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Abstract. This paper proposes an information theoretic criterion for
comparing two partitions, or clusterings, of the same data set. The cri-
terion, called variation of information (VI), measures the amount of in-
formation lost and gained in changing from clustering C to clustering C′.
The criterion makes no assumptions about how the clusterings were gen-
erated and applies to both soft and hard clusterings. The basic properties
of VI are presented and discussed from the point of view of comparing
clusterings. In particular, the VI is positive, symmetric and obeys the
triangle inequality. Thus, surprisingly enough, it is a true metric on the
space of clusterings.
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1 Introduction

This paper proposes a simple information theoretic criterion for comparing two
clusterings. The concepts of entropy and information have proved themselves
as useful vehicles for formalizing intuitive notions related to uncertainty. By
approaching the relationship between two clusterings from the point of view of
the information exchange – loss and gain – between them, we are exploiting
once again this quality of information theoretic concepts. As it will be shown,
the choice is also fortunate from other points of view. In particular, the variation
of information is provably a metric on the space of clusterings.

To address the ill-posedness of the search for a “best” criterion, the paper
presents a variety of properties of the variation of information and discusses their
meaning from the point of view of comparing clusterings. We will check whether
the properties of the new criterion are “reasonable” and “desirable” in a generic
setting. The reader with a particular application in mind has in these properties
a precise description of the criterion’s behavior.

The paper starts by presenting previously used comparison criteria (sec-
tion 2). The variation of information is introduced in section 3 and its properties
are presented in section 4. In section 5 the variation of information is compared
with other metrics and criteria of similarity between clusterings.
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2 Related Work

A clustering C is a partition of a set of points, or data set D into sets C1, C2, . . .
CK called clusters such that Ck ∩ Cl = ∅ and

⋃K
k=1 Ck = D. Let the number

of data points in D and in cluster Ck be n and nk respectively. We have, of
course, that n =

∑K
k=1 nk . We also assume that nk > 0; in other words, that

K represents the number of non-empty clusters. Let a second clustering of the
same data set D be C′ = {C ′

1, C ′
2, . . . C ′

K′}, with cluster sizes n′
k′ . Note that the

two clusterings may have different numbers of clusters.
Virtually all criteria for comparing clustering can be described using the so-

called confusion matrix, or association matrix or contingency table of the pair
C, C′. The contingency table is a K × K ′ matrix, whose kk′-th element is the
number of points in the intersection of clusters Ck of C and C ′

k′ of C′.

nkk′ = |Ck ∩ C ′
k′ |

2.1 Comparing Clusterings by Counting Pairs

An important class of criteria for comparing clusterings, is based on counting
the pairs of points on which two clusterings agree/disagree. A pair of points from
D can fall under one of four cases described below.

N11 the number of point pairs that are in the same cluster under both C and C′

N00 number of point pairs in different clusters under both C and C′

N10 number of point pairs in the same cluster under C but not under C′

N01 number of point pairs in the same cluster under C′ but not under C
The four counts always satisfy N11 + N00 + N10 + N01 = n(n − 1)/2. They can
be obtained from the contingency table [nkk′ ]. See [3] for details.

Wallace [12] proposed the two asymmetric criteria WI , WII below.

WI(C, C′) =
N11∑

k nk(nk − 1)/2
WII(C, C′) =

N11∑
k′ n′

k′(n′
k′ − 1)/2

(1)

They represent the probability that a pair of points which are in the same cluster
under C (respectively C′) are also in the same cluster under the other clustering.

Fowlkes and Mallows [3] introduced a criterion which is symmetric, and is
the geometric mean of WI , WII .

F(C, C′) =
√

WI(C, C′)WII(C, C′) (2)

The Fowlkes-Mallows index F has a base-line that is the expected value of the
criterion under a null hypothesis corresponding to “independent” clusterings [3].
The index is used by subtracting the base-line and normalizing by the range,
so that the expected value of the normalized index is 0 while the maximum
(attained for identical clusterings) is 1. The adjusted Rand index is a similar
transformation introduced by [4] of Rand’s [10] criterion

R(C, C′) =
N11 + N00

n(n − 1)/2
(3)
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A problem with adjusted indices is that the baseline is an expectation under
a null hypothesis. The null hypothesis is that a) the two clusterings are sampled
independently, and b) the clusterings are sampled from the set of all partition
pairs with fixed nk, n′

k′ points in each cluster [3,4]. In practice, the second
assumption is normally violated. Many algorithms take a number of clusters K
as input, but the numbers of points in each cluster are a result of the execution
of the algorithm. In most exploratory data analysis situations, it is unnatural to
assume that anyone can know exactly how many points are in each cluster. The
problems listed above have been known in the statistical community for a long
time; see for example [12].

On the other hand, the range of values of the unadjusted F and R varies
sharply for values of K, K ′ smaller than n/3 making comparisons across different
values of K, K ′ unreliable [3].

There are other criteria in the literature, to which the above discussion ap-
plies, such as the Jacard [1] index

J (C, C′) =
N11

N11 + N01 + N10
(4)

an improved version of the Rand index, and the Mirkin [9] metric

M(C, C′) =
∑

k

n2
k +

∑
k′

n′2
k′ − 2

∑
k

∑
k′

n2
kk′ (5)

The latter is obviously 0 for identical clusterings and positive otherwise. In fact,
this metric corresponds to the Hamming distance between certain binary vector
representations of each partition [9]. This metric can also be rewritten as

M(C, C′) = 2(N01 + N10) = n(n − 1)[1 − R(C, C′)] (6)

Thus the Mirkin metric is another adjusted form of the Rand index.

2.2 Comparing Clusterings by Set Matching

A second category of criteria is based on set cardinality alone. Meilă and Heck-
erman [8] computed the criterion H: First, each cluster of C is given a “best
match” in C′. This is done by scanning the elements nkk′ of the contingency ta-
ble in decreasing order. The largest of them, call it nab, entails a match between
Ca and C ′

b, the second largest not in row a or column b entails the second match,
and so on until min(K, K ′) matches are made. Denote by match(k) the index of
the cluster C ′

k′ in C′ that matches cluster Ck. Then

H(C, C′) =
1
n

∑
k′=match(k)

nkk′ (7)

The index is symmetric and takes value 1 for identical clusterings. Larsen et al.,
[5] use

L(C, C′) =
1
K

∑
k

max
k′

2nkk′

nk + n′
k

(8)
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This is an asymmetric criterion that is 1 when the clusterings are identical. A
criterion that is a metric was introduced by van Dongen [11]

D(C, C′) = 2n −
∑

k

max
k′

nkk′ −
∑
k′

max
k

nkk′ (9)

All three above criteria suffer from the “problem of matching” that we discuss
now. One way or another, L, H, D all first find a “best match” for each cluster,
then add up the contributions of the matches found. In doing so, the criteria
completely ignore what happens to the “unmatched” part of each cluster. For
example, suppose C is a clustering with K equal size clusters. The clustering C′′

is obtained from C by moving a fraction f of the points in each Ck to the cluster
Ck+1(modK). The clustering C′ is obtained from C by reassigning a fraction f
of the points in each Ck evenly between the other clusters. If f < 0.5 then
L(C, C′) = L(C, C′′), H(C, C′) = H(C, C′′), D(C, C′) = D(C, C′′). This contradicts
the intuition that C′ is a less disrupted version of C than C′′.

3 The Variation of Information

Now we introduce the variation of information, the criterion we propose for
comparing two clusterings.

We start by establishing how much information is there in each of the cluster-
ings, and how much information one clustering gives about the other. For more
details about the information theoretical concepts presented here, the reader is
invited to consult [2].

Imagine the following game: if we were to pick a point of D, how much
uncertainty is there about which cluster is it going to be in? Assuming that
each point has an equal probability of being picked, it is easy to see that the
probability of the outcome being in cluster Ck equals

P (k) =
nk

n
(10)

Thus we have defined a discrete random variable taking K values, that is uniquely
associated to the clustering C. The uncertainty in our game is equal to the en-
tropy of this random variable

H(C) = −
K∑

k=1

P (k) log P (k) (11)

We call H(C) the entropy associated with clustering C. Entropy is always non-
negative. It takes value 0 only when there is no uncertainty, namely when there
is only one cluster. Note that the uncertainty does not depend on the number
of points in D but on the relative proportions of the clusters.

We now define the mutual information between two clusterings, i.e the in-
formation that one clustering has about the other. Denote by P (k), k = 1, . . . K
and P ′(k′), k′ = 1, . . . K ′ the random variables associated with the clusterings
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C, C′. Let P (k, k′) represent the probability that a point belongs to Ck in clus-
tering C and to C ′

k′ in C′, namely the joint distribution of the random variables
associated with the two clusterings.

P (k, k′) =
|Ck

⋂
C ′

k′ |
n

(12)

We define I(C, C′) the mutual information between the clusterings C, C′ to be
equal to the mutual information between the associated random variables

I(C, C′) =
K∑

k=1

K′∑
k′=1

P (k, k′) log
P (k, k′)

P (k)P ′(k′)
(13)

Intuitively, we can think of I(C, C′) in the following way: We are given a random
point in D. The uncertainty about its cluster in C′ is measured by H(C′). Suppose
now that we are told which cluster the point belongs to in C. How much does
this knowledge reduce the uncertainty about C′? This reduction in uncertainty,
averaged over all points, is equal to I(C, C′).

The mutual information between two random variables is always non-negative
and symmetric.

I(C, C′) = I(C′, C) ≥ 0 (14)

Also, the mutual information can never exceed the total uncertainty in a clus-
tering, so

I(C, C′) ≤ min(H(C), H(C′)) (15)

Equality in the above formula occurs when one clustering completely determines
the other. For example, if C′ is obtained from C by merging two or more clusters,
then

I(C, C′) = H(C′) < H(C)

When the two clusterings are equal, and only then, we have

I(C, C′) = H(C′) = H(C)

We propose to use as a comparison criterion for two clusterings C, C′ the quantity

VI(C, C′) = H(C) + H(C′) − 2I(C, C′) (16)

At a closer examination, this is the sum of two positive terms

VI(C, C′) = [H(C) − I(C, C′)] + [H(C′) − I(C, C′)] (17)

By analogy with the total variation of a function, we call it variation of infor-
mation between the two clusterings. The two terms represent the conditional
entropies H(C|C′), H(C′|C). The first term measures the amount of information
about C that we loose, while the second measures the amount of information
about C′ that we have to gain, when going from clustering C to clustering C′.
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VI(C,C’)

H(C)
H(C’)

H(C|C’) I(C,C’) H(C’|C)

Fig. 1. The variation of information (represented by the sum of the shaded areas) and
related quantities.

From the above considerations it follows that an equivalent expression for
the variation of information (VI) is

VI(C, C′) = H(C|C′) + H(C′|C) (18)

Noting that
I(C, C′) = H(C) + H(C′) − H(C, C′)

where H(C, C′) is the entropy of P (k, k), or the joint entropy of the two cluster-
ings [2], we obtain a third equivalent expression for the variation of information

VI(C, C′) = 2H(C, C′) − H(C) − H(C′) (19)

4 Properties of the Variation of Information

We now list some basic properties of the variation of information with the goal
of better understanding the structure it engenders on the set of all clusterings.
These properties will also help us decide whether this comparison criterion is
appropriate for the clustering problem at hand. Here we will not be focusing on
a specific application, but rather we will try to establish whether the properties
are “reasonable” and in agreement with the general intuition of what “more
different” and “less different” should mean for two clusterings of a set.

Most of the properties below have elementary proofs that are left as an
exercise to the reader. The proofs for properties 1, 8 are given in the long version
of the paper [7].

Property 1 The VI is a metric. (1) VI(C, C′) is always non-negative and
VI(C, C′) = 0 if and only if C = C′. (2) VI(C, C′) = VI(C′, C) (3) (Triangle
inequality) For any 3 clusterings C1, C2, C3 of D

VI(C1, C2) + VI(C2, C3) ≥ VI(C1, C3) (20)
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The space of all clusterings being finite, the VI metric is necessarily bounded.
A comparison criterion that is a metric has several important advantages. The
properties of a metric – mainly the symmetry and the triangle inequality – make
the criterion more understandable. Human intuition is more at ease with a metric
than with an arbitrary function of two variables.

Second, the triangle inequality tells us that if two elements of a metric space
(i.e clusterings) are close to a third they cannot be too far apart from each
other. This property is extremely useful in designing efficient data structures and
algorithms. With a metric, one can move from simply comparing two clusterings
to analyzing the structure of large sets of clusterings. For example, one can design
algorithms a la K-means [6] that cluster a set of clusterings, one can construct
ball trees of clusterings for efficient retrieval, or one can estimate the speed at
which a search algorithm (e.g simulated annealing type algorithms) moves away
from its initial point.

Upper bounds. The following properties give some intuition of scale in this
metric space.

Property 2 n-invariance. The value of VI(C, C′) depends only on the relative
sizes of the clusters. It does not directly depend on the number of points in the
data set.

Property 3 The following bound is attained for all n.

VI(C, C′) ≤ log n (21)

For example, C = {{1}, {2}, {3}, . . . {n}} and C′ = {D} always achieve VI(C,
C′) = log n.

We have said before that the VI distance does not depend on n. The bound in
the above inequality however depends on n. This does not show a contradiction,
but merely the fact that with more data points more clusterings are possible. For
example, if two data sets D1, D2 have respectively n1, n2 points, with n1 < n2
then no clustering of D1 will have more than n1 clusters, while for the set D2
there can be clusterings with K > n1 clusters.

If the number of clusters is bounded by a constant K∗ we can derive a bound
that is dependent on K∗ only.

Property 4 If C and C′ have at most K∗ clusters each, with K∗ ≤ √
n, then

VI(C, C′) ≤ 2 log K∗.

For any fixed K∗ the bound is approached arbitrarily closely in the limit of
large n and is attained in every case where n is an exact multiple of (K∗)2. This
shows that for large enough n, clusterings of different data sets, with different
numbers of data points, but with bounded numbers of clusters are really on the
same scale in the metric VI.

The above consequence is extremely important if the goal is to compare
clustering algorithms instead of clusterings of one data set only. The previous
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C C′ C × C′

Fig. 2. Two maximally separated clusterings C and C′, having each K = 3 clusters,
and their join C × C′, having 9 clusters.

three properties imply that, everything else being equal, distances obtained from
data sets of different sizes are comparable. For example, if one ran a clustering
algorithm with the same parameters and the same K∗ on 3 data sets produced by
the same generative process, then one could compare the clusterings obtained by
the algorithm with the gold standard for each of the 3 data sets and average the
resulting 3 distances to obtain the average “error” of the algorithm. Other less
restrictive comparisons are also possible and are being often used in practice, but
their results should be regarded with caution. To summarize, if it makes sense
to consider the clustering problems on two data sets as equivalent, then it also
makes sense to compare, add, subtract VI distances across the two clustering
spaces independently of the sizes of the underlying data sets.

The local neighborhood. A consequence of having a metric is that we can
define ε-radius balls around any clustering. The following properties give the
distances at which the nearest neighbors of a clustering C will lie. They also
give an intuition of what kind of clusterings lie “immediately near” a given one,
or, in other words, what changes to a clustering are small according to the VI
distance?

Property 5 Splitting a cluster. Assume C′ is obtained from C by splitting Ck

into clusters C ′
k1

, . . . C ′
km

. The cluster probabilities in C′ are

P ′(k′) =
{

P (k′) if C ′
k′ ∈ C

P (k′|k)P (k) if C ′
k′ ⊆ Ck ∈ C (22)

In the above P (k′|k) for k′ ∈ {k1, . . . km} is

P (kl|k) =
|C ′

kl
|

|Ck| (23)

and its entropy, representing the uncertainty associated with splitting Ck, is

H|k = −
∑

l

P (kl|k) log P (kl|k)

Then,
VI(C, C′) = P (k)H|k (24)
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The same value is obtained when performing the reverse operation, i.e when a
set of clusters is merged into a single one. Equation (24) shows that the distance
achieved by splitting a cluster is proportional to the relative size of the cluster
times the entropy of the split. Hence, splitting (or merging) smaller clusters
has less impact on the VI then splitting or merging larger ones. Note also that
the variation of information at splitting or merging a cluster is independent of
anything outside the cluster involved. This is a desirable property; things that
are equal in two clusterings should not be affecting the distance between them.

The next two properties are direct consequences of Property 5.

Property 6 Splitting a cluster into equal parts. If C′ is obtained from C
by splitting Ck into q equal size clusters, then VI(C, C′) = P (k) log q.

Property 7 Splitting off one point. If C′ is obtained from C by splitting one
point off Ck and making it into a new cluster, then

VI(C, C′) =
1
n

[nk log nk − (nk − 1) log(nk − 1)] (25)

Since splitting off one point represents the lowest entropy split for a given
cluster, it follows that splitting one point off the smallest non-singleton cluster
results in the nearest C′ with K ′ > K to a given C. This suggests that the nearest
neighbors of a clustering C in the VI metric are clusterings obtained by splitting
or merging small clusters in C. In the following we prove that this is indeed so.

First some definitions. We shall say that a clustering C′ refines another clus-
tering C if for each cluster C ′

k′ ∈ C′ there is a (unique) cluster Ck ∈ C so that
C ′

k′ ⊆ Ck. In other words, a refinement C′ is obtained by splitting some clusters
of the original C. If C′ refines C it is easy to see that K ′ ≥ K, with equality only
if C′ = C.

We define the join of clusterings C and C′ by

C × C′ = {Ck ∩ C ′
k′ | Ck ∈ C, C ′

k′ ∈ C′, Ck ∩ C ′
k′ 	= ∅}

Hence, the join of two clusterings is the clustering formed from all the nonempty
intersections of clusters from C with clusters from C′. The join C × C′ contains
all the information in C and C′, i.e knowing a point’s cluster in the join uniquely
determines its cluster in C and C′. Note that if C′ is a refinement of C, then
C × C′ = C′.

Property 8 Collinearity of the join. The triangle inequality holds with equal-
ity for two clusterings and their join.

VI(C, C′) = VI(C, C × C′) + VI(C′, C × C′) (26)

Thus, the join of two clusterings is “collinear” with and “in between” the
clusterings in this metric space. Finally, this leads us to the following property,
which implies that the nearest neighbor of any clustering C is either a refinement
of C or a clustering whose refinement is C.
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Property 9 For any two clusterings we have

VI(C, C′) ≥ VI(C, C × C′) (27)

with equality only if C′ = C × C′.

From the above, we conclude that the nearest neighbor of C, with K ′ < K
is obtained by merging the two smallest clusters in C. We now have, due to
Properties 7 and 9, a lower bound on the distance between a clustering C and
any other clustering of the same data set. The lower bound depends on C. Taking
its minimum for all clusterings, which is attained when two singleton clusters
are merged (or conversely, a cluster consisting of two points is split) we obtain
VI(C, C′) ≥ 2/n for C 	= C′.

The last property implies that the smallest distance between two clusterings
decreases when the total number of points increases. In other words, the space
of clusterings has not only a larger diameter for larger n but it also has finer
granularity. This is natural, since a larger n allows clusterings not possible with
smaller n’s. If we multiply n by an integer, obtaining n′ = αn and a new data
set D′ that has α points for each point of D, then it is easy to see that all the
clusterings of D are possible in D′ and that their respective distances in D are
preserved by the metric in D′. In addition, D′ will have clusterings not possible
in D, that will be interspersed between the clusterings from D.

Linearity. Looking at property 5 (splitting a cluster) from a different angle we
can derive another interesting property of the variation of information.

Property 10 Linearity of composition. Let C = {C1, . . . CK} be a clustering
and C′, C′′ be two refinements of C. Denote by C′

k (C′′
k ) the partitioning induced

by C′ (respectively C′′) on Ck. Let P (k) represent the proportion of data points
that belong to cluster Ck. Then

VI(C′, C′′) =
K∑

k=1

P (k)VI(C′
k, C′′

k ) (28)

This property is illustrated in figure 3 for K = 2. The property can be interpreted
in a way reminiscent of hierarchical clusterings. If two hierarchical clusterings
have exactly two levels and they coincide on the higher level but differ on the
lower level, then the VI distance between the two clusterings (regarded as flat
clusterings) is a weighted sum of the VI distances between the second level
partitions of each of the common first level clusters.

Property 10 can be seen in another way yet. If two clustered data sets are
merged, they induce a clustering on their union. If there are two ways of cluster-
ing each of the data sets, the VI distance between any two induced clusterings
is a linear combination of the VI distances at the level of the component data
sets.

Finally, a property pertaining to the computation time of the variation of
information.
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C1 C2 C

C1 C2 C

Fig. 3. Illustration of linearity. If C = C1 ∪ C2 and C′ = C′
1 ∪ C′

2 then V I(C, C′) =
n1

n1+n2
V I(C1, C′

1) + n2
n1+n2

V I(C2, C′
2).

Property 11 VI(C, C′) can be computed in O(n + KK ′) time.

This is not surprising, since VI(C, C′), just like the previously presented criteria,
is completely determined by the contingency table [nkk′ ]. The first term in the
above formula corresponds to the computation of the contingency table, while
the second represents the computation of the VI from it.

5 Discussion

5.1 Scaled Distances between Clusterings

Here we consider some of the other indices and metrics for comparing clusterings,
and examine whether they can be made invariant with n (of the criteria discussed
in section 2 only the H and L criteria are). We give invariance with n particular
attention because, in any situation where comparisons are not restricted to a
single data set, the value of a criterion that is not n-invariant would be useless
without being accompanied by the corresponding n.

The Rand, Fowlkes-Mallows, Jacard, and Wallace indices are asymptotically
n-invariant in the limit of large n. For finite values of n the dependence on n
is weak. It is also non-linear, and we don’t see a natural way of making these
criteria exactly n-invariant.

A more interesting case is represented by the two metrics: the Mirkin metric
M, which is related to the Rand index and thus to counting pairs, and the van
Dongen metric D based on set matching. These metrics depend strongly on n
but they can be scaled to become n-invariant. We denote the n-invariant versions
of D, M by Dinv, Minv.

Dinv(C, C′) =
D(C, C′)

2n

Minv(C, C′) =
M(C, C′)

n2
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Since the Mirkin distance is related to the Rand index, by inspecting (6) we see
that the Rand index is asymptotically equivalent to an n-invariant metric.

It is instructive to compare the behavior of the three invariant metrics VI,
Minv, Dinv for two clusterings with K clusters that are maximally separated
under the VI distance. Such a situation is depicted in figure 2. The two clusterings
have nk = n′

k = n/K and nkk′ = n/K2 for all k, k′ = 1, . . . K. It is assumed that
n is a multiple of K2 for simplicity. It can be shown that this pair of clusterings is
also maximizing the Dinv and Minv metrics under the constraint that K = K ′.

We compute now the values of VI,Dinv and Minv for this particular pair, as
a function of K.

VImax = 2 log K

Dmax
inv = 1 − 1

K

Mmax
inv =

2
K

− 1
K2 (29)

It follows that while the VI distance grows logarithmically with K, the other
two metrics have values bounded between 0 and 1 for any value of K. The
Dinv metric grows with K toward the upper bound of 1, while the Minv metric
decreases toward 0 approximately as 1/K.

5.2 Linearity and Locality

Now we compare the scaled metrics with the VI distance from the point of view
of linearity. The following proposition can be easily proved.

Property 12 Linearity of composition for Dinv, Minv. Let C = {C1, . . .
CK} be a clustering and C′, C′′ be two refinements of C. Denote by C′

k (C′′
k ) the

partitioning induced by C′ (respectively C′′) on Ck. Let nk represent the number
of data points that belong to cluster Ck. Then

Dinv(C′, C′′) =
K∑

k=1

nk

n
Dinv(C′

k, C′′
k )

Minv(C′, C′′) =
K∑

k=1

n2
k

n2 Minv(C′
k, C′′

k )

Hence, the Dinv metric behaves like the VI metric in that the resulting distance
is a convex combination of the distances between the subclusterings. The Minv

metric is linear too, but the coefficients depend quadratically on nk/n so that the
resulting distance is smaller than the convex combinations of distances between
subclusterings. This is in agreement with equation (29) showing that the Mirkin
metric has to decrease rapidly with the number of clusters. Note also that the
unscaled versions of D, M are additive, hence also linear.
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Linearity for a metric entails the following property, called locality: If C′ is
obtained from C by splitting one cluster, then the distance between C and C′

depends only on the cluster undergoing the split. Metrics that are linear are also
local. For example, for the Mirkin metric in the case of splitting cluster Ck into
C1

k , C2
k , locality is expressed as

Minv(C, C′) =
n2

k

n2 Minv({Ck}, {C1
k , C2

k})

The r.h.s of the above formula depends only on quantities related to Ck and its
split. It is invariant to the configuration of the other clusters in the partition.
Locality for the VI distance is reflected by property 7.

The VI distance as well as the D and M metrics and their n-invariant versions
are local. It can be easily shown that the Rand and the Meilă-Heckerman H
indices are also local. The Larsen, Fowlkes-Mallos and Jacard indices are not
local. See [7] for details.

Whether a criterion for comparing clusterings should be local or not depends
ultimately on the specific requirements of the application. A priori, however, a
local criterion is more intuitive and easier to understand.

5.3 Concluding Remarks

This paper has presented a new criterion for comparing two clusterings of a data
set, that is derived from information theoretic principles.

The criterion is more discriminative than the previously introduced criteria
that are based on set matching. In contrast with the comparison criteria based
on counting pairs, the variation of information is not directly concerned with
relationships between pairs of points, or with triples like [4]. One could say that
the variation of information is based on the relationship between a point and its
cluster in each of the two clusterings that are compared. This is neither a direct
advantage, nor a disadvantage w.r.t the criteria based on pair counts. If pairwise
relationships between data points are fundamental to the current application,
then a criterion based on pair counts should be used. Model based clustering
and centroid based clustering (e.g the K-means algorithm of [6]) focus not on
pairwise relationships but on the relationship between a point and its cluster or
centroid. Therefore, the VI distance is a priori better suited with applications of
model based clustering than indices based on counting pairs.

The vast literature on the subject suggests that criteria like R, F , K, J need
to be shifted and rescaled in order allow their values to be compared. However,
the existing rescaling methods make strong assumptions about the way the clus-
terings were generated, that are commonly violated in practice. By contrast, the
variation of information makes no assumptions about how the clusterings were
generated and requires no rescaling to compare values of VI(C, C′) for arbitrary
pairs of clusterings of a data set.

Moreover, the variation of information does not directly depend on the num-
ber of data points in the set. This gives a much stronger ground for comparisons
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across data sets, something we need to do if we want to compare clustering
algorithms against each other.

As K grows, the VI distance between two clusterings can grow as large as
2 log K. This sets the VI distance apart from all other indices and metrics dis-
cussed here. The scaled metrics Minv, Dinv as well as the indices R, F , J , W, H
are bounded between 0 and 1. Hence they carry the implicit assumption that
clusterings can only get negligibly more diverse if at all as the number of clusters
increases. Whether a bounded or unbounded criterion for comparing clusterings
is better depends on the clustering application at hand. This paper’s aim in this
respect is to underscore the possible choices.

In the practice of comparing clusterings, one deals more often with clusterings
that are close to each other than with clusterings that are maximally apart. For
example, one often needs to compare partitions obtained by several clustering
algorithms to a gold standard. It is reasonable to expect that the clusterings so
obtained are somewhat similar to each other. The results on locality and the
local neighborhood help one understand the behavior of VI in this context. Note
for example that the fact that the maximum VI distance grows like log K does
not affect the local properties of the variation of information.

It has been shown here that VI is a metric. This is extremely fortunate as it
allows one to see past simple pairwise comparisons between clusterings into the
global structure of the space of clusterings. A metric also entails the existence of
local neighborhoods, and this in turn allows us to apply to clusterings a vast array
of already existing algorithmic techniques. One could for example cluster a set
of clusterings obtained by different algorithms. This has already been suggested
as a tool for results summarization but so far no existent metric has been used
for this problem.

Last but not least, the variation of information fares well compared to other
criteria in that it is easy to understand. For those readers who are familiar
with information theory, VI is a natural extension of basic concepts. For the
other readers, this paper has given a thorough description of the behavior of
VI. The very fact that this paper contains more proved results than any of
[1,3,4,5,10,11,12] and that most results were easy to obtain is an argument for
the “understandabilty” and “predictablity” of this metric. In addition to un-
derstanding the VI per se, the properties of variation of information presented
represent a tool that helps us think about the space of clusterings in a precise
way and brings it nearer our intuition.

Just as one cannot define a “best” clustering method out of context, one can-
not define a criterion for comparing clusterings that fits every problem optimally.
This paper has strived to present a comprehensible picture of the properties of
the VI criterion, in order to allow a potential user to make informed decisions.
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