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Abstract—The hardcore model is a model of lattice gas
systems which has received much attention in statistical physics,
probability theory and theoretical computer science. It is the
probability distribution over independent sets I of a graph
weighted proportionally to λ|I| with fugacity parameter λ.
We prove that at the uniqueness threshold of the hardcore
model on the d-regular tree, approximating the partition
function becomes computationally hard on graphs of maximum
degree d.

Specifically, we show that unless NP=RP there is no polyno-
mial time approximation scheme for the partition function (the
sum of such weighted independent sets) on graphs of maximum
degree d for fugacity λc(d) < λ < λc(d) + ε(d) where

λc =
(d− 1)d−1

(d− 2)d

is the uniqueness threshold on the d-regular tree and ε(d) > 0
is a positive constant. Weitz [36] produced an FPTAS for
approximating the partition function when 0 < λ < λc(d)
so this result demonstrates that the computational threshold
exactly coincides with the statistical physics phase transition
thus confirming the main conjecture of [30]. We further
analyze the special case of λ = 1, d = 6 and show there is
no polynomial time approximation scheme for approximately
counting independent sets on graphs of maximum degree d = 6,
which is optimal, improving the previous bound of d = 24.

Our proof is based on specially constructed random bi-
partite graphs which act as gadgets in a reduction to MAX-
CUT. Building on the involved second moment method analysis
of [30] and combined with an analysis of the reconstruction
problem on the tree our proof establishes a strong version
of “replica” method heuristics developed by theoretical physi-
cists. The result establishes the first rigorous correspondence
between the hardness of approximate counting and sampling
with statistical physics phase transitions.

I. INTRODUCTION

The hardcore model is a model from statistical physics
representing hardcore interaction of gas particles. It is a
probability distribution on independent sets I of a graph
weighted as 1

Zλ
|I| where λ is a positive parameter called the

fugacity and Z is a normalizing constant called the partition
function. Physicists and probabilists have done extensive

work towards identifying the phase transitions and other
properties of the model.

In computational complexity approximately counting
(weighted) independent sets is a central problem. The hard-
core model is of key importance as this is exactly the prob-
lem of producing an FPRAS (fully polynomial randomized
approximation scheme) for Z, the partition function. When
λ is small the hardcore model has rapid decay of correlations
and the partition function can be approximated either using
MCMC or through computational tree methods [36]. For
larger fugacities long range dependencies may appear and
the problem is known to be hard when λ is sufficiently large.

In this paper we determine a computational threshold
where approximating Z becomes hard. Using an ingenious
computational tree approach Weitz [36] produced a PTAS
for approximating Z when λ < λc(d) where

λc(d) =
(d− 1)d−1

(d− 2)d

is the uniqueness threshold for the hardcore model on the
infinite d-regular tree [18]. This corresponds to the point
at which long range dependencies become possible in the
model (formally defined in Section I-C). Mossel, Weitz and
Wormald [30] showed that beyond this phase transition local
MCMC algorithms fail and conjectured that it gives the
threshold for computations hardness. While such statistical
physics phase transitions are believed to coincide with the
transition in computational hardness of approximating the
partition function for a number of important models no
such examples had been proven. Our main result essentially
confirms the conjecture of [30] giving the first such rigorous
example.

Theorem 1. For every d ≥ 3 there exists ε(d) > 0 such that
when λc(d) < λ < λc(d) + ε(d), unless NP=RP, there does
not exist an FPRAS for the partition function of the hardcore
model with fugacity λ for graphs of maximum degree at most
d.

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

Unrecognized Copyright Information

DOI 10.1109/FOCS.2010.34

287

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

0272-5428/10 $26.00 © 2010 IEEE

DOI 10.1109/FOCS.2010.34

287

2010 IEEE 51st Annual Symposium on Foundations of Computer Science

0272-5428/10 $26.00 © 2010 IEEE

DOI 10.1109/FOCS.2010.34

287



While we believe the result holds for all λ > λc, for
technical reasons (specifically showing that an explicit func-
tion of three variables attains its maximum at a prescribed
location, see Section I-C1 for details) the result is limited
to λ close to criticality. This limitation notwithstanding, it
clearly demonstrates the central role played by the unique-
ness threshold.

When λ = 1 the hardcore model is simply the uniform
distribution over independent sets and the partition function
is simply the number of independent sets and as such this
case is of particular interest. When d ≤ 5 Weitz’s result
provides a FPRAS as λc(d) > 1. Conversely it is known
that with d ≥ 25 the problem is computationally hard [9].
While the case d = 6, λ = 1 does not fall within the scope
of Theorem 1, using a computer assisted proof, we establish
the necessary technical condition and prove the following
result.

Theorem 2. Unless NP=RP for every d ≥ 6 there does not
exist a fully polynomial approximation scheme for counting
independent sets on graphs of maximum degree at most d.

A. Background and Previous Results

Even on graphs of maximum degree 3 the problem of ex-
actly counting independent sets is #P hard [13] and as such
one can at most ask when it is possible to approximately
count independent sets, that is when an FPRAS exists. As the
model is self-reducible, approximate counting is equivalent
to approximately sampling from the partition function [31].
This has led to a major line of research in analyzing the
performance of MCMC techniques, particularly the Glauber
dynamics.

When λ ≤ 2
d−2 the Glauber dynamics mixes rapidly [21]

which in particular gives an FPRAS for counting indepen-
dent sets on graphs of maximum degree at most 4 (see [10]
for similar bounds). Weitz [36] showed that the hardcore
model has a decay of correlation property called strong
spatial mixing whenever λ < λc which implies rapid mixing
on graphs of sub-exponential growth. Moreover, his paper
gives a deterministic polynomial time approximation scheme
on all graphs when λ < λc through a computational tree
approximation.

Finding the ground state of the hardcore model, the largest
independent set, is of course a canonical NP-hard problem
and is hard to approximate even on regular graphs of degree
3 [4]. Intuitively the problem of counting becomes harder
as λ grows as this places more mass on the larger, harder
to find, independent sets and indeed such hardness results
have been established. In [21] it was shown that there is no
FPRAS (assuming NP6=RP) when λ ≤ c/d for c ≈ 10000.

In the case of λ = 1 this was improved to d ≥ 25 in [9]
using random regular bi-partite graphs as basic gadgets in
a hardness reduction. They further showed that with high
probability the mixing time of the Glauber dynamics on a
random bipartite d-regular graph is exponential in the size
of the graph. Calculations of [9] led the authors there to
speculate that λc may be the threshold for hardness but
the evidence was not conclusive enough to make such a
conjecture.

1) Replica Heuristics: The replica and cavity methods
and heuristics have provided powerful tools (often non-
rigorous) in the study of a wide range of random opti-
mization problems and predictions for the behavior of spin
glasses and dilute mean fields spin systems [24,25]. Devel-
oped by theoretical physcicits, in in some cases these heuris-
tics have been made rigorous, notably the SK model [35],
solution space of solutions to random constraint satisfaction
problems [1] and the assignment problem [2]. In dilute spin
glass models such methods have given rise to powerful new
algorithms such as survey propagation (see e.g. [20]).

Random regular bi-partite graphs are widely known to
be locally tree-like with only a small number of short
cycles. The statistical physics theory makes the following
predictions for the hardcore model on typical random bi-
partite d-regulars. The first is that the model is expected to
exhibit spontaneous symmetry breaking for λ > λc. When
λ < λc correlations decay exponentially and the configu-
ration (independent set) is essentially balanced between the
two halves of the bi-partite graph. By contrast when λ > λc
the configuration separates its mass unevenly placing Ω(n)
more mass on one side or the other. Configurations with
a roughly equal proportion of sites on each side make up
only an exponentially small fraction of the distribution. This
is intuitively plausible as the largest bi-partite sets will be
those containing most of one side of the graph or the other.

The second is that this symmetry breaking splits the
configuration space into two “pure states” of roughly equal
probability. We will denote the “phase” of the configuration
as the side of the graph with more sites. Conditional on the
phase the spins of randomly chosen vertices are assumed to
be asymptotically independent and the local neighbourhood
of the configuration are given by extremal measures. This
conditional independence is a crucial element of cavity-
method type arguments.

A first moment analysis of [9] suggested that configu-
rations obey the first prediction but their proof proceeded
without specifically proving it. In a technical tour de force
the prediction was rigorously established for λc(d) < λ <

λc(d) + ε(d) in [30] using an involved second moment
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method analysis together with the small graph conditioning
method. The restriction to the region λ < λc(d) + ε(d) is
somewhat surprising at first as the problem ought to become
easier as λ grows. It is the result of a technical difficulty in
estimating the second moment bound. Even establishing this
for λ close to the critical value took up fully a third of the
proof. As a central part of our proof is a modification of this
method the same restriction applies.

Based on establishing the symmetry breaking [30] showed
that any local reversible Markov Chain has mixing time
exponential in the number of vertices by establishing a bot-
tleneck in the mixing on asymptotically almost all random
d-regular bi-partite graphs. This bound is tight as subsequent
results [29, Theorem 4] imply rapid mixing on almost all
random bi-partite graphs when λ < λc(d). Based on these
finding they made the following conjecture.

Conjecture I.1. ([30]) Unless NP=RP for every d ≥ 4 and
λc(d) < λ there does not exist a fully polynomial approx-
imation scheme for the partition function of the hardcore
model with fugacity λ for graphs of maximum degree at
most d.

Phase transitions of spin systems have been known to
exactly determine the region of rapid mixing in a number of
systems including the ferromagnetic Ising model on Z2 [22]
and on the d-regular tree [3]. The first such example on
completely general bounded degree graphs was recently
established by Mossel and the present author [29] showing
rapid mixing of the Glauber dynamics of the ferromag-
netic Ising model on graphs of maximum degree d when
(d − 1) tanhβ < 1. The threshold (d − 1) tanhβ = 1 is a
statistical physics phase transition, the uniqueness threshold
for the Ising model on the d-regular tree.

Slow mixing of MCMC algorithms do not by themselves
imply hardness of approximating the partition function.
Indeed, in the ferromagnetic Ising model the mixing time
of local reversible Markov chains may be exponential but
nonetheless there is an FPRAS by the famous algorithm
of Jerrum and Sinclair [17]. However, unlike the hardcore
model or indeed the anti-ferromagnetic Ising model which
do exhibit phase transitions, the ground states of the ferro-
magnetic Ising model are trivially found.

While phase transitions exists on many infinite graphs,
it is the uniqueness threshold on the tree that appears to
determine the onset of computational hardness in general
graphs in a number of models as they represent the extreme
case for correlation decay in graphs for many models.
Sokal [32] conjectured that uniqueness on the d-regular tree
for the hardcore model implies uniqueness on any graph of

maximum degree d. This conjecture was established in [36]
which further showed that for any 2-spin system strong
spatial mixing on the d-regular tree implies strong spatial
mixing on all graphs of maximum degree d. Indeed for most,
although not all, spin systems the regular tree is expected
to be the limiting case for extreme correlations amongst
all graphs of maximum degree d (see e.g. [33] for more
details). The emergence of long range correlations appears
to be a necessary prerequisite for hardness of sampling and
this motivates the conjectures that the uniqueness threshold
on the tree determines the onset of computational hardness.

In this paper we establish a form of the second heuristic
prediction on a modified random bipartite graph. We show
that on a polynomial sized set of vertices the spins are close
to a product measure, conditional on the phase in the L∞

distance on measures. Being able to treat large numbers of
vertices as conditionally independent given the phase plays a
key role in our reduction. While some results of this nature
have been established previously (see e.g. [8, 27]) this is
the first example we are aware of where the number of
conditionally independent sites grows polynomially in the
size of the graph.

Another recent result which makes use of phase transitions
is by Goldberg and Jerrum [14] who show that approximat-
ing the partition function for the Potts model is #RHΠ1-
hard when q > 2. Their proof crucially uses the first order
phase transition of the Potts model on the complete graph
when q > 2. The special case q = 2 is the Ising model
which in P as noted above.

B. Proof Techniques

We now give a sketch of the proof. Some details follow
in Section II and a complete proof can be found online at
http://arxiv.org/abs/1005.5584.

Following the approach of [9] and as suggested in [30]
we utilize random bi-partite graphs as basic gadgets in a
hardness reduction. In those papers the basic unit of the
construction is the random d-regular bipartite graph. To
obtain a sharp result we cannot afford to add edges to such
graphs (creating degree d+ 1 vertices) so our basic gadgets
are bi-partite random graphs, most of whose vertices are
degree d but with a small number of degree d − 1 vertices
which are used to connect to other gadgets.

We begin by constructing a graph G̃ which is a random
bipartite graph with n vertices of degree d and m′ ≈ nθ+ψ
vertices of degree d − 1 where θ, ψ are small positive
parameters. We label the sides as “plus” and “minus” and
edges are chosen according to random matchings of the
vertices on the two sides. We denote the phase of the
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configuration (the random independent set) to be plus or
minus according to the side which has more elements of the
set amongst the degree d vertices.

With U denoting the set of vertices of degree (d− 1) we
consider the random partition functions Z±(η) giving the
sum over λ|σ| over all configurations with phase ± and with
σU = η where η ∈ {0, 1}U . We show that in expectation
the EZ±(η) are essentially proportional to the probabilities
of a product measure on U whose marignals are given by
the marginals of extremal Gibbs measures for the hardcore
model on the (d − 1)-ary tree. Our proof requires that this
holds approximately for the Z±(η) themselves and adopt the
second moment approach of [30] including their use of the
small graph conditioning method [37]. While still involved,
by estimating ratios of quantities in our model to quantities
calculated in [30] we greatly simplify these computations.
We are, however, still left with the same technical condition
as [30] which we describe in the next subsection.

Even this approximate conditional independence is not
sufficient for our reduction. To this end we construct a new
random graph G by appending (d − 1)-ary trees of height
ψ logd−1 n onto U and denote the set of m ≈ nθ roots
of the trees as V which are of degree d − 1. Our proof
proceeds to show that, conditional on the phase, σV is very
close to a product measure. We note that appending the trees
reweights the probabilities on configurations σU but it does
so in a quantifiable way.

By construction the spins σV are conditionally indepen-
dent given σU . Moreover, the statistical physics heuristics
imply that the configuration of the neighbourhood around
σV should be given by an extremal semi-translation invariant
Gibbs measure on the tree with strong decay of correlation
from the root to the leaves of the tree. Based on this
intuition, we show that after conditioning on the phase the
probability that σU has a non-negligible influence on σV is
doubly exponentially small in the height. Through this we
can establish its distribution with bounds in the L∞ norm.
This is done by bounding the probability that the spins in
a distant level influence the root using methods from the
“reconstruction problem on the tree” (see e.g. [26, 34]).

The random graphs G constitutes our gadget. Given a
graph H on up to nθ/4 vertices we construct HG by taking
a copy of G for each vertex of H . Then for every edge in
H we connect n3θ/4 vertices between each side of V in the
corresponding copies of G maintaining the maximum degree
d. Since the spins in V are almost conditionally independent
given the phase we can estimate the effect of adding these
edges. An easy calculation shows that the most efficient
arrangement is to have connected gadgets have opposite

phases. The hardcore model on HG puts most of its mass on
configurations whose phases are solutions to MAX-CUT on
H . Hence, by the equivalence of approximate counting and
approximate sampling, this gives a randomized reduction to
MAX-CUT.

C. Preliminaries

For a finite graph G with edge set E(G) the independent
sets are subsets of the vertices containing no adjacent
vertices or equivalently elements of the set of configurations

I(G) = {σ ∈ [0, 1]G : ∀(u, v) ∈ E(G), σuσv = 0}.

The Hardcore Model is a probability distribution over inde-
pendent sets of a graph G defined by

PG(σ) =
1

ZG(λ)
λ
∑
v∈G σv1σ∈I(G) (I.1)

where ZG(λ) =
∑
σ∈I(G) λ

|σ| =
∑
σ∈I(G) λ

∑
v∈G σv is a

normalizing constant known as the partition function and is
a weighted counting of the independent sets. When λ = 1
the hardcore model is the uniform measure on independent
sets and ZG(1) is the number of independent sets of the
graph.

The definition of the hardcore model can be extended
to infinite graphs by way of the DLR condition which
essentially says that for every finite set A the configuration
on A is given by the Gibbs distribution given by a random
boundary generated by the measure outside of A. Such a
measure is called a Gibbs measure and there may be more
one or infinitely many such measures (see e.g. [12] for
more details). When there is exactly one Gibbs measure we
say the model has uniqueness. Equivalently, the model has
uniqueness if the marginal spin at any vertex is not affected
by arbitrary conditioning the spins of sets of distant vertices
as the distance goes to infinity. Our main result relates the
uniqueness threshold on Td, the infinite d-regular tree, to the
hardness of approximating the partition function on graphs
of maximum degree d.

The hardcore model on Td undergoes a phase transition
at λc(d) = (d−1)d−1

(d−2)d
with uniqueness when λ ≤ λc and

non-uniqueness when λ > λc [18]. The following picture
is described in [30]. For every λ there exists a unique
translation invariant Gibbs measure µ = µd,λ known as the
free measure with occupation density p∗ = µ(σρ) for ρ the
root of the tree. When λ > λc there also exist two semi-
translation invariant (that is invariant under parity preserving
automorphisms of Td) measures µ+ and µ− whose occu-
pation densities we denote by p+ = µ+(σρ), p− = µ−(σρ).
These measures are obtained by conditioning on level 2`
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(resp. 2` + 1) of the tree to be completely occupied and
taking the weak limit as `→∞.

It will also be of use to discuss related measures on the
infinite (d − 1)-ary tree T̂d rooted at ρ. We define analo-
gously the measures µ̂+ and µ̂− obtained by conditioning on
level 2` (resp. 2`+ 1) of T̂d to be completely occupied and
taking the weak limit as `→∞. We set q+ and q− to be the
respective occupation densities q+ = µ̂+(σρ), q− = µ̂−(σρ)
of the root ρ.

The measure µ± and µ̂± are naturally related as follows.
Let v be a child of ρ and denote Tv to be the subtree of
T
d rooted at v. There is a natural identification of Td \Tv

with the (d − 1)-ary tree T̂d and under this identification
the measures satisfy

µ̂±(σ ∈ ·) = µ±(σTd\Tv ∈ ·|σv = 0). (I.2)

In particular since σρ = 1 implies σv = 0 for an independent
set in Td it follows that

q± =
p±

1− p∓
. (I.3)

Furthermore, standard tree recursions for Gibbs measures
(see e.g. [30]) establish that

q± =
λ(1− q∓)d−1

1 + λ(1− q∓)d−1

and consequently by equation (I.3),

q±

1− q±
= λ(1− q∓)d−1 = λ

(
1− p± − p∓

1− p±

)d−1

. (I.4)

It is shown in [30, Section 4] and [9, Claim 2.2] that the
following hold for λ > λc:

1) The solutions to h(α) = β, h(β) = α with (α, β) ∈
T = {(α, β) : α, β ≥ 0, α+ β ≤ 1} where

h(x) = (1− x)

[
1−

(
x

λ(1− x)

)1/d
]

are exactly (p+, p−), (p−, p+) and (p∗, p∗). These
densities satisfy p− < p∗ < p+ and when λ ↓ λc
we have that p∗, p+, p− → 1/d.

2) The points (p+, p−) and (p−, p+) are the maxima of
Φ1(α, β) in T where

Φ1(α, β) = (α+ β) log λ− α logα

− β log β − d(1− α− β) log(1− α− β)

+ (d− 1) ((1− α) log(1− α) + (1− β) log(1− β)) .

1) Technical Conditions: We now describe the technical
condition necessary for our result. The function in question
is

f(α, β, γ, δ, ε) = 2(α+ β) log λ+H(α) +H1(γ, α)

+H1(α− γ, 1− α) +H(β) +H1(δ, β)

+H1(β − δ, 1− β) + d

[
H1(γ, 1− 2β + δ)−H(γ)

(I.5)

+H1(ε, 1− 2β + δ − γ) +H1(α− γ − ε, β − δ)
−H1(α− γ, 1− γ) +H1(α− γ, 1− β − γ − ε)

−H1(α− γ, 1− α)
]

(I.6)

where H1(x, y) = −x(log x− log y) +(x−y)(log(y−x)−
log(y)) and H(x) = H(x, 1) and where f is defined in the
range (α, β) ∈ T and

α− γ − ε ≥ 0, β − δ ≥ 0, 1− 2β + δ − γ − ε ≥ 0. (I.7)

which emerges naturally when calculating the second mo-
ment of the partition function.

Condition I.2. The technical condition is that there exists
a constant χ > 0 such that when when |p+ − β|, |p− −
α| < χ the function gα,β(γ, δ, ε) = f(α, β, γ, δ, ε) attains its
unique maximum in the set (I.7) at the point (γ∗, δ∗, ε∗) =
(α2, β2, α(1− α− β)).

The following result of [30] establishes Condition I.2
when λc < λ < λc(d) + ε(d).

Lemma I.3 ([30, Lemma 6.10, Lemma 5.1]). For each d ≥
3 there exists χ > 0 such that when |α− 1

d |, |β−
1
d | < χ then

gα,β(γ, δ, ε) has a unique maximum at (γ∗, δ∗, ε∗) where
γ∗ = α2, δ∗ = β2, ε∗ = α(1− α− β).

We give a computer assisted proof which establishes
Condition I.2 in the special case of λ = 1 and d = 6.
Two other technical conditions we make use of in the proof
are that

q+q−(d− 1) < 1 and q+ <
3
5
. (I.8)

Both conditions holds in the regions of interest as we have
that q+, q− → 1

d−1 when λ ↓ λc and q+ ≈ 0.423, q− ≈
0.056 when λ = 1 and d = 6. The first can be shown to
hold for all λ > λc with a somewhat involved proof while
the latter is unnecessary but somewhat simplifies the proof.

D. Comments and Open Problems

The main open problem, of course, is to remove the λ <
λc(d) + ε(d) condition, ideally with a proof avoiding the
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second moment analysis. Alternatively, one could try and
establish the Condition I.2 for all λ > λc and d ≥ 3.

Another natural problem is to establish the correspon-
dence between computational hardness and phase transitions
in the anti-ferromagnetic Ising model. While calculations
of the style of [30] are not available and are likely to be
even more challenging, it may be possible to avoid them.
Indeed results of [27] already imply conditional local weak
convergence of the configuration but not in a strong enough
form to complete necessary reduction.

In Section II-A we detail the construction for G and give
the reduction of MAX-CUT. In Section III we describe the
analysis of the partition functions Z±(η) using the second
moment method. In Section IV we discuss the analysis of
the reconstruction problem on the tree and establish the
conditional distributions of σV .

E. Acknowledgements

A.S. would like to thank Elchanan Mossel for his gen-
erous encouragement, guidance, support and advice with
this project and also Dror Weitz for helpful discussions.
The worked was initiated when the A.S. was a student at
UC Berkeley where he was supported by NSF CAREER
grant DMS-0548249 and by DOD ONR grant (N0014-07-
1-05-06) 1300/08. Thanks to anonymous referees for useful
comments.

II. PROOF OF THEOREM 1 AND 2

In this section we first describe the construction of our
base random graph G which will be the basic gadget in our
reduction. We state a theorem describing the properties of
the hardcore model on G and then proceed to show how this
establishes the reduction for Theorems 1 and 2.

A. Construction of G

We begin by constructing a random bi-partite (multi)graph
G̃ = G̃(n, θ, ψ) where n is a positive integer and 0 < θ, ψ <
1
8 are positive constants which will be chosen to depend on
λ and d. This graph will be the basis of our construction of
G.

• The bipartite graph is constructed in two halves which
we will call respectively the plus half and the minus
half each with n + m′ vertices where m′ = (d −
1)bθ logd−1 nc+2bψ2 logd−1cn.

• The vertices of each side are split into two sets W±

and U± of size n and m′ respectively. We label the
vertices of U± by u±1 , . . . , u

±
m′ .

• We connect d− 1 edges to each vertex by taking d− 1
random perfect matchings of W+ ∪ U+ with W− ∪

U− and adding an edge between each pair of matched
vertices.

• We take one more perfect matching of W+ with W−

and add an edge between each pair of matched vertices.
In this construction the vertices in W = W+ ∪ W−

are of degree d and the vertices in U = U+ ∪ U− are
of degree d − 1. Note that in this construction there will
be multiple edges between vertices with asymptotically
constant probability bounded away from 1. However, in the
hardcore model multiple edges are irrelevant and we simply
treat them as single edges (some degrees will be decreased
but this will not affect our proof).

We now complete our construction of G = G(n, θ, ψ) by
adjoining trees onto U+ and to U−.
• Construct a collection of m = (d − 1)bθ logd−1 nc

disconnected (d− 1)-ary trees of depth 2bψ2 logd−1 nc
rooted at v+

1 , . . . , v
+
m. The total number of leaves of the

trees is m′.
• Adjoin this collection of trees to U+ by identifying

each vertex of U+ with the leaf of one of the trees.
Denote the set of roots as V + which are vertices of
degree d− 1.

• Perform the analogous construction on U− to complete
G.

This construction yields a bi-partite graph of maximum
degree d with m vertices of degree d− 1 on each side. We
now consider a the Hardcore model PG(σ) on G. Our con-
struction is a modification of the model considered in [30]
where they showed that on a.a.a random bi-partite d-regular
graphs the probability of “balanced” sets is exponentially
small. This is also the case for our construction and we
define the phase of the configuration as

Y = Y (σ) :=

{
+1 if

∑
w∈W+ σw ≥

∑
w∈W− σw,

−1 if
∑
w∈W+ σw <

∑
w∈W− σw.

We define the product measure Q+
V (respectively Q−) on

configurations on V = V + ∪ V − so that the spins are iid
Bernoulli with probability q+ (resp. q−) on V + and q−

(resp. q+) on V −, i.e.,

Q±V (σV ) := (q±)
∑
v∈V+ σv (1− q±)m−

∑
v∈V+ σv

· (q∓)
∑
v∈V− σv (1− q∓)m−

∑
v∈V− σv .

We define QU on U = U+ ∪ U− similarly. With these
definitions we establish the following result about hardcore
model on G.

Theorem II.1. For every d ≥ 3 when λc(d) < λ and when
Condition I.2 and equation (I.8) hold there exists constants
θ(λ, d), ψ(λ, d) > 0 such that the graph G(n, θ, ψ) has
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(2 + o(1))n vertices and satisfies the following with high
probability:

• The phases occur with roughly balanced probability so
that

PG(Y = +) ≥ 1
n
,PG(Y = −) ≥ 1

n
. (II.1)

• The conditional distribution of the configuration on V
satisfies

max
σV

∣∣∣∣PG(σV |Y = ±)
Q±V (σV )

− 1
∣∣∣∣ ≤ n−2θ. (II.2)

The proof of this theorem is deferred to Section IV.

B. Reduction to Max-Cut

We now demonstrate how to use Theorem II.1 to establish
a reduction from sampling from the hardcore model to Max-
Cut. Let H be a graph on up to 1

d−1n
θ/4 vertices. With

a random bi-partite graph G = G(n, θ, ψ) constructed as
above we define HG as follows.

• Take the graph comprising |H| disconnected copies of
G and identify each copy with with a vertex in H

labeling the copies (Gx)x∈H . Denote this graph by
ĤG. We let V +

x and V −x denote the vertices of Gx
corresponding to V + and V −.

• For every edge (x, y) in the graph H add n3θ/4

edges between V +
x and V +

y and similarly add n3θ/4

edges between and V −x and V −y . This can be done
deterministically in such a way that no vertex in ĤG

has its degree increased by more than 1. Denote the
resulting graph by HG.

The resulting graph has maximum degree d. For each x ∈ H
we let Yx = Yx(σ) denote the phase of a configuration σ

on Gx. Let Y = (Yx)x∈H ∈ {0, 1}H denote the vector of
phases of the Gx. Denote the partition function given the
phase Y by

ZHG(Y ′) =
∑

σ∈I(HG)

λ|σ|1 (Y(σ) = Y ′) .

Lemma II.2. Suppose that G satisfies equations (II.1)
and (II.2) of Theorem II.1. Then

ZĤG(Y ′)
ZĤG

= PG(Y = +)
∑
x∈H 1Y ′x=+ · PG(Y = −)

∑
x∈H 1Y ′x=−

≥ n−n
θ/4
, (II.3)

and

ZHG(Y ′)
ZĤG(Y ′)

= (CH + o(1))
[

(1− q+q−)2

(1− (q+)2)(1− (q−)2)

]n3θ/4Cut(Y′)

,

(II.4)

where CH =
[
(1− (q+)2)(1− (q−)2)

]n3θ/4E(H)
and where

Cut(Y ′) = #{(x, y) ∈ E(H) : Y ′x 6= Y ′y} denotes the
number of edges in cut of H induced by Y ′.

Proof: Since the graph ĤG consists of a collection of
disconnected copies of G, the distribution of a configuration
on ĤG is given by the product measure of configurations on
the (Gx)x∈H . In particular the phases are independent and
so

ZĤG(Y ′)
ZĤG

= PĤG (Y(σ) = Y ′)

= PG(Y = +)
∑
x∈H 1Y ′x=+ · PG(Y = −)

∑
x∈H 1Y ′x=−

≥ n−n
θ/4
,

which establishes equation (II.3). Now the ratio of the
partition functions in (II.4) is exactly the probability that the
configuration σ sampled under PĤG is also an independent
set for HG after adding in the extra edges, that is

ZHG(Y ′)
ZĤG(Y ′)
= PĤG

(
σ ∈ I(HG) | Y(σ) = Y ′

)
= PĤG (∀(v, v′) ∈ E , σvσv′ 6= 1 | Y(σ) = Y ′)

where E = E(HG) \ E(ĤG). Now by equation (II.2),
conditional on the phase Y ′ the spins of σ∪x∈HVx are
asymptotically conditionally independent with probabilities
q+ or q− depending on the phase. It follows that

PĤG (∀(v, v′) ∈ E , σvσv′ 6= 1 | Y(σ) = Y ′)

= (1 + o(1))
∏

PĤG(σvσv′ 6= 1 | Y(σ) = Y ′),

where the product is over (v, v′) ∈ E . If (x, x′) ∈ E then by
direction calculations and equation (II.2)∏
v∈Gx,v′∈Gx′ :(v,v′)∈E

PĤG(σvσv′ 6= 1 | Y(σ) = Y ′)

=


(1 +O(n−θ))

(
(1− (q+)2)(1− (q−)2)

)n3θ/4

if Yx = Yx′ ,

(1 +O(n−θ))
(
(1− q+q−)2

)n3θ/4

if Yx 6= Yx′ .
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Combining the above estimates we have that

ZHG(Y ′)
ZĤG(Y ′)

= (CH + o(1))
[

(1− q+q−)2

(1− (q+)2)(1− (q−)2)

]n3θ/4Cut(Y′)

which completes the proof.
Given the previous lemma we now show how to produce

the randomized reduction to Max-Cut establishing Theo-
rems 1 and 2.

Theorem 1 and 2: Let H be a graph on at most 1
d−1n

θ

vertices. Take an instance of a random graph G = G(n, θ, ψ)
according to the construction in Section II-A. By Theo-
rem II.1 with probability tending to 1 the graph satisfies
equations (II.1) and (II.2). Assume that it does and construct
the graph HG which has at most O(n1+θ) vertices and
maximum degree d.

Now suppose there exists an FPRAS for the partition
function for the hardcore model with fugacity λ on graphs of
maximum degree d. We now use the equivalence of approx-
imating the partition function and approximately sampling
for the hardcore model described in the introduction. In
polynomial time we may approximately sample from the
hardcore model on HG to within δ of the Gibbs distribution
in total-variation distance for any δ > 0. Let σ′ denote such
an approximate sample. We may couple σ′ with σ distributed
according to the Gibbs measure so that P(σ′ 6= σ) ≤ δ. We
now consider the phase of σ. Let Y ′,Y ′′ ∈ {0, 1}H such
that

Cut(Y ′) > Cut(Y ′′).

Then by Lemma II.2 we have that

P(Y(σ) = Y ′)
P(Y(σ) = Y ′′)

=
ZHG(Y ′)
ZHG(Y ′′)

(II.5)

≥
(1 + o(1))ZĤG(Y ′)

ZĤG(Y ′′)
ξn

3θ/4[Cut(Y′)−Cut(Y′′)]

≥ (1 + o(1))n−n
θ/4
ξn

3θ/4[Cut(Y′)−Cut(Y′′)] (II.6)

where
ξ =

(1− q+q−)2

(1− (q+)2)(1− (q−)2)
.

As we have that 0 < q− < q+ < 1 if follows that (1 −
q+q−)2 − (1 − (q+)2)(1 − (q−)2) = (q+ − q−)2 > 0 and
hence

ξ =
(1− q+q−)2

(1− (q+)2)(1− (q−)2)
> 1.

Therefore, for large enough n by equation (II.5) it follows
that

P(Y(σ) = Y ′)
P(Y(σ) = Y ′′)

≥ ξ 1
2n

3θ/4
≥ 4n

θ/4
.

Since the size of {0, 1}|H| is only 2n
θ/4

it follows that
with probability at least 1−2|H| that Cut(Y(σ)) attains the
maximum value. Hence with probability at least 1−δ−o(1)
the phases Y(σ′) of the approximate sample σ′ also attains
a maximum cut in H . As such we have constructed a
randomized polynomial-time reduction from approximating
the partition function of the hardcore model to constructing
a maximum cut. It follows that unless RP=NP there is no
polynomial-time algorithm for approximating the partition
function of the hardcore model for λc(d) < λ < λc(d)+ε(d)
on graphs of maximum degree d or when λ = 1 on graphs
of maximum degree 6 or more.

III. THE PARTITION FUNCTION OF G̃

In this section we analyse the hardcore model on the
random bi-partite graph G̃ and in particular consider the
effect of conditioning on the spins in U = U+ ∪ U−. For
η ∈ {0, 1}U we define ZG̃(η) to be the partition function
over configurations whose restriction to U is η, that is

ZG̃(η) =
∑

σ∈I(G̃):σU=η

λ|σ|.

Our analysis borrows heavily on hard computations carried
out in [30]. There they considered a random d-regular
bipartite graph where each side has n vertices and the edges
are chosen according to d independent perfect matchings
of the vertices of the sides. They denote Zα,β to be the
weighted sum over configurations of the graph with αn and
βn vertices on the plus and minus sides of the configuration
(for α, β such that αn, βn are integers). We will denote their
quantity by Zα,βMWW. In the same spirit define

Zα,β
G̃

(η) =
∑

σ:σU=η,
∑
w∈W+ σw=αn,

∑
w∈W− σw=βn

λ|σ|.

Lemma III.1. For any (α, β) in the interior of T and all
η ∈ {0, 1}U we have that:

EZα,β
G̃

(η) = (1 +O(n−1/2))C∗
(
λ

(
1− α− β

1− β

)d−1
)η−

(III.1)

·

(
λ

(
1− α− β

1− α

)d−1
)η+

EZα,βMWW (III.2)

where

C∗ =
(

(1− α)(1− β)
1− α− β

)m′
and where η± denotes

∑
u∈U± ηu.

A long series of calculations using the second moment
method and the small graph conditioning method eventually
yields the following bound.
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Theorem III.2. For every d ≥ 3 and λ > λc such
that Condition I.2 holds there exists a positive constant
ε(d) > 0 and constants θ∗(λ, d), ψ∗(λ, d) > 0 such that the
partition functions satisfy the following asymptotic almost
sure statements,

sup
η∈{0,1}U

P
(
Z±
G̃

(η) <
1√
n

EZ±
G̃

(η)
)
→ 0. (III.3)

IV. RECONSTRUCTION ON THE TREE

Our proof now takes a detour through the reconstruction
problem on the tree. This problem concerns determining
which Gibbs measures on the tree are extremal, or equiva-
lently when the tail σ-algebra is trivial or when point-to-set
correlations converge to 0 in the distance of the point to
the set [28]. In our setting the measures µ̂± are extremal
so we automatically have that non-reconstruction holds. We
will use facts about the rate of decay of point-to-set corre-
lations to establish that σV is essentially independent of σU
conditioned on the phase. In most cases the reconstruction
problem has been considered in the case of the translation
invariant free measure (see [5] for recent progress on the
hardcore model) but we will be interested in the case of the
semi-translation invariant measures µ̂± on T̂d and as such
results from the literature do not directly apply here.

The reconstruction problem has for the most part been
studied in the case of Markov models on trees with a single
transition kernel M . In this theory the key role is played
by the λ∗ the second eigenvalue of the transition matrix.
The famous Kesten-Stigum bound [19, 28] states that there
is reconstruction when λ2

∗(d− 1) > 1 while results of [15]
show that if non-reconstruction holds and λ2

∗(d − 1) < 1
then point to set correlations decay exponentially quickly. In
our setting, however, the Gibbs measure is semi-translation
invariant and the Markov model is given by a pair of
alternating Markov transition kernels, M± defined below.

With minor modifications the proof of [7] (or also [34] or
[15]) can be adapted to the semi-translation invariant setting.
Here the role of λ∗ is played by the second eigenvalue of
M+M− where

M± =
(

1− q± q±

1 0

)
and there is reconstruction when λ2

∗(d − 1)2 > 1 and
exponential decay of correlations when there is non-
reconstruction and λ2

∗(d − 1)2 < 1. The term (d − 1)2 is
explained by the fact that this this the branching from two
levels of the tree. Using the methods of [34] which build
on the work of [7] we establish the necessary decay of
correlations result. These bounds can also be derived from
the work of Martinelli, Sinclair and Weitz [23].

We then apply this result to the graph G. Let B denote
the set of configurations η which have a large influence on
σV in the “plus phase”,

B =
{
η ∈ {0, 1}U :

sup
v∈V
|PG(σv = 1 | σU = η)−Q+

V (σv = 1)|

> exp(−2ζ1b
ψ

2
logd−1 nc)

}
,

where ζ2(d, λ) > 0 is some appropriately chosen constant.
We use Theorem III.2 to relate the distribution of σU to
the measure on the infinite d-ary tree and combine this with
strong decay of correlations results for the reconstruction
problem to show that

P (σU ∈ B | Y = +) ≤ exp (− exp(ζ2`)) . (IV.1)

for some ζ1(d, λ) > 0. A similar result holds for the minus
phase. This establishes that, given the phase, the effect of
σU on σV is very small with high probability. From (IV.1)
we then establish the key equation (II.2).

REFERENCES

[1] D. Achlioptas and A. Coja-Oghlan, Algorithmic barriers from phase
transitions, IEEE 49th Annual IEEE Symposium on Foundations of
Computer Science, 2008. FOCS’08, 2008, pp. 793–802.

[2] D. J. Aldous, The ζ(2) limit in the random assignment problem,
Random Structures and Algorithms 18 (2001), 381–418.

[3] N. Berger, C. Kenyon, E. Mossel, and Y. Peres, Glauber dynamics on
trees and hyperbolic graphs, Probability Theory and Related Fields
131 (2005), 311–340.

[4] P. Berman and T. Fujito, On approximation properties of the inde-
pendent set problem for low degree graphs, Theory of Computing
Systems 32 (1999), 115–132.

[5] N. Bhatnagar, A. Sly, and P. Tetali, Reconstruction Threshold for the
Hardcore Model, arXiv:1004.3531 (2010).

[6] N. Bhatnagar, J. Vera, E. Vigoda, and D. Weitz, Reconstruction for
colorings on trees, To appear in SIAM J. on Discrete Math. (2008).

[7] C. Borgs, J. Chayes, E. Mossel, and S. Roch, The Kesten-Stigum
reconstruction bound is tight for roughly symmetric binary channels,
Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, 2006, pp. 518–530.

[8] A. Dembo and A. Montanari, Ising models on locally tree-like graphs,
Ann. Appl. Probab 20 (2010), 565–592.

[9] M. Dyer, A. Frieze, and M. Jerrum, On Counting Independent Sets in
Sparse Graphs, SIAM Journal on Computing 31 (2002), 1527.

[10] M. Dyer and C. Greenhill, On Markov Chains for Independent Sets,
Journal of Algorithms 35 (2000), 17–49.

[11] D. Galvin and P. Tetali, Slow mixing of Glauber dynamics for the
hard-core model on regular bipartite graphs, Random Structures and
Algorithms 28 (2006), 427–443.

[12] H. O. Georgii, Gibbs measures and phase transitions, Walter de
Gruyter, 1988.

[13] C. Greenhill, The complexity of counting colourings and independent
sets in sparse graphs and hypergraphs, Computational Complexity 9
(2000), 52–72.

[14] L. A. Goldberg and M. Jerrum, Approximating the partition function
of the ferromagnetic Potts model, Arxiv:1002.0986 (2010).

[15] S. Janson and E. Mossel, Robust reconstruction on trees is determined
by the second eigenvalue, Annals of Probability 32 (2004), 2630–2649.

295295295



[16] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley, 2000.
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