesoscale between the lower and upper bounds of the resistance [Granell et al., 2011, 2012 in
press]. This is a consequence of the following properties:

• The value of rmin is negative, with the only exception in which the network is just a clique.
• QAFG[wij ,M, r] = 0, ∀r < 0, because:

QAFG[wij ,M, r] =
1

2w +N |r|
∑
i

∑
j

[
wij + rδij −

(
wiwj

2w
− r2

N |r|

)]

=
1

2w +N |r|

[
2w +Nr −

(
(2w)2

2w
+
N2r2

Nr

)]
= 0 . (12)

In fact, modularity Eq. 3 is always zero for M, no matter the network or the value of the self-loops.
• Since QAFG[wij ,M, r] = 0 and modularity is a continuous and monotonically increasing function of the

resistance for any given C 6=M, the optimal partition C at rmin must satisfy QAFG[wij , C, rmin] = 0.
• For any given partition C, the minimum meaningful value of the resistance rmin(C) is the one for which
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Fig. 3. Example of evolution of the FTR algorithm finding rmin in four iterations of the scheme. We start at r1 = 0,
optimizing modularity we find Q1, we look for the rmin corresponding to the partition found at Q1 using Eq. 13 and label
it r2, the process follows with Q2 → r3 → Q3 → r4 → Qmax up to finding rmin, beyond this value the only partition we
will find corresponds to the whole network as a unique module. Different curves in color are values of Q[wij , C, r] for different
partitions.

QAFG[wij , C, rmin(C)] = 0. Thus, Eq. (11) leads to

rmin(C) =
−2w

N − 1

N

∑
s∈C

n2s

Q[wij , C] . (13)

• The upper bound of the macroscale is given by

rmin = min
C
{rmin(C)} (14)

and C is the partition which minimizes rmin(C).

All these properties may be combined in the following fast-tracking resistance (FTR) algorithm to find
the upper bound of the macroscale:

(1) Optimize modularity at r = 0, to obtain partition Cprev.
(2) Calculate rmin(Cprev) using Eq. (13).
(3) Optimize modularity at r := rmin(Cprev), to obtain the current partition Ccurr.
(4) If Ccurr = Cprev or Ccurr =M, then rmin := rmin(Cprev) and C := Cprev.
(5) Otherwise, let Cprev := Ccurr and go back to the second step.

In practice, this algorithm converges in a few number of steps. It stops when a value of r is found such that
the optimization of modularity does not produce any new partition. In this case, the modularity of both
Cprev andM is zero, and no known partition can be used to obtain a better upper bound of the macroscale.
Of course, we cannot claim that we have found the “real” rmin, since no optimization heuristic can ensure
the finding of the global maximum of modularity (this problem is known to be a NP-hard problem, see
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Fig. 4. Dendrogram resulting from the application of the hierarchical multiresolution method on the benchmark of Fig. 1.
The grey region shows the range of the resistance parameter in which the three communities searched coexist. Note that the
vertical lines are not scaled.

[Brandes et al., 2008]), but this is the best approximation one may obtain. To exemplify the functioning
of the FTR algorithm we show in Fig. 3 its application to the first hierarchical splitting of Zachary karate
club network [Zachary, 1977].

4. Results and discussion

We have applied the hierarchical multi-resolution method explained before to the benchmark proposed by
[Lancichinetti & Fortunato, 2011] shown in Fig. 1. We use the FTR algorithm to speed up the process of
finding the minimal r at which every subgraphs splits. The aim is to find the partition divided in three
communities in which the giant ER and each clique are separated. These three communities should contain
the nodes labeled 1 to 400, 401 to 413 and 414 to 426, respectively. As stated in the method, we have
started out from the macroscale M of the network, which contains the 426 nodes. The optimal partition
splits in two communities at a value of the resistance parameter -12.5, obtaining a community formed
by the nodes from 1 to 400 and another community containing the 26 nodes corresponding to the two
cliques. Performing the hierarchical method on the two communities obtained, we find that the community
containing the 26 nodes rapidly splits in two communities of 13 nodes, at a value of the resistance equal to
-11.69. The partition containing 400 nodes splits in two at a much greater value of the resistance parameter,
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which is -8.97. After that, a hierarchical multiresolution is applied to any community found, until no further
divisions are needed. The results of this example are shown in a dendrogram representation in Fig. 4.

Observing this figure, we find that there is a region of the resistance parameter in which the three com-
munities we were hoping to find coexist. This happens because the two cliques form their own communities
much before the community of 400 nodes is split in two. Note that this result can not be obtained using
the original multiresolution AFG method exploring the whole mesoscale, because of the resolution limit
emerging from the coexistence of very different topological scales. The rationale behind the success of the
hierarchical method in this situation is the following: the separation of the network in optimal subgraphs,
each one split and independently analyzed through the multiresolution scheme, reduces the global reso-
lution limit. This resolution limit depends on the number of nodes and the number of links in the whole
structure. The multiresolution method is able to focus the attention on lower scales while other parts of
the network are being screened independently at larger resolution values of r.

5. Conclusions

We have presented a hierarchical multiresolution method able to cope with networks where the resolution
limit would make other schemes to fail, finding the natural communities as defined by [Fortunato &
Barthélemy, 2007]. The method is boosted by a mechanism that allows the determination of the resolution
parameter r at which to optimize modularity in a few steps. The results solving the difficult separation of the
benchmark proposed in [Lancichinetti & Fortunato, 2011] are encouraging and open the door for further
investigation of modularity based community detection methods to escape from the implicit resolution
limit.

Acknowledgements

We acknowledge support from the Spanish Ministry of Science and Innovation FIS2009-13730-C02-02 and
the Generalitat de Catalunya SGR-00838-2009.

References
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Fortunato, S. & Barthélemy, M. [2007] “Resolution limit in community detection,” Proc. Natl. Acad. Sci.

USA 104, 36.
Girvan, M. & Newman, M. E. J. [2002] “Community structure in social and biological networks,” Proc.

Natl. Acad. Sci. USA 99, 7821.
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