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The topology of the proteome map revealed by recent large-scale hybridization methods has
shown that the distribution of protein-protein interactions is highly heterogeneous, with many
proteins having few links while a few of them are heavily connected. This particular topology is
shared by other cellular networks, such as metabolic pathways, and it has been suggested to be
responsible for the high mutational homeostasis displayed by the genome of some organisms. In
this paper we explore a recent model of proteome evolution that has been shown to reproduce
many of the features displayed by its real counterparts. The model is based on gene duplication
plus re-wiring of the newly created genes. The statistical features displayed by the proteome of
well-known organisms are reproduced, suggesting that the overall topology of the protein maps
naturally emerges from the two leading mechanisms considered by the model.

I. INTRODUCTION

Since the discovery of the structure of the DNA
molecule, a dominant view of molecular biology has been
the understanding of the microscopic mechanisms oper-
ating at the gene level. Some authors have indeed defined
molecular cell biology as an explanation of organisms
and cells in terms of their individual molecules (Lodish
et al., 2000). This so-called reductionist view has been
extremely successful and has widely enlarged our view
of genetics and evolution at the smallest scales. In ap-
proaching the richness of biocomplexity in this way we
might, however, ignore the other side of the coin: the
presence of higher-order phenomena beyond the molecu-
lar level. This other view takes into account the interac-
tions among components as an essential part of the whole
picture and suggests that there exist emergent properties,
not reducible to the properties displayed by the individ-
ual components (Goodwin, 2001). The debate between
both schools goes back to the early origins of molecular
biology (Monod, 1970).

Our perspective of molecular biology might be chang-
ing and the emerging picture might help to reach a more
balanced interaction between both views. Two impor-
tant findings help to see how collective properties might
play a leading role. The first is the observation of the
extraordinary resilience exhibited by some simple or-
ganisms against gene removal. Experiments with sys-
tematic mutagenesis in yeast Saccharomyces cerevisiae
have shown the great tolerance of this organism to gene
removal (Ross-Macdonald et al., 1999; Wagner, 2000).
These and other studies carried out in order to explore
the minimum limits allowed to genome size (see for ex-
ample Hutchison et al. (1999)) suggest that many genes
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might not play a key phenotypic role, being somehow
functionally replaced by other genes. Secondly, the net-
work perspective of gene and protein systems is becoming
more and more accepted as new data accumulate. In par-
ticular, it is becoming obvious that not only genes, but
also interactions among specific groups of genes (mod-
ules) have been conserved through evolution (Hartwell
et al., 1999). In this context, networks of genes are also
the target of selective forces.

Recent large-scale studies of the global properties of
the yeast proteome reinforce the relevance of the net-
work perspective (Gavin et al., 2002; Ho et al., 2002;
Jeong et al., 2001a; Wagner, 2001a). These studies have
revealed that the available data from protein-protein in-
teraction networks in the yeast Saccharomyces cerevisiae
share some unexpected features with other complex net-
works (Jeong et al., 2001a; Wagner, 2001a). In particu-
lar, these are very heterogeneous networks, whose degree
distribution P (k) (i.e., the probability that a protein in-
teracts with any other k proteins) displays a scale-free
behaviour, P (k) ≈ k−γ , with a characteristic exponent
γ ≈ 2.5, for a certain range of values of k, and with a well-
defined cut-off for large k. Additionally, they also display
the so-called small-world (SW) effect: they are highly
clustered (each node has a well-defined neighborhood of
“close” nodes) but the minimum distance between any
two randomly chosen nodes in the graph is short, a char-
acteristic feature of random graphs (Watts, 1999; Watts
& Strogatz, 1998). Scale-free (SF) networks appear to be
present in many natural and artificial systems, ranging
from technological networks (Albert et al., 2000; Ama-
ral et al., 2000; Ferrer i Cancho et al., 2001a; Pastor-
Satorras et al., 2001), neural networks (Watts & Stro-
gatz, 1998), metabolic pathways (Fell & Wagner, 2000;
Jeong et al., 2001b; Podani et al., 2001), and food webs
(Montoya & Solé, 2002; Williams et al., 2001) to the hu-
man language graph (Ferrer i Cancho et al., 2001b). It is
remarkable, in particular, that the exponents observed in
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Internet, metabolic, and protein networks are very sim-
ilar. This fact hints towards the presence of a common
self-organization principle, a finding which might have
deep consequences in our understanding of how large-
scale nets emerge through evolution.

Previous studies on protein networks have emphasized
dynamical or computational aspects of interacting pro-
teins as well as their potential links with other classes of
nets, such as neural nets (Bray, 1995). The importance
of allosteric interactions (and their non-linear character)
was early highlighted as an essential piece in the under-
standing of cell biology and as a step towards a general
systems theory of biocomplexity (Monod, 1970). Here,
however, we are mainly interested in the topological prop-
erties derived from the process of proteome evolution.
These properties, can be summarized as follows (Jeong
et al., 2001a; Wagner, 2001a): (1) the proteome map is a
sparse graph, indicating a small average number of links
per protein. This observation is also consistent with the
study of the global organization of the E. coli gene net-
work from available information on transcriptional regu-
lation (Thieffry et al., 1998); (2) it exhibits a small world
pattern, very different from the properties displayed by
purely random (Poissonian) graphs (Bollobás, 1985) and
(3) the degree distribution of links is a power law with a
well-defined cut-off.

In this paper we present a model of proteome evolu-
tion based on a gene duplication plus rewiring process
that includes the basic ingredients of proteome growth
and intends to reproduce the previous set of observa-
tions. The first component of the model allows the sys-
tem to grow by means of the copy process of previous
units (together with their wiring). The second intro-
duces novelty by means of changes in the wiring pattern,
constrained in our approach to the newly created genes
(Solé et al., 2002). This constraint is required if we as-
sume that conservation of gene (protein) interactions is
due to functional restrictions and that further changes in
the regulation map are limited. Such constraint would
be strongly relaxed when involving a newly created (and
redundant) unit.

The model does not include functionality or dynam-
ics in the proteins involved. It is a topological-based ap-
proximation to the overall features of the proteome graph
which aims to capture some of the (possibly) generic fea-
tures of real proteome evolution. A preliminary account
of the present model was previously given in a short com-
munication (Solé et al., 2002b). It is also worth noting the
work by Vázquez et al. (2001), in which a related model
of proteome evolution, showing multifractal connectivity
properties, is described and analyzed.

This paper is organized as follows. In Sec. 2 we review
the known topological properties of proteome networks,
obtained by several authors by analyzing the published
proteome maps of the yeast S. cerevisiae. In Sec. 3 we
describe our model of proteome growth. The main in-
gredients of the model are protein duplication plus cor-
related random rewiring. Secs. 4 and 5 are devoted to

an analytical study of the model. In Sec. 4 we discuss a
mean-field approximation for the evolution of the aver-
age connectivity, that will allow us to restrict the range
of values of the model’s parameters, while Sec. 5 presents
a study of the rate equation for the node distribution nk
within an approximation that imposes an uncorrelated
rewiring of connections after each node duplication. The
solution of the model will show us the limited validity
of this sort of approach for the model in question. Our
study is completed in Sec. 5 by means of computer sim-
ulations. In Sec. 6 we present a discussion of our results.
Finally, we inspect in an Appendix the rate equation for
the node distribution under correlated rewiring, recover-
ing a similar result as in the uncorrelated case.

II. TOPOLOGICAL PROPERTIES OF REAL PROTEOME
MAPS

Protein-protein interaction maps have been studied,
at different levels, in a variety of organisms including
viruses (Bartel et al., 1996; Flajolet et al., 2000; Mc-
Craith et al., 2000), prokaryotes (Rain et al., 2001), yeast
(Ito et al., 2000), and multicellular organisms such as C.
elegans (Walhout et al., 2000). Previous studies have
mainly used the so called two-hybrid assay (Fromont-
Racine et al., 1997), based on the properties of site-
specific transcriptional activators. Although differences
exist between different two-hybrid projects (Hazbun &
Fields, 2001), the statistical patterns used in our study
seem to be robust. Recent systematic analyses of protein
complexes by means of mass spectrometry provided very
similar results, together with a better understanding of
the internal organization of protein complexes (Kumar &
Snyder, 2001).

From a statistical point of view, protein-protein in-
teraction maps can be viewed as a random network
(Bollobás, 1985), in which the nodes represent the pro-
teins and a link between two nodes indicates the pres-
ence of an interaction between the respective proteins.
Mathematically, the proteome graph is defined by a pair
Ωp = (Wp, Ep), where Wp = {pi}, (i = 1, ..., N) is the
set of N proteins and Ep = {{pi, pj}} is the set of
edges/connections between proteins. The adjacency ma-
trix ξij indicates that an interaction exists between pro-
teins pi, pj ∈ Ωp (ξij = 1) or that the interaction is absent
(ξij = 0). Two connected proteins are thus called adja-
cent and the degree of a given protein is the number of
edges that connect it with other proteins.

The network representation of the protein interactions,
shown in Fig. 1(a)1, reveals a very complex topology,
characterized by the presence of several highly connected
hubs, while most of the proteins have very few connec-

1 Figure kindly provided by W. Basalaj (see
http://www.cl.cam.uk/∼wb204/GD99/#Mewes).
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FIG. 1 (a) Topology of a real yeast proteome map obtained from the MIPS database (Mewes et al., 1999). (b) Cumulated
degree distribution for the yeast proteome map from Jeong et al. (2001a). The proteome map is available at the web site
http://www.nd.edu/∼networks/database/index.html. The degree distribution has been fitted to the scaling behavior P (k) ≈
(k0 + k)−γe−k/kc , with an exponent γ ' 2.6 and a sharp cut-off kc ' 15.

tions. The network topology can be statistically charac-
terized by means of the degree distribution P (k), defined
as the probability that any node is connected to exactly
k other nodes. The analysis of the protein map from the
yeast S. Cerevisiae, containing 1870 nodes and 2240 links,
corresponding to an average connectivity (average num-
ber of links emanating from a node) 〈k〉 = 2.40, shows
that the degree distribution can be fitted to a power-law
with an exponential cut-off, of the form

P (k) ∼ (k0 + k)−γe−k/kc . (1)

The estimated values for the yeast are k0 ' 1, γ ' 2.4
and kc ' 20 (Jeong et al., 2001a). That is, the protein
map is a SF network with a characteristic cut-off.
This value is confirmed by the independent analysis
of Wagner (2001a), who found a power-law behavior
with γ ' 2.5 for a relatively smaller protein map
(985 nodes with average connectivity 〈k〉 = 1.83). In
Fig. 1(b) we have checked this functional dependence on
the cumulated degree distribution of the protein map
used in Jeong et al. (2001a) (available at the web site
http://www.nd.edu/∼networks/database/index.html).
A fit to the form (1) yields the values k0 ' 1.1, kc ' 15,
and γ = 2.6 ± 0.2, compatible with the results found in
Jeong et al. (2001a) and Wagner (2001a).

An additional observation from Wagner’s study of the
yeast proteome is the presence of SW properties (Watts
& Strogatz, 1998). The SW pattern can be detected
from the analysis of two basic statistical quantities: the
clustering coefficient C and the average path length ¯̀.
Since the proteome map is a disconnected network, these
quantities are defined on the giant component Ω∞, de-
fined as the largest cluster of connected nodes in the

network (Bollobás, 1985). Let us consider the adja-
cency matrix of the giant component, ξ∞ij and indicate
by Γi = {pi | ξ∞ij = 1} the set of nearest neighbors of a
protein pi ∈ Ω∞. The clustering coefficient for this pro-
tein is defined as the number of connections between the
proteins pj ∈ Γi (Watts & Strogatz, 1998). Denoting

Li =
N∞∑
j=1

ξ∞ij

[∑
k∈Γi

ξ∞jk

]
, (2)

where N∞ is the size of the giant component, we define
the clustering coefficient of the i-th protein as

C(i) =
2Li

ki(ki − 1)
, (3)

where ki is the connectivity of the i-th protein. The
clustering coefficient is defined as the average of C(i) over
all the proteins,

C =
1
N∞

N∞∑
i=1

C(i), (4)

and it provides a measure of the average fraction of pairs
of neighbors of a node that are also neighbors of each
other.

The average path length ¯̀ is defined as follows: Given
two proteins pi, pj ∈ Ω∞, let `ij be the length of the
shortest path connecting these two proteins on the net-
work. The average path length ¯̀ will be:

¯̀=
2

N∞(N∞ − 1)

N∞∑
i<j

`ij . (5)
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Wagner (2001a) Map from Jeong et al. (2001a) Network model Random network

〈k〉 1.83 2.40 2.4± 0.6 2.50± 0.05

γ 2.5 2.4 2.5± 0.1 —

C 2.2× 10−2 7.1× 10−2 1.0× 10−2 1× 10−3

¯̀ 7.14 6.81 5.5± 0.7 8.0± 0.2

TABLE I Comparison between the observed regularities in the yeast proteome reported by Wagner (2001a), those calculated
from the proteome map used in Jeong et al. (2001a), the model predictions with N = 2000, δ = 0.53 and β = 0.06 (see Sec. 6),
and a random network with the same size and connectivity as the model.

Random graphs, where nodes are randomly connected
with a given probability p (Bollobás, 1985), have a clus-
tering coefficient inversely proportional to the network
size, Crand ≈ 〈k〉 /N , and an average path length pro-
portional to the logarithm of the network size, ¯̀rand ≈
logN/ log 〈k〉. At the other extreme, regular lattices with
only nearest-neighbor connections among units are typ-
ically clustered and exhibit a long average path length.
Graphs with SW structure are characterized by a high
clustering, C � Crand, while possessing an average path
comparable with a random graph with the same average
connectivity and number of nodes, ¯̀≈ ¯̀rand.

In Table I we summarize the most relevant results for
the proteome map of the Yeast, as reported in Wagner
(2001a). In order to compare with other results, we
report the values we have calculated for the map used
in Jeong et al. (2001a), as well as for a random graph
with size and connectivity comparable with the real data.
These values support the conjecture of the SW properties
of the protein network put forward in Wagner (2001a).

III. PROTEOME GROWTH MODEL

In this work we will consider the scenario of single-
gene duplications. Although multiple-gene duplications
should also be taken into account (even whole genome
duplication), here we restrict our attention to the most
common ones (Ohno, 1970), which are known to occur
due to unequal crossover. After duplication of a single,
randomly chosen gene, new connections can be added and
previous connections deleted. Both rewiring rules can
be implemented in a correlated or uncorrelated manner.
The first involves changes that affect the just duplicated
gene and its connections. The second involves any link
in the network. Both processes (creation and deletion
of links) might be associated or not to the newly cre-
ated unit. Four possible combinations are thus allowed
in principle: 1) Correlated creation and deletion of links.
2) Correlated creation and uncorrelated deletion of links.
3) Uncorrelated creation and correlated deletion of links.
4) Uncorrelated creation and deletion of links. The rules
associated with each variation of the model are summa-
rized in Fig. 2

In this work we will focus in the first variation of the

model, in which created and deleted links occur in re-
lation with the newly duplicated node. The reason to
consider correlations has to do with the assumption that
the evolutionary significance of gene duplication lies in
the fact that changes in the newly created genes can lead
to the emergence of novelty (Patthy, 1999). After gene
duplication, one of the two copies becomes redundant and
either one of them becomes non-functional (i.e. a pseu-
dogene) or accumulates molecular changes that provide a
new function. The new function might be very different.
An example is provided by mouse lysozyme genes. One
of them has a digestive function in the intestine and the
second has a bactericide action in myeolid tissues. Strong
divergences from the original function displayed by the
ancestor can develop. Moreover, from a numerical point
of view, the analysis of the models in which creation or
deletion of links is uncorrelated yield results which are in
disagreement with the experimental observations in real
proteome maps.

The model we will consider is defined by the following
rules. We start form a set m0 of connected nodes, and
each time step we performe the following operations:

(i) One node of the graph is selected at random and
duplicated

(ii) The links emanating from the newly generated
node are removed with probability δ

(iii) New links (not previously present after the dupli-
cation step) are created between the new node and
all the rest of the nodes with probability α

Step (i) implements gene duplication, in which both the
original and the replicated proteins retain the same struc-
tural properties and, consequently, the same set of inter-
actions. The rewiring steps (ii) and (iii) implement the
possible mutations of the replicated gene, which trans-
late into the deletion and addition of interactions with
different proteins, respectively.

The model we have just defined is inteded to capture
the topological properties of the proteome map. No ex-
plicit functionality is included in the description of the
proteins and this is certainly a drawback. But by ig-
noring the specific features of the protein-protein inter-
actions and the underlying regulation dynamics, we can
explore the question of how much the network topology is
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FIG. 2 Rules of proteome growth in the four possible scenarios. First, (1) duplication occurs after randomly selecting a node
(small arrow). Then (2) deletion of connections occurs with probability δ. This event can be correlated (C) when the deleted
links are connected to the newly generated node or uncorrelated (NC), when all links are considered for deletion. Finally (3)
new connections are generated with probability α, again in a correlated or uncorrelated way.

due to the duplication and diversification processes. Al-
though through the evolution of genomes genes become
non-functional, here we assume that all interactions are
functional and thus no pseudogenes are created.

IV. ANALYTICAL STUDY OF THE MODEL:
MEAN-FIELD RATE EQUATION FOR THE AVERAGE
CONNECTIVITY

Since we have two free parameters in our model,
namely the deletion probability δ and the addition prob-
ability α, we should first constrain their possible values
by using the available empirical data. One first average
property that can be determined is the evolution of the
average number of interactions per protein/gene through
time, which can be compared with the evidence from real
proteomes (Jeong et al., 2001a; Wagner, 2001a), as well
as recent analysis of large-scale perturbation experiments
(Wagner, 2001b). This can be done for any model with
node duplication plus addition/deletion of nodes by con-
sidering the discret dynamics of the number or links LN
at a given step N , where N is the number of nodes in
the network (see also Vázquez et al. (2001)). In general,
we can write the evolution equation

LN+1 = LN +KN + φa(KN , LN )− φd(KN , LN ), (6)

where KN = 2LN/N indicates average connectivity at
the N -th duplication event, and φa and φd stand for the
general rates of addition/deletion of nodes, respectively.

For the particular case of the model defined in the pre-
vious Section, the rate equation takes the form

LN+1 = LN +KN + α(N −KN )− δKN , (7)

where the last two terms correspond to the addition of
links to a fraction α to the N −KN units not connected
to the duplicated node, plus the deletion of any of the
new KN links, with probability δ. Using the continuous
approximation

dKN

dN
' KN+1 −KN , (8)

Eq. (7) can be written

dKN

dN
=

1
N

[KN + 2α(N −KN )− 2δKN ] , (9)

whose solution is

KN =
α

α+ δ
N +

(
K1 −

α

α+ δ

)
NΓ, (10)

where Γ = 1− 2(α+ δ) and K1 is the initial connectivity
at N = 1. For any value of α and δ this version leads
to an increasing connectivity through time. Under this
conditions, and in order to have a final sparse graph with
a low number of links per protein, we need to consider
two possible scenarios. The first would consider fixed α
and δ values and a finite N that we take as the proteome
size. Assuming that δ+α > 1/2 in order to ensure Γ < 0,
the asymptotic behavior of KN is dominated by the first,
linear term. If the desired connectivity is indicated as
K∗, the required number of nodes N∗ will be

N∗ =
⌈
α+ δ

α
K∗
⌉
, (11)

where dxe indicates the integer part of x.
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Another, more elegant, possibility is to assume that
the rate of link creation scales as the inverse of N , i.e.
α = β/N , where β > 0 is some constant. That is, the
rate of addition of new links (the stablishment of new
viable interactions between proteins) is inversely propor-
tional to the network size, and thus much smaller than
the deletion rate δ, in agreement with the rates observed
in Wagner (2001a). Using this scaling form, the rate
equation for KN reads now

dKN

dN
=

1
N

(1− 2δ)KN +
2β
N
− 2βKN

N2
. (12)

The time dependent solution now reads

KN = N1−2δe2β/N
[
C + (2β)2δΓ(1− 2δ, 2β/N)

]
, (13)

where C is an integration constant and Γ(a, z) is the
incomplete Gamma function (Abramowitz & Stegun,
1972). For large values of N (small z) we can use the
Taylor expansion of Γ(a, z), given by:

Γ(a, z) = Γ(a)− za
∞∑
m=0

(−z)m

(m+ a)m!
, (14)

that yields

KN = N1−2δe2β/N
[
C + (2β)2δΓ(1− 2δ)

]
− 2βe2β/N

∞∑
m=0

(−2β/N)m

(m+ 1− 2δ)m!
.

For δ > 1/2, a finite average connectivity is reached at
infinite N ,

K∞ = lim
N→∞

KN =
2β

2δ − 1
. (15)

This is thus consistent with the data analysis by Wagner
(2001a). Eq. (15) can be used to restrict the number of
independent parameters of the model, by fixing K∞ to
the values experimentally found in real proteome maps.
Thus, we can fix the value of β by

β = (δ − 1/2)K∞ ≡ (δ − 1/2) 〈k〉 . (16)

V. ANALYTICAL STUDY OF THE MODEL: RATE
EQUATION FOR THE NODE DISTRIBUTION nk

The rate equation approach to evolving networks
(Krapivsky et al., 2000) can be fruitfully applied to the

proteome model under consideration. This approach fo-
cuses on the time evolution of the number nk(t) of nodes
in the network with exactly k links at time t. Defining
our network as the set of numbers nk(t), we have that
the total number of nodes N is given by

N =
∑
k

nk, (17)

while the total number of links is given by

L =
1
2

∑
k

knk, (18)

since the sum over node connections double-counts links.

Time is divided into periods. In each period, t→ t+1,
one node is duplicated at random, so that N → N+1. If,
after each duplication, there is a probability δ to delete
each link from the just-duplicated node, the probability
of increasing the number of nodes at degree k, by direct
duplication without link deletion, is given by

Prself,dup [nk → nk + 1] =
nk
N

(1− kδ). (19)

In this expression nk/N represents the probability of se-
lecting a node of connectivity k and 1− kδ is the proba-
bility of preserving all links in the just duplicated node.
It is important to note than in Eq. (19) we are ignor-
ing the possibility of deleting more than one link in each
duplication event, which will contribute with an amount
proportional to δ2 or smaller. Obviously, this approxi-
mation is correct for small δ. We will see later on that
this fact has important consequences when interpreting
the results obtained in this Section.

On the other hand, a node of degree k can be created
from the duplication of a node of degree k + 1 in which
a link is deleted, contributing with a probability

Prabove,dup [nk → nk + 1] =
nk+1

N
(k + 1)δ. (20)

In this expression, the factor (k+1)δ represents the prob-
ability of deleting one of the k + 1 connections of the
duplicated node. The probability of degree change, from
duplication of a node connected to a degree-k node, is
given by:

Prother,dup [(nk−1, nk)→ (nk−1 − 1, nk + 1)] =
nk−1

N
(k − 1)(1− δ), (21)

because knk is the total number of nodes connected to all nodes of degree k. In Eq. (21) we have corrected for the
probability δ that the crucial connecting link was deleted.
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Finally, in the same period, we proceed to add N −kd links with probability α = β/N , where kd is the connectivity
of the just duplicated node. In the limit N � kd, we can simply consider the addition of Nα new links to the graph.
When this last step is performed with the correlated rule (i.e. adding links from the duplicated node to the rest of
the links in the graph), it leads to a nonlocal rate equation for the functions nk. For the sake of simplicity, we will
consider now the simpler case of a uncorrelated addition of links (new links created between any two nodes in the
graph), defering to an Appendix the analysis of the correlated case. We will observe, however, that both cases are
doomed to fail, due to the condition δ � 1, which is incompatible with the constraint of positive average connectivity.

The case of uncorrelated addition of links can be represented as the distribution of 2αN new link ends among the
N nodes in the network. This event contributes with a probability

Pradd [(nk, nk+1)→ (nk − 1, nk+1 + 1)] =
nk
N

2αN =
nk
N

2β, (22)

The probabilities (19), (20), (21), and (22) define the rate equation for the connectivity distribution

dnk(t)
dt

=
nk
N

+
δ

N
[(k + 1)nk+1 − knk] +

1− δ
N

[(k − 1)nk−1 − knk] +
2β
N

[nk−1 − nk] . (23)

The point to note in Eq. (23) is the first term proportional to nk/N . This is the unaltered duplication event, which
can create a node of degree nk only by duplicating another such node. It is separated from the rest of link addition
probabilities, because for rewired links, there is no correlation between the likelihood that a node of degree k will be
created by duplication, and that it will be gained or lost by link addition. Since each time step a new node is added,
Eq. (23) satisfies the condition

dN

dt
=
∑
k

dnk(t)
dt

= 1, (24)

that yields the expected result N(t) = N0 + t, where N0 is the initial number of nodes in the network. In order to
solve Eq. (23), we impose the homogenous condition on the population number

nk(t) = N(t)pk ' tpk, (25)

where pk is the probability of finding a node of connectivity k, which we assume to be independent of time. With
this approximation, the rate equation reads

(k + 1)δpk+1 − (k + 2β)pk + [(k − 1)(1− δ) + 2β]pk−1 = 0. (26)

Eq. (26) can be solve using the generating functional method (Gardiner, 1985). Let us define the the generating
functional

φ(x) =
∑
k

xkpk. (27)

In terms of φ, Eq. (26) can be written[
(1− δ)x2 − x+ δ

] dφ(x)
dx

+ 2β(x− 1)φ(x) = 0. (28)

The solution of this last equation, with the boundary condition φ(1) =
∑
k pk = 1, is

φ(x) =
(
δ − x(1− δ)

2δ − 1

)−2β/(1−δ)

. (29)

Knowing the form of φ(x) we can compute immediately the average connectivity

〈k〉 =
∑
k

kpk ≡ x
dφ(x)
dx

∣∣∣∣
x=1

=
2β

2δ − 1
, (30)

in agreement with the mean-field prediction of Eq. (15).
On the other hand, performing a Taylor expansion of φ(x) around x = 0 we can obtain pk as

pk =
1
k!
φ(k)(0), (31)
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where φ(k)(x) is the k-th derivative of φ(x). Appliying this formula on the function (29), we are led to

pk =
(

2δ − 1
δ

)2β/(1−δ) 1

Γ
(

2β
1−δ

) Γ
(

2β
1−δ + k

)
k!

(
δ

1− δ

)−k
. (32)

By using Stirling’s approximation, we can obtain the asomptotic behavior of pk for large k, that is given by:

pk ∼ (k0 + k)−γe−k/kc , (33)

with

γ = −k0 = 1− 2β
1− δ

, kc =
1

ln
(

δ
δ−1

) . (34)

As we observe from Eq. (33), we recover the same
functional form experimentally observed in Jeong et al.
(2001a). However, it is important to notice that for all
the parameter range in which the exponential cut-off kc
is well-defined, we obtain a value of the degree exponent,
as given by Eq. (34), that is γ ≤ 1. As we will see in the
Appendix, the same result holds when we consider the
rate equation for the full model, in which the link ad-
dition is fully correlated with the new duplicated node.
This result is unsatisfactory, because, as we will see in the
next Section, it does not correspond with the results from
numerical simulations of the model. This discrepancy is
explained by the fact that the N → ∞ solution that
we have constructed has only meaning for δ > 1/2 (see
Eq. (30)). Yet the master equation was defined on the
basis of an independent-event approximation that only
makes sense for δ � 1/2. The master equation itself
should become valid for δ → 0, but then the convergence
results assumed at N → ∞ seem questionable, as indi-
cated by the fact that we get an analytic, but negative,
〈k〉.

There is, however, something qualitative still to be
learned from these equations, in the neighborhood of
δ ∼ 1/2, small β. This is a neighborhood where the
convergence results at large N still give sensible answers,
even if they are not quantitatively correct due to marginal
approximations in the underlying master equation. Yet
at the same time, since this is the smallest value of δ
where we can get answers, it is the one where the master
equation we have constructed is likely to be the best ap-
proximation to the much more complicated true equation
(one with frequent coupled events). Fortunately, as we
will see in the next Section, just in this area a trend from
the simulations seems to at least qualitatively meet the
value given by the analytic solution.

VI. NUMERICAL RESULTS

The proteome model defined in Section 3 depends ef-
fectively on two independent paramenters: the average

connectivity of the network 〈k〉 and the deletion rate of
newly created links δ; given these two parameters, the
rate β can be computed from Eq. (16). The average
connectivity can be estimated from the experimental re-
sults from real proteome maps. Examination of Table I
yields a value 〈k〉 ' 2.40 from the data analyzed in Jeong
et al. (2001a). As a safe estimate, we impose the value
〈k〉 = 2.5 in our model. In Solé et al. (2002b) the rate
δ was roughly estimated from the experimentally calcu-
lated ratio of addition and deletion rates in the yeast
proteome, α/δ (Wagner, 2001a). However, it is clear that
this estimate is strongly dependent of the assumed value
α/δ. In this work we will consider instead the more gen-
eral case of a δ-dependent model. In spite of the draw-
backs of the analytical study in Sec. 5, we should expect
the model to yield, for each value of δ, the functional
form Eq. (1) of the degree distribution, with a degree
exponent γ which is a function of δ (for a fixed average
connectivity 〈k〉 = 2.5). From numerical simulations of
the model we will compute the function γ(δ) and select
the value of δ that yields a degree exponent in agreement
with the experimental observations.

Simulations of the model start from a connected ring of
N0 = 5 nodes and proceed by interating the rules of the
model until the desired network size is achieved. Given
the size of the maps analized by Jeong et al. (2001a), we
consider networks with N = 2 × 103 nodes. In Fig 3 we
plot the values of γ estimated from the functional form
(1) for the degree distribution obtained from computer
simulations of our model, averaging over 1000 network
realizations. The exponent γ is computed performing a
non-linear regression of the corresponding degree distri-
bution in the range k ∈ [1, 80]. In this Figure we observe
that, apart form a concave region for δ very close to 1/2,
γ is an increasing function of δ. We thus conclude that
the value of δ yielding the degree exponent closest to the
experimentally observed one is

δ = 0.562. (35)

We will use this value thorough the rest of the paper.
In Figure 4(a) we show the topology of the giant com-
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FIG. 3 Degree exponent γ as a function of the deletion rate
δ from computer simulations of the proteome model with av-
erage connectivity 〈k〉 = 2.5. Network size N = 2× 103. The
degree distributions is averaged over 1000 different network
realizations.

ponent of a typical realization of the network model of
size N = 2×103. This Figure clearly resembles the giant
component of real yeast networks, as we can see com-
paring with Figure 1(a); we can appreciate the presence
of a few highly connected hubs plus many nodes with
a relatively small number of connections. On the other
hand, in figure 4(b) we plot the connectivity P (k) ob-
tained for networks of size N = 2 × 103, averaged of
10000 realizations. In this figure we observe that the re-
sulting connectivity distribution can be fitted to a power-
law with an exponential cut-off, of the form given by
Eq. (1), with parameters γ = 2.5 ± 0.1 and kc ' 37, in
fair agreement with the measurements reported by Wag-
ner (2001a) and Jeong et al. (2001a).

We have also computed the SW properties of the
model. In Table I we report the values of 〈k〉, γ, C,
and ¯̀ obtained for our model, compared with the values
reported for the yeast S. cerevisiae (Jeong et al., 2001a),
and the values corresponding to a random graph with
size and connectivity comparable with both the model
and the real data. All the magnitudes displayed by the
model compare quite well with the values measured for
the yeast, and represent a further confirmation of the SW
conjecture for the protein networks advanced by Wagner
(2001a).

VII. DISCUSSION

In this paper a detailed analysis of a model of proteome
evolution (Solé et al., 2002b) has been presented. The
model is a simple approximation to the evolution of the
real proteome map, and no functionality is considered
(i.e. no dynamics is explicitly introduced). This sim-
plification imposes some limitations to the conclusions
reachable by our study. Nevertheless, the success in re-

producing the observed statistical features of real interac-
tion maps suggests that our mechanism is able to capture
the essential ingredients that shape large-scale proteome
evolution, at least those that can be extracted from topo-
logical data. In this context, it is important to mention
that, regardless of the limitations and biases imposed by
different large-scale molecular methods (from two-hybrid
assays to mass spectrometry) there seems to be a strong
consistency in the overall pattern that results from these
different sources (Kumar & Snyder, 2001).

Two essential components define the model: growth
by single gene duplication plus correlated re-wiring. Un-
equal cross-over is actually known to be the dominant
contribution to genome growth and dynamics (Ohno,
1970). The second rule is inspired in the assumption that
novelties derived from changes in regulation patterns will
be constrained by the functional properties present in al-
ready established interacting networks or subnetworks.
Such constraints are likely to be relaxed when new genes
are created through duplication.

We derived the rate equations for the evolution of the
degree distribution nk(t) and its stationary states un-
der some constraints imposed by available data from the
analysis of yeast proteome. Although we concentrated
our study in comparing model and data distributions
(which are assumed to represent steady states) future
analysis should also explore the time-dependent behav-
ior of the model as well as possible extensions that would
treat the problem of how resident genomes degrade in
time (Andersson et al., 1998).

Together with the rules that define the evolution of
our proteome model, we introduced characteristic rates
that are estimated from available information. The rates
of change are of course very important, since they are
also responsible for the final conectedness, clustering and
sparseness of the graph. What are the factors that tune
the rates of link addition and deletion? One possible
source of tuning might be related to the cost of wiring.
Additional, functional links, require higher transcription
levels and are constrained by different sources of regula-
tion feedbacks. A sparse graph might be a topological
blueprint of the underlying optimization process operat-
ing at the level of protein wiring. Actually, optimization
of graphs has been shown to lead to scale-free networks
when both link density and graph distance are minimized
simultaneously (Ferrer i Cancho & Solé, 2001). Since
network communication plus low cost leads to heteroge-
neous maps with scaling properties, it might be the case
that the resulting homeostasis characteristic of scale-free
nets is actually a byproduct of evolutionary dynamics.
In such a case, we would reach “robustness for free” as
an emergent property.

Further developments of this model should consider
different components of proteome structure and the un-
derlying dynamics of protein-protein interactions. The
modular structure of cellular networks (Clarcke & Mit-
tenthal, 2001; Hartwell et al., 1999) or the presence of
degeneracy and redundancy (Edelman & Gally, 2001)



10

a)

0

3

1

2

4

810

37

70

75

80
82

94

128

138

164

186

200

212

258

306

317

341

400

428

461

489

562

19

88

163

192
362

146

439

5

6

13

23

43

73

139

218

246

254

278

337

411

419433

482

514

549

616

634

16

40

42

98

194
335

445

456

519

129

154

172

191

249

408

427

48850

441

322

378

97

385

507

618

345

267

157

227

259

268

415 555

595

603

610

81

326

69

381

79

31

584

135

168

211

344

399

572

518

499

491

339

581

607

624

57

224

318

304

413

448

377

405

537

27

580

612

29

44

87

109

175

449

530

565

583

627

33

202

250 293

404

457

39

41

49

89

162

357

512

520

65

291

340

458

516

414

594

373

601

325

474

559

216

239

316

336

475

547

68

394

161

169

613

546

638

171

14 17

78

93

156

237

386

460

522

541

622 632

74

120

166

476

593

608

110

422

108

56

111

240

91

131

170

187

220

264

284

592

600

334

3729

375

379

589

106

115

182

234

275

329

571

390

615

20

197

7
185

213

352

470

147

331

214

596

294

479

236

241

12

606

483

11

21

215

247

468

34

48

86

158

173

207

269

279

371

417

436

465

469

282

473

540

637

513

28

32

53

54

67

141

438

550

85

266

47

346

370

184

217

343

504

15

22

92

253

263

30

179

307

410

590

144

203

321

355

374

477

26

66

123

209

384

437

556

198

140

393

429

453

493

531

450

155

165

167

195

440

579

578

543

18

145

36

46

500

528

274

302

623

629

71

310

466

324

148

312

347

424

366

464

330

369

391

554

153201

262

271

295

535

24

90

114

298

59

101

505

102

112

136

221

561

116

406

523 566

183

447

25

76

189

382

515

61

498

597

320

490

60

72 280

327

333

380
103

105

133

151

231

288

296

536

548

585

104

51

228

257

277

558

633

188

454

62

311

35

176

219

308

480

568

494

38

557

487

233

260

265

412

511

544

630

602

204

338

532

45

64

290

455

222

368

376

426

444

620

332

117

150

180

242

303

495

564

83

285

365

174

63

126

130

272

52

134

243

292

420

432

506

551

229

107

210

611

235

525

55

588

631

95

122

251

538

573

388

524

132

492

58

283

305

281

527

570

287

462

398

244

353

423

496

625

350

435

232

323

617

425

127

190

364

177

599

348

472

113

421

569

270

409

149

539

567

315

77

196

387

199

223

226

314

361

401

485

526

301

256

205

252

395

363

481

463

84

443

328

418

349

501

96

534

99

640

575

100

517

553248

367

402

299

503

193

586

124

206

621

118

392

407

434

471

119

137

225

451

452

619

508

121

497

545

576

609

178

181

300

509

125

605

356

533

574

358

552

521

238

442

142

342

478

582

626

143

152

403

261

286

159

160

208

430

389

245

446

484

351

563

273

383

309

598

510

354

467

591

230

560

416

431

587

459

636

255

289

297

542

397

396639

319

628

313

276

604

360

359

502

614

577

529

486

635

b)
10

0
10

1
10

2

k

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(k

)

FIG. 4 (a) Topology of the giant component of the map obtained with the proteome model with parameters 〈k〉 = 2.5 and
δ = 0.565. Network size N = 2 × 103. (b) Degree distribution for the same model, averaged over 10000 different network
realizations.

and its relation with other natural and artificial systems,
should be explored. The fact that scale-free nets seem
so widespread might actually provide a new framework
for the study of evolutionary convergence: heterogeneous
nets might actually result from optimal searches in high-
dimensional parameter spaces. In this context, the pro-
teome map would offer an excellent example of a system
where selection, optimization, and tinkering might be at
work (Solé et al., 2002a).
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Appendix

In this Appendix we will consider the rate equation for
the node distribution nk for the full correlated version of
the model, in which all the new added links emanate from
the duplicated node. While the terms due to node du-
plication and link removal remain the same (Eqs. (19) to
(21)), the correlated nature of the link addition radically
changes the form of the addition term (22). In this case,
half of the link ends that can modify a node of degree
k are still induced by a duplication of some other node
of unrelated degree. These ends remain proportionally
distributed as in Eq. (22):

Pradd,other [(nk, nk+1)→ (nk − 1, nk+1 + 1)] =
nk
N

(αN) . (36)

One out of every two new link ends, though, remains attached to the duplicated node, potentially shifting its index
from the k of pure duplication to some k + n. In any such addition scenario, all of the original nodes at degree k
remain as they were, and the probability for the new node to add one to the population at degree k + n is

Pradd,self [(nk, nk+n)→ (nk, nk+n + 1)] =
nk
N

(
N

n

)
αn(1− α)N−n. (37)

Eq. (37) can be broken down into the following components: nk/N is the probability that the duplicated node has
degree k. Given that that node is duplicated, every one of the N pre-existing nodes in the graph is considered as a
candidate for a link addition to it, and accepted with probability α. After all such links have been considered, the
probability of any configuration with n additions is αn(1− α)N−n, and the number of such configurations possible is
the binomial coefficient for n successful additions out of N independent tries.

The check that the correct number of link ends has been added is that∑
n

n

(
N

n

)
αn(1− α)N−n = αN, (38)
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which with the (αN) of Eq. (36), gives the (2αN) of the uncorrelated addition model (22).
The probability that a new node of degree k will be created by duplication and no other event is now (1− α)N times

that in the uncorrelated case. At linear order, this is still the dominant term modified by deletions, so the −δknk/N
will remain the same with correlations as in Eq. (23). However, it is no longer correct to give all the addition weight
to nk; rather it must be binomially distributed over all the contributing probabilities at degrees k − n. Making this
replacement, the rate equation for the node distribution in the correlated model takes the form

dnk(t)
dt

=
1
N

k∑
n=0

nk−n

(
N

n

)
αn(1− α)N−n +

δ

N
[(k + 1)nk+1 − knk]

+
1− δ
N

[(k − 1)nk−1 − knk] +
β

N
[nk−1 − nk] . (39)

Imposing again the homogenous condition Eq. (25) we can solve Eq. (39) using the generating functional defined in
Eq. (27). The only new term involves the binomial factor in Eq. (39). Multiplying the binomial term by xk and
summing over k ∈ 0, . . . , N , one can change the order of summation, to get

N∑
k=0

k∑
n=0

xk−npk−n

(
N

n

)
(αx)n(1− α)N−n =

N∑
n=0

(
N

n

)
(αx)n(1− α)N−n

N−n∑
m=0

xmpm. (40)

Using Stirling’s formula to approximate the factorials in the binomial distribution, solving for the stationary n in
the resulting exponential function, and using the fact that α = β/N , it then follows that, at large N , all terms give
non-negligible weight by the binomial cluster around a finite n, so that the moment-generating sums satisfy

N−n∑
m=0

xmpm ≈
N∑
m=0

xmpm ≈ φ(x). (41)

Eq. (40) then factors, with the weight terms summing to

N∑
n=0

(
N

n

)
(αx)n(1− α)N−n =

[
1− (1− x)

β

N

]N
N→∞−→ exp [−β (1− x)] . (42)

Using Eqs. (40) and (42) in the rate equation, yields the final equation for the generating functional φ

[δ − x (1− δ)] dφ
dx

= βψ (x)φ (x) , (43)

where the auxiliary function ψ(x) has the form, valid for large N ,

ψ (x) =
1 + β(1− x)− exp [−β (1− x)]

β(1− x)
. (44)

Given the general relation (43) for φ, it is possible to write a closed-form recursion relation for the moments pk. It
remains a differential relation, but gives some ability to recover the parameters of the asymptotic form for large k.

The first step is to recall Eq. (31), relating the degree distribution to the derivatives of φ. One then changes
variables from x to the natural variable y ≡ β (1− x), in terms of which the large-N form of ψ (y) is

ψ (y) =
1 + y − e−y

y
. (45)

Defining two constant combinations of parameters

υ ≡ 2β
1− δ

, (46)

and

ω ≡ β
(

2δ − 1
1− δ

)
, (47)
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Eq. (43) can be written in the simple form

− 1
β

dφ

dx

∣∣∣∣
x=0

=
dφ

dy

∣∣∣∣
y=β

= − υ
2
ψ (y)
ω + y

φ (y)
∣∣∣∣
y=β

≡ −χ (y)φ (y)|y=β . (48)

It follows from the definition (27) that

〈k〉 = βχ (y)|y→0 =
βυ

ω
=

2β
2δ − 1

, (49)

for either correlated or uncorrelated additions, and from the definition (31) that

p1

p0
= βχ (y)|y=β . (50)

Further, by repeatedly applying Eq. (48), one can obtain an expression for pk/p0 in terms of elementary functions,
which is not possible for φ itself:

pk
p0

=
βk

k!

(
χ (y)− d

dy

)k−1

χ (y)

∣∣∣∣∣
y=β

. (51)

Eq. (51) can be made simpler by regarding υ and ω as constant parameters, and y = β as the function argument,
with differentiation denoted as ∂/∂β in place of d/dy. In this notation

p0 = φ (β) , (52)

Eq. (48) becomes

∂φ

∂β
= −χ (β)φ, (53)

and the definition (31) with repeated application of Eq. (53) gives

pk+1 =
[k − ∂/∂ log β]

[k + 1]
pk. (54)

However, it is not p1 itself that provides a simple initial condition for iteration, but rather p1/p0 = βχ (β), by
Eq. (50). For this reason it is convenient to define

p̂k ≡
pk
p0
. (55)

Eq. (54) is then readily extended with Eq. (53), to produce the desired recursion relation

p̂k+1 =
[k + βχ (β)− ∂/∂ log β]

[k + 1]
p̂k. (56)

The surprising feature of Eq. (56) is that, acting on an ansatz for the asymptotic degree distribution, it provides
tractable constraints on the power law and exponential cutoff. The purpose of the exact solution above was to check
that this is not an indication that the recursion (56) is in error, but rather a problem with asymptotic expansion of
ansätze in powers of large k.

One asks when the recursion (56) is compatible with the leading asymptotic form for p̂k

p̂k = (k0 + k)−γe−k/kc . (57)

In general, k0, γ, and 1/kc are allowed to be functions of β explicitly, as well as of the constant parameters υ and ω.
For this application, Eq. (56) is more conveniently written as

p̂k+1

p̂k
=

[k + p̂1 − ∂ log p̂k/∂ log β]
[k + 1]

. (58)
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The lefthand side of Eq. (58) in this ansatz takes the form

p̂k+1

p̂k
=
(

1 +
1

k0 + k

)−γ
e−1/kc , (59)

which can be expanded as a power series in 1/k at large k.
The righthand side of Eq. (58) becomes

[k + p̂1 − ∂ log p̂k/∂ log β]
[k + 1]

=

1
[k + 1]

[
k

(
1 +

∂ (1/kc)
∂ log β

)
+

∂γ

∂ log β
log (k0 + k) + p̂1 +

∂k0

∂ log β
γ

k0 + k

]
. (60)

Since Eq. (59) is a pure power law in 1/k, the two sides
cannot be matched unless

∂γ

∂ log β
= 0. (61)

If Eq. (61) is satisfied, the O
(
k0
)

term requires that(
1 +

∂ (1/kc)
∂ log β

)
= e−1/kc . (62)

The O
(
k−1

)
term then requires

γ = 1− p̂1e
1/kc . (63)

Eq. (61) is equivalent to the condition
∂ log (1− γ) /∂ log β = 0, which with Eq. (62) and
Eq. (63) evaluates to

e−1/kc = 1− ∂ log p̂1

∂ log β
. (64)

For correlated addition,

p̂1 =
υ

2
1 + β − e−β

ω + β
> 0. (65)

For 0 ≤ ω < 1, it is possible to show that there are
solutions to ∂p̂1/∂β = 0, implying kc →∞. For all ω, at
large β

∂ log p̂1

∂ log β
→ ω

ω + β
=

2δ − 1
δ

, (66)

which is the exact solution in the uncorrelated case. Thus
kc can be made as large as desired in either case, by
taking δ → (1/2)+.

However, the power law given in Eq. (63) is always
strictly less than one, whereas the value from simulations
typically is γ > 1. The only constraint on parameter val-
ues from the consistency condition (61) is given through
Eq. (64), that the derivative of p̂1 with β be positive. In
parameters, this is satisfied when

(1 + ω + β) e−(ω+β) ≥ (1− ω) e−ω. (67)

Presumably, then, the results of this Appendix can
be interpreted as follows. For any parameters satisfying
Eq. (67), there is a best-fit approximation to the degree
distribution with the large-k asymptotic form (57) So the
ansatz itself is no restriction. The result of fitting to that
ansatz then always has power γ < 1, for either correlated
or uncorrelated addition. Given that the approximations
in extracting the degree distribution from the generating
functional were well controlled, the problem must lie in
the master equation itself.

In fact, the root of the problem is that in order to
ensure a finite average degree, the value of δ must be
constrained to be larger than 1/2. All the approxima-
tions of isolated, single events, made in constructing the
equation itself are not very good for such large δ. In
particular, the corrected probability (1− kδ) ≤ 0 for all
k ≥ 2 in Eq. (23). The correct coefficient for this term
would have been (1− δ)k, but then a nonlocal master
term would have been required for cascades down from
all higher k + n in the same line, rather than just from
k + 1.

A similar problem afflicts all of the addition terms, and
addition/deletion interactions. This is particularly seri-
ous for correlated additions, where the relation described
in Eq. (39) becomes completely wrong, because weights
have to be kept for all combinations of addition and dele-
tion terms, rather than treated independently. Further
work in necessary in order to clarify this aspects of the
rate equation approach for the correlated model.
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