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A B S T R A C T   

Network analysis has been used for many years in ecological research to analyze organismal associations, for 
example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in 
microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in 
studies applying co-occurrence analysis to soil microbial communities. While this application offers great po
tential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges 
related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In 
this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the 
small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the 
different approaches of network construction that are commonly applied to soil microbial datasets and discuss 
their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we 
demonstrate how different experimental designs and network constructing algorithms affect the structure of the 
resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how as
sumptions of the construction method, methods of preparing the dataset, and definitions of thresholds affect the 
network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached 
by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful 
way will allow applying this technique not in merely descriptive, but in hypothesis-driven research. Analysing 
microbial networks in soils opens a window to a better understanding of the complexity of microbial commu
nities. However, this approach is unfortunately often used to draw conclusions which are far beyond the sci
entific evidence it can provide, which has damaged its reputation for soil microbial analysis. In this Perspectives 
Paper, we would like to sharpen the view for the real potential of microbial co-occurrence analysis in soils, and at 
the same time raise awareness regarding its limitations and the many ways how it can be misused or 
misinterpreted.   

1. Introduction 

Networks present a powerful mathematical framework to explore the 
complexity of relationships within an ecological community. Their po
tential lies in a formal but intuitive representation of the organization of 
complex systems, where entities (e.g. species) are displayed as nodes, 
and interactions or associations among them as edges (links). Since the 
beginning of the century, network analysis has become an established 
tool for investigating species relationships in ecosystems (May 1974; 

Bascompte, 2009; Poisot et al., 2016) and has experienced an upswing in 
soil ecological research over the past ten years (Fig. S1). 

One of the original aims of the field is to understand the outcome of 
the combination of species interactions present in nature, which allows 
to gain valuable information on ecosystem properties. Data for ecolog
ical network analysis of species interactions is ideally obtained by direct 
observation of physical contact, e.g. pollination of plants by insects or 
birds, or mycorrhizal fungi colonizing plant roots. However even in such 
cases identifying species interactions within an ecosystem can be 
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challenging, as it requires repeated observations or a mechanistic un
derstanding of them. An alternative approach for investigating networks 
of species relationships has been the analysis of spatial co-occurrence 
patterns of species with so-called co-occurrence networks. Although 
the use of co-occurrence data often limits possible conclusions on species 
interactions, it contains valuable information regarding community 
structure and assembly mechanisms which can be explored by the use of 
network analysis (Blanchet et al., 2020). 

In microbial ecosystems, associations between microbial taxa can 
usually only be assessed via co-occurrence data, as interactions between 
microbes in their natural environment are much more difficult to 
observe than in macro-ecosystems. Their assessment would require 
complicated experiments, for example, involving records of events of 
feeding or cross-feeding, mechanisms behind biofilm formation or other 
types of interactions. All of which are impossible to carry out in situ, 
particularly in complex environments such as the soil. Network analysis 
in microbial ecology therefore needs to rely on the observation of species 
co-occurrence or co-exclusion patterns within molecular microbial 
datasets (e.g. derived from 16S amplicon sequencing) across a suffi
ciently high number of environmental samples (Röttjers and Faust, 
2018). Networks generated from this indirect information are known as 
‘microbial co-occurrence networks’ or ‘microbial association networks’, 
and have gained much popularity in microbial ecology in the last decade 
(Fig. S1). Analogous to their macro-ecological counterparts, the 
observed structure of microbial co-occurrences is the result of commu
nity assembly, a complex ecological mechanism, which is influenced by 
various processes such as environmental filtering (i.e species that 
respond in the same way to an environmental factor tend to co-occur in 
samples with variation of that environmental factor), species in
teractions (i.e. two microbial taxa need to exchange specific metabolites 
for increasing their fitness), dispersal dynamics and stochastic processes 
(Faust, 2021). Network analysis of in situ distributions of microbial taxa 
in soil reveal the final result of these community assembly processes, and 
can therefore be a great starting point to better understand them. To 
interpret these networks it is important to distinguish microbial asso
ciations from microbial interactions (Barner et al., 2018). While the first 
refers to the observed statistical signal obtained from co-occurrence (or 
abundance) patterns, microbial interactions constitute the relationships 
between species present in natural systems. 

The advent of high-throughput sequencing techniques has led to 
widespread use of co-occurrence analysis of microbial communities, 
which went along with the development of significant methodological 
advances. It is currently used in a rapidly growing number of soil mi
crobial ecology studies. While not more than 10% of microbial network 
analysis studies were conducted on soil datasets before 2010, this 
number has steadily increased since then to 35% in 2020, see (Fig. S1) of 
Supplementary Material. While this approach has great potential to 
enrich soil studies, the intrinsic complexity of soil adds new challenges 
to the construction and interpretation of network models. The difficulty 
consists in taking into account the inter- and intra-variability of samples, 
which are a result of soil heterogeneity (Carr et al., 2019). The first leads 
to a high number of environmentally driven association patterns, which 
can be mistaken as species interactions (Armitage and Jones, 2019). The 
second, refers to the use of large sample volumes, where naturally 
segregated and chemically diverse micro-habitats are mixed (usually 
0.25 cm3 soil for DNA analysis, derived from a homogenized sampling 
volume of 250–500 cm3 soil). The resulting loss of information about the 
small-scale physical, chemical and biological diversity of soil may also 
confound the signal of biological interactions (Berry and Widder, 2014). 

Overall, network analysis relies on a clear understanding of what the 
constructed network model represents and the data used for it (Poisot 
et al., 2016). Unfortunately, due to misuse, networks have unfairly ac
quired a mixed reputation in soil microbial ecology. On one hand they 
are considered essential for understanding the structure and properties 
of microbial communities (Faust and Raes, 2012). On the other hand, 
theoretical ecologists warn against inappropriate conclusions derived 

from inaccurate data handling, unsuitable inference methods and more 
often an inappropriate interpretation of the obtained network model 
(Berry and Widder, 2014; Carr et al., 2019; Blanchet et al., 2020). As the 
use of networks in studies of soil microbial communities continues to 
increase, we see an urgency to discuss the challenges the approach in
herits from other fields and new challenges the soil system poses. 

In this Perspective we describe the main ideas behind network 
inference from soil microbial co-occurrence datasets (Sec. 2), the 
network construction itself (Sec. 3), and the mathematical framework 
for the analysis of such networks (Sec. 4). After this overview, we discuss 
the challenges of application of these methods to soil microbial com
munities (Sec. 5). The network construction is illustrated using a dataset 
of microbial communities from different depths of a forest soil. We 
discuss how differences in the experimental design, data preparation 
and filtering, as well as network construction algorithms affect the 
structure of the resulting networks. We also discuss how these differ
ences affect our interpretation of the edges in the network and influence 
our ecological conclusions. We argue that to exploit the full potential of 
network analysis for soil ecological studies it takes a combined effort 
from both experimental and theoretical sides. Applying network prop
erties in a meaningful way enables the application of network analysis 
not only in merely descriptive, but also in hypothesis-driven research. 

2. Networks as models of microbial communities in soil 

Microbial association networks are constructed based on co- 
occurrences of microbial taxa across a sufficiently high number of 
environmental samples (BOX 1). Each node in the constructed network 
represents one microbial taxonomic unit while an edge between two 
nodes represents a significant association between these microbial taxa. 
There are different ways how network construction algorithms deter
mine whether two taxa are significantly associated, and thus connected 
by an edge in the network. The most common approach is based on 
pairwise correlations among taxa across all samples. (for details see Sec. 
3 and BOX 1). One of the key prerequisites for interpreting the structure 
of the resulting network is to understand what an edge, i.e. a significant 
association, represents. 

To understand what an edge (observed association) could potentially 
mean we need to understand the mechanisms that lead to the observed 
co-occurrence pattern, i.e. the mechanisms by which microbial com
munities assemble. Microbial community assembly is driven by multiple 
processes, such as environmental filtering, inter-specific interactions, 
reproduction/mortality events, dispersal limitation and sporadic muta
tions (Nemergut et al., 2013). Besides, other factors such as legacy ef
fects, the importance of the order by which species are introduced into a 
system, show how community composition can depend on elusive ele
ments (Fukami, 2015). 

The combined outcome of all these hidden ecological processes leads 
to the spatial distribution of microbial taxa in soil. The relevance of each 
process for co-occurrence patterns at a given scale, however, remains 
controversial. Soil microbial network analysis faces the challenge to use 
observations of microbial distributions which are the result of multiple 
processes for constructing reliable models of microbial communities as 
schematically depicted in (Fig. 1). It is important to keep in mind that 
network analysis targets co-occurrence pattern of microbial taxa, while 
the spatial distribution of microbes in the soil is regulated by the dy
namics and interactions of individual microbial cells. Dynamics and 
interactions of individual soil microbes may not only be taxon-specific, 
but also depend on the current state of their local environment, in 
particular when considering the high physical, chemical and biological 
heterogeneity at the soil microscale. Constructed networks thus in 
general reflect co-occurrences caused by diverse and complex dynamics 
of individual microbes, but may only be able to capture a signal of in
teractions between species, if these interactions are linked to general 
species-specific traits and are not strongly modulated by environmental 
variability within and between samples, see also Sec. 5.2. 
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Box 1 
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The process of reconstructing an underlying ecological reality from 
observed data by means of an abstract mathematical model is called 
inference. Network inference, which is also often termed network 
reconstruction, correspondingly looks for mathematical models that 
represent relationships in a system as a network with the aim to 
reconstruct the hidden ecological relationships. Despite the importance 

of building networks on a suitable mathematical model, many state-of- 
the-art network reconstruction methods don’t go beyond a mere iden
tification of patterns, such as significant correlations, and thereby only 
provide a naive representation of the hidden reality without a clear 
interpretation. This is often the case for microbial co-occurrence net
works in soil which are most often constructed based on pairwise cor
relations. To understand what an edge, that connects two taxa in a 
network, represents, we need to understand why these two taxa signif
icantly co-occur across a high number of samples. Despite the wealth of 
underlying causes for the spatial distribution of microbial taxa in soil, 
significant species co-occurrences, which are the basis for network 
edges, are often interpreted to be caused mainly by interactions between 
the taxa. To avoid such misleading conclusions from network analyses, 
we suggest that thinking about the underlying biological processes and 
statistical assumptions should be at the core of network model con
struction of soil microbial communities. Nevertheless, we concede that 
the detection of associations can be a valuable intermediate step, which 
can help to generate hypotheses about a given system and its taxa. For a 
safe interpretation, it is essential to (i) consider the details of the 
experimental design, as well as the assumptions of the used statistical 
methods, as both may influence the potential meanings of network 
edges, and (ii) (ideally) develop network reconstruction methods that go 

Fig. 2. Workflow for the preparation of a dataset which precedes the network construction. It involves filtering out some ASVs and a data transformation, such as 
scaling the number of reads aij by the total read sum in a sample Si, or taking a centered log ratio (clr). The transformed dataset contains relative abundance values 
constrained by a constant (cte) sum Ti, or even inferred absolute abundance values for each ASV in each individual sample. 

Fig. 1. The hidden relationships (left diagram) within an ecosystem are 
reconstructed (inferred) from limited observations and measurements, in this 
case of associations between microorganisms (right diagram). 
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towards a more accurate representation of the underlying ecological 
relationships (see Sec. 5). 

3. Network construction 

Network model construction aims to reconstruct a network of 
ecological relationships existing in nature from observational data. This 
aim is inherently challenging and can only result in a model that in the 
best case reflects some aspects of the existing ecological network. While 
there is an agreement that a graphical representation of ecological re
lationships in a system is useful, there is no universal framework to infer 
these relationships from environmental datasets. In this section we 
describe the most popular statistical approaches used to assess associa
tions between microbes and discuss their potential and drawbacks. 

We illustrate the process of network construction and the effect of 
considering different experimental designs on the network structure by 
examining the microbial communities from forest soil at two depths, 
based on 18 samples taken from a lower soil layer (15–20 cm depth) and 
20 samples from the upper soil layer (0–5 cm depth). The community 
composition was evaluated by sequencing 16S SSU rRNA marker gene. 
The description of sampling, DNA extraction and sequencing processes 
are given in the Supplementary material. The purpose of this analysis is 
to elucidate what effect i) the inclusion of a strong environmental factor 
which may influence the spatial distribution of microbial taxa in the soil 
(soil depth) and ii) the choice of a certain statistical network inference 
method can have on the resulting network structure and interpretation. 

3.1. Preparation of the dataset 

In most network construction approaches, associations between 
microorganisms are identified either from probabilities of co-presence 
(co-absence) or from pairwise correlations of species abundance in a 
number of environmental samples. Abundances of microbial taxa in 
natural microbial communities are usually assessed by amplicon 
sequencing of highly preserved, phylogenetically informative marker 
genes, such as the 16S ribosomal RNA for bacteria and the internal 

transcribed spacer (ITS) for fungi. The sequenced reads are grouped by 
sequence similarity into operational taxonomic units (OTUs) or recov
ered from sequenced reads as amplicon sequence variants (ASVs) 
(Callahan et al., 2017), which can then be classified into taxonomic 
categories. 

Two main characteristics of amplicon datasets are: (i) they are 
compositional, which means that abundances of taxa can only be 
interpreted in relative terms (Gloor et al., 2016; Morton et al., 2019), 
and, especially for soil microbial communities, (ii) taxa are sparsely 
distributed, which means that datasets contain a high amount ASVs or 
OTUs that only occur in a fraction of the samples (Alteio et al., 2021). 
Both of these characteristics pose a major challenge to network con
struction approaches, as correlations carried out on relative abundance 
and sparsely distributed datasets can lead to spurious results (Morton 
et al., 2019; Alteio et al., 2021). In the next subsections we discuss how 
to reduce the potential bias introduced by these features of the dataset, 
by applying appropriate data filtering and transforming steps before the 
actual network construction (Fig. 2). 

3.1.1. Interpreting reads: estimations of abundances of microorganisms 
from high-throughput sequencing data 

Amplicon sequencing data is compositional, which means that it 
contains information only on relative abundances. There are several 
methods to extract this relative information out of measured count 
reads, which is most often done by: (1) rescaling the count reads by the 
library size (aij/Si) or (2) rarefaction, see (Fig. 2). The constant sum 
constraint ties all values together and consequently the obtained values 
in each sample are not independent. The computation of correlations on 
these non independent values is unreliable and thus gives rise to 
spurious values (Lovell et al., 2015; Gloor et al., 2016). The introduced 
bias is stronger if the reads of some taxa dominate the data, while it plays 
a minor role for data sets of highly diverse communities. Constructing 
correlation-based networks from compositional datasets is common 
practice, and particularly often seen in studies of soil microbial com
munities. It is important to keep in mind that, depending on the dataset, 
these networks may be dominated by spurious associations. To over
come the problem of spurious correlations caused by compositional 
data, log ratios instead of transformations (1 and 2) were proposed 
(Fig. 2). However, they require an adequate exchange of zeros by 
pseudo-counts, which implicitly assumes that all unfiltered taxa are 
present in all samples, but were not detected due to shortcomings of 
sequencing. 

As it is not possible to directly recover absolute abundances from 
sequencing data, complementing amplicon sequencing data with addi
tional data can improve quantitative insights into microbial commu
nities. One possibility is to use qPCR or droplet digital PCR (ddPCR) to 
quantify the number of marker gene copies in the sample (Perisin et al., 
2016; Jian et al., 2020). Another option is to infer marker gene copy 
numbers based on the phylogeny of organisms (Kembel et al., 2012). 
However this step relies heavily on a good classification of the taxonomy 
and while the approach generally works well for gut bacteria, it can be 
more challenging for fungi (Lavrinienko et al., 2021). 

3.1.2. Interpreting zeros: sparsity in amplicon sequencing datasets 
Another important aspect of amplicon sequencing data sets is their 

sparsity, which results from biological complexity as well as technical 
challenges associated with nucleic acid extraction and sequencing. 
Particularly in soil, which is characterized by high species diversity and 
heterogeneity, most detected taxa are rare and only appear in a small 
fraction of the total number of samples. Consequently, these datasets are 
often highly zero-inflated, for example for our datasets close to 50% of 
all read values across samples are zeros. Observed zeros result from 
several very different processes (Kaul et al., 2017). On one hand, there 
are biological zeros that show the real absence of a microorganism in the 
community and result from a complex interplay of community assembly 
and dynamics, see Sec. 2. On the other hand, the data can display 

Table 1 
Definitions used in this Perspective Paper.   

Useful definition 

Co-occurrence or association 
networks 

Networks constructed from co-occurrence or 
co-exclusion (abundance) data. 

Interaction networks Network of causal relations that exist between 
organisms in nature. 

Network reconstruction The aim to reconstruct the underlying 
ecological reality, for example the network of 
interactions in nature, from observed data. 

Network model construction or 
network construction 

Construction of a model network from observed 
data, which may or may not capture the 
underlying ecological reality. 

Prevalence Number of samples where a species is present 
across the complete set of samples. 

Compositional data Data where its components represent 
proportions (parts of some-thing), in other 
words their sum has a constant value. 

Subcompositional coherence Results obtained for a whole data set should not 
contradict the results obtained from any of its 
parts. Here in particular if we take into account 
all taxa or filter some of them out. 

Prevalence threshold A threshold, which cuts off taxa with low 
prevalence in environmental samples. Done 
previous to network construction. 

Total sum threshold A threshold, which filters taxa with low total 
number of reads, in other words low average 
read numbers in all environmental samples. 
Done before network construction. 

Edge threshold Threshold for pairwise association measure (e. 
g. correlation value) defining the establishment 
of an edge between taxa. Done for network 
construction.  
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technical zeros that result from upstream sample processing, or limita
tions of sequencing data. Upstream challenges are related to DNA 
extraction bias and amplicon primer design, which may not capture 
particular subsets of organisms. In addition, zeros can be caused by 
undersampling of a soil sample. As a result of the high diversity of soil, 
high sequencing depth must be achieved to capture the scope of di
versity. The sparsity of the data and the low number of sequenced 
samples typical for most experiments make it difficult to establish 
meaningful associations among species with low prevalence. First of all, 
the appearance of taxa in only a few samples makes it statistically 
impossible to spot any negative associations among them (Cougoul 
et al., 2019). Second, the observation of co-absence of taxa in samples 
can result in spurious positive associations. False positive associations 
may arise since correlations, such as the widely used Spearman’s rank, 
can overestimate obtained values due to many repeated zero values (tied 
ranks) (Connor et al., 2017). Since we do not know how to correctly 
interpret zeros in our data, we should not attribute significance to these 
correlation values inflated by species absences. Therefore, it is common 
to establish a prevalence threshold, requiring e.g. a presence in 20% of 
all samples, or set a total sum threshold requiring a minimum number of 
reads, see (Table 1). The arbitrariness of thresholds was pointed out in 
Cougoul et al. (2019), and remains controversial in sequencing data 
analysis. Alternatively randomly chosen pseudocounts can be added to 
the dataset (Connor et al., 2017). For our dataset of forest soil we have 
used a total sum threshold of 100 reads. Due to the structure of our 
dataset, in which taxa with low reads also were of low prevalence, this 
criteria eliminated the taxa of low read numbers, as well as low preva
lence, leaving 595 ASVs for the combined dataset of upper and lower soil 
layers,as well as 283 and 304 ASVs for the separate analysis of upper and 
lower soil, respectively. We have checked that zeros do not have influ
ence for the established pairwise associations in this trimmed dataset, 
see details in the Supplementary material. 

3.2. Establishing associations 

3.2.1. Choice of metric to measure associations and choice of an edge 
threshold 

The most common methods of network construction rely on estab
lishing edges between taxa with significant pairwise associations. In this 
case the network depends strongly on two key decisions: (1) the choice 
of a metric to quantify the strength of association’s signal; and (2) the 
choice of a significance threshold - referred to as edge threshold (see 
BOX1), which serves as a criterium to differentiate a true signal from 
noise. The strength of associations (1) is most often measured using 
parametric Pearson or non-parametric Spearman or Kendall-τ correla
tion coefficients. The latter two are more convenient since they can be 
used on non-normally distributed datasets, as is the case of microbiomes. 
However these are not the only possibilities for (1) and measures such as 
Bray Curtis, Kullback Leibler dissimilarities or even mutual/maximal 
information can also be used to quantify associations. After the metric is 
chosen the next step is (2) — the choice of an edge threshold, τ. Before 

this threshold is applied, the networks are fully connected, with each 
node (taxa) connected to all other nodes. In these networks the weight of 
each edge is given by the corresponding pairwise correlation (associa
tion) value ρ. To illustrate this, we provide the histogram of Spearman 
correlation coefficients for our dataset of the upper soil core, which 
shows that the weights of most of such edges are close to zero and cannot 
be interpreted as a strong signal of an association (Fig. 3a). The solution 
therefore, is to eliminate edges with weights below a given edge sig
nificance threshold τ. In this way, the threshold is related to the sparsity 
of the network, where lower values result in very densely connected 
networks, while high values in networks with fewer edges, see (Fig. 3b). 
The choice of the threshold value can be either totally arbitrary using a 
single value for all edges, or it can be evaluated for each edge by com
parisons with null models. In the second case, the null model is obtained 
by shuffling read values among taxa and samples. In other words, a new 
data set is obtained by randomly selecting values from the original one. 
The shuffling can be followed by a possible rescaling, due to new total 
read values in each sample. This procedure is done to break any non- 
random pairwise association patterns while keeping some of the orig
inal characteristics of the data (e.g. sparsity, compositionality and 
marginal count distributions of taxa). Each pairwise correlation value in 
the original data set is then ranked against the correlation value of the 
same pair in the shuffled dataset (Faust and Raes, 2016). This allows one 
to check the probability of observing such correlation by mere chance (i. 
e. in similar random data). The p-value determines if the edge should be 
kept or eliminated. (Fig. 3a) marks with light blue the pairwise corre
lation values which are left after such a procedure (using 1000 shuffled 
datasets), and demonstrates that the procedure also works as a sort of 
edge threshold. Another popular method for edge threshold selection is 
using ideas from random matrix theory (RMT, mathematical research 
area that studies matrices with random elements) (Deng et al., 2012). 
The approach determines at which threshold the generated adjacency 
matrix no longer has properties compatible to that of a fully random 
network and uses that as edge threshold. Although the procedure takes 
away the arbitrariness of the choice, it also selects a hard threshold, and 
relies on the assumption that biological networks have a completely 
random structure at the low τ limit. 

We illustrate the networks obtained by the use of two thresholds τ =
0.7 and 0.8 in (Fig. 4a, c, e) and (Fig. 4b, d, f) respectively. For both 
thresholds, networks from upper and lower soil layers, as well as from 
both soil layers combined present two highly interconnected sets of 
nodes (modules or clusters): While the two sets are completely discon
nected for τ = 0.8, we can detect candidate taxa that connect the two 
potential communities for the lower threshold. The choice of threshold 
also changes important network properties, such as mean degree, mean 
distance and modularity. This demonstrates that the choice of edge 
thresholds can influence the interpretation of the network structure in 
terms of its connectivity and the relevance of individual taxa in the 
system. 

The advantage of using the strategies described so far is that they 
involve simple computations. However, as described before they suffer 

Fig. 3. The choice of the threshold, to establish an 
association edge, changes the sparsity of the con
structed networks. (a) Frequency, Nρ of the Spear
man’s rank correlation coefficients ρ obtained for all 
ASV pairs in the upper soil core (in gray). The selected 
ρ values by the use of different edge thresholds τ are 
marked with different colors (red and dark blue). In 
light blue we show ρ selected as significant by com
parison with a null model (for that we use 1000 
shuffled versions of our dataset, and p-value = 0.05). 
(b) Number of positive edges (ρ > 0) in networks 
constructed with different edge thresholds. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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Fig. 4. Association networks of microbial taxa in a Beech forest soil at different soil depths constructed from Spearman’s rank correlation coefficient at different edge 
thresholds. Shown are networks constructed from upper and lower soil layers combined (a, b), and from each soil layer separately (c–f), for edge thresholds τ = 0.7 (a, 
c, e) and 0.8 (b, d, f). Notice how the selected value for the edge threshold changes the number of edges in the network as well as the network structure (for details on 
preparation of the data set see Supplemental material). The network of the combined dataset (a, b) shows not the total 595, but only 461 ASVs shared with either one 
of the two other datasets (lower panels). The network with the phylogenetic classifications of nodes is also provided in the Supplement. Network visualization was 
done with graph-tool (Peixoto, 2014). 

K. Guseva et al.                                                                                                                                                                                                                                 



Soil Biology and Biochemistry 169 (2022) 108604

8

Fig. 5. Networks of positive associations for microorganisms in a Beech forest soil at different soil depths constructed by different network inference methods. 
Networks constructed from upper and lower soil layers combined are shown in (a, b), and from each soil layer separately in (c–f). Networks were constructed by (left 
panel) SparCC or by (right panel) SPIEC-EASI-like approach (transformed with clr, and then using GLASSO combined with Stars). To improve visibility nodes with no 
edges are not shown. 
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from several limitations: they do not take into account the compositional 
nature of the dataset and they cannot clearly separate association signals 
from noise. We can see that the choice of a threshold constitutes a 
compromise between the detection of spurious links (false positives) and 
neglecting existent associations (false negatives). The problem of 
threshold selection is not unique to species co-occurrence networks, but 
also exist in other areas from inference of gene co-expression to social 
networks (Couto et al., 2017). The disadvantage of any hard threshold, 
independent of the selection criteria, is that the thresholding procedure 
itself may distort the underlying data, strongly affecting the observed 
network patterns (Cantwell et al., 2020). In particular, as we explain in 
the next section, this occurs because there is no possible threshold that 
can distinguish direct from indirect associations. For microbial networks 
what we often see is that thresholding leads to very dense network 
structures (‘hairballs’ (Faust, 2021)). All these reasons make it difficult 
to derive an ecological interpretation from the pattern in the constructed 
networks. Several network construction tools were developed to tackle 
the listed issues, we describe some of them in the next section. 

3.2.2. Statistical methods that improve reconstruction of ecological 
networks 

In this subsection we mention some methods developed to improve 
the reconstruction of ecological relationships. However all of these 
methods depend on the quality of the data and one should not expect 
signal of interactions in the data if the scale of sampling is inadequate 
(see Sec. 5.3). In the last decade several ready-to-use tools were made 
available for network construction. Here we highlight: CoNet, which 
combines several association measures described in Sec. 3.2.1 (Faust 
and Raes, 2016); and MENA, which uses random matrix theory to decide 
on the threshold choice (Zhou et al.; Deng et al., 2012); both are widely 
used for network construction for microbial soil communities. Another 
tool which stands out is SparCC due to its ability to treat possible 
compositionality bias in the data (Friedman and Alm, 2012). It uses 
log-ratio variance (vlr) to estimate associations, a transformation that 
presents advantages as it is subcompositionally coherent (see definition 
in (Table 1). More precisely this transformation allows a consistent 
analysis of any subset of the data, without any contradictions in the 
results. The SparCC algorithm works under the assumption of few as
sociations between taxa. The final adjacency matrix is evaluated again 
either by establishing an edge threshold or a comparison with null 
models. 

To improve our ecological interpretation, it is also of interest to 
distinguish direct from indirect dependencies between taxa. For 
example, it is well known that two taxa may show a significant corre
lation because both are under the influence of a third taxon, although 
they do not directly interact with each other. The difficulty is that no 
choice of edge threshold for correlations is capable of distinguishing 
between direct and indirect associations. To solve this issue a new set of 

algorithms for network construction was proposed based on probabi
listic graphical models (Kurtz et al., 2015; Fang et al., 2017; Yang et al., 
2017; Yoon et al., 2019; Jiang et al., 2021). These models represent 
complex probabilistic relations in the form of diagrams (graphs), where 
nodes represent taxa and edges represent conditional dependencies be
tween them. Such a graph can be easily constructed for Gaussian 
multivariate data and for this case it is known as Gaussain graphical 
model (other names such as partial correlation network or concentration 
graph are also used). The conditional dependencies are evaluated from 
non-zero elements of the inverse covariance matrix (Bishop, 2007). It is 
important to note that strictly speaking for non-Gaussian settings, as is 
the case for microbial data sets, the relationship between the inverse 
covariance and conditional dependencies is not known. However, the 
approach is still used as it is expected to be informative beyond its 
standard domain (Liu et al., 2009). The inverse covariance is computed 
with a popular statistical method known as glasso, lasso regularized 
maximum likelihood estimator. In this case, the sparsity of the network 
is tuned with a regularization parameter, λ, with small values of λ cor
responding to densely connected networks and large values to fully 
disconnected networks. The method in general selects a range of λ values 
and generates several networks. The next step is to select the best model, 
considering its complexity and data fitting ability. The most well known 
model selection algorithms are BIC, EBIC, Stars. SPIEC-EASI (Kurtz 
et al., 2015) was one of the first tool packages based on graphical models 
and therefore is the most well-known. However it is not the only package 
based on a graphical model, there is a series of other recently developed 
tools among them: gCoda (Fang et al., 2017), SPRING (Yoon et al., 2019) 
and BC-GLASSO (Jiang et al., 2021). We also illustrate the outcome of 
network construction using SPARCC and a SPIECEASI-like (clr trans
form, glasso and Stars) algorithm in (Fig. 5). For simplicity, we do not 
show nodes which have zero edges in this image. Again, as in (Fig. 4) it is 
possible to identify the formation of two clusters, one with the taxa 
unique to the respective core depth (nodes shown in blue and green), 
and another with taxa shared by the two cores (nodes shown in red). 
Despite the differences between methods, they capture similar patterns, 
although only half of the edges are shared among them, see (Fig. 6). 
Nevertheless, the ecological processes behind the observed structure 
remain unclear. Note that these methods perform rather poorly when 
used on artificial data sets produced even from simple models of pop
ulation dynamics such as gLV (generalized Lotka-Voltera) when 
different environmental conditions are used (Berry and Widder, 2014; 
Hirano and Takemoto, 2019). One of the reasons is that indirect de
pendencies between taxa can also appear due to environmental factors, 
for example due to niche overlap. It is possible to introduce environ
mental parameters as additional nodes in the network (Faust, 2021). 
Another form to deal with environmental confounders is to use a model 
based approach as done by mLDM (Yang et al., 2017), a tool introduced 
recently based on an hierarchical Bayesian statistical framework. 

Fig. 6. The edges detected by different network construction methods, using Spearman correlation (edge threshold 0.7), SPARCC (threshold 0.65) and GLASSO 
(STARS for model selection) with and the overlap among them. 
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3.3. Summary of test dataset analysis 

We used microbial co-occurrence data from upper and lower soil 
layers of a European Beech forest to test whether the choices for a spe
cific network inference method (i.e. correlation-based methods with 
different edge thresholds, (Fig. 4), a method using log-ratio trans
formations to address a possible compositionality bias, SPARCC, and a 
method considering indirect associations, GLASSO and Stars; (Fig. 5), or 
the inclusion of an environmental factor (soil depth) would influence the 
structure of the constructed network, and the conclusions that can be 
drawn from it. The datasets of upper and lower soil layers together 
consisted of 466 ASVs, from which 162 were exclusively occurring only 
in the upper soil samples, and 183 only in the lower soil sample, and 121 
were shared between the two (Fig. S5). We used this taxon-specific in
formation to investigate if and to what extent the resulting network 
structure was influenced by taxon preference for upper or lower soil, two 
habitats which differed in many environmental conditions, like tem
perature, moisture, or substrate input. To visualize this, we categorized 
the nodes into those which exclusively occur in one of the soil layers 
after filtering ASVs with low read numbers (Fig. S5), which could be 
interpreted as ‘specialists’ and those which occurred in both soil layers, 
which could be interpreted as ‘generalists’. Irrespective of the method 
used, networks which were constructed including the environmental 
gradient, i.e. based on the combined dataset from both soil layers, al
ways exhibited two highly connected sets of nodes (clusters), one con
taining all taxa dominant in the upper and the other those from the 
lower soil layer. This demonstrates that taxa which co-occur due to 
similar environmental preferences strongly dominate the network 
structure, potentially obscuring other ecological relationships. 

Ruling out this environmental factor, i.e. constructing networks for 
each layer separately, revealed an interesting pattern. Here again we see 
in all methods that two clusters (modules) formed, of which one was 
dominated by the specialists and the other one dominated by the gen
eralists. This is an interesting finding, and the next step would be to 

think about its interpretation, or to formulate a testable hypothesis for 
future research based on this result. Both, however, go beyond the scope 
of this paper. Here, we just would like to point out that this pattern was 
conserved, in principle, in all the methods (Figs. 4 and 5). The only 
observable limitation is that in the most sparsely connected network, i.e. 
the correlation network with a high edge threshold in the lower soil 
layer (Fig. 4f), this finding may not be visible anymore owing to the 
small number of connections. While the coarse pattern seems to be 
robust and independent of the method, however, we also observed that 
the majority of links were different between the different methods 
(Fig. 6). For a more detailed analysis, where pairwise associations be
tween individual taxa are of interest, one should thus consider that 
methodological choices could influence conclusions at that level. For a 
display of networks with nodes coloured according to their phylogeny 
see (Fig. S7 and S8). Interestingly, however, both correlation (τ = 0.7) 
and SPIEC-EASI like methods identify the same central taxa that inter
mediated the connection between the modules of the upper soil layer 
(ASV_32a_pom, a Proteobacteria Rhizobiales). From this small test we 
conclude that strong patterns in the dataset will be captured by most 
methods, while the difference in the detailed connection pattern may be 
quite different, and conclusions on individual connections should thus 
be done with care. 

One interesting question here would be if it was possible to reveal 
these clustering patterns also using traditional ordination approaches. In 
principle, ordination-based analyses, such as nonmetric multidimen
sional scaling (NDMS) or correspondence analysis (CA) can explore and 
visualize community dissimilarities between samples (i.e. ‘beta-di
versity’) or, if turned around, dissimilarities between taxa in their 
occurrence pattern across samples. One could argue that the latter 
approach may reveal a potential clustering of taxa in a similar way as co- 
occurrence network analysis. The reduction of the high dimensional 
nature of the dataset realized by ordination methods, however, may 
discard valuable information, affecting the conclusions. Network 
models, on the contrary, work in the original multidimensional space 

Fig. 7. Some network properties that can be used to characterise microbial communities, with the respective examples of questions that can be addressed by 
their use. 
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and therefore are more appropriate to detect such patterns. To test this, 
we applied taxa-based NMDS to the same dataset we used for the 
network analysis. While NMDS was also able to separate lower and 
upper soil specialists in the combined dataset of both layers, the method 
could not detect a generalist and a specialist-dominated cluster in the 
dataset of each separate layer as observed by network analysis (see 
Fig. S9). 

4. Network analysis 

Network analyses can be applied to different types of data, e.g. data 
of soil samples collected in the field, root samples collected in different 
experimental settings, or even datasets generated by simulations (Berry 
and Widder, 2014; Ofaim et al., 2017; Hewavitharana et al., 2019). 
These datasets can create a variety of different networks such as resource 
competition networks (species and resources as nodes), food-webs 
(antagonistic interactions), mutualistic networks (positive in
teractions) or general co-occurrence networks. In this section we will 
illustrate the properties that can be central to formulate testable hy
potheses for the biological system, see Fig. 7. 

4.1. Properties of the nodes 

The importance of a species in an ecosystem can be classified ac
cording to how many other species it can directly or indirectly influence. 
In a network of interactions the direct influence of a node is given by its 
degree (number of edges), see Fig. 7. Node with large degree, or high 
connectivity, are known as hubs and represent species generalists or ‘key 
taxa’. While nodes at the network border, classified as peripherals, 
represent specialists (Olesen et al., 2007). This definition can be 
extended to encompass more complex network structures and the nodes 

can be classified in four simple categories: local or global-hubs, con
nectors or peripherals (Guimerà and Nunes Amaral, 2005; Olesen et al., 
2007). 

Although this concept to interpret nodes with a high connectivity as 
‘key taxa’ stems from plant-animal interaction networks, it was later 
adopted in a large and still growing number of soil ecological studies to 
identify ‘keystone taxa’ in soil microbial datasets based on co- 
occurrence networks (e.g. (Zhou et al., 2011; Lu et al., 2013; Lupatini 
et al., 2014; Jiang et al., 2016; Ling et al., 2016; Shi et al., 2016; Chen 
et al., 2018; Qi et al., 2019; Varsadiya et al., 2021; Yuan et al., 2021)). 
Other attempts to classify keystone taxa in soil microbial co-occurrence 
networks select nodes with high degree and high closeness centrality, 
but low betweenness centrality (Banerjee et al., 2018, 2019; Lin et al., 
2019), guided by a theoretical analysis of co-occurrence networks con
structed from generalized Lotka-Volterra equations (Berry and Widder, 
2014). It must be noted that one of the selection criteria in this approach, 
low betweenness centrality, differs fundamentally from the selection 
criteria of high connectivity defined in (Olesen et al., 2007), so that the 
two approaches would likely lead to the identification of different key
note species when applied to the same dataset. 

Most important, however, both (and other) approaches to identify 
‘keystone species’ from soil microbial datasets currently suffer from a 
lack of conceptual justification of why a node with a certain topology, 
for example a highly connected (‘hub’) node, should indicate a 
‘keystone’ role of the respective taxa in soil microbial co-occurrence 
networks (Röttjers and Faust, 2019). A ‘keystone species’ is defined as 
‘a species whose impact on its community or ecosystem is large, and 
disproportionately large relative to its abundance’ (Power et al., 1996). 
This means that the removal of such a species will have a detrimental 
effect on the community or ecosystem, a behavior which has been 
computationally shown when removing hub species in ecological 

Table 2 
Examples of ecological questions that can be assessed with particular network properties depending on the meaning of the links in the network.  

Network property If network edges can be interpreted as interactions If network edges can be interpreted as co-occurrences 

Importance of species 
Node degree Are there species more generalist in their interactions than others? Are there species with broader niche preference than others? 

How important are species for ecosystem functioning? (Röttjers and Faust, 
2018) 

Degree centrality Do highly connected taxa (i.e. hubs) support higher levels of ecosystem 
functions?  

Betweenness 
centrality 

Are there taxa which act as brokers, transmitting the effect of multiple 
interactions, as many paths between taxa pass through them?  

Cluster (community) structure and its ecological interpretation 
Assortative patterns 

(Modularity) 
Do we find groups of species that tend to interact more among each other 
than with other species (specificity of interactions)? (Torrecillas et al., 
2014) What characterizes these groups? 

Do some species tend to co-occur with each other more often than with other 
species? (Barberán et al., 2012; Williams et al., 2014; Toju et al., 2016; Shi 
et al., 2020) 
How are environmental factors reflected in the co-occurrence patterns? ( 
Deng et al., 2012; Karimi et al., 2016; Röttjers and Faust, 2018; Eldridge 
et al., 2020; Zhu et al., 2020; Hernandez et al., 2021) 
Do some factors (i.e. invasion processes) enhance a cluster pattern of co- 
occurrence? (Zhang et al., 2021) (invasion can be seen as a perturbation) 

Disassortative 
patterns 
(Nestedness) 

Do interaction specialists interact more with generalists than with each 
other? (Wei et al., 2015) 

Do species co-occurring with few species tend to co-occur with species that 
co-occur with many others? (Co-occurrence patterns mirror confounders, e. 
g. relative abundance of species or broad/narrow niche preference) 

Distances in the network 
Path distance (of pairs 

or average) 
Are the interactions overall tight (direct) or loose (indirect)? (Song et al., 
2021; Zhan et al., 2021) 

Can distances in the network help us to understand the community assembly 
process? (Morueta-Holme et al., 2016) 

Network stability (Robustness and resilience) 
Connectance Which proportion of all potential interactions are actually realized 

(complexity/stability of the network)? (May 1972; Thébault and Fontaine, 
2010)  
Are there redundant pathways in the interaction network? 

Transitivity Do we find positive (negative) feedback loops? (Coyte et al., 2015)  
Ratio of +/− What is the ratio of cooperation to competition? (Saiz et al., 2017;  

Hernandez et al., 2021)   
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networks (Dunne et al., 2002; Memmott et al., 2004). A requirement for 
transferring this conclusion from the constructed network behavior to 
ecosystem behavior, however, is that the edges in the constructed 
network represent vital and essential links between species in nature. 
While an edge in an interaction network, such as the plant-pollinator 
networks described in Olesen et al. (2007), reflects with a certain like
lihood an essential interaction between two species, so that the removal 
of a hub species may indeed lead to the loss of other species, this cannot 
be assumed for soil microbial co-occurrence networks. Even if the 
simulated removal of a node in a microbial co-occurrence network af
fects the computed network structure, it would not need to have the 
same effect in nature, as species who co-occur do not necessarily depend 
on each other. 

Taken together, we suggest to stay away from classifying taxa as 
keystone species based on soil microbial co-occurrence analysis, without 
further conceptual and experimental validation (Banerjee et al., 2018, 
2019; Röttjers and Faust, 2019). It is clear that the need for a different 
interpretation of edges in a co-occurrence network compared to edges in 
an interaction network (Table 2) must inflict on the interpretation of the 
potential role of nodes. We therefore suggest to redefine the potential 
ecological roles of hub or connector species for soil microbial 
co-occurrence networks, rather than adopting the keystone species 
approach from plant-animal interaction networks. Based on a concept 
that suits the characteristics of soil microbial datasets such a redefinition 
(for example a highly connected node can be interpreted as a taxon with 
a broad niche preference, Table 2) may be helpful for identifying and 
exploring microbial taxa with potentially interesting ecological roles in 
soil ecosystems. 

4.2. Average path length of the network and degree distribution 

The architecture of biological networks is often far from random. In 
general, interaction networks, such as food webs and mutualistic net
works are known to have broad degree distributions, with few very 
connected nodes (hubs) and the majority of species that interact only 
with few others (Camacho et al., 2002; Montoya et al., 2006). This de
gree distribution also leads to short path length between nodes, meaning 
that randomly chosen species have only few edges between them (Wil
liams et al., 2002). The questions are how and why such types of ar
chitecture develop for microbial communities and their relation to 
stability or community assembly mechanisms. In the case of 
co-occurrence networks there is need to disentangle possible reasons 
behind the observed patterns, such as evolutionary history, dispersal 
dynamics or negative/positive biotic interactions (Weiher et al., 2011; 
Morueta-Holme et al., 2016; Goberna et al., 2019). Relevant questions 
that still have to be approached are for example: how relative distances 
between taxa in the network are related to either phylogenetic similarity 
or even to physical distance if environmental gradient is present. 

4.3. Cluster (network community) detection 

Ecological networks can be composed of hundreds, or sometimes 
even thousands, of nodes. It is natural, therefore, to wish for identifi
cation of representative high-level subsets or groups to organise this 
complex information. However, we do not want any partition, but the 
one that can inform us of underlying functional, evolutionary or envi
ronmental units within these ecosystems. This is an easy procedure if we 
have metadata on such groups beforehand, e.g. division of microor
ganisms in groups predominant in certain environments (Eldridge et al., 
2020). However, in most cases we lack this information and the un
derlying partition is precisely what we would like to learn about the 
system. The problem therefore is to determine node groups based on 
network topology, for instance by checking the density of connections 
among them (Newman, 2010). This is known as cluster detection or 
community detection. Note that this term is used for ‘network commu
nities’, which consist of several similar nodes, not to be confused with 

microbial communities. This task consists of: (1) finding a natural di
vision in the network, without being able to look at its structure; and 
more importantly (2) evaluating if these patterns are statistically/eco
logically meaningful or if they can appear by mere chance. 

Certainly the most popular algorithm developed for cluster detection 
(1) relies on modularity maximization, which formulates the task of 
community detection as an optimization problem. This is done by using 
a mathematical function known as modularity to assign a score to each 
division of the network (Newman and Girvan, 2004; Newman, 2004, 
2006). Although the method has attracted substantial popularity due to 
its simplicity, it has drawbacks which are often ignored in applications. 
While the method works well when a clear division exists, it is also 
known to find spurious partitions when there are none to be found, e.g. 
in completely random networks (Guimerà et al., 2004). This conflicts 
with our objective (2) of selecting only statistically meaningful parti
tions. Moreover, a comparison with a null model cannot solve issue (2) 
since it can only rule out or accept the null model (random network 
structure), but cannot assess if the found partition is in fact statistically 
significant. This is because finding enough evidence to reject a null 
model is a much weaker requirement than having enough evidence to 
accept a particular network partition.1 Due to these problems several 
other methods have been proposed to extract meaningful communities 
from networks (Fortunato, 2010; Fortunato and Hric, 2016). We high
light the inference methods based on stochastic block models (SBMs) 
(Karrer and Newman, 2011; Abbe, 2018; Peixoto, 2019). Their main 
advantages is their ability to distinguish signal from noise, taking care of 
(2) in a principled manner, and possess also the ability to detect not only 
patterns based on assortative structures (Newman, 2004), but others, 
such as core periphery, or self-similar hierarchical patterns (Fig. 7). 

The kinds of patterns identified by cluster detection have been 
proved useful for understanding ecological networks: Structural assor
tative as well as nested patterns have been linked to stability in inter
action networks (Thébault and Fontaine, 2010; Grilli et al., 2016). In 
association networks clusters have mainly been used to identify and 
separate different niches occupied by microorganisms. 

4.4. Network stability 

Over the past decades an increasing number of studies have 
approached the question of ecosystem stability by analyzing the archi
tecture of biological interaction networks (Montoya et al., 2006; 
Okuyama and Holland, 2008; Bascompte, 2009; Landi et al., 2018). The 
stability is characterized by how systems respond to disturbances, and 
whether or not they can return back to their original function after being 
perturbed. It can be evaluated with the use of different criteria, 
measuring the recovery process (resilience), endurance (robustness) or 
the flexibility (persistence) of an ecological system (Hodgson et al., 
2015; Landi et al., 2018). Although sometimes these terms are used 
interchangeably, what is important to note is that the type of pertur
bation and the type of analysis may depend on the research question. For 
example one can investigate how a community endures species extinc
tions (robustness). Alternatively, one can observe how quickly the 
multi-species dynamics recovers to a decrease of species abundances or 
to invasion of a new taxa (resilience). 

A significant fraction of the studies on stability are theoretical and 
use numerically generated datasets (e.g. gLV, generalized Lotka-Voltera 
model). They address a long standing debate in ecology on the rela
tionship between the ecosystem’s complexity (e.g. number of connec
tions in an ecological network) and its stability. The controversy in the 
field started around the 1970s when theory showed a conflict between 
the two aspects (May, 1972, 1974; Sales-Pardo, 2017). Currently we 

1 For example, a network partition where only one of hundreds of detected 
communities is statistically significant will be enough to reject a null model, but 
it would be mostly statistical noise. 
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know the network properties that foster stability, but only for some 
types of networks. For example, nestedness and connectivity seem to 
promote stability in mutualistic (Thébault and Fontaine, 2010) and 
resource competition networks (Wei et al., 2015), while for food-webs a 
compartmentalized structure, low connectance seem to bring stability 
(Neutel et al., 2007; Gross et al., 2009). In the presence of both positive 
and negative interaction evaluating the stability is more difficult. It is 
speculated that the presence of mutualistic interactions may destabilize 
ecosystems, since they generate co-dependencies (Coyte et al., 2015). 
Trophic interactions, on the contrary, were shown to promote stability 
due to negative feedbacks (Coyte et al., 2015). Due to the difficulties 
presented above, claims about stability are even more unreliable for 
microbial co-occurrence networks, where there is not only the possi
bility of different interaction types but the role of links is less clear. 

On the experimental side, studies have focused on characterizing 
how the ecological networks and ecosystem function change in reaction 
to a perturbation, or along gradients of environmental conditions. Some 
of these studies showed that connectivity, density of the links and 
transitivity decrease in disturbed environments (Karimi et al., 2016, 
2017; de Vries et al., 2018). Going one step further, some studies used 
soils that were exposed to different treatments or perturbations to 
investigate a possible link between the network structure and the 
functionality of microbial communities, or even ecosystem multi
functionality (Wagg et al., 2019; Yuan et al., 2021; Qiu et al., 2021; Jiao 
et al., 2022). However these studies based their conclusions primarily on 
correlations between network complexity and functionality measures, 
and were thereby unable to provide any mechanistic foundations for 
their claims. Again, we recommend to be cautious to draw causal re
lationships from correlative pattern, which we think is especially 
problematic for correlations between two highly aggregated measures, 
such as network complexity and soil or ecosystem multifunctionality, as 
they naturally may share a high number of co-correlating factors and 
interdependencies. Therefore, instead of trying to correlate given func
tions with network patterns, we suggest to use studies encompassing 
different treatments or perturbations to test hypotheses that for example 
link biodiversity and complexity. Such hypotheses can be formulated 
based for example by randomly (or systematically) removing nodes from 
an unperturbed network and recording how the connectance of the 
network changes. These hypothesis can then be validated empirically by 
comparing it to networks constructed from observational data of a 
different treatment (where a perturbation or stress is applied), checking 
if the loss of diversity affects the network in a similar way. Such com
parisons can also allow to analyze if perturbations or stress leads to loss 
of edges without a loss of corresponding taxa (Valiente-Banuet et al., 
2015) or there is a formation of new patterns. Formulation of hypotheses 
on the resilience of a system can be an important way to validate 
network models inferred by the current methods. For example, tracking 
the presence of known keystone species and how the network structure 
is affected by them can be of interest. Finally, we would like to mention 
the appeal of using co-occurrence networks as indicators of ecosystem’s 
quality and function as proposed by Karimi et al. (2017). 

5. Challenges and way forward 

5.1. Specific challenges in soil microbial ecology 

Although there are several possible drivers behind the formation of 
microbial communities, species-species interactions have taken the 
spotlight of current research on taxa co-occurrence patterns. Despite its 
appeal, the detection of interactions from this type of data has proven to 
be extremely challenging. Moreover, it is still unclear whether our 
limitation in spotting species-species interactions can be attributed to an 
inefficiency of current inference methods, or to the weakness of inter
action signal in abundance (co-occurrence) data (Blanchet et al., 2020). 

Clearly, besides the potential signal of species interactions, associa
tion networks contain other valuable information about relationships 

within an ecosystem and can help us to understand ecological processes 
behind the high microbial diversity characteristic to soil. However it is 
important to emphasize that any network model and its analysis is only 
as good as our interpretation of it. Therefore, it is desirable to include an 
interpretation of all associations represented as edges to the most 
possible extent. This is particularly hard for soils, since they are char
acterized by their immense biological diversity and heterogeneous 
physical structure. Here we summarize the important soil characteristics 
that may impact network construction, interpretation and analysis, and 
subsequently discuss how we can use experimental design and statistical 
methods to improve our ability to reconstruct ecological relationships. 

5.1.1. Soil microbial datasets, what to include as nodes? 
Soil harbours one of the highest biodiversity of all microbial envi

ronments on Earth (Thompson et al., 2017; Walters and Martiny, 2020), 
raising the concern of how many species can we include in the network 
model. The characterization of this diversity is not easy, and depends on 
the number of samples used and the design of the sequencing experiment 
(Hermans et al., 2019). Increasing the sampling effort by including more 
replicates results in discovery of larger numbers of rare taxa. Although it 
is considered that these taxa significantly contribute to ecosystem pro
cesses (Jousset et al., 2017; Hermans et al., 2019), it is still unclear how 
they can be included in the network construction, as taxa with low 
prevalence lead to spurious associations, and are thus often completely 
discarded in the data preparation step (see Sec. 3.1). In addition, one has 
to be aware that the amplified DNA may also belong to relic (exogenous) 
DNA, which persist in soil for several years (Alteio et al., 2021). 

Fungal-bacterial associations are another important component of 
the soil ecosystem (Peay et al., 2016). The understanding of fungal di
versity across biomes remains more limited due to challenges in 
sequencing the ITS region of fungal DNA. Integrating the community 
sequence data from fungi and bacteria to construct combined networks 
will certainly expand our ability to explain the observed community 
patterns in the soil environment. However, the construction of such 
cross kingdom networks faces new challenges, since the analysis would 
have to properly combine two compositional datasets. Despite this, 
cross-kingdom networks have been constructed by applying 
correlation-based approaches on merged 16S rRNA gene and ITS relative 
abundance datasets (Delgado-Baquerizo et al., 2020; Jiao et al., 2020). 
We would however argue against such an approach, as combining cor
relations within and across compositional datasets in the same network 
may lead to a spurious connection pattern. Possible alternatives propose 
the use of centered log ratios individually on each dataset before 
merging them together (Tipton et al., 2018), transform the relative 
abundance data into a presence/absence dataset (which implies a loss of 
information) or normalize using qPCR data (Alteio et al., 2021). In 
addition, one can, depending on the research question, consider con
structing bipartite networks, which only contain edges between the 
kingdoms (Montesinos-Navarro et al., 2012; Toju et al., 2015), or 
multilayer networks, which contain different types of edges (Pilosof 
et al., 2017). 

5.2. Soil microbial networks: what type of associations should we expect? 

Soil provides a unique environment for microbes, because it is 
spatially structured and chemically and physically heterogeneous across 
several scales. Within the complex soil matrix, numerous edaphic 
properties impact the structure of the microbial communities therein, 
including pH, salinity, temperature and moisture (Frindte et al., 2019; 
Zheng et al., 2019). Additionally, temporal dynamics such as weather 
patterns, root exudation and other seasonal inputs of organic material 
may influence the structure and activity of a microbial community 
(Kuzyakov and Blagodatskaya, 2015; Chernov and Zhelezova, 2020). As 
a result of soil heterogeneity and temporal fluctuations, it is critical to 
consider that sequence-based approaches reveal only a snapshot of the 
microbial community present at a given time. Together, these properties 
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of soil as a habitat for microbes influence the possible scope for inter
pretation of microbial association networks. 

Heterogeneity of soil samples is a major source of concern in the 
development of reliable inference methods to uncover ecological re
lationships. We see the heterogeneity impacting the sampling and 
inference in two different ways. First, it can lead to hidden physical or 
chemical differences between apparently similar samples (Armitage and 
Jones, 2019). Since environmental drivers lead to strong differences in 
the community structure, such drivers may dominate the detected as
sociation signal. In this case, additional environmental measurements 
can help to interpret the observed patterns. The second concerns the 
large volume of each sample used in the analysis. Nucleic acids extracted 
for sequencing studies are derived from amounts of soil ranging from 
250 mg to 2 g of material. Very often, they are aliquots from an even 
larger soil volume, for example several soil cores that have been mixed 
and homogenized to be representative for a certain field site or plot. Soil 
microbes, however, interact with each other at the scale of tens of μm 
(Raynaud and Nunan, 2014). It is obvious that co-occurrence of mi
crobial taxa across soil samples taken at a scale which is by orders of 
magnitude larger than the scale at which they interact, does not 
necessarily mean that they interact with each other. In line with this, 
community assembly theory suggests that the larger the sampling units 
scale the more environmental filtering effects dominate species 
co-occurrences (Kraft et al., 2015). Although the mix of ecological fac
tors operating at larger sampling scales obscures causal distinctions, 
studies have shown that networks generated with this type of data hold 
predictive value for central ecosystem functioning (Shi et al., 2016; 
Wagg et al., 2019). We should, however, lower our expectations to 
capture a clear signal of microbial interactions, since even small soil 
samples may contain numerous metacommunities - small consortia 
linked by dispersion and diffusion (Armitage and Jones, 2019). Two 
microbial taxa can be separated by unconquerable distances even in a 
small piece of soil given its microscale physical structure and the spatial 
heterogeneity of microbial niches. In view of this complexity it is 
controversial if in such samples biological interactions can leave any 
signal at all. For example, models suggest that negative interactions, 
such as competition, can be completely hidden at scales much larger 
than the scales of the interactions themselves (Araújo and Rozenfeld, 
2014). In summary, the associations described in co-occurrence net
works from standard soil samples have to be carefully interpreted. Such 
networks are expected to be dominated by associations driven by the 
environment, however the obtained network structure may be a result of 
several unknown factors. In relation to interactions among organisms, 
especially the signal of competitive interactions will be obscured. In the 
next section we give suggestions on how to disentangle the different 
factors behind a given co-occurrence dataset and suggest alternative or 
complementary experiments. 

5.3. Reconstructing networks of ecological relationships 

5.3.1. Network interpretation is influenced by experimental design 
In general, edges in networks based on the characterization of vari

ability of microbial communities in multiple soil samples can inform 
about species co-occurrence patterns across these samples. If the 
objective is to infer microbial interactions, we advise to work with 
datasets extracted from specific micro-environments where interactions 
are prone to occur. Such environments can be, for example, mycorrhizal 
fungi within plant species root tips (Montesinos-Navarro et al., 2012), 
soil aggregates (Wilpiszeski et al., 2019; Szoboszlay and Tebbe, 2021) or 
synthetic systems (Cordero and Datta, 2016). In the case of soil aggre
gates, it is possible that niche partitioning also leads to spatial segre
gation with their pore structure. However, even in this case, aggregates 
are considered to provide enough physical proximity and a traversable 
matrix necessary for competitive and faciliatory exchange. This is crit
ical as aggregates contain microbes’ primary source of nutrients and 
their occupancy enables the establishment of stable source populations. 

Alternatively, to improve interpretation one can amplify and sequence 
specific functional genes in place of taxonomic marker genes, to target 
microbial groups with known traits, as was done in Jones and Hallin 
(2019) to find relationships between nitrifiers in soil. Certainly, in net
works based on functional information, such as metabolic profiles 
associated with distinct groups of microorganisms that transform me
tabolites, edges more likely represent potential interactions among taxa 
(Ofaim et al., 2017; Hewavitharana et al., 2019). 

Another important factor that influences our interpretation of edges 
is the distribution of the heterogeneity across samples. Microbial data
sets collected along large environmental gradients can reveal differences 
in environmental niches occupied by microorganisms. Indirect associa
tions through environmental factors will also be predominant if more 
than one treatment is considered within the same network. For example, 
datasets encompassing different seasons, depths, temperatures and bi
omes will be prone to generate co-occurrence patterns derived from the 
different levels of the treatment, but will also blur the patterns of co- 
occurrence among taxa within the levels of the treatment, as is also 
demonstrated in our example of microbial networks across different soil 
depths ((Figs. 4 and 5), Sec. 3.3). Therefore, the inclusion (or not) of 
treatments in network construction will impact which ecological pro
cesses can be assessed. The focus of the hypothesis to be tested will 
define whether networks should be constructed from combined data of 
different treatments, or whether separate networks should be built for 
each homogeneous environment. 

Several strategies were proposed to understand which one of the 
established edges are in fact due to the indirect influence of environ
mental factors (Faust, 2021). A strong imprint of environmental factors 
or treatments often leads to clusters or modules being assorted by these 
factors. This can be tested for by categorizing taxa according to the 
environment or treatment where they predominantly occur and check if 
the network structure is shaped by these categories (Jiao et al., 2020), 
(Figs. 4 and 5)). If there is an obvious difference between treatments or 
environmentally different sites, depending on the research question, 
these could be compared and studied separately. In that way, the in
fluence of the environment on the network structure would be reduced, 
allowing other potential ecological factors, such as interactions, to 
become more visible in the network structure. Alternatively environ
mental factors can be directly integrated into the network construction, 
for example by representing them as nodes in the network, enabling one 
to examine their influence on the other nodes (taxa) (Faust, 2021). In the 
same way, data on the distance between samples can also be used to 
check if the links result indirectly due spatial dispersion patterns 
(D’Amen et al., 2018; Goberna et al., 2019). 

5.3.2. Network interpretation can be improved by statistical methods 
In summary edges in a network construction can appear due to: (1) 

species-species interactions, (2) association mediated by the environ
mental factors (niche overlap), (3) spatial variability due to dispersion 
dynamics, (4) due to influence of a third interfering species present in 
the network (common to methods based on correlations), (6) spurious 
associations due to inappropriate data handling (errors in dealing with 
sparsity and compositionality) and (7) noisy measurement. It is clear 
that the possible interpretations of an ecological network rely not only 
on the data but also on the statistical methods used for its construction, 
especially with respect to items from (4–7) listed above. As we have 
described in Sec. 3 these methods can significantly differ in their as
sumptions and strategies, and therefore a single dataset can produce 
networks with very distinct sets of edges, see (Fig. 6). Part of the diffi
culty current approaches meet is addressing the nature of amplicon- 
sequence data itself (item 6), we advise the use of qPCR to reliably 
infer the abundances of taxa from sequence read numbers (Alteio et al., 
2021). We emphasize again here that correlations are unreliable to 
establish interpretable edges, since they do not offer a clear criteria for 
distinguishing signal from noise and to distinguish direct from indirect 
associations, see Sec. 3. This can be improved with model-based 
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inference approaches and incorporation of additional information 
(environmental factors, distance between samples) into the network 
construction, facilitating the edge interpretation (items 1–3). At the 
moment, the most promising direction is biologically relevant genera
tive models, such as those based on generalized-Lotka-Voltera equations 
(gLV) (Bucci et al., 2016; Gibson and Gerber, 2018). Although these 
methods can be computationally demanding and are still not sufficiently 
efficient for large data sets, this is a very rapidly advancing area where 
alternatives constantly appear. 

5.3.3. Questions that can be addressed in different networks 
The nature of the edges in a network affects the type of questions that 

can be addressed with network analysis. Ecological questions can be 
assessed with network analyses when particular network properties 
match the expected ecological patterns. Thus, when it is expected that 
groups of taxa tend to interact more among them than with other taxa, 
network properties such as network community structure (modularity) 
can be useful to test that specific hypothesis. In some cases, a given 
network property can be informative, independent of whether the edges 
represent interactions or only have a more broad meaning such as co- 
occurrence (including niche overlap). In that sense, it might be inter
esting to test whether there are groups of taxa that tend to interact or 
that tend to co-occur. However, other network properties can only 
meaningfully be evaluated when we know that edges describe 

interactions among taxa. For instance, that might be the case of the 
average path length among nodes, which can reflect the contribution of 
complex indirect (i.e. high average paths length) vs. direct interactions 
among taxa (i.e. short paths), but has a less useful interpretation in terms 
of co-occurrence. As explained in the previous subsections the experi
mental design from which the data is obtained and the statistical 
methods used will constrain the meaning of the edges in a network, 
which in turn will condition the network properties that would be useful 
to assess specific ecological questions (Table 2). 

5.3.4. Descriptive, exploratory or hypothesis-based approaches? 
Recently we have observed an increase in the number of articles 

which use microbial networks as a form of data visualization for co- 
occurrence patterns in soil. These studies define the edges of networks 
as ‘co-occurrences of microorganisms’ (or even incorrectly as microbial 
interactions), and have a mainly descriptive character. Without pre
senting hypotheses of biological mechanisms behind the observed sta
tistical patterns in co-occurrence data, such studies are of little interest 
to soil microbial researchers. In the previous section we presented 
several research questions which can be addressed with network anal
ysis. Addressing these questions using the constructed network can be a 
simple form to extend and improve such descriptive studies. Networks 
should work as a tool to help us understand the processes that structure 
microbial communities, and therefore the interpretation of observed 

Fig. 8. Use of network analysis in exploratory vs 
hypothesis driven research. (a) Taking into account 
that community composition is shaped by underlying 
ecological mechanisms driven by the physical envi
ronment or by interactions among taxa. (b) In gen
eral, the measured co-occurrence patterns are used to 
construct association networks, which are different 
from the interaction networks. (c) Hypothesis-driven 
research is key to design comparative experiments 
aiming to isolate and contrast the community as
sembly mechanism of interest. In particular, estab
lished ecological theories can complement hypothesis 
generation.   
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patterns and creation of hypotheses from these patterns are not optional 
and should be included. 

Finally, we shortly discuss possible ecological hypotheses that might 
be tested or used in microbial network analysis. As described in Sec. 4.1, 
identification of potential keystone species or functional components of 
the network can help us to forecast structural shifts in the network in 
response to environmental perturbations, see (Fig. 8c). Another possible 
research direction is to compare the network architecture shaped by 
particular conditions, e.g. the available substrate, see (Fig. 8c). In this 
context, networks can identify taxa with potential similar functionality, 
since those are expected to compete and be negatively associated across 
communities (Brown and Wilson, 1956). In the same way we can 
formulate hypotheses on functionally complementary species, expected 
to be present in the degradation of complex substrates (Lindemann, 
2020). This can be done using networks constructed from datasets 
extracted from different environmental conditions, expecting a change 
in predominance of facilitation to competition with increasing nutrient 
availability (Hoek et al., 2016). These nutrient-based community re
sponses can be combined with a stress response (stress imposed by an 
environmental factor). What is expected then, is that high stress would 
reduce investment into competitional traits, while facilitation would 
enable stress mediation, equivalent to what we know from plant ecology 
(Bertness and Callaway, 1994; Hammarlund and Harcombe, 2019; Pic
cardi et al., 2019). 

6. Conclusion 

As our understanding of soil biological diversity has increased with 
the use of high-throughput sequencing techniques, the new challenge for 
the field of soil microbial ecology has become to understand the complex 
web of relationships among microorganisms. This remarkable shift in 
the field is reflected in a rising number of papers using network analysis. 
The central feature of network models is that they naturally bring mi
crobial associations to the center of our attention. The approach forces 
us to see the taxa not as isolated units, but to build an integrated picture 
of microbial communities and also of their surrounding environment. 
Although these network models open a whole new dimension of possible 
research, at the moment we have to proceed with caution. The reason is 
that we are still lacking reliable inference methods and consistent 
experimental protocols that can successfully reconstruct the hidden 
network of ecological relationships from environmental samples. 
Therefore we can only grasp part of the potential of network analysis 
with a careful interpretation of results obtained from co-occurrence 
analysis. Finally, we emphasize that the potential of networks goes far 
beyond being a visualization tool and the information gained from 
networks constructed from soil microbial community data can - despite 
limitations - deliver valuable insight into ecosystem organization when 
applied in hypothesis-driven research. While the traditional question 
addressed by DNA sequencing analyses of soil microbial communities is 
“who is there”, the novel question which can be asked by network 
analysis, when successfully applied, is “who co-occurs with whom, and 
why?”. 
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