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Variational Bayes with Intractable Likelihood
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Abstract

Variational Bayes (VB) is rapidly becoming a popular tool for Bayesian

inference in statistical modeling. However, the existing VB algorithms are

restricted to cases where the likelihood is tractable, which precludes the use

of VB in many interesting situations such as in state space models and in

approximate Bayesian computation (ABC), where application of VB methods

was previously impossible. This paper extends the scope of application of VB

to cases where the likelihood is intractable, but can be estimated unbiasedly.

The proposed VB method therefore makes it possible to carry out Bayesian

inference in many statistical applications, including state space models and

ABC. The method is generic in the sense that it can be applied to almost all

statistical models without requiring too much model-based derivation, which is

a drawback of many existing VB algorithms. We also show how the proposed

method can be used to obtain highly accurate VB approximations of marginal

posterior distributions.
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1 Introduction

Let y be the data and θ ∈ Θ the vector of model parameters. We are interested

in Bayesian inference about θ, based on the posterior distribution π(θ) = p(θ|y) ∝

p(θ)p(y|θ), with p(θ) the prior and p(y|θ) the likelihood function. In this paper, we are

interested in Variational Bayes (VB), which is widely used as a computationally effec-

tive method for approximating the posterior distribution π(θ) (Attias, 1999; Bishop,

2006). VB approximates the posterior by a distribution q(θ) within some tractable

class, such as an exponential family, chosen to minimize the Kullback-Leibler diver-

gence between q(θ) and π(θ). Most of the VB algorithms in the literature require

that the likelihood p(y|θ) can be computed analytically for any θ.

In many applications, however, the likelihood p(y|θ) is intractable in the sense that

it is infeasible to compute p(y|θ) exactly at each value of θ, which makes it difficult

to use VB for inference. For example, in state space models (Durbin and Koopman,

2001), which are widely used in economics, finance and engineering, the likelihood is

a high dimensional integral over the state variables governed by a Markov process.

Ghahramani and Hinton (2000) were the first to use VB for inference in state space

models. However, they only consider the special case in which the time series is seg-

mented into regimes with each regime assumed to follow a linear-Gaussian state space

model. For general state space models, it is still a challenging problem to do inference

with VB. Turner and Sahani (2011) discuss some of the difficulties in applying VB

methods to time series models. Another example of a situation where implement-

ing VB is difficult is approximate Bayesian computation (ABC) (Tavare et al., 1997;

Marin et al., 2012; Peters et al., 2012). ABC methods provide a way of approximat-

ing the posterior π(θ) when the likelihood is difficult to compute but it is possible to

simulate data from the model. We are not aware of any work that uses VB for in-
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ference in ABC, although a closely related technique called Expectation Propagation

has been used (Barthelme and Chopin, 2014). This paper proposes a VB algorithm

that approximates π(θ) when the likelihood is intractable. The only requirement is

that the intractable likelihood can be estimated unbiasedly. The proposed algorithm

therefore makes it possible to carry out variational Bayes inference in many statistical

models with an intractable likelihood, where this was previously impossible.

In many models, by introducing a latent variable α, the joint density p(y, α|θ)

is tractable. This makes it much easier to work with the joint posterior p(θ, α|y) ∝

p(θ)p(y, α|θ) rather than the marginal posterior of interest π(θ) itself. In this situation

many VB algorithms in the literature approximate the joint posterior p(θ, α|y) by a

factorized distribution q(θ)q(α), and then use q(θ) as an approximation to π(θ). The

main drawback of this approach is that the (usually high) posterior dependence be-

tween θ and α is ignored, which might lead to a poor VB approximation (Neville et al.,

2014). Our VB algorithm approximates π(θ) directly with the latent variable α inte-

grated out and thus overcomes this drawback; see the example in Section 5.1.

Section 2 presents our approach, which we call Variational Bayes with Intractable

Likelihood (VBIL), when the likelihood can be estimated unbiasedly. VBIL trans-

forms the problem of approximating the posterior π(θ) into a stochastic optimization

problem using a noisy gradient. It is essential for the success of stochastic optimiza-

tion algorithms to have a gradient estimator with a sufficiently small variance. Section

3 describes several techniques, including control variate and quasi-Monte Carlo, for

variance reduction in estimating the gradient. This section also discusses the impor-

tance of the natural gradient (Amari, 1998), which takes into account the geometry

of the variational distribution q(θ) being learned.

Unlike many VB algorithms that are derived on a model-by-model basis and re-

quire analytical computation of some model-based expectations, one of the main
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advantages of VBIL is that it can be applied to almost all statistical models without

requiring an analytical solution to model-based expectations. The only requirement is

that we are able to estimate the intractable likelihood unbiasedly. The VBIL method-

ology is therefore generic and widely applicable. As a by-product, VBIL provides an

estimate of the marginal likelihood, which is useful for model choice.

There are several lines of work related to ours in terms of working with an in-

tractable likelihood. Beaumont (2003) and Andrieu and Roberts (2009) show that

Markov chain Monte Carlo simulation based on an unbiased estimator of the likeli-

hood is still able to generate samples from the posterior. This method is known in the

literature as Pseudo-Marginal Metropolis-Hasting (PMMH). More efficient variants

of PMMH, called correlated PMMH and blockwise PMMH, have been proposed re-

cently (Deligiannidis et al., 2015; Tran et al., 2016). Tran et al. (2013) show that im-

portance sampling with the likelihood replaced by its unbiased estimator is still valid

for estimating expectations with respect to the posterior, and name their method as

Importance Sampling Squared (IS2). Also, Duan and Fulop (2013) and Tran et al.

(2014) use sequential Monte Carlo for inference based on an unbiased likelihood esti-

mator. The main advantage of VBIL is that it is several orders of magnitude faster

than these competitors.

Section 4 studies the link between the precision of the likelihood estimator to the

variance of the VBIL estimator. This helps to understand how much accuracy is

lost when working with an estimated likelihood compared to the case the likelihood

is available. In this spirit, Pitt et al. (2012) and Tran et al. (2013) show that the

asymptotic variance of PMMH and IS2 estimators increases exponentially with the

variance of the likelihood estimator. Therefore, it is critical for these methods to have

a likelihood estimator that is accurate enough. They show that the variance of the

likelihood estimator should be around 1 in order to minimize the computing time that
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is needed for the variance of PMMH/IS2 estimators to have a fixed precision. For

VBIL, we show that the asymptotic variance of VBIL estimators increases linearly

with the variance of the likelihood estimator. The proposed methodology is therefore

useful in cases when only highly variable estimates of the likelihood are available. We

discuss such a situation in Section 5.1 where VBIL works well while its competitors

fail.

Several interesting applications of VBIL are presented in Section 5. Section 5.1

shows the use of VBIL for generalized linear mixed models and demonstrates the

high accuracy of VBIL compared to the existing VB algorithms. Section 5.2 applies

VBIL to Bayesian inference in state space models and Section 5.3 shows how VBIL

can be used for ABC. To the best of our knowledge, our paper is the first to use a

VB method in the most general way for Bayesian inference in state space models and

ABC. Another interesting application of VBIL is presented in Section 5.4, in which

we illustrate that VBIL provides an attractive way to improve the accuracy of VB

approximations of marginal posteriors.

2 Variational Bayes with an intractable likelihood

This section describes the basic form of the proposed VBIL algorithm, where an

unbiased estimator of the likelihood is available. Denote by p̂N(y|θ) an unbiased

estimator of the likelihood p(y|θ). Here N is an algorithmic parameter relating to the

precision in estimating the likelihood, such as the number of samples if the likelihood

is estimated by importance sampling or the number of particles if the likelihood in

state space models is estimated by a particle filter. Using the terminology in Pitt et al.

(2012), we refer to N as the number of particles. Let z = log p̂N(y|θ) − log p(y|θ),

so that p̂N(y|θ) = p(y|θ)ez, and denote by gN(z|θ) the density of z. Note that z
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is unknown as we do not know log p(y|θ) and there is no need to compute z in

practice, but, as will become clear shortly, it is very convenient to work with z. We

sometimes write p̂N(y|θ) as p̂N(y|θ, z). We note that
∫
ezgN(z|θ)dz = 1 because of the

unbiasedness of the estimator p̂N (y|θ). Define the following density on the extended

space Θ× R

πN (θ, z) =
p(θ)p(y|θ)ezgN(z|θ)

p(y)
= π(θ)ezgN(z|θ).

This augmented density admits the posterior of interest π(θ) as its marginal. It is use-

ful to work with πN (θ,z) as the high-dimensional vector of random variables involved

in estimating the likelihood is transformed into the scalar z. A direct approximation

of πN (θ,z) is q̃λ,N(θ,z) = qλ(θ)e
zgN(z|θ), where qλ(θ) is the variational distribution

with the variational parameter λ to be estimated, and then qλ(θ) can be used as an

approximation of π(θ). However, it turns out that it is impossible to estimate the

gradient of the Kullback-Leibler divergence between q̃λ,N(θ,z) and πN(θ,z) as this

requires knowing z.

We propose instead to approximate πN (θ,z) by qλ,N(θ,z) = qλ(θ)gN(z|θ). This

augmented density has the attractive features that qλ(θ) is its marginal for θ and it is

possible to estimate the gradient of the Kullback-Leibler divergence KL(λ) between

qλ,N(θ,z) and πN(θ,z) (c.f. (2) below). Although qλ,N (θ,z) does not provide a good

approximation of the posterior marginal of z, the latter is not of interest to us.

Furthermore, under Assumptions 1 and 2 given in Section 4, the minimization of

KL(λ) is equivalent to the minimization of the KL divergence between qλ(θ) and

π(θ).

The Kullback-Leibler divergence between qλ,N(θ,z) and πN (θ,z) is

KL(λ) =

∫
qλ(θ)gN(z|θ) log

qλ(θ)gN(z|θ)
πN(θ, z)

dzdθ, (1)

6



where we omit to indicate dependence on N for notational convenience. The gradient

of KL(λ) is

∇λKL(λ) = ∇λ

∫
qλ(θ)gN(z|θ) log

qλ(θ)

p(θ)p̂N(y|θ, z)
dzdθ

=

∫ (
∇λ[qλ(θ)]gN(z|θ) log

qλ(θ)

p(θ)p̂N(y|θ, z)
+ qλ(θ)gN(z|θ)∇λ[log qλ(θ)]

)
dzdθ

=

∫ (
qλ(θ)gN(z|θ)∇λ[log qλ(θ)]

(
log qλ(θ)− log(p(θ)p̂N (y|θ, z)

))
dzdθ

= Eθ∼qλ(θ),z∼gN (z|θ)

(
∇λ[log qλ(θ)]

(
log qλ(θ)− log(p(θ)p̂N(y|θ, z)

))
. (2)

Here, we have used the facts that∇λ[qλ(θ)]=qλ(θ)∇λ[logqλ(θ)] and that E(∇λ[logqλ(θ)])=

0. It follows from (2) that, by generating θ∼qλ(θ) and z∼gN (z|θ), it is straightfor-

ward to obtain an unbiased estimator ∇̂λKL(λ) of the gradient ∇λKL(λ). Therefore,

we can use stochastic optimization to optimize KL(λ). We note that the unknown z

is implicitly generated when the unbiased likelihood estimator p̂N(y|θ)= p̂N(y|θ,z) is

computed. In practice, z is never dealt with explicitly and it only plays a theoretical

role in the mathematical derivations. The basic algorithm is as follows

Algorithm 1. • Initialize λ(0) and stop the following iteration if the stopping

criterion is met.

• For t=0,1,..., compute λ(t+1)=λ(t)−at∇̂λKL(λ(t)).

We will refer to this algorithm as Variational Bayes with Intractable Likelihood

(VBIL). The sequence {at} should satisfy at>0,
∑

tat=∞ and
∑

ta
2
t<∞. We choose

at=1/(1+t) in this paper. It is also possible to train at adaptively.

It is important to note that each iteration is parallelizable, as the gradient∇λKL(λ)

is estimated by independent samples from qλ,N(θ,z).
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2.1 Stopping criterion and marginal likelihood estimation

An easy-to-implement stopping rule is to stop the updating procedure if the change

between λ(t+1) and λ(t), e.g. in terms of the Euclidean distance, is less than some

threshold ǫ (Ranganath et al., 2014). However, it is difficult to select ǫ as such a

distance depends on the scales and the length of the vector λ. It is easy to show that

log p(y) =

∫
log

(
p(θ)p̂N(y|θ, z)

qλ(θ)

)
qλ,N (θ, z)dzdθ +KL(λ) ≥ LB(λ), (3)

where

LB(λ) =

∫
log

(
p(θ)p̂N(y|θ, z)

qλ(θ)

)
qλ,N(θ, z)dzdθ

= Eθ,z[log p(θ)− log qλ(θ) + log p̂N(y|θ, z)] (4)

is the lower bound on the log of the marginal likelihood log p(y). This lower bound

after convergence can be used as an approximation to log p(y), which is useful for

model selection purposes. The expectation of the first two terms in (4) can be com-

puted analytically, while the last term can be estimated unbiasedly by samples from

qλ,N(θ,z). However, in our experience, estimating the entire expectation (4) based on

samples from qλ,N (θ,z) leads to a smaller variance. Denote by L̂B(λ) the resulting

unbiased estimate of LB(λ). Although LB(λ) is strictly non-decreasing over itera-

tions, its sample estimate L̂B(λ) might not be. To account for this, we suggest to

stop the updating procedure if the change in an averaged value of the lower bounds

over a window of M iterations, LB(λt) = (1/M)
∑M

k=1L̂B(λt−k+1), is less than some

threshold ǫ. At convergence, the values LB(λt) stay the same, therefore LB(λt) will

average out the noise in L̂B(λt) and is stable. Furthermore, we suggest to replace

L̂B(λ) by a scaled version of it, L̂B(λ)/n with n the size of the dataset such as the
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number of observations. The scaled lower bound is more or less independent of the

size of the dataset (c.f., Figure 3). We set M=5 and ǫ=10−5 in this paper.

3 Variance reduction and natural gradient

As is typical of stochastic optimization algorithms, the performance of Algorithm 1

depends greatly on the variance of the noisy gradient. This section describes several

techniques for variance reduction.

3.1 Control variate

Denote ĥ(θ,z)= log (p(θ)p̂N(y|θ,z)) for notational simplicity. Let θs∼ qλ(θ) and zs∼

gN(z|θs), s=1,...,S, be S samples from the variational distribution qλ,N(θ,z). A naive

estimator of the ith element of ∇λKL(λ) is

∇̂λi
KL(λ)naive =

1

S

S∑

s=1

∇λi
[log qλ(θs)]

(
log qλ(θs)− ĥ(θs, zs)

)
, (5)

whose variance is often too large to be useful. For any number ci, consider

∇̂λi
KL(λ) =

1

S

S∑

s=1

∇λi
[log qλ(θs)](log qλ(θs)− ĥ(θs, zs)− ci), (6)

which is still an unbiased estimator of∇λi
KL(λ) since E(∇λ[logqλ(θ)])=0, whose vari-

ance can be greatly reduced by an appropriate choice of ci. Similar ideas are consid-

ered in the literature, see Paisley et al. (2012), Nott et al. (2012) and Ranganath et al.
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(2014). The variance of ∇̂λi
KL(λ) is

V(∇̂λi
KL(λ)) =

1

S
V
(
∇λi

[log qλ(θ)]
(
log qλ(θ)− ĥ(θ, z)− ci

))

=
1

S
V
(
∇λi

[log qλ(θ)]
(
log qλ(θ)− ĥ(θ, z)

))

− 2ci
S

cov
(
∇λi

[log qλ(θ)]
(
log qλ(θ)− ĥ(θ, z)

)
,∇λi

[log qλ(θ)]
)

+
c2i
S
V
(
∇λi

[log qλ(θ)]
)
.

The optimal ci that minimizes this variance is

ci = cov
(
∇λi

[log qλ(θ)]
(
log qλ(θ)− ĥ(θ, z)

)
,∇λi

[log qλ(θ)]
)/

V
(
∇λi

[log qλ(θ)]
)
. (7)

Then

V(∇̂λi
KL(λ)) = V(∇̂λi

KL(λ)naive)(1− ρ2i ) ≤ V(∇̂λi
KL(λ)naive),

where ρi is the correlation between ∇λi
[logqλ(θ)]

(
logqλ(θ)−ĥ(θ,z)

)
and ∇λi

[logqλ(θ)].

Often, ρ2i is very close to 1.

We estimate the numbers ci by samples (θs,zs)∼ qλ,N (θ,z) as in (7). In order to

ensure the unbiasedness of the gradient estimator, the samples used to estimate ci

must be independent of the samples used to estimate the gradient. In practice, the

ci can be updated sequentially as follows. At iteration t, we use the ci computed in

the previous iteration t−1, i.e. based on the samples from qλ(t−1),N(θ,z), to estimate

the gradient ∇̂λKL(λ(t)), which is estimated using new samples from qλ(t),N(θ,z). We

then update the ci using this new set of samples. By doing so, the unbiasedness is

guaranteed while no extra samples are needed in updating the numbers ci.

The gradient in the form of (2) can be written as a sum of two terms, where the

first term Eθ∼qλ(θ)(∇λ[logqλ(θ)]logqλ(θ)) can be in most cases computed analytically.
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However, as pointed out by a referee, this term should be estimated using the same

samples of θ as we do in (6). Doing so helps to reduce the noises in estimating the

gradient. This is because the first term plays the role of a control variate. This

phenomenon is discussed in detail in Salimans and Knowles (2013).

3.2 Natural gradient

Intuitively, a different learning rate should be used for each scale in the gradient

vector. That is, the traditional gradient vector ∇λKL(λ) should be multiplied by

an appropriate scale matrix. It is well-known that the traditional gradient defined

on the Euclidean space does not adequately capture the geometry of the variational

distribution qλ(θ) (Amari, 1998). A small Euclidean distance between λ and λ′ does

not necessarily mean a small Kullback-Leibler divergence between qλ(θ) and qλ′(θ).

Amari (1998) defines the natural gradient as

∇λKL(λ)natural = IF (λ)
−1∇λKL(λ), (8)

with IF (λ) the Fisher information matrix, and suggests using the natural gradient as

an efficient alternative to the traditional gradient. See also Hoffman et al. (2013).

If the variational distribution qλ(θ) has the exponential family form

qλ(θ) = exp(T (θ)′λ− Z(λ)), (9)

with T (θ) the vector of sufficient statistics and λ the vector of natural parameters,

then IF (λ)=covqλ
(
T (θ),T (θ)

)
is computed analytically.

The use of the natural gradient in VB algorithms is considered, among others, by

Honkela et al. (2010), Hoffman et al. (2013) and Salimans and Knowles (2013). We
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demonstrate the importance of the natural gradient using a simple example where the

likelihood is available. We consider a model where the data yi∼B(1,θ) - the Bernoulli

distribution with probability θ. We generate n=200 observations yi from B(1,θ=0.3)

and obtain k=
∑

iyi=57. We use a uniform prior on θ. Then, the posterior p(θ|y)

is Beta(k+1,n−k+1). The variational distribution qλ(θ) is chosen to be Beta(α,β)

which belongs to the exponential family with the natural parameter λ=(α,β)′. The

Fisher information matrix IF (λ) is

IF (λ) =



ψ1(α)− ψ1(α + β) ψ1(α + β)

ψ1(α+ β) ψ1(β)− ψ1(α + β)


 ,

where ψ1(x) =∇xx[logΓ(x)] is the trigamma function. In this simple example, the

gradient ∇λKL(λ) in (2) can be computed analytically

∇λKL(λ)=IF (λ)λ−H(λ)

with

H(λ) =




kψ1(α)− nψ1(α + β)

(n− k)ψ1(β)− nψ1(α + β)


 .

Using the traditional gradient, the update in Algorithm 1 is

λ(t+1) = λ(t) − at

(
IF (λ

(t))λ(t) −H(λ(t))
)
.

Using the natural gradient, the update is

λ(t+1) = (1− at)λ
(t) + atIF (λ

(t))−1H(λ(t)).
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Figure 1 plots the densities of the exact posterior π(θ) and the variational distributions

qλ(θ) estimated by the VBIL using the traditional gradient and the natural gradient,

with two different random initializations. The figure shows that the VBIL algorithm

using the natural gradient is superior to using the traditional gradient. Furthermore,

the VBIL algorithm based on the natural gradient is insensitive to the initial λ(0).
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Figure 1: Plots of the densities of the exact posterior and the variational approxima-
tion estimates, at convergence, with two different starting values λ(0) at random.

3.3 Factorized variational distribution

Often, the variational distribution qλ(θ) is factorized into K factors

qλ(θ) = qλ(1)(θ(1))...qλ(K)(θ(K)). (10)

Then, each factor qλ(k)(θ(k)) is updated separately and the variance of the estimate

of the corresponding gradient can be reduced. Salimans and Knowles (2013) and

Ranganath et al. (2014) consider variance reduction using factorization. Denote by

ĥk(θ,z) the terms in ĥ(θ,z) that involve only θ(k) and z. From (2), and noting that
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Eθ,z(∇λ(k)[logqλ(k)(θ(k))])=0, the traditional gradient corresponding to factor k is

∇λ(k)KL(λ) = Eθ∼qλ(θ),z∼gN (z|θ)

(
∇λ(k) [log qλ(k)(θ(k))]

(
log qλ(k)(θ(k))− ĥk(θ, z)

))
.

(11)

In the case qλ(k)(θ(k))=exp(Tk(θ
(k))′λ(k)−Zk(λ

(k))) belongs to an exponential family,

the natural gradient corresponding to factor k is

∇λ(k)KL(λ)natural = IF,k(λ
(k))−1∇λ(k)KL(λ), (12)

where IF,k(λ
(k)) is the Fisher information matrix of distribution qλ(k)(θ(k)).

Estimating the gradient using (11) has less variation than using (2). Intuitively,

this is because the variation due to terms not involving θ(k) has been removed. This

is also explained in Ranganath et al. (2014) as a Rao-Blackwellization effect.

3.4 Randomised quasi-Monte Carlo

Numerical integration using quasi-Monte Carlo (QMC) has been proven efficient

in many applications. Instead of generating uniform random numbers U(0,1) as

in plain Monte Carlo methods, QMC generates deterministic sequences that are

more evenly distributed in (0,1) in the sense that they minimise the so-called star-

discrepancy. Dick and Pillichshammer (2010) provide an extensive background on

QMC. It is shown that, in many cases, QMC integration achieves a better conver-

gence rate than Monte Carlo integration. In this paper, we use randomised quasi-

Monte Carlo (RQMC) as VBIL requires an unbiased estimator of the gradient. By

introducing a random element into a QMC sequence, RQMC preserves the low-

discrepancy property and, at the same time, leads to unbiased estimators (Owen,

1997; Dick and Pillichshammer, 2010).
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Here, we use RQMC to sample θ∼qλ(θ). This will help to reduce the variance of

the noisy gradient if the dimension of θ is not too high. Of course, one can also use

RQMC in the likelihood estimation, but given some time constraint we do not pursue

this idea in this paper.

4 The effect of estimating the likelihood

This section studies the effect of the variance of the noisy likelihood on the VBIL

estimators, and provides guidelines for selecting the number of particles N . A large

N gives a precise likelihood estimate and therefore an accurate estimate of λ, but at

a greater computational cost. A small N leads to a large variance of the likelihood

estimator, so a larger number of iterations is needed for the procedure to settle down.

It is therefore useful in practice to have some guidelines for selecting N .

In order to understand the effect of estimating the likelihood, we follow Pitt et al.

(2012) and make the following assumption.

Assumption 1. There is a function γ2(θ)>0 such that E(z|θ)=−γ2(θ)
2N

and V(z|θ)=
γ2(θ)
N

.

More precisely, Pitt et al. (2012) assume further that z ∼N (−γ2(θ)
2N

,γ
2(θ)
N

) in or-

der to derive a theory for selecting an optimal N . This assumption is justified in

Tran et al. (2013) and Doucet et al. (2015) making use of the unbiasedness of the

likelihood estimate. The reason that the mean of z is −1
2
times its variance is be-

cause E(ez)=1 in order for the likelihood estimator to be unbiased.

Assumption 2. For a given σ2 > 0, let N be a function of θ and σ2 such that

V(z|θ)≡σ2, i.e. N=Nσ2(θ)=γ2(θ)/σ2. Then E(z|θ)=−σ2

2
and V(z|θ)=σ2.
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Suppose that the equation∇λKL(λ)=0, with KL(λ) in (1), has the unique solution

λ∗. Let λ̂M be the estimator of λ∗ obtained by Algorithm 1 or 2 afterM iterations, and

λ̃M be the corresponding estimator obtained when the exact likelihood is available.

Denote ζ∗(θ)=∇λ[logqλ(θ)]
∣∣
λ=λ∗ and denote by E∗(.) and V∗(.) the expectation and

variance operators with respect to qλ∗(θ). For simplicity, we consider the case that λ

is scalar; the case with a multivariate λ can be obtained using Theorem 5 of Sacks

(1958). We obtain the following results whose proof is in the Appendix.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, and that the regularity

conditions in Theorem 1 of Sacks (1958) hold.

(i) Then,
√
M(λ̂M − λ∗)

d→ N
(
0, cλ∗V

(
∇̂λKL(λ∗)

))
, asM → ∞, (13)

where cλ∗ is a positive constant that depends only on geometric properties of the

function ∇λKL(λ∗) and is independent of the random variables involving in estimating

∇λKL(λ∗), i.e. cλ∗ is independent of σ2.

(ii) Let σ2
asym

(λ̂M)= cλ∗V
(
∇̂λKL(λ∗)

)
be the asymptotic variance of λ̂M as M→∞.

Similarly, let σ2
asym

(λ̃M) be the asymptotic variance of λ̃M . Then,

σ2
asym

(λ̂M) = σ2
asym

(λ̃M) + σ2τ(λ∗, S), (14)

where τ(λ∗,S)=cλ∗V∗

{
ζ∗(θ)

}
/S if the noisy traditional gradient is used, and τ(λ∗,S)=

cλ∗IF (λ
∗)−1V∗

{
ζ∗(θ)

}
IF (λ

∗)−1/S if the noisy natural gradient in (8) is used.

These results show that the variance of VBIL estimators increases linearly with

σ2. For PMMH and IS2 estimators, Pitt et al. (2012) and Tran et al. (2013) show

that their variances increase exponentially with σ2. This means that VBIL is useful

in cases where only a rough estimate of the likelihood is available, or it is expensive
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to obtain an accurate estimate of the likelihood.

We now discuss the issue of selecting σ2. We note that under Assumption 2,

N is tuned depending on θ as N =Nσ2(θ) = γ2(θ)/σ2, so the time to compute the

likelihood estimate p̂N(y|θ) is proportional to 1/σ2. Then, Pitt et al. (2012) and

Tran et al. (2013) show that, for the PMMH and IS2 methods, the optimal σ2 that

gives an optimal trade-off between the CPU time and the variance of the estimators

is 1. For VBIL, the computing time can be defined as

CT(σ2) =
σ2
asym(λ̂M)

σ2
=
σ2
asym(λ̃M)

σ2
+ τ(λ∗, S), (15)

where neither σ2
asym(λ̃M) nor τ(λ∗,S) depends on σ2. These results suggest that σ2

should be set to a large value, as long as it is not too large for the stochastic search

procedure in Algorithms 1 and 2 to converge.

5 Applications

5.1 Application to generalized linear mixed models and panel

data models

Generalized linear mixed models (GLMM) (see, e.g. Fitzmaurice et al., 2011), also

known as panel data models, use a vector of random effects αi to account for the

dependence between the observations yi = {yij,j = 1,...,ni} measured on the same

individual i. Given the random effects αi, the conditional density p(yi|θ,αi) belongs

to an exponential family. The joint likelihood function of the model parameters θ
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and the random effects α=(α1,...,αn), is tractable

p(y, α|θ) =
n∏

i=1

p(αi|θ)p(yi|θ, αi).

Typically in the VB literature the joint posterior p(θ,α|y)∝p(θ)p(y,α|θ) is approxi-

mated by a variational distribution of the form q(θ)q(α), and then q(θ) is used as an

approximation to the marginal posterior p(θ|y). For example, Tan and Nott (2013)

take this approach but use partially non-centered parameterizations to reduce de-

pendence between parameter blocks. Ormerod and Wand (2012) consider frequentist

estimation of θ, but using VB methods to integrate out α. As discussed in the

introduction, factorization of the VB distribution generally ignores the posterior de-

pendence between θ and α, which often leads to underestimating the variance in the

posterior distribution of θ. Below, we refer to such a VB method as classical VB.

The likelihood, p(y|θ)=∏n
i=1p(yi|θ) with p(yi|θ)=

∫
p(yi|θ,αi)p(αi|θ)dαi an integral

over the random effects αi, is in most cases analytically intractable but can be easily

estimated unbiasedly using importance sampling. Let hi(αi|y,θ) be an importance

density for αi. The integral p(yi|θ) is estimated unbiasedly by

p̂Ni
(yi|θ) =

1

Ni

Ni∑

j=1

wi(α
(j)
i ,θ), wi(α

(j)
i ,θ) =

p(yi|α(j)
i , θ)p(α

(j)
i |θ)

hi(α
(j)
i |y, θ)

, α
(j)
i

iid∼ hi(·|y,θ). (16)

It is possible to use different Ni for each p(yi|θ). Hence, p̂N(y|θ)=
∏n

i=1p̂Ni
(yi|θ) is an

unbiased estimator of the likelihood p(y|θ). The variance of z=log p̂N (y|θ)−logp(y|θ)

is

V(z|θ) = V(log p̂N(y|θ)) =
n∑

i=1

V(log p̂Ni
(yi|θ)), (17)
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which can be estimated by V̂(z|θ)=∑n
i=1V̂(log p̂Ni

(yi|θ)) with

V̂(log p̂Ni
(yi|θ)) =

γ̂i(θ)

Ni

, γ̂i(θ) =
Ni

∑Ni

j=1wi(α
(j)
i , θ)2

(∑Ni

j=1wi(α
(j)
i , θ)

)2 − 1. (18)

Given a fixed σ2, it is therefore straightforward to target V(z|θ)=σ2 by selecting Ni

such that V̂(log p̂Ni
(yi|θ))≈σ2/n.

Six City data

We now illustrate the VBIL algorithm using the Six City data in Fitzmaurice and Laird

(1993). The data consist of binary responses yij which indicate the wheezing status

(1 if wheezing, 0 if not wheezing) of the ith child at time-point j, i=1,...,537 and

j=1,...,4. Covariates are the age of the child at time-point j, centered at 9 years, and

the maternal smoking status (0 or 1). We consider the following logistic regression

model with a random intercept

p(yij|β,αi) = Binomial(1,pij),

logit(pij) = β1+β2Ageij+β3Smokeij+αi, αi∼N (0,τ 2).

The model parameters are θ=(β,τ 2). We use a normal prior N (0,50I3) for β and a

Gamma(1,0.1) prior for τ 2.

We use the variational distribution qλ(θ)=q(β)q(τ
2), where q(β) is a d=3−variate

normal N (µ,Σ) and q(τ 2) is an inverse gamma distribution. We then run Algorithm

2, see the Appendix for the detail, with S=1000 samples to estimate the gradient.

The likelihood is estimated as in (16) with the natural sampler hi(αi|y,θ)= p(αi|θ),

which is the normal distribution N (0,τ 2) in our case. The σ2 in Section 4 is set to 4,

which on average requires N̄=
∑
Ni/n=124 particles. Using a larger σ2 will lead to
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Figure 2: Application to GLMM: Six City data

too small Ni that makes the estimate in (18) unreliable. Figure 3(a) plots the scaled

lower bounds over the iterations.

We compare the performance of the classical VB and VBIL algorithms to the

pseudo-marginal MCMC simulation (Andrieu and Roberts, 2009). We set σ2=1 as

suggested in Pitt et al. (2012). The MCMC chain, based on the adaptive random

walk Metropolis-Hastings algorithm in Haario et al. (2001), consists of 20000 iterates

with another 10000 iterates used as burn-in.

Figure 2 plots the classical VB estimates (dashed line), MCMC estimates (dot-

ted line) and the VBIL estimates (solid line) of the marginal posteriors p(βi|y) and

p(τ 2|y). The MCMC density estimates are carried out using the kernel density esti-

mation method based on the built-in Matlab function ksdensity. The figure shows

that the VBIL estimates are very close to the MCMC estimates. The classical VB

underestimates the posterior variance of τ 2 in this example. The clock times taken

to run the VB, VBIL and MCMC procedures are 4, 2.9 and 505 minutes respec-

tively. However, we note that the running time depends on many factors such as the

programming language being used and the initialization of the procedures. All the
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Figure 3: Plots of scaled lower bounds over the iterations: (a) Six City example, (b)
state space example, (c) ABC example

examples in this paper are run on an Intel Core 16 i7 3.2GHz desktop supported by

the Matlab Parallel Toolbox with 8 local processors. Obviously, the more processors

we have, the faster the VBIL procerdure is.

Large data example

One of the main advantages of VBIL is its scalability, i.e. it is applicable in large data

cases. This section describes a scenario where it is difficult to use the PMMH and IS2

methods. Consider a large data case with a large number of panels n. From (17), for

fixed Ni, the variance of the log-likelihood estimator V(z|θ) increases linearly with n.

Therefore, when n is large enough, the PMMH and IS2 methods will not work in a

practical sense, because V(z|θ) can be very large (Flury and Shephard, 2011). In this

GLMM setting, PMMH and IS2 do not work when V(z|θ) is as large as 6 or 7. One

can decrease V(z|θ) by increasing Ni, but this can be too computationally expensive

to be practical.

We generate a data set of n=3000 from the following logistic model with a random
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intercept

p(yij|β, αi) = Binomial(1, pij), (19)

logit(pij) = β1 + β2xij + αi, αi ∼ N(0, τ 2), i = 1, ..., n, j = 1, ..., ni,

with β=(−1.5,2.5)′, τ 2=1.5, ni=5, xij∼U(0,1). It takes, on average across different

θ, 30 seconds to carry out each likelihood estimation with the numbers of particles

Ni tuned to target V(z|θ)=1, which requires N̄ =
∑
Ni/n=3855 particles. So if an

optimal PMMH procedure was run on our computer to generate a chain of 30000

iterations as done in the Six City data example, it would take 10.4 days. We now

run VBIL with σ2 set to 30, which on average requires N̄ =
∑
Ni/n=187 particles

and 0.7 seconds for each likelihood estimation. The VBIL procedure stopped after 15

iterations with the clock time taken was 23 minutes. Figure 4 plots the variational

approximations of the marginal posteriors, which are bell shaped as expected with a

large dataset.
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Figure 4: Application to GLMM: large data
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5.2 Application to state space models

In state space models, the observations yt are observed in time order. At time t, the

distribution of yt conditional on a state variable xt is independently distributed as

yt|xt ∼ gt(yt|xt, θ),

and the state variables {xt}t≥1 are a Markov chain with

x1 ∼ µθ(·), xt|xt−1 ∼ ft(xt|xt−1, θ).

The likelihood of the data y=y1:T is given by

p(y|θ) =
∫
p(y|x, θ)p(x|θ)dx (20)

with x=x1:T and

p(x|θ) = µθ(x1)
T∏

t=2

ft(xt|xt−1, θ), p(y|x, θ) =
T∏

t=1

gt(yt|xt, θ).

Given a value of θ, the likelihood p(y|θ) can be unbiasedly estimated by an importance

sampling estimator (Shephard and Pitt, 1997; Durbin and Koopman, 1997) or by a

particle filter estimator (Del Moral, 2004; Pitt et al., 2012), p̂N(y|θ), with N the

number of particles.

An important example of state space models is the stochastic volatility (SV)
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model. The time series data yt is modeled as

yt = exp(xt/2)wt, wt ∼ N (0, 1),

xt = µ+ φ(xt−1 − µ) + σvt, x1 ∼ N (µ,
σ2

1− φ2
), vt ∼ N (0, 1),

with µ∈R, φ∈ (−1,1) and σ2> 0. Let τ = (1+φ)/2∈ (0,1); we will estimate τ but

report results for φ. The model parameters are θ= (µ,τ,σ2). We follow Kim et al.

(1998) and use a normal prior N (0,10) for µ, a Beta prior B(20,1.5) for τ and an

inverse gamma IG(2.5,0.025) for σ2.

To illustrate the VBIL algorithm for state space models, we analyze the week-

day close exchange rates rt for the Australian Dollar/US Dollar from 5/1/2010 to

31/12/2013. The data are available from the Reserve Bank of Australia. The data yt

is

yt = 100

(
log

rt+1

rt
− 1

T

T∑

i=1

log
ri+1

ri

)
, t = 1, ..., T = 1001.

We use the variational distribution qλ(θ)=q(µ)q(τ)q(σ
2), where q(µ) isN (µµ,σ

2
µ), q(τ)

is Beta(ατ ,βτ ) and q(σ2) is inverse gamma IG(ασ2 ,βσ2). We employ the constraint

ατ > 1 and βτ > 1 to make sure that q(τ) has a mode. The likelihood estimator

p̂N(y|θ) is computed by a basic particle filter. We then run the VBIL algorithm with

S =1000 samples, starting with µµ =0, σ2
µ =0.3, ατ =95, βτ =5, ασ2 =11, βσ2 =1.

This initial point is set so that the initial mean values of µ, φ and σ2 are 0, 0.9 and

0.1 respectively, which is pretty far away from the posterior means; see Figure 5. The

VBIL algorithm stops after 28 iterations. Figure 3(b) plots the scaled lower bounds

over the iterations.

The VBIL is compared to pseudo-marginal MCMC simulation, based on an adap-

tive random walk Metropolis-Hastings algorithm, with 100,000 iterations starting
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from the same values µ=0, τ =0.95 and σ2=0.1. The number of particles used in

MCMC is fixed at N=300, so that V(p̂N(y|θ̄))≈1 at the initial value θ̄=(0,0.95,0.1).

The number of particles used in VBIL is fixed at N =100 as the use of randomised

QMC for generating θ helps reduce greatly the variance in estimating the gradient.

We fix N in this example as it is difficult to estimate the variance of log-likelihood

estimates obtained by the particle filter.

Figure 5 plots the MCMC estimates (dotted line) and the VBIL estimates (solid

line) of the marginal posteriors. The figure shows that the VBIL estimates are close

to the MCMC estimates but consume significantly less computational resources. The

CPU times taken to run the VBIL and MCMC procedures are 0.7 and 28 minutes

respectively.
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Figure 5: Application to state space models: Exchange rate data
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5.3 Application to ABC

In many modern applications, such as in genetics (Tavare et al., 1997), we either

cannot evaluate the likelihood p(y|θ) pointwise or do not wish to do so, but we can

sample from it, i.e. we can simulate y′∼p(·|θ). Approximate Bayesian computation

(Tavare et al., 1997) approximates the likelihood by

pLF(y|θ) =
∫
Kǫ(S(y

′), S(y))p(y′|θ)dy′, (21)

where Kǫ(.,.) is a kernel with the bandwidth ǫ and S(.) is a vector of summary statis-

tics. Inference is then based on the approximate posterior pABC(θ|y)∝p(θ)pLF(y|θ).

Because the likelihood-free function pLF(y|θ) can be unbiasedly estimated by

p̂LFN (y|θ) = 1

N

N∑

i=1

Kǫ(S(y
[i]), S(y)), y[i]

iid∼ p(·|θ),

it is straightforward to use the VBIL algorithm to approximate pABC(θ|y).

We illustrate the application of the VBIL algorithm to ABC by using it to fit

an α-stable distribution. α-stable distributions (Nolan, 2007) are a class of heavy-

tailed distributions used in many statistical applications. An α-stable distribution

S(α,β,γ,δ) is parameterized by the stability parameter α∈(0,2), skewness β∈(−1,1),

scale γ > 0 and location δ ∈ R. The main difficulty when working with α-stable

distributions is that they do not have closed form densities, which makes it difficult

to do inference. However, as it is easy to sample from an α-stable distribution, one can

use ABC techniques for Bayesian inference (Peters et al., 2012). We illustrate in this

example that VBIL provides an efficient approach for fitting α-stable distributions.

We generate a data set y with n= 500 observations from a univariate α-stable

distribution S(1.5,0.5,1,0). Let q̂p be the pth quantile of a pseudo-data set y′ generated
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from S(α,β,γ,δ). We follow Peters et al. (2012) and use the summary statistics S(y′)=

(v̂α,v̂β,v̂γ ,v̂δ) with

v̂α =
q̂0.95 − q̂0.05
q̂0.75 − q̂0.25

, v̂β =
q̂0.95 + q̂0.05 − 2q̂0.5

q̂0.95 − q̂0.05
, v̂γ =

q̂0.75 − q̂0.25
γ

, v̂δ =
1

n

n∑

i=1

y′i.

For the observed data y, the parameter γ in v̂γ is estimated using McCulloch’s method

(McCulloch, 1986). As the parameterization is discontinuous at α=1, resulting in

poor estimates of the summary statistics, we consider the case with α>1 and restrict

the support of α to the interval (1.1,2) as in Peters et al. (2012).

We reparameterize

α̃ = log(
α− 1.1

2− α
) ∈ R, β̃ = log(

β + 1

1− β
) ∈ R, γ̃ = log(γ) ∈ R, δ̃ = δ ∈ R,

and estimate θ̃=(α̃,β̃,γ̃,δ̃) but report the results for (α,β,γ,δ). We use a normal prior

θ̃∼N (0,100I4) and approximate the posterior p(θ̃|y) by a normal variational distri-

bution qλ(θ̃)=N(µθ̃,Σθ̃). One can work with the original parameterization (α,β,γ,δ)

and use some form of factorization q(α)q(β)q(γ)q(δ). We choose to work with θ̃ to

account for the posterior dependence between the parameters. This also illustrates

the flexibility of the VBIL method in the sense that it can be used without requiring

factorization.

We use the Gaussian kernel with covariance matrix 0.01I4 for the likelihood-free

pLF(y|θ) in (21). The VBIL is compared to pseudo-marginal Metropolis-Hastings

methods with 20,000 iterations after 5000 burnins. For the standard PMMH (Andrieu and Roberts,

2009), the number of pseudo-data sets N=20 is selected set after some trials in order

to have a well-mixing chain. Efficient versions of PMMH has been proposed recently,

which are more tolerant of noise in the likelihood estimates. Here we compare VBIL
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to the blockwise PMMH method of Tran et al. (2016). For the blockwise PMMH, we

set N=5. We also use this value of N in VBIL. Table 1 shows the VBIL and MCMC

estimates, and the CPU times. As shown, VBIL is orders of magnitude faster than

MCMC in this example. Figure 3(c) plots the scaled lower bounds over the iterations.

True Standard PMMH Blockwise PMMH VBIL
α 1.5 1.57 (0.15) 1.58 (0.14) 1.57 (0.11)
β 0.5 0.46 (0.21) 0.45 (0.21) 0.48 (0.16)
γ 1 1.04 (0.12) 1.04 (0.12) 1.02 (0.12)
δ 0 -0.08 (0.21) -0.09 (0.18) -0.08 (0.14)

CPU time (min) 12.56 7.62 0.12

Table 1: ABC example: Standard PMMH, blockwise PMMH and VBIL estimates
of α, β, γ and δ. The numbers in brackets are estimates of the posterior standard
deviations.

5.4 Using VBIL to improve marginal posterior estimates

A drawback of VB methods in general is that the factorization assumption as in

(10) ignores the posterior dependence between the factors, which might lead to poor

approximations of the posterior variances (Neville et al., 2014). We now show how

the VBIL algorithm can be used to help overcome this problem.

Suppose that we would like to have a highly accurate VB approximation to the

marginal posterior p(θ(j)|y). We restrict ourselves to the case with a tractable like-

lihood for simplicity, but the following discussion also applies when the likelihood is

intractable. The likelihood of θ(j),

p(y|θ(j)) =
∫
p(θ(\j)|θ(j))p(y|θ(1), ..., θ(K))dθ(\j), (22)

with θ(\j)=(θ(1),...,θ(j−1),θ(j+1),...,θ(K)), is in general intractable but can be estimated

unbiasedly. Let q(θ(\j)) be an approximation to the marginal posterior p(θ(\j)|y)
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resulting from a classical VB method that uses the factorization (10). The integral

in (22) can be estimated unbiasedly using importance sampling with the proposal

density q(θ(\j)) or a tail-flattened version of it. This is accurate enough in practice

because VBIL does not require a very accurate estimate of p(y|θ(j)) as discussed

in Section 4. The VBIL algorithm can then be used to approximate the marginal

posterior p(θ(j)|y) directly with θ(\j) integrated out. The resulting approximation is

often highly accurate as the dependence between θ(j) and θ(\j) is taken into account.

A formal justification is as follows. We use the notation as in (10) and write

λ=(λ(j),λ(\j)). Suppose that we estimate the marginal posterior of λ(j) by qλ(j)(θ(j))

which belongs to a family F={qλ(j)(θ(j)),λ(j)∈Λ}. VBIL proceeds by minimizing

KLj(λ
(j)) =

∫
qλ(j)(θ(j)) log

qλ(j)(θ(j))

p(θ(j)|y) dθ
(j)

over λ(j)∈Λ. Let λ
(j)
∗ be the VBIL estimator. Under Assumptions 1 and 2 or when

the number of samples N used to estimate (22) is large enough, λ
(j)
∗ is guaranteed to

be a minimizer of KLj(λ
(j)). Assume further that KLj(λ

(j)) is convex, then

KLj(λ
(j)
∗ ) ≤ KLj(λ

(j)) for all λ(j) ∈ Λ. (23)

If we use a VB procedure with a factorization of the form qλ(θ)=qλ(j)(θ(j))qλ(\j)(θ(\j))

where qλ(j)(θ(j)) belongs to the same family F , then VB proceeds by minimizing the
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KL divergence

KL(λ(j), λ(\j)) =

∫
qλ(j)(θ(j))qλ(\j)(θ(\j)) log

qλ(j)(θ(j))qλ(\j)(θ(\j))

p(θ(j), θ(\j)|y) dθ(j)dθ(\j)

=

∫
qλ(j)(θ(j)) log

qλ(j)(θ(j))

p(θ(j)|y) dθ
(j)

+

∫
qλ(j)(θ(j))

∫
qλ(\j)(θ(\j)) log

qλ(\j)(θ(\j))

p(θ(\j)|θ(j), y)dθ
(\j)dθ(j)

= KLj(λ
(j)) +

∫
qλ(j)(θ(j))

∫
qλ(\j)(θ(\j)) log

qλ(\j)(θ(\j))

p(θ(\j)|θ(j), y)dθ
(\j)dθ(j).(24)

Let (λ̃(j),λ̃(\j)) be a minimizer of (24). Because of the decomposition in (24), the

estimator λ̃(j) is not necessarily the minimizer of KLj(λ
(j)). From (23),

KLj(λ
(j)
∗ ) ≤ KLj(λ̃

(j)). (25)

So the VBIL estimator λ
(j)
∗ is no worse than the factorization-based VB estimator

λ̃(j) in terms of KL divergence.

We illustrate this application by generating n=100 observations from a univariate

mixture of two normals

p(x) = ωN (x|µ1, σ
2
1) + (1− ω)N (x|µ2, σ

2
2)

with ω = 0.3, µ1 =−3, µ2 = 3, σ2
1 = 2 and σ2

2 = 3. Suppose that we are interested

in getting an accurate variational approximation of the posterior p(ω|y). Getting

an accurate estimate of w is often more challenging than the other parameters. We

use diffuse priors ω ∼ U(0,1), µ1 ∼N (0,100), µ2 ∼N (0,100), σ2
1 ∼ (σ2

1)
−1 and σ2

2 ∼

(σ2
2)

−1, and run VBIL to approximate p(ω|y) by a Beta distribution. We use the VB

algorithm of McGrory and Titterington (2007), in which the variational distribution
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is factorized as q(ω)q(σ2
1,σ

2
2)q(µ1,µ2|σ2

1,σ
2
2), to design the proposal density to obtain

an importance sampling estimator of p(y|ω).

Figure 6 plots the McGrory-Titterington estimate (dashed line) and VBIL esti-

mate (solid line) of the posterior p(ω|y). As shown, the VBIL estimate has heavier

tails than the VB estimate. By (25), it follows that the difference between the two es-

timates gives an indication of the extent to which the McGrory-Titterington estimate

is suboptimal. This example shows that the VBIL method provides an attractive way

to obtain accurate approximation of marginal posteriors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
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6

7

8

9

ω
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Figure 6: Plots the VB (dashed line) and VBIL estimates (solid line) of the posterior
p(ω|y).

6 Conclusion

We have proposed the VBIL, a useful VB algorithm for Bayesian inference in statis-

tical modeling where the likelihood is intractable. The method makes it possible to

do inference in statistical models using VB in some situations where that was previ-

ously impossible. The main advantage of VBIL over its competitors, such as PMMH
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and IS2, is its scalability. We show in the examples that VBIL is several orders of

magnitude faster than these existing methods.
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Appendix

Proof of Theorem 1. (i) Under Assumptions 1 and 2, we have that

KL(λ) = KL(qλ‖π)−
∫
qλ(θ)E(z|θ)dθ = KL(qλ‖π) +

σ2

2
, (26)

where KL(qλ‖π) is the Kullback-Leibler divergence between the variational distribu-

tion qλ(θ) and the posterior π(θ). So, ∇λKL(λ) =∇λKL(qλ‖π) is independent of

σ2, and minimizing KL(λ) with respect to λ is equivalent to minimizing KL(qλ‖π).

Algorithm 1 and 2 are the Robbins-Monro procedure for finding the root λ∗ of the

equation ∇λKL(qλ‖π)=0. Then, (13) follows from Theorem 1 of Sacks (1958) with

the constant cλ∗ independent of σ2.

(ii) Denote ĥ(θ,z) = log(p(θ)p̂N(y|θ,z)) = log(p(θ)p(y|θ))+z = h(θ)+z. We consider

the case with the noisy traditional gradient in (6); the proof for the other cases is

similar. We denote by ∇̃λKL(λ∗) the noisy gradient obtained when the likelihood is

available. Then, noting that E∗(ζ∗(θ))=0, the constant c in (7) is

c=
Eθ,z{ζ∗(θ)2(log qλ∗(θ)− h(θ)− z)}

E∗

{
ζ∗(θ)2

} =
E∗{ζ∗(θ)2(log qλ∗(θ)− h(θ))}

E∗

{
ζ∗(θ)2

} +
σ2

2
= c̃+

σ2

2
.
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We note that c̃ is the control variate constant we would use to compute ∇̃λKL(λ∗) if

the likelihood was known.

V
(
∇̂λKL(λ∗)

)
=

1

S
Vθ,z

{
ζ∗(θ)(log qλ∗(θ)− h(θ)− z − c)

}

=
σ2

S
V∗

{
ζ∗(θ)

}
+

1

S
V∗

{
ζ∗(θ)(log qλ∗(θ)− h(θ) +

σ2

2
− c)

}

=
σ2

S
V∗

{
ζ∗(θ)

}
+

1

S
V∗

{
ζ∗(θ)(log qλ∗(θ)− h(θ)− c̃)

}

=
σ2

S
V∗

{
ζ∗(θ)

}
+ V

(
∇̃λKL(λ∗)

)
.

Therefore,

σ2
asym(λ̂M) = cλ∗V

(
∇̂λKL(λ∗)

)
= σ2

asym(λ̃M) + cλ∗

σ2

S
V∗

{
ζ∗(θ)

}
.

Derivation for Section 5.1

The density of the d−variate normal N (µ,Σ) is

q(β) =
1

(2π)d/2|Σ|1/2 exp
(
− 1

2
(β − µ)′Σ−1(β − µ)

)
.

A simplified form of the inverse Fisher matrix for a multivariate normal under the

natural parameterization is given in Wand (2014). For a d×d matrix A, denote by

vec(A) the d2-vector obtained by stacking the columns of A, by vech(A) the 1
2
d(d+1)-

vector obtained by stacking the columns of the lower triangular part of A. The

duplication matrix of order d, Dd, is the d
2× 1

2
d(d+1) matrix of zeros and ones such
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that for any symmetric matrix A

Ddvech(A) = vec(A).

Let D+
d =(D′

dDd)
−1D′

d be the Moore-Penrose inverse of Dd, and vec−1 be the inverse

of the operator vec. Then, the exponential family form of the normal distribution

q(β) is q(β)=exp(T (β)′λ−Z(λ)) with

T (β) =




β

vech(ββ ′)


 , λ =



λ1

λ2


 =




Σ−1µ

−1
2
D′

dvec(Σ
−1)


 . (27)

The usual mean and variance parameterization is





µ = −1
2

{
vec−1(D+

d
′
λ2)
}−1

λ1

Σ = −1
2

{
vec−1(D+

d
′
λ2)
}−1

.

Wand (2014) derives the following very useful formula

IF (λ)
−1 =



Σ−1 +M ′S−1M −M ′S−1

−S−1M S−1


 , (28)

with

M = 2D+
d (µ⊗ Id) and S = 2D+

d (Σ⊗ Σ)D+
d
′
,

where ⊗ is the Kronecker product and Id the identity matrix of order d. The gradient

∇λ[logq(β)] is

∇λ[log q(β)] =




β − µ

vech(ββ ′ − Σ− µµ′)


 . (29)
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For the inverse gamma distribution q(τ 2) with density

q(τ 2) =
ab

Γ(a)
(τ 2)−1−a exp(−b/τ 2),

the natural parameters are (a,b). The Fisher information matrix for the inverse

gamma is

IF (a, b) =



∇aa[log Γ(a)] −1/b

−1/b a/b2


 .

and the gradient

∇a[log qλ(θ)] = − log(τ 2) + log(b)−∇a[log Γ(a)]

∇b[log qλ(θ)] = − 1

τ 2
+
a

b
.
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