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Interconnected ensembles of biological entities are perhaps some of the most complex systems that
modern science has encountered so far. In particular, scientists have concentrated on understand-
ing how the complexity of the interacting structure between different neurons, proteins or species
influences the functioning of their respective systems. It is well-established that many biological
networks are constructed in a highly hierarchical way with two main properties: short average paths
that join two apparently distant nodes (neuronal, species, or protein patches) and a high proportion
of nodes in modular aggregations. Although several hypotheses have been proposed so far, still
little is known about the relation of the modules with the dynamical activity in such biological sys-
tems. Here we show that network modularity is a key ingredient for the formation of self-organising
patterns of functional activity, independently of the topological peculiarities of the structure of the
modules. In particular, we show that macroscopic spatial patterns at the modular scale can develop
in this case, which may explain how spontaneous order in biological networks follows their modular
structural organisation. Our results also show that Turing patterns on biological complex networks
can be a signature of the presence of modular structure and consequently a possible protocol for
community detection. We test our results on real-world networks to confirm the important role of
modularity in creating macro-scale patterns.

I. INTRODUCTION

Patterns are macroscopic structures that are the dis-
tinctive mark of the self-organisation in a system of mi-
croscopic interacting entities [1]. They are ubiquitous
in nature and can be seen in the spots of a leopard’s
fur or the coloured scales of a butterfly’s wing [2]. In
1952, Alan Turing published his seminal work on pattern
formation, The Chemical Basis of Morphogenesis where
he laid down an elegant and plausible theory that can
be used to explain the formation of patterns [3]. Tur-
ing developed a simple model of pattern formation that
established the minimal requirements for a biochemical
system to self-organise. Turing’s minimal system is com-
posed of two “competing” chemicals, an activator and
an inhibitor, which share the same spatial domain where
they react and diffuse.

Based on a diffusion-driven instability mechanism, to-
day known as Turing instability, Turing showed that it
is possible to explain and predict the growth of spatially
inhomogeneous perturbations away from a spatially ho-
mogeneous steady state. These perturbations in concen-
tration are later stabilised by nonlinearities in the system,
yielding the celebrated Turing patterns. The emergence
of stable heterogeneous patterns, the result of Turing in-
stabilities, was initially at odds with the general under-
standing that diffusion by itself is a smoothing process.
Nevertheless, it has been shown that the right combina-
tion of short-range activation and long-range inhibition,
caused by slowly diffusing activators and rapidly diffusing
inhibitors, enables the pattern forming phenomenon [4].

Conventionally, an activator-inhibitor system is mod-
elled using a set of reaction-diffusion equations that de-
scribe the evolution of the concentrations of activator

and inhibitor throughout a continuous medium. These
equations can readily be adapted to describe activator-
inhibitor systems in discrete systems such as regular lat-
tices, and they have been used in this way to describe
pattern formations in cellular tissues [4, 5]. However,
biological tissue often takes more complex forms, and
the spatial support cannot always be adequately for-
mulated via regular lattices. Inspired by the network
structures of early stages of embryogenesis [6], ecologi-
cal meta-populations [7] or coupled chemical reactors [8],
researchers have extended the reaction-diffusion formal-
ism to complex biological networks [5, 9–11]. These dis-
crete structures consist of graphs where the nodes usually
represent the cells inside which reactions occur, and the
edges usually represent the routes through which cells
communicate by exchanging chemicals. Abundant stud-
ies in recent years have concentrated on the effect that
different topologies of interactions (a peculiarity of the
given cellular tissue) have on the formation or destruc-
tion of patterns [9, 10, 12, 13]

Hütt et al. [14] recently argued that the formalism of
activator-inhibitor systems is relevant to the dynamical
processes evolving in the brain [14] .

The brain consists of billions of cells, the neurons,
connected together into an extremely complex system
[15, 16]. The implementation of network tools for
analysing the brain’s structure has been used since the
first years of network science [17]. In their seminal work,
Watts and Strogatz [17] studied the topology of the neu-
ronal network of the nematode C. elegans and discovered
that these networks possess small average shortest paths,
as well as a high clustering coefficient They described net-
works with these two properties as being “small-world”
networks. Later, it was verified that many brain net-
works are small world networks [18–20]. It has been ar-
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gued and widely accepted that the small-world property
of brain connectomes should help the communication be-
tween neurons inside the brain by integrating multiple
segregated sources of information [21].

A further property of brain networks is that they are
often modular [18] so that the neurons can be segregated
into communities (referred to as modules) where two neu-
rons chosen at random from the same module are much
more likely to be connected than two neurons chosen at
random from different modules. The effect of network
modularity on pattern formation will be the main focus
of this paper.

The functional role that the topology of brain connec-
tions has been discussed from several perspectives. For
example, due to the increased structural stability [21, 22],
the modularity might have been crucial in the evolution
and development of the brain. According to [18, 22] mod-
ular topology can also optimise the wiring cost in the case
of spatial networks. A small number of long range (and
thus costly) connections reduces the diameter of the net-
work, and allows the remaining nodes, now grouped into
communities or modules, to form dense small world net-
works. Also, more compact segregation of neurons may
contribute to the specialisation of the neurons in their
functional duties [21]. To ensure both a low shortest path
length, and a high clustering coefficient, brain networks
are organised in a strict hierarchical manner [16, 18, 23]
where at the first level of the hierarchy sets of nodes (the
modules) are connected to mimic a small-world topology
and the same happens at the second level of hierarchy
and so on, until the single node level. For a more detailed
discussion of the role of the hierarchy in the pattern for-
mation process see the Appendix.

More generally, modularity is a common topological
property that naturally emerges in biological, ecological,
and social scenarios where the different communities are
associated with different functions of the system repre-
sented by the network as a whole [24]. There are many
examples of this: in protein interaction networks, the
proteins that share similar functions are grouped together
in modules [25]; in metabolic networks, there are struc-
tural/functional communities corresponding to cycles or
pathways [26]; and in citation networks, scientific papers
are clustered according to their research topic [27]. In
addition to these properties, in this paper, we propose
a new mathematical mechanism that highlights the role
that modularity takes in self-organising processes in bio-
logical networks.

Using the Turing theory of pattern formation, we show
that spatially extended patterns can be triggered by
the segregation of the nodes (neurons) in distinguish-
able communities. To formally analyse the chances of
such networks self-organising, we use a linear stability ap-
proach known in the literature as the dispersion relation
[2]. We focus on modular networks, which (in contrast
to other networks, e.g., small-world ones), are charac-
terised by a small spectral gap, i.e., a small distance of
the second largest eigenvalue [28] of the Laplacian from

the origin. To anticipate some of the technical details, we
discuss the key features of modular networks in the fol-
lowing paragraphs and outline how these affect pattern
formation.

For modular networks, the Laplacian eigenvalues that
may be responsible for the Turing instability can be split
into two sets. In one set, we have the eigenvalues emerg-
ing due to the global modularity of the network, which
we denote as “modular eigenvalues”. In Sec. III, we will
show that when only this part of the spectrum is re-
sponsible for the instability, then the shape of the as-
sociated pattern follows that of the network in the sense
that nodes belonging to the same modules have very sim-
ilar concentrations of the species among themselves but
these concentrations are distinctly different from the con-
centrations in other modules. In contrast, if the instabil-
ity is caused by the remaining set of eigenvalues, which
correspond to the local connectivity of nodes, here de-
noted as “non-modular eigenvalues”, then all the nodes
have (in principle) different concentrations making the
pattern globally heterogeneous. In this latter case, if the
eigenvalues responsible for the instability are limited to
the eigenvalues belonging to a single module, then the
pattern will first emerge in that module.

We aim to create a bridge between the role of the struc-
ture in many biological networks with the dynamical ac-
tivity therein. In particular, in our model, we explain
how communities of biological entities (cells, individuals,
etc.) can act as functional units in their corresponding
biological systems. As a consequence, we argue that this
approach can potentially be used in community detection
methods [29–31] for networked biological systems where
Turing patterns are known to exist.

In this paper we begin in Sec. II with a description of
the mathematical background of Turing patterns. This
will lead us into a discussion as to why modularity is crit-
ical to the formation of patterns in Sec. II A. We describe
the different types of patterns which form in Sec. III, and
show how increasing the modularity helps in the forma-
tion of patterns. Finally in Sec. IV we look for Turing
patterns in some real world networks.

II. PATTERN FORMATION ON A
NETWORKED SYSTEM

The process of the formation of Turing patterns was
originally put forward by Turing [3] on continuous do-
mains to explain the emergence of spontaneous order in
biological contexts, but it was formulated on networked
systems only in the 1970s by Othmer & Scriven [5, 9].
In a continuous domain, the most simple Turing mech-
anism is given in terms of reaction-diffusion equations
that describe the evolution through time and space of
the concentrations of two competing chemical species,
called the activator (with concentration denoted u(x, t))
and the inhibitor (with concentration denoted v(x, t))
[2, 3]. In general, an activator increases production of
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both itself and the inhibitor. The inhibitor, in turn,
slows down the growth in activator. When the spatial
support is instead discrete, constituted by spatial patches
(nodes) connected through communicating routes (links)
the reaction-diffusion mechanism can be formulated us-
ing ODEs, instead of PDEs [5]. In general, a two-species
reaction-diffusion model on a network of N nodes will
take the form,

dui
dt

= f(ui, vi) +Du

∑
j

Lijuj , ∀i = 1, . . . , N

dvi
dt

= g(ui, vi) +Dv

∑
j

Lijvj , ∀i = 1, . . . , N,

(1)

where ui and vi represent the concentrations of activator
and inhibitor respectively at node i, f and g are nonlinear
functions that describe the net production rates of acti-
vator and inhibitor respectively, Du and Dv are the dif-
fusion coefficients of activator and inhibitor respectively,
and L is the graph Laplacian operator. The entries Lij
of the graph Laplacian are defined by Lij = Aij − kiδij ,
where A is the adjacency matrix, ki is the degree of node
i, δ is the Kronecker delta, and where we do not sum over
repeated indices. In order to understand the development
of spatial patterns, we analyse the linear stability of the
system starting from a homogeneous steady state (u∗, v∗)
that is stable in the absence of diffusion. If the diffusion
coefficients are nonzero and the ratio ρ = Dv/Du is large
enough, the steady state (u∗, v∗) becomes unstable and
small random perturbations of the previous steady state
will grow. This growth is exponential in the initial lin-
ear regime, and may then be stabilised by the nonlinear
terms of the functions f and g so that the system reaches
a stable but spatially inhomogeneous steady state. Such
a mechanism is responsible for the emergence of Turing
patterns.

The linearised system in matrix form reads:

d(δx)

dt
=
(
Ĵ + DL̂

)
δx, (2)

where δx = (u − u∗1N ,v − v∗1N ) is the perturbations
vector of the activator u and inhibitor v species, 1N is
the all-ones N−dimensional vector, and

D =

[
DuIN 0

0 DvIN

]
is the diffusion constant matrix. Note that IN represents
the N by N identity matrix, so that D is 2N by 2N . The
Jacobian matrix and the extended Laplacian are corre-
spondingly

Ĵ =

[
fuIN fvIN
guIN gvIN

]
, L̂ =

[
L 0
0 L

]
.

Note here that the notation J will be reserved to identify
the Jacobian of the 2× 2 reactions matrix:

J =

[
fu fv
gu gv

]
.

We then look for solutions to Eq. (2) of the form

δu =

N∑
α=1

bαe
σ(Λα)tΦα,

δv =

N∑
α=1

cαe
σ(Λα)tΦα,

(3)

where Λα, Φα are respectively the eigenvalues and eigen-
vectors of the Laplacian L matrix, σ(Λα) are the eigen-

values of the extended Jacobian (Ĵ + DL̂), and α is the
index term.

Following the standard approach described by [2, 5,
9], we substitute the expansion of the perturbations into
Eq. (2), which decomposes the extended Jacobian to a
2× 2 eigenvalue problem for each index α:

Jα =

[
fu +DuΛα fv

gu gv +DvΛα

]
, (4)

where subscripts on the activation function f(u, v) and
the inhibition function g(u, v) represent partial deriva-
tives evaluated at (u∗, v∗) . To study the stability of
the linear system we look for positive real parts of the
eigenvalues of Jα. Turing instability occurs when the
real part of the larger of the two eigenvalues σ(Λα) =(

trJα +
√

(trJα)2 − 4detJα

)/
2 is positive. The func-

tion σ(Λα), is known in the literature as the disper-
sion relation [2]. For an activator-inhibitor system the
necessary conditions for stability are trJα < 0 and
detJα > 0. The first condition is always true, since
trJα = trJ + (Du + Dv)Λα, and this is negative since
the stability of the fixed point in the absence of diffu-
sion implies that trJ < 0, while the non-positivity of the
Laplacian spectrum implies Λα < 0. We therefore turn
our attention to the second condition for stability, which
concerns detJα = detJ + (fuDv + gvDu) Λα +DuDvΛ

2
α.

In order for a Turing instability to occur, we require
detJα < 0. Noting that the stability of the fixed point in
the absence of diffusion implies that det(J) > 0 and not-
ing that Λα < 0, it is straightforward to conclude that the
only way for detJα to be negative is for (fuDv + gvDu)
to be positive. Without loss of generality we define u
to be the activator and v to be the inhibitor. Since u
corresponds to the activator, its increased presence in-
creases the production of u; since v corresponds to the
inhibitor, its increased presence decreases the production
of v; as a result of this, the signs of the respective par-
tial derivatives are fu > 0, and gv < 0. Therefore, we
require ρ = Dv/Du > 1 for instability, implying that the
inhibitor should diffuse faster than the activator in or-
der for Turing patterns to arise. In many practical cases,
this difference needs to be very large in order to achieve
det(Jα) > 0
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FIG. 1. Modular vs. Small-world topology in Turing pattern formation. a) A Newman–Watts (NW) network with
N = 125 nodes, and 660 edges, where patterns are absent. The colour of the nodes represents the concentration of the activator,
ui(t), at long time. b) The dispersion relation of the NW network (red stars) overlain on the dispersion relation of the continuous
case (blue curve), i.e. if the system was on a continuous domain and not on a network. Notice the absence of the unstable
eigenvalues (inset) and the gap between the zero eigenvalue and the second smallest Λ2, known as the spectral gap. c) A
modular network of the same size (same number of nodes and edges) as in a) where indeed Turing patterns are present. The
five modules are of the Erdős-Rényi (ER) family. The colour of the nodes again represents the concentration of the activator,
ui(t), at long time. d) The dispersion relation of the modular network (red stars) overlain on the dispersion relation of the
continuous domain (blue curve). Notice here the presence of unstable eigenvalues (inset) and that the eigenvalues are separated
in two sets by an important gap, between the first and second set of eigenvalues. The first four non-zero one are denoted as the
modular eigenvalues and the rest non-negative ones as the non-modular eigenvalues. The parameters of the Fitzhugh–Nagumo
model are in both cases Du = 1, ρ = 5.5, a = 0.7, b = 0.05, c = 1.7. Finally, note the different colormaps used between panels
a) and c) to highlight the lack of patterns in the former.

A. The case for Dv & Du

From experimental observations [32–35] it is rarely true
that the inhibitor diffuses much faster than the activator,
but instead the chemicals diffuse with similar rates. In
the case where Dv & Du, it can be shown that the disper-
sion relation is positive only for values of the spectrum
of the Laplacian very near to the origin. To prove this
we analyse the behaviour of det(Jα) when considered as
a function of Λα; more precisely, we focus on the value of
Λα corresponding to a minimum of det(Jα). It is known
in literature [2] that for the continuous case, it will always
exist a non-positive value of Λα such that the det(Jα) < 0
or, in other words, that Turing instability can occur. In
order to proceed with our analysis, in the following, we

will consider that Λα takes continuous values and will
see that the spectrum of a (strongly) modular networks
fits in the domain of the continuous dispersion relation
for which the instability occurs for the particular case,
Dv & Du. We start by differentiating with respect to Λα
and after some algebraic manipulation, we find that the
minimum of detJα is found at Λα = Λmin where

Λmin = −fuρ+ gv
2Dv

. (5)

From relation (5) we note that if Dv is kept fixed while
ρ → 1 then Λmin → 0. To show this we set ρ = 1 + ε.
Under the conditions of the Turing instability, Λmin is
non-positive, so (1 + ε)fu + gv > 0. Rearranging, we
can write (1 + ε)fu + gv = trJ + εfu and, noting that
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trJ is necessarily negative, we conclude that the posi-
tive quantity trJ + εfu can be at most of order ε, since
εfu > |trJ|. This shows that Λmin is of order ε. There-
fore, as ε decreases, the value of Λα for which detJα is at
its minimum tends towards the origin. Hence, the pos-
sible values of Λα that may permit Turing instabilities
tend towards zero as the ratio ρ of diffusivities tends to
1. In practice, this implies that the range of values of
Λα for which instabilities can occur decreases in size and
is restricted to small values of Λα. Therefore, a small
spectral gap is needed to allow patterns to form. This
is significant for the analysis of modular networks that
follows since, as shown in the following section, modu-
lar networks are characterised by a small spectral gap
|Λ2 − Λ1|. Hence the Laplacian of a modular network
will have eigenvalues close to the origin. Because of this,
we are able to find modular networks where Turing in-
stabilities, and thus pattern formation, may occur where
otherwise (i.e., in non-modular networked systems) they
would not. This modular pattern formation may even
occur for values of ρ that are close to those observed in
real systems.

III. TURING PATTERNS ON MODULAR
NETWORKS

It has been argued that that the existence of a small-
world topology in many types of networks, including
brain networks, is of a crucial importance in several im-
portant processes from neuronal communication [38] to
structural robustness [39]. Such functional properties
are based on the short average path length that char-
acterises this family of networks. Nevertheless these ad-
vantages also present a counter effect, that of a large
spectral gap. We emphasised in the preceding subsection
that the spectral gap is an important ingredient for the
Turing instability. In this section, we illustrate the im-
portance of a small spectral gap to Turing instabilities by
comparing pattern formation on a Newman–Watts (NW)
network (as an example of a small-world network) with
pattern formation on a modular network generated using
the Stochastic Block Model (SBM).

As described in [18, 21, 40], modular structure has been
identified in many brain networks. Since the FitzHugh–
Nagumo model [41, 42] is both useful for modelling neu-
ronal dynamics [2], and since it can exhibit spatial pat-
tern formation [2, 11], we will use this model throughout
this paper. In dimensionless form, FitzHugh–Nagumo
dynamics correspond to using the functions f(u, v) =
u−u3− v and g(u, v) = c(u− a+ bv) to describe the net
production of activator and inhibitor in Eq. (1) where a,
b, and c are constants.

In Fig. 1 we compare the pattern on a single-module
NW network (of 125 nodes and 660 edges) and a modu-
lar network with 5 communities, each with 25 nodes and
a local Erdős–Rényi (ER) topology. As can be observed
from the dispersion relation in Fig. 1 b), the distribution

of the eigenvalues of the Laplacian matrix for the NW
network shows a large spectral gap. This makes the Tur-
ing instability impossible for the given choice of parame-
ters (including ρ = 5.5), since the instability (i.e., values
of Λ corresponding to positive values of the continuous
curve) is concentrated near the origin. We could poten-
tially create an instability by significantly increasing ρ.
As t → ∞, the Fitzhugh–Nagumo models considered in
this paper will tend to an equilibrium. One way to depict
these equilibria is to plot the concentration of the activa-
tor species at long times. For the NW network described
above, this is shown in Fig. 1 a) and we see that the ac-
tivator concentration is homogeneous across all nodes as
expected.

In contrast to this, for a strongly modular topology the
spectrum is divided into two distinct sets of eigenvalues.
The first set is those nonzero eigenvalues near the origin
(of which there are M − 1 where M is the number of
the modules) and the second set is composed of all the
remaining eigenvalues that are far from the origin [43].
We note that both the NW network and the modular
network have the same number of nodes and edges, so
the difference between the networks’ spectra cannot be
attributed to a difference in the number of nodes or in the
average degree of these nodes. As already anticipated,
we will refer to the first set of nonzero eigenvalues as
the modular eigenvalues (for example in Fig. 1 d) the
first four non-zero eigenvalues). In Fig. 1 d) we observe
that the modular eigenvalues are sufficiently close to 0
that one of them corresponds to an instability; in Fig. 1
c) we see that this leads to a pattern in the activator
concentrations at equilibrium.

To understand the reason why the spectrum of a mod-
ular network can be divided into two subsets we should
first explain the reason behind the spectral gap in small-
world networks. As mentioned earlier, the denomination
“small-world” refers to a certain class of networks, one
feature of which is the small average distance between
nodes. In [44], Bojan shows that the absolute value of
the second largest Laplacian eigenvalue Λ2 is bounded

below by
4

Nd
, where N is the number of nodes in the

network and d is the diameter. This means that for a
fixed value of the size N of the network, the spectral
gap (equivalently, |Λ2|) is larger when the diameter d is
smaller; thus, a NW network will have a larger spectral
gap than a modular network.

To further investigate how the spectral gap changes
for different network topologies, we look at three differ-
ent networks in Fig. 2. We create these networks in a
simple way. First we divide our 125 nodes into five mod-
ules of nodes, and define the total number of intra-edges
(connections within modules) and inter-edges (connec-
tions between modules). Then we allocate each module
an equal number of intra-edges and inter-edges and ran-
domly connect nodes within and between the modules,
while avoiding double entries in both cases. If we de-
fine the number of intra-edges to be much larger than
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b) d) f)

a) c) e)

FIG. 2. Emergence of patterns by changing the modularity. a) The dispersion relation for an ER network (shown in
panel b)), made of 125 nodes and 660 edges, and modularity measure Q = 0.02562. c) The dispersion relation for a weakly
modular network shown in panel d) consisting of 5 modules and 540 intra-edges within modules, and 120 inter-edges between
modules, and modulalarity Q = 0.6150. Notice that there is an emerging gap now between the first 4 non-zero eigenvalues
and the rest of them. e) And finally the dispersion relation for a strongly modular network with f) with 630 intra-edges, 30
inter-edges, and Q = 0.7545. Notice that the spectral gap between the zero eigenvalue and the smallest non-zero eigenvalue is
much smaller and a pattern has formed on the network. For all simulations Du = 1, ρ = 5.5, a = 0.7, b = 0.05, and c = 1.7.
Also we used the algorithms described in refs. [36, 37] with resolution parameter γ = 1 the modularity Q in each case.

the number of inter-edges, then this process will yield a
network with as strong modular structure. We describe
three examples of these networks with increasing “mod-
ularity”, where modularity is defined by the Q function
described in [36, 37]. We first look at an ER graph, as
shown in Fig. 2 b). Notice that there is a large spectral
gap in the corresponding dispersion relation, as shown in
Fig. 2 a). By simply modifying the ratio of inter-edges to
intra-edges, we can then generate a new network which
begins to close the spectral gap, as in Fig. 2 c) and
d). Finally in Fig. 2 f) we have reduced the number
of inter-edges such that patterns form, and the spectral
gap is greatly decreased, as in Fig. 2 g). This leads us
to ask why a highly modular network closes the spec-
tral gap so well. Note that in the Appendix, we consider
the hierarchical case where each module is arranged in a
small-world fashion.

To understand the small spectral gap of modular net-
works, we first imagine a scenario in which the mod-
ules are disconnected from each other. Individually,
these modules are denser and smaller than the Newman–
Watts network, therefore each of them is expected to
have a relatively large spectral gap. From the Perron–
Frobenius theorem [45] we know that the number M
of the connected components (the modules in this case)

corresponds with the number of zero eigenvalues of the
Laplacian operator. However, once the modules are con-
nected with a small number of links then M − 1 of these
eigenvalues will move away from zero. From a spectrum
perturbative analysis, we find that these become very
small nonzero eigenvalues, with only one zero eigenvalue
still remaining to signify that the whole modular network
is connected. This explains the small size of the spectral
gap in modular networks and consequently the emergence
or not of Turing patterns respectively in small-world and
modular networks [46, 47].

We notice from Figure 1 c) that although the pattern
is highly heterogeneous at a global level, the patterns on
nodes within each single module are quite homogeneous,
having almost the same concentration of the species for
each node in the module. Such macroscopic spatially
extended patterns where densely connected entities (e.g.,
of biological nature) show the same amount of activity
have been observed in different biological contexts [24–
26] and in particular in dynamics of the brain [48, 49]. To
the best of our knowledge, we here propose the first self-
organising mechanism that explains the uniformity at the
module level of Turing patterns in biological networks.

We can obtain insight into the patterns of u and v
observed at equilibrium by constructing and analysing
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FIG. 3. Patterns classification on modular networks. a) Modular patterns are formed when the concentration ui is
homogeneous across all nodes in the same module. b) In the corresponding dispersion relation we fix the parameters in order to
have a single positive modular eigenvalue. The parameters are a = 0.7, b = 0.05, c = 1.75, ρ = 5.5, Du = 1. c) A heterogeneous
pattern emerges when the nodes inside the modules have different concentrations. d) To show this, in the dispersion relation
multiple non modular eigenvalues are positive. The parameters are a = 0.4, b = 0.05, c = 41, ρ = 14, Du = 0.1. e) In-between
pattern is a mixed state of the previous patterns. f) In this case the instability comes from the contribution of both modular
and non modular eigenvalues. Here the parameters are a = 0.6, b = 0.05, c = 3.625, ρ = 20, Du = 0.16. In all the cases we
used a network of with N = 125 nodes, 660 edges, and a diameter of d = 5.

the eigenvectors associated with the Turing instabilities.
From an initial condition close to the unstable homoge-
neous equilibrium, the rate of change in the concentra-
tions u and v will initially be dominated by the eigenvec-
tor associated with the largest positive eigenvalue of the
Jacobian. This initial growth will ultimately be stabilised
by nonlinear terms, and we expect that the state equi-
librium pattern of concentrations will be reminiscent of
the eigenvectors associated with the instability [2, 3]. To
begin our analysis of the resultant patterns, we select pa-
rameters which lead to a single modular eigenvalue being
positive, and observe the final “homogeneous by module”
pattern as in Fig. 3 a), b). The situation changes when
the instability is exclusively induced from the non modu-
lar eigenvalues. In this case the concentration is no longer
uniform for each module as shown in Fig. 3 c), d). A
hybrid state is obtained instead when both sets of eigen-
values contribute to the Turing instability as in Fig. 3 e),
f). These hybrid states can lead to patterns that are sim-
ilar to either the modular patterns or the heterogeneous
patterns. This is because the Turing instability in this
case involves a competition between the eigenvectors as-
sociated with the unstable modular eigenvalues and the
eigenvectors associated with the non-modular eigenval-

ues. The dominant instability (and therefore the eigen-
vector that we expect to be most similar to the equilib-
rium pattern) will be the eigenvector associated with the
largest eigenvalue of the Jacobian. In Fig. 3 f) for exam-
ple, we observe that the largest eigenvalue of the Jacobian
is associated with one of the modular eigenvalues of the
Laplacian, and this is associated with a pattern in Fig.
3 e) that could be described as almost being modular.
In the Supplementary Material (SM) we discuss several
criteria to establish which eigenvalue is dominating over
the others.

In order to understand why the final shape of the pat-
tern can be modular we focus on the study of the eigen-
vectors as plotted in Fig. 4. From the stability analysis
we know that initially the pattern is shaped according
to the unstable eigenvectors and this form is largely re-
tained in the final nonlinear regime. Nevertheless, what
surprises is the particular form of the eigenvectors as-
sociated with the modular eigenvalues as in Fig. 4 a);
in particular, the fact that the components of the mod-
ular eigenvectors are very small in all but one module.
To shed light on this peculiarity we will resort again to
spectral perturbation theory.

As anticipated earlier, the smallest non zero eigenvalue
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a) b)

FIG. 4. Origin of modular patterns. a) A modular pattern (inset) is formed when one or more of the set of the modular
eigenvalues is unstable and dominant over the non-modular ones. b) However when the non modular eigenvalues dominate
over the rest of the spectrum then heterogeneous pattern are created (inset). Furthermore in this setting it is also possible to
identify the origin of instability from which the pattern first emerges – in this case the central module – before it finally spread
over the entire network. The patterns are compared to the corresponding unstable eigenvectors, here both normalised. The

normalisation for the pattern is simply
|ui − u∗|

maxi |ui − u∗| for each entry i, and the same normalisation is used for the eigenvector.

Also the nodes are organised here in blocks of 25 individuals for each module.

a) b) c)

FIG. 5. Parameter space for decreasing diffusivities ratio. We classify different types of pattern on modular graphs in
the parameter space of the Fitzhugh–Nagumo model (a, c), a fixed value of b = 0.05, Du = 0.15, and a) ρ = 20, b) ρ = 10,
c), ρ = 6. The portion of the parameter space indicated in red represents the region where no Turing patterns are allowed, as
the system is not in a steady state. The blue part is when the system is Turing stable, that is the system is at a steady state
but no Turing patterns form. The rest of the region is when patterns may occur: in the magenta region patterns only form in
the continuous domain case, in green we have “modular” patterns, Fig. 3 a), yellow “mixed” state patterns, Fig. 3 c), and cyan
heterogeneous patterns, Fig. 3 b). Notice that as the ratio of diffusivites approaches 1, ρ → 1, the only patterns which form
are the modular patterns, showing that in a real scenario modularity is the only way to induce pattern formation in networks
with modular structures, e.g., brain networks.

of the Laplacian Λ2 defines the spectral gap known also
in the literature as the Fiedler eigenvalue and defines the
algebraic connectivity [50, 51]. Its corresponding eigen-
vector is known as the Fiedler eigenvector and has the
property that the entries of the nodes corresponding to
the same modules take very similar values. Because of
this property, the Fiedler eigenvector has been exten-
sively used as the basis of several community detection
methods [36, 46, 47]. The other modular eigenvectors
also behave in a similar manner to the Fiedler eigenvec-
tor; their entries are segregated by module [46, 47]. Since
the modular eigenvectors are often the fastest growing

modes in the Turing instability, this means that the mod-
ular shape of the global pattern is a consequence of the
modularity of the structure of the network itself.

On the other hand, when the instability is caused
strictly by the non modular eigenvalues, another be-
haviour occurs during the pattern forming phenomenon.
This is best considered by again considering a modu-
lar network to be a perturbation of a network with ini-
tially M disconnected components. In such a case, each
nonzero eigenvalue of the Laplacian will correspond to
an eigenvector whose components are all zero outside a
single component. A modular network will be a small
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perturbation to this, and so the non-modular eigenvec-
tors will also be close to zero except within a single com-
ponent. If only one non-modular eigenvalue corresponds
to a Turing instability, then only one module of the net-
work will show pattern formation, as illustrated in Fig. 4
b). Thus, we can predict the module on which pattern
formation will occur by looking at the components of the
eigenvector whose eigenvalue corresponds to the fastest
growing mode of the Turing instability.

So far we have considered the contribution in the for-
mation of patterns of both modular and non modular
eigenvalues, however when we deal with Turing patterns
in real scenarios the ratio ρ = Dv/Du is quite close to
one [32–35]. To evaluate the conditions under which dif-
ferent patterns form in real conditions we now explore
the parameter space of the Fitzhugh–Nagumo dynamics
in more detail.

In Fig. 5 it can be observed that although different
types of patterns can be found in the space of the pa-
rameters a and c, as the ratio of diffusivities gets closer
to 1 the region where patterns can occur shrinks and,
more importantly, the only possible Turing patterns are
modular ones (indicated in green colour). The result
that brain networks have optimised their spatial inter-
action matrix in order to allow pattern formation has
been already claimed by experimental observers [48, 49];
to the best of our knowledge we present the first mech-
anism that explains the role of modularity in achieving
this pattern formation.

IV. SELF-ORGANISATION IN REAL
MODULAR NETWORKS

Heretofore we have discussed the role of modularity in
the formation of patterns only for synthetic networks. In
this part we will illustrate our findings in real examples of
biological or ecological networks. The neuronal networks
of several primitive animals such as nematodes have been
well characterised. Indeed, it was the study of nematode
neuronal networks that first inspired the development of
small-world network models [17]. In Fig. 6a) we show
the final modular pattern of the nematode P. pacificus
[52]. This follows from the theoretical prediction of the
unstable Fiedler eigenvector, shown in Fig. 6b) Here we
have used the Fiedler eigenvector to identify the commu-
nities of neurons [36]. In this particular case two mod-
ules are clearly distinguishable and the level of activity
of the nodes inside the modules are quite homogeneous.
Other examples of Turing patterns in neuronal networks
are presented in the Supplementary Material. Although
the modularity of brain networks has been well-studied
[18, 21, 38, 40] other types of natural networks manifest
this property also. For instance, this is the case for eco-
logical networks where the individuals are connected to
each other through trophic relations [2, 53]. Such modu-
lar contact networks have also been shown to be crucial
for the pattern of disease spreading [54, 55]. In Fig. 6

c) and d) we present respectively the equilibrium pattern
of the FitzHugh–Nagumo equations and its comparison
to the unstable eigenvector of the contact network of a
zebra herd [53] where a community of 11 individuals out
of a total of 23 is clearly visible. However, the formation
of patterns of spreading are not limited only to contact
networks, which in general can be small in size. Modu-
larity is a common property in other types of networks
which, although they are not directly related to biolog-
ical systems, are still essential for biological phenomena
occurring on them. This is for instance, the case for net-
works of human mobility, such the roads networks in the
city of Chicago presented in the SM [56–59], which are
decisive for the spreading of an epidemics in the entire
urban area [54, 55]. These examples all show agreement
with the mathematical analysis we have shown so far.

V. DISCUSSION AND CONCLUSIONS

In this paper we have analytically and numerically
explored pattern formation on modular networks. We
have shown that modularity, a ubiquitous topological fea-
ture of many biological networks, is crucial for the self-
organisation of the global dynamics on a network. To
study this behaviour we have considered here the Tur-
ing instability as a paradigmatic mechanism for pattern
formation in biology, ecology or neuroscience. The pos-
sibility of pattern formation via the Turing mechanism
on non-modular networks is limited to unrealistically ex-
treme ratios of the diffusion constants of the activator
and inhibitor species making the small spectral gap of
the Laplacian matrix a fundamental requirement for the
Turing instability. This feature is a structural advantage
of modular networks which follows from spectral pertur-
bation theory. A strongly modular network can be con-
sidered as a set of connected components weakly attached
with a small number of intermodule links. From spectral
perturbation theory this yields a number – equal to one
fewer than the number of modules – of non zero eigenval-
ues very near to the origin. This characterisation at the
linear stability level influences the shape of the spatially
extended patterns. Due to the segregation of the entries
of the eigenvectors corresponding to the set of modular
eigenvalues, we are able to explain why Turing patterns
are homogeneous per module on these networks.

This result opens to an important aspect regarding the
functional resolution of the brain modes which was hy-
pothesised [14, 18, 60] in several experimental observa-
tions [48, 49]. To the best of our knowledge, the model
we present here constitutes the first self-organising mech-
anism where the modules are presented as functional
blocks of biological networks. In this sense, we argue that
the module is the smallest spatial unit to be taken into ac-
count from the functional point of view i.e. if we “zoom”
out far enough from a modular network, the individual
modules behave like individual supernodes. For the par-
ticular example of the brain the modules might be the
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FIG. 6. Modular patterns on real-world networks a) The modular pattern of the neuronal network of 54 nodes of the
nematode P. Pacificus [52] with parameters Du = 0.7, σ = 4.5, a = 0.75, b = 0.04, c = 1.5. b) The comparison between the
normalised unstable eigenvector and the final pattern shows the presence of two distinct modules. c) The modular pattern of
the network of 23 individuals (nodes) of a zebra herd [53] with parameters Du = 0.7, σ = 4.5, a = 0.75, b = 0.04, c = 1.5. d)
The comparison between the normalised unstable eigenvector and the final pattern shows the presence of a main module.

super-nodes of the functional connectomes [40, 48, 60].
Indeed, the (self-)segregation of the network structure in
modules [24] influences also the shape of the dynamical
pattern on it. Based on the fact (see [14, 18, 40] and
Fig.6) that in real scenarios Turing patterns should be
exclusively modular, we believe that the results we have
shown here can be potentially used to formulate a com-
munity detection protocol [24, 31, 36] in the case where
patterns of self-organised activity are known to exist.

In the case when we relax Turing conditions to allow
the instability for the non-modular part of the spectrum,
then we can use the eigenvector corresponding to the
largest eigenvalue to indicate the module in which the
Turing pattern is first seeded before finally spreading to
the rest of the network. This behaviour can potentially
make the pattern formation process a powerful diagnostic
tool for studying and eventually controlling the emer-
gence of abnormal dynamics which characterise many
neurological diseases [61] or the spread of an epidemic
in a group of individuals [54, 55]. We test our theoretical
results on several real connection data sets of neuronal,

ecological and infrastructure networks verifying the cor-
rectness of our findings, that modularity is crucial for the
development of patterns, and that when the instability is
derived from the first set of modular eigenvalues, that the
resultant self-organisation follows the modular structure
of the network.

The results we have presented here can extend also to
more complicated scenarios. This is, for example, the
case when the hierarchy of a network is considered as
a complement to its modularity. In the Appendix we
show that in a hierarchical modular network the mod-
ular eigenvalues are even more relevant for the Turing
pattern forming process. Further extensions of our ap-
proach are also possible; for example to consider the effect
of directed edges in a modular network. In this case we
expect a richer dynamics where travelling Turing waves
should emerge in a directed modular networks [11].
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APPENDIX

A. The FitzHugh–Nagumo model

We have used the Fitzhugh–Nagumo model through-
out this paper[41, 42], which is one of the first and most
well known mathematical models used to describe the
spiking dynamics of neurons. In terms of mathematical
equations the behaviour of a single neuron is described
by

du

dt
= u− u3 − v

dv

dt
= c(u− av − b) (6)

where u is the membrane potential and v the recov-
ery variable. The model itself was first introduced by
FitzHugh [41] to explain the generation of spikes in ex-
citable systems, i.e., neurons. A spike is a short-lasting
elevation of the membrane voltage u diminished over time
by a slower and linear recovery variable v once the sys-
tem is periodically excited by an external current. The
following year Nagumo et al. [42] developed the electric
circuit which mimics such behaviour. However, although
the model itself is mainly used to describe the oscillatory
behavior of neurons, it also admits a stable fixed point,
which is a necessary requirement for Turing instabilities.
Once this model is equipped with a diffusion term, it
turns out in a perfect candidate for pattern formation [2].
In recent years, with the rapid development of network
science, the Fitzhugh–Nagumo model has been extended
to diffusively coupled networks [11, 62].

B. The role of hierarchy of the brain networks in
the pattern formation

We have discussed the role that modularity has on pat-
tern formation, isolating it from other important features
such as the small-world property, which is in fact an
integral aspect of many networks, including brain net-
works. So then a question that arises naturally is, how
does the brain cope with maintaining both features and
their functional properties at the same time? We now
are able to answer this question by recalling an impor-
tant empirical results that characterises most real net-
works, their hierarchical structure [18, 31, 63]. In fact,

most of the connectomes studied are organised in a mod-
ular structure, however each module is further organised
in a small-world fashion. In a hierarchical modular net-
work the entire network is organised in modules which
are attached to each other so as to have a small diameter
and at the same time the nodes in the modules are con-
nected in such way to form sub-modules again minimising
their diameter and this process goes on this way up to
smallest building unity, the single nodes. A hierarchical
structure stresses once more the necessity of modularity
for the self-organising phenomena in the networks. In
Fig. 7 we show that the difference of the smallest non
modular eigenvalue from the origin is larger when the
modules have a small-world topology compared to when
they are organised at random (e.g. ER network) for the
same number of nodes, edges and modules. The reason
for this can be found once more by taking a perturbative
approach. The spectral gap of an individual module (dis-
connected from the rest of the network) is larger when
its diameter is smaller, as it is in the Newman–Watts
network used in Fig. 7.

Thus, in the presence of hierarchy, the cyan and the
yellow regions in Fig. 5 would be even smaller making
the modularity region shown in green larger compared to
the previous two. We notice, however, that the instability
invariance is still valid for values of the diffusivites ratio
ρ near to 1, that is when only the green region in the
parameter space is available. In conclusion, a hierarchical
arrangement where each module is arranged in a small
world fashion, and these modules are again connected
in a small world fashion, are even better candidates for
forming modular patterns, than then modular networks
studied in the main part of this paper.
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FIG. 7. Patterns on hierarchical modular networks. a) The modular pattern on five connected Newman–Watts networks,
each with N = 25 nodes and 125 edges. Each module is connected to its clockwise and counterclockwise neighbours with two
random edges. There are a further 25 random edges added to induce shortcuts, as in the Newman–Watts style. b) The
dispersion relation of the hierarchical network (green diamonds) and modular network with random (ER) modules (red stars)
with the same number with Du = 0.15, σ = 17, a = 0.7, b = 0.05, c = 3.625. The larger gap between the first five eigenvalues
and the rest arises due to the hierarchy of the network.
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