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JOURNAL OF APPLIED ECONOMETRICS, VOL. 8, S85-S118 (1993) 

INDIRECT INFERENCE 

C. GOURIEROUX 
CREST and CEPREMAP, 15 bvd Gabriel-Peri, 92245 Malakoff, Cedex France 

A. MONFORT 
CREST-INSEE, 15 bvd Gabriel-Peri, 92245 Malakoff, Cedex France 

AND 

E. RENAULT 
GREMAQ-IDEI, 75 bvd de la Marquette, 31000 Toulouse, France 

SUMMARY 

In this paper we present inference methods which are based on an 'incorrect' criterion, in the sense that 
the optimization of this criterion does not directly provide a consistent estimator of the parameter of 
interest. Moreover, the argument of the criterion, called the auxiliary parameter, may have a larger 
dimension than that of the parameter of interest. A second step, based on simulations, provides a 
consistent and asymptotically normal estimator of the parameter of interest. Various testing procedures 
are also proposed. The methods described in this paper only require that the model can be simulated, 
therefore they should be useful for models whose complexity rules out a direct approach. Various fields 
of applications are suggested (microeconometrics, finance, macroeconometrics). 

1. INTRODUCTION 

Econometric models often lead to complex formulations for the conditional distribution of the 
endogenous variables given the exogenous variables and the lagged endogenous values. These 
formulations may even be such that, it is impossible to efficiently estimate the parameters of 
interest because of the intractability of the likelihood function. The examples of such situations 
are numerous in the literature: discrete choice models with a large number of alternatives, job 
search-models, description of optimal dynamic behaviours, non-linear models with random 
coefficients, non-linear rational expectation models, continuous-time model with stochastic 
volatility, factor ARCH models. In such cases, a natural procedure is to replace the likelihood 
function by another criterion. This criterion could be, for instance, an approximation of the 
exact likelihood function, or the exact likelihood function of an approximated model, but we 
shall see that the choice is much larger. 

The aim of this paper is to show that a correct inference can be based on this 'incorrect' 
criterion. The main steps of the estimation method, called the indirect estimation method, are 
the following. First, we consider an auxiliary parameter and an estimation method for this 
parameter. Then this method is applied to the observations and to simulated values drawn 
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from the true model and associated with a value 0 of the parameter of interest. Finally, 0 is 
calibrated in order to obtain close values for the two estimators of the auxiliary parameter. 
The resulting estimator of 0 has rather nice asymptotic properties when the auxiliary parameter 
and the criterion are well chosen and this allows for the development of a complete theory of 
indirect estimation. This kind of method was first proposed by Smith (1990) and the extensions 
described here are threefold. First, we take explicitly into account the presence of exogenous 
variables and we derive the modified variance-covariance matrix of the estimator. Second, we 
consider more general criteria for the first-step estimator of the auxiliary parameter. Third, we 
introduce several specification tests of the initial model and a general theory of hypotheses 
testing based on indirect estimation. Moreover, we show how these methods can be applied 
to the microeconometrics, macroeconometrics, and econometrics of finance. 

In Section 2 we describe the indirect estimation method with its two steps: (1) definition and 
estimation of the auxiliary parameter and (2) calibration of the parameter of interest by 
comparison of the estimators of the auxiliary parameter computed from the observations and 
from simulations, respectively. 

The asymptotic distributional properties of indirect estimators are given in Section 3. They 
depend on the retained auxiliary parameter, on the first-step estimation procedure, on the 
metric used to compare the two estimators, and on the number of simulated values. We discuss 
the optimal choice of the metric. Moreover, we show that the indirect method contains, as a 
special case, the simulated method of moments (SMM) (McFadden, 1989; Pakes and Pollard, 
1989; Duffie and Singleton, 1989; Smith, 1993; Gourieroux and Monfort, 1993). 

In Section 4 we show how indirect estimators may be used to construct specification tests. 
We also propose a consistency test for the estimator of the parameter of interest based on a 
proxy model. 

In Section 5 we introduce a general test theory based on indirect estimators and we show, 
in particular, that the usual equivalence between the Wald test, the score test, and the test 
based on optimal values of the objective function remains valid despite the presence of 
simulations. 

In Section 6 we consider a simple Monte Carlo illustration of the technique: the estimation 
of the parameters of a moving-average process by means of a preliminary estimation of an 
autoregressive representation. In this case the indirect estimation method may be seen as a way 
of correcting for the lag truncation effect in the AR representation. Some light on the finite 
sample properties of the method is obtained from this example. 

In Section 7 we show how the indirect methods can be used for the estimation of the 
parameters appearing in stochastic differential equations. Monte Carlo results are given for the 
case of a geometric brownian motion and of an Ornstein-Uhlenbeck process. 

In Section 8 we consider two applications to the econometrics of finance: estimation of 
stochastic volatility models and of factor ARCH models. 

In Section 9 we describe potential applications to microeconometrics. In discrete choice 
models with a large number of alternatives, the log-likelihood function often contains high- 
dimensional integrals. To solve this problem we first exhibit a logit approximation of the c.d.f 
of the multivariate normal distribution. Then this approximation is used to base the indirect 
approach on an approximated maximum likelihood procedure. 

In Section 10 we describe some examples in the domain of macroeconometrics: correction 
for the linearization of a non-linear model, correction for the use of the extended Kalman 
filter. 

Section 11 concludes and the proofs are given in four appendices. 
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INDIRECT INFERENCE 

2. INDIRECT ESTIMATION METHODS 

2.1. The Model 

We consider the following dynamic model: 

yt = r(yt-1, Xt, Ut, 0) 

ut= P(Ut-I, et,0 ), 0 E(@E (R 

where the x s are observable exogenous variables whereas the u/s and the c/s are not observed. 
We assume that: (Al) txt) is an homogeneous Markov process, independent of {et) (and [ut)); 
the process (et) is a white noise whose distribution Go is known, and the process (yt,Xt) is 
stationary. 

Note that the knowledge of the distribution of Et is not a real assumption, in the parametric 
case, since Et can always be considered as a function of a white noise with a known distribution 
and of a parameter which can be incorporated into 0. 

The conditional probability density function (p.d.f.) of xt given its past is denoted by: 
fo(xt/xt-i) = fo(xtlt- 1), where xt- 1 = (xt- ,Xt-2,...). 

Models with processes of larger order or with reduced forms containing more than one lag 
in y, x, or u can be included in the previous formulation by increasing the dimension of the 
processes. 

Under the above assumption it is possible to simulate values of yl, ...,YT for a given initial 
condition zo = (yo, uo) and a given value of the parameter 0, conditionally to an observed path 
of the exogenous variables xo, ... XT. This is done by drawing simulated values E1, ..., T in Go, 
and by computing 

Yt(O, zo), t = O,... T (2) 

where 

Yo(0, zo) = yo 

Yt(0, zo) = r[yt- (0, zo), xt, Ut(0, uo), 0 

it(O, Uo) = 
[UIit-1 (0, Uo), Et, 0] 

Note that assumption (Al) implies that Xt is a strongly exogenous process. This means that 
we assume that potential problems due to non-strongly exogenous variables have been solved 
by considering them as functions of lagged endogenous variables. It is also worth noting that 
models in which non-strongly exogenous variables appear have the serious drawback of not 
being simulable. 

With such a parametric model it is theoretically possible to compute the conditional density 
function of yl ... YT given zo, Xi ... XT, and therefore to estimate the unknown true value 0o of 
0 by a conditional maximum likelihood approach. However, in practice this likelihood 
function may be computationally intractable. In the following subsections we describe two-step 
estimation methods, in which all that is required from model (1) is to be easily simulated. 

2.2. The Auxiliary Parameter and its Estimator 

The auxiliary parameter and its estimator are defined in the following way. We introduce a 
criterion which depends on the observations yT= (Yi, ...,YT), X1= (Xi .... XT) and on the 
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auxiliary parameter 3 E B C IR. This parameter is estimated by maximizing the criterion 

Max Qr(YT, xT, ) (3) 
3EB 

We denote by AT the solution of this problem: 

AT = Argmax QT(YT, X,f) (4) 
OEB 

Let us assume that the criterion tends asymptotically (and uniformly almost certainly) to a 
non-stochastic limit: 

(A2) lim QT(YT, XT, A) = Q-o(Fo, Go, 0o, 98) (5) 
T- oo 

This limit depends on the unknown auxiliary parameter 0, on the characteristics of the true 
distribution (i.e. the transition distribution Fo of txtJ, which is unknown), on the marginal 
distribution Go of Jet) (which is known), and on the true parameter of interest 8o. It may also 
depend on the initial value zo, and equation (5) includes the assumption that the initial 
conditions have no asymptotic effects. Moreover, let us assume that this limit criterion is 
continuous in / and as a unique maximum: 

(A3) oB = Argmax Qoo(Fo, Go, 0o, () (6) 
3EB 

We know from the usual asymptotic theory (see Gallant and White, 1988, Chapter 3) that 
under assumptions (Al), (A2) and (A3) the estimator OT is a consistent estimator of the 
auxiliary parameter fo. It is clear that the auxiliary parameter 13o is unknown since it depends 
on the unknown parameter of interest o0 as well as on the unknown transition distribution Fo 
of the exogenous variables. Moreover, it will be useful to introduce the so-called binding 
function (Gourieroux and Monfort, 1992) defined by 

b(F, G, 0) = Argmax Q.(F, G, O, 3) (7) 
3EB 

We have 
3o = b(Fo, Go, 0o) (8) 

If the function 
b(Fo, Go, .): 0 -- b(Fo, Go, 0) 

was known and one to one, we could deduce from aOT a consistent estimator of the unknown 
parameter of interest 00 by considering the solution AT of rT = b(Fo, Go, AT). However, if the 
model contains some exogenous variables, Fo is unknown and the previous approach cannot 
be used. 1 Even for models without exogenous variables, i.e. for pure time-series models, the 

1 Moreover, even if Fo was known, such an approach would be generally suboptimal since it does not efficiently use 
the information provided by observations xT, of exogenous variables. For instance, in the case of i.i.d. random 
variables (xt,yt), t = 1,2, ..., T and of an auxiliary parameter f which is estimated by an M-estimation procedure: 

1 T 
QT(yT, XT3, ) = (yt, Xt, 3) 

it is clear that this estimator satisfies /T = b (FT, GT, 0o), where PT and OT are the empirical probability distribution 
of x and u( = e). Therefore if the 'finite sample binding function' b(PT, O, .) (see Gouri6roux and Monfort, 1992) 
was known and one to one we could deduce from /T the exact value o0 of unknown parameters while the knowledge 
of the true binding function b(Fo, Go, .) and the solution of b(Fo, Go, 0) = OT only provides a consistent estimator 0T! 
This is the reason why the indirect estimation procedure of o0 follows the previous idea after replacement of the 
unknown function b(FT, OT, .) by a functional estimator based on simulations of the y's. It is important to keep in 
mind that we try to estimate b(FT, OT, .) rather than b(Fo, Go,.). In order to do this, it is better to perform only 
simulations of the Ut associated with observed values of the Xt. 
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INDIRECT INFERENCE 

binding function may be difficult to compute. The second step of the estimation procedure 
follows the previous idea after replacement of the unknown function b(Fo,Go,.) by a 
functional estimator based on simulations of the y's. The following assumption will be 
necessary: 

(A4) b(Fo, Go, .) is one to one and a 
(Fo, Go, 80) is of full-column rank (9) Fo, 

2.3. The Second Step 

For a given value of 0, we can consider H simulated paths [ht(0, zh), t = 0, ... T], h = 1 ... H 
based on independent drawings of Et, (£e, ..., '[), and on initial values zh, h = 1, ... H. 

For each of these paths, we can also consider the optimization problem: 

Max QT((h)T, x, /3) (10) 
3EB 

in which the observed values are replaced by the simulated ones. This problem has a solution: 

^T(, zo) = Argmax QT((Yh)T, x, ) (11) 
3EB 

When T tends to infinity this solution tends to a solution of the limit problem: 

Max Q.(Fo,GoO, 0,) 
3EB 

i.e. lim ~ (0, zoh) = b(Fo, Go, 0) 
T- oo 

Thereforeh ^(., zh) is a consistent functional estimator of b(Fo, Go, .). 
It is now possible to define the indirect estimator of 0. The idea is simply to calibrate the 

value of 0 in order to have 
H 

h h 
- y Th(0ZOh) 

h= 

close to Tr. 

Proposition 1: An indirect estimator of 0 is defined as a solution TH'(Q) of a minimum 
distance problem: 

- 1 - ~h , ( h) Min T_- 1 T / (0, zs ) QT T T- oT( Z) 
OE® . H h . . H i= 

where QT is a positive definite matrix converging to a deterministic positive definite matrix Q. 
Under assumptions (Al), (A2), (A3) and (A4) the indirect estimator THp(Q) is a consistent 
estimator of 0o. 

The previous approach necessitates H optimizations of the simulated criterion for each value 
of 0 involved in the minimization algorithm. It is possible to replace these H optimizations by 
only one. Let us first consider the TH values of the x variables obtained by repeating H times 
the values xi ... XT: 

X1 = Xi, ..., XT = XT, XT+1 = Xl, ...,X TH = XT. 
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Then we compute 

t(0, Zo), t = 0,..., HT 

where 
Yo(0, zo) = yo 
Yt(0, zo) = r[yt_ 1 (0, zo), Xt, ut(0, zo), 01 
u1t(O, uo) = po[ut- I (, uo), t, 0] 

and Et, t = 1, ..., TH are TH drawings of the white noise process {(t}. 
This approach is equivalent to H drawings of values yh ... y4, with different initial values 

Zo, ZT= (YT, UT), ... ZT(H-1) = (YT(H- 1), UT(H-1)). From these simulated data we may deduce a 
simulated criterion QT[y6H, XiH, B3] and the associated estimator 

iHT [O, Zo] = Argmax QTH[ Y TH, XTH, ] (12) 
BEB 

Proposition 2: Another version of the indirect estimator of 0 is defined as the solution of 

Min (AT- 3HT[O,Yo] )'QT[ T- HT(0,Yo)] 
OE® 

It is a consistent estimator of 0o under the same conditions as in proposition 1. 

It will be shown in Appendix 1 that both versions of the indirect estimator have the same 
asymptotic properties. 

This kind of estimator is considered by Smith (1990) for specific criteria based on 
misspecified log-likelihood functions and when no exogenous variables are present. 

2.4. Numerical Aspects 

It should be emphasized that the indirect estimator is obtained without evaluating the complete 
functions Ah (., zo ) or HT(., Zo), but only their values for the O's appearing in the optimization 
algorithm. Moreover, the same simulated values eg, ..., g, h = 1, ... H are used for all the 
values of 0; these values can be either stored in memory or redrawn with the same seed values. 

In several applications (see Sections 7-10) the auxiliary parameter and the criterion are 
defined in one of the following ways. First, we can replace the initial reduced-form equation 
(1) by another: 

Yt = r*(yt-1,xt, ut, 3) (13) 

where r* is an approximation of r for which the conditional log-likelihood function L *(/8) may 
be easily derived and we take QT = (1/T)L k(,). Second, we can take for QT an approximation 
of (1/ T)Lr(A8), where LT(13) is the exact log-likelihood function. In such cases the estimation 
method based on QT is an approximated log-likelihood method and the ,B parameter often has 
the same dimension as 0 (and a similar interpretation). In these important cases, the indirect 
estimator is independent of the choice of fT and is the solution of 

1 H 
T= Oh (0Z4h) 
h=l 

or of 
T = IHT(O, Zo) 

This system may be solved numerically by using as initial value of 0: 0° = 13T. 
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2.5. An Equivalent Method 

Following Gallant and Tauchen (1992), we can propose a third version of the indirect estimator 
of 0 obtained by 

aQT '"' ' rB^rl aQrT fH(E) = Argmin - [(o), [ TH( , XAT] H [YTH(0), iXT, T] 
e ap gp 

It is shown in Appendix 1 that 0(s) is asymptotically equivalent to Ot'(JoLJo) [see (17) 
below]. Therefore the family of estimators T (E) is asymptotically the same as the family 
AT (Q); the optimal value of E is obviously E*= Jo'1Q*Jo' = (Io -Ko)-1 [see (19) below]. 

This version may be computationally interesting if the gradient aQT/of has a closed form, 
because it necessitates only one optimization in 0. This kind of approach was first proposed 
by Gallant and Tauchen (1992) in a special case where: the criterion function is a likelihood 
function, the number of simulations is infinite, there are no exogenous variables, and the 
model corresponding to the 'pseudo-likelihood' function is asymptotically well specified. In 
this special case Ko is equal to zero, Io is the information matrix based on the 'pseudo-score', 
and the term 1 + (1/H) appearing in proportions 4 and 5 is equal to 1. 

This third version of the indirect estimators is different from the estimator generalizing the 
Simulated Quasi Maximum Likelihood estimator (SQML) proposed by Smith (1993). This 
generalized estimator is obtained by maximizing the constrained criterion: 

Max QT[ [ Y , x,/HT(0)I 

It is shown in Appendix 1 that this estimator is consistent but not asymptotically efficient, since 
it has the same asymptotic behaviour as 0(Jo) and, in general, Jo  Q* = Jo(Io - Ko) -Jo. 

3. ASYMPTOTIC DISTRIBUTION OF INDIRECT ESTIMATORS 

In this section we deduce the main asymptotic results, whose proofs are given in Appendix 1. 
We make the following assumptions: 

(A5) r=T d- (YT, x,o)- - TS - ([yT(o, z)]xT o o] (14) 
(p H h=l op 

is asymptotically normal with zero mean, with an asymptotic variance-covariance matrix given 
by 

W= lim V(rT) 
T- oo 

and independent of the initial values zo, h = 1, ... H: 

(A6) lim V T ([ , )] , x, ) = Jo (15) 
T- oo 0( 

(0 
, , ) 

independent of zg: 

(A7) lim CovT aQT ([yh0o,z0h)]T,xT 1o), J dFQT ([(00o, z)]T, XT, fAo) (16) 
T-oo op op ) 
= Ko, independent of zo, zo, for h 1: 

(A8) plim - a Q [ [YT (Fo, Go, o,o ) = Jo (17) r-. o op ap ap apo 
independent of zoh. 
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Since TFT aQ ([Y (Ho, zh)] ix, XT fo) and JT a- ([Y(Or(o, z)] , xT, f3o) ap ap 
are independent conditionally to the exogenous variables, with the same asymptotic 
distribution, we deduce that 

Ko= lim V E T [y4T, X oI/x (18) 
T-»oo 00\ a 

Io-Ko = lim V aT a [YT, xT, o] - E (T 
a [, xT,,o] x (19) 

T--oo 0o a o a / 

Proposition 3: Under assumptions (A1)-(A8) and the usual regularity conditions, the 
indirect estimator is asymptotically normal, when H is fixed and T goes to infinity: 

JT (~T(O) - Oo) -N[O, W(H, Qn)] 

where 

1 \Iab' ab W(H, 0) = - ( Fo,, Go, o) \ Hi/ \ o dao / 

a (Fo, Go, Oo)lJo- 1 (Io - Ko)Jo lQ atb (Fo, Go, 0o) 

(ab' ( F- Go, 7 (Fo, Go, e o)Q ( , 

The asymptotic variance-covariance matrix depends on the metric Q2 and, as usual, there is 
an optimal choice of this matrix, i.e. a choice which minimizes W(H, Q). 

Proposition 4. The optimal choice of the 0 matrix is: Q* = Jo(Io - Ko) -'Jo (assuming that 
Io - Ko is invertible) and 

HW =W(H, o*) I (b + (Fo, Go, Oo)Jo(Io - Ko)- Jo a (Fo, Go, 0o) 

The optimal estimator thus obtained is denoted by OT. 

This bound WHhas another equivalent form. Indeed, the binding function satisfies the first- 
order condition: 

aQ [Fo, Go, 0, b(Fo, Go, 0)] = 0, V@ E) ag 
Therefore a second derivation with respect to 0 gives 

a 2Qo (Fo, Go, 0o, 0o) + a2Qo (Fo, Go, 0o, go) ab (Fo, Go, o) = 0 
dp o o ap dp ' a- 

and from (17): 
ab j, a2\O00 i (Fo, Go, 0o)= JO (Fo, Go, 0o, lo) o' s te folo g poo oa 

This implies the following proposition. 
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Proposition 5. We have 

WH= (I +-) (a Q° (Fo, Go, o, /3o)(Io - Ko)-1 (Fo, Go,00, 0o)) 

When the dimensions of f3 and 0 are the same, we have W(H, Q) = WH, vl, and 

W = ( + ) ) (Fo, Go, , o))o' - Ko)^ (Fo, Go, o, o) () 

It is the asymptotic variance-covariance matrix of the estimator solution of 
H 

r 1 E ^T(o, zoh) 
H h=1 

or of 

T = HT (, Zo). 

The number of replications appears in a multiplicative factor, since 

W(H, Q)=(l+H)W(o, Q) 
and (20) 

WH = (I+HW* 

where W(oo, 0) and W* are implicity defined by the formulae in propositions 3 and 4. It is 
worth noting that these matrices are not, in general, the asymptotic variance-covariance 
matrices of the indirect estimators that would be based on the binding function. 2 It is only true 
when there is no exogenous variable (see Gourieroux and Monfort, 1992). 

The computation of the optimal indirect estimator 9T necessitates a preliminary consistent 
estimator of Q*. In some cases, such an estimator may be directly based on the observations 
and in others it has to be based on a first-stage consistent estimator of 0 (for instance, STH(Id) 
or on the value 

Argmax QT(YT, - X, x o )) 
0 H h=l ) 

(see Smith, 1993). These issues are discussed in Appendix 2, as well as the estimation of WH. 

The previous results are sufficiently general to cover a large number of estimation methods 
(for instance, the Simulated Generalized Method of Moments). 

Let us consider a multidimensional function of the observable variables 

k[yt, ...,Yt-r,Xt, ... Xt-r] (also denoted by kt) 

the associated empirical moments: 

1 r 
kT=- '7 k[yt, ..., Yt-r, Xt, ..., Xt-r] 

Tt=i 

2 The asymptotic variance-covariance matrix of the estimator based on the true binding function (if we knew it) would 
be 

W, = (1 + ab H) [ (Fo o, o o Go,o) 

as if there were no observable exogenous variables (Io - Ko becomes Io). It is clear that the variance-covariance matrix 
WH* is generally greater than WH. As explained in footnote 1, the accuracy of the indirect estimator is improved by 
the observation of the x,'s (which have not to be simulated). 
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and the criterion: 

QT= -12(kT- )'(kT- ) 

Then rT=kT, and an indirect estimator T i(Q) of 0 is obtained by minimizing: 

kT- -- k(yt(0, Zo), .., t-r(0, Zo),Xt, ...,Xt-r) 
TH t=1 

~ - 1 TH 
Q kT--- - k(yt(O, o),..., Yt-r(O, Zo),Xt, ...,Xt-r) TH t=\ 

with the usual convention for x,, r> T. 
This estimator generalizes the SMM estimator proposed by Duffie and Singleton (1993) and 

becomes identical when there is no exogenous variables. Moreover, we have 

Qoo= - (E k - )'(E k - 0), b(Fo,Go, 0o) = E k, Jo= Id 
0 0 0o 

Io - Ko = Vas{\ k [kt-E (ktlx',)] 
t= 0 

Therefore the asymptotic variance-covariance of 4T (OTr(Q) - G0) is 

I( -a/ ak k a k 1 lak / 
W(H, () -= I+ EI - E 

o E Ei ) H \ae/ -0 0 - 
- 

1 

ak\ Iak'\ I k-\ 
xQ (Io-Ko) E- E Q( 

The optimal choice of Q is Q* = (Io - Ko)-1, and, in this case, W(H, Q) becomes 

WH= + +-E (Io- Ko) E ak )- 

In the pure time series cases Ko is equal to 0 and Io - Ko reduces to 

AT t=1 

which provides the Duffie and Singleton (1993) result. 

4. SPECIFICATION TESTS 

The indirect estimation model may be used in a modelling strategy, based on nested hypotheses 
or on the encompassing principle as shown in Gourieroux-Monfort (1992), (see also 
Gourieroux et al., 1983; Mizon and Richard, 1986; Wooldridge, 1990; Hendry and Richard, 
1990; Pesaran and Pesaran, 1991). This section is in the same spirit since it deals with the 
detection of possible misspecifications. 

4.1. Global Specification Test 

A specification test for model (1) may be based on the optimal value of the objective function 
used in the second step of the indirect estimation method. The following proposition is proved 
in Appendix 3. 
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Proposition 6: The statistics: 

T- 1 ' H1 H 
THMin r-- 

H 
(Oz) 1f T-- 

h 
f(,zo) rT = Min 1 +H o T E AT (O, ZO) T T T(-, ZO ) 

1+H ae® Hh=1 h=1 

and 

rT= T H Min [Tr- AHrT(O, )] ' T[r- IHT(, Zo)] 
1 +H oE® 

where Q T is a consistent estimator of 0*, are asymptotically distributed as a chi-square with 
q - p degrees of freedom, where q = dim 3, p = dim 0, when the reduced-form equation (1) 
is well specified. Specification tests of asymptotic level a are associated with the critical regions: 

T= IT> X o-a(q-P)j, = ST > X 1-(q -P)J 

4.2. A Consistency Test for the Proxy Model 

When the initial complex model is replaced by another, in which the parameters , have the 
same dimension as 0 and similar interpretations, it is natural to see if the proxy model is really 
a good approximation of the initial one. For this purpose it is useful to compare: 

(1) The estimator fT of 3 computed from the observations; 
(2) The estimator HT(S3T, Zo) computed from the simulations with the value fT as the value 

of 0 parameter. 

Such an approach does not require the knowledge of the observations, but simply the forms 
of the two models and the knowledge of the estimation under the proxy model. It is a tool 
for checking a posteriori the accuracy of the approximation. 

The implicit null hypothesis is defined by the constraint 

b(Fo, Go, Go) = b(Fo, Go, b(Fo, Go, Go)) 
80o = b(Fo, Go, 0o) (because of the injectivity of b) 

X *Tr consistent estimator of 0o 

This implicit null hypothesis appears as a constraint on 0o (see next section), where the function 
b defining the constraint has to be estimated. If, for instance, the auxiliary parameter is 
estimated by a maximum likelihood method on the proxy model, i.e. by a pseudo-maximum 
likelihood method, we are simply testing for the hypothesis of consistency of the PML 
estimator. 

The asymptotic distribution of JT [rT- fHT(1T,ZO)] is derived in Appendix 3. Other 
specifications tests based on different criteria could be proposed (see Gourieroux et at., 1992). 

5. INDIRECT TESTS OF HYPOTHESES ON THE PARAMETER OF INTEREST 

The indirect estimation approach can be used to test hypotheses on parameter 0. We assume 
that the parameter 0 is partitioned into 

0= 

where 01 and 02 have dimensions pi and p2, respectively. We consider the null hypothesis 
Ho = (01 = 0). 

Despite the use of simulated values the usual equivalence between the Wald test, the score 
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test, and the test based on the comparison of the constrained and unconstrained values of the 
objective function used in the second step remains valid, as shown in Appendix 4. 

To define these tests we have to introduce the optimal unconstrained indirect estimator: 

()I T= (OH) 

and the optimal constrained indirect estimator obtained by optimizing the criterion submitted 
to 01 = 0. This estimator is denoted by 

0 -_OH 
"OH =-T 02T 

The Wald statistic is defined as 

W= T(OfHT)' f1-l( 1T) (21) 

where Wi* is a consistent estimator of the asymptotic covariance-variance matrix of T O81T. 
The score statistic is defined from the gradient of the objective function with respect to 6\ 

evaluated at the unconstrained estimator. This gradient is given by: 

ar= T ( OH) [Bf 3 HT(T 1)] (22) ae1 
and the test statistic is 

sr = TgITAW (23) 

Finally, we can introduce the difference between the optimal values of the objective fucntion: 

C= TH H] )] 

I +H [/T- HT( )] 'T UT- HT(o )] (24) 1 +H 

Proposition 7. The test statistics T/w, ~ s, and tc are asymptotically equivalent under the null 
hypothesis, and have the common distribution x2 (pi). 

Proof. See Appendix 4. 
As usual, the test based on the optimal values of the objective function requires both 

constrained and unconstrained estimation (and simulations). In constrast, the Wald or score 
test procedures only necessitate, respectively, unconstrained and constrained estimations (and 
simulations). 

6. A SIMPLE EXAMPLE 

In this section we consider the estimation of the parameter 0 of a Gaussian moving-average 
process: 

Yt = et- et-1 t = 1,..., T 

where the true value of 8 is 0 -5 and the true variance of Et is 1. The aim is to compare the 
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0 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 1. Estimated p.d.f. of the indirect estimator based on Q ) ( ) and of the ML estimator 

7/ 

0.35 0.40 0.45 0.50 0.55 0.60 

Figure 2. Estimated p.d.f. of the indirect estimator based on Q2) ( ) and of the ML estimator 

properties of the exact maximum likelihood estimator of 0, based on the Kalman filter 
algorithm, with those of several indirect estimators of 0 based on criteria of the form: 

T 

Qr) = X (Yt- Yt-1 * .. -rYt-r)2 
t=r+ 

where r takes various values. 
For each experiment, the number of observations is T= 250 and the number of replications 

is 200. In these experiments we only use one simulated path (H= 1). Moreover, since the 
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oI-i , , \ -- 
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

Figure 3. Estimated p.d.f. of the indirect estimator based on Q3) ( ) and of the ML estimator 

Table I. 

Estimator Mean Standard deviation Root mean square error 

Based on Q-) 481 105 106 
Based on Q2) 491 065 066 
Based on Q3) 497 053 053 
ML 504 061 061 

, . . .~ 

efficiency gain obtained by using the optimal estimator is negligible, we only consider the 
estimators based on Q = Id. 

In Figures 1-3 we show the estimated p.d.f. of the indirect estimators based on Ql), Q2), 
QP), respectively, and the estimated p.d.f. of the ML estimator. Table I shows the empirical 
mean, the standard deviation, and the square root of the mean square error for each of these 
estimators. For all the methods the bias is small. For one lag (r= 1) in the criterion, the 
efficiency loss is relatively important. However, for r = 2 the efficiency is almost reached and 
for r= 3 it is completely reached and even overshot in this particular example. 

It is also worth noting that, in our experiment, the computation of the indirect estimator 
based on Q3) was about eighteen times faster than the computation of the ML estimator. 

7. APPLICATIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS 

7.1. Description of the Method 

Let us consider a diffusion process defined by 

dyt = g(e, yt) dt + h(, yt) dwt (25) 

where twt) is a Brownian motion and the functions g, h satisfy some Lipschitz conditions to 

S98 

This content downloaded from 134.102.186.160 on Mon, 19 Jan 2015 14:27:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INDIRECT INFERENCE 

ensure the stationarity of process tyt ]. For simplicity, we consider the case of a unidimensional 
process, but the results can be extended to the multidimensional case. 

We assume that the process [yt) is observed at some discrete points yi, ...,YT. It is generally 
impossible to deduce from equation (25) the form of the distribution of yl, ...,YT, and a usual 
practice consists in a discretization of the differential equation and in the estimation of the 
parameters from this discretized version. Existing estimators generally are approximated ML 
estimators, whose properties are studied when the interval between successive observations 
tends to zero (Lipster and Shiryayev, 1977, 1978; Ibragimov and Has'minskii, 1981; Genon 
and Catalot, 1990), or simulation based estimators (Duffie and Singleton, 1993). Two papers 
(Hansen and Scheinkman, 1991 and At-Sahalia, 1993) consider the case of fixed sampling 
period and a GMM approach based on the infinitesimal operator. The approach described in 
this section provides an alternative to these papers. 

In fact the discretized version of the model may be seen as an approximated model whose 
likelihood function is used as the criterion of the indirect method. The second step requires 
simulations of the continuous process (25), i.e. discrete simulations with a very small time 
interval. 

A large number of discretized versions of equations (25) exists. Indeed, if k(y) is a twice- 
differentiable function, invertible with respect to y, we deduce from Ito's formula: 

dk(yt) = (yt)g(,y) + 
a k (yt)h2( ,yt) dt + (yt)h(Oyt) dwt 

The associated discretized version is 

ak Ila2k y ak 
k(yt) - k(yt-)= (yt- )g(3,yt- ) +l (t-l)h2(, - l) + (Yt-l)h(,Yt-l)e, 

ay 2 ay2 ay 

where et - IIN(O, 1). (26) 

A is estimated by maximizing the associated log-likelihood or, equivalently: 

i T 
QT,k=- E -Log h(3,yt-l) 

Tt=2 

_ T k(yt) - k(yt-i) - (ak/ay)(yt-l)g(,Yt- 1) - (a2k/ay2)(yt_l)h2(3,yt_-)} 2 

2T t=2 (ak2 1)(Cht_l)h yt-i) 
(27) 

The second step of the indirect estimation method may be seen as a simple tool for 
eliminating the bias due to the discretization, i.e. the so-called convexity effect. 

Let us now apply the indirect methods in two cases in which the exact likelihood function 
of Yi, . ..,YT is known in order to evaluate the efficiency of the method. In both cases we shall 
also evaluate the importance of the implicit correction for the discretization which is 
performed by the indirect estimator, compared to the naive estimator based on the discretized 
model. 

7.2. Estimation of a Geometric Brownian Motion with Drift 

Let us consider the geometric Brownian motion with drift: 

dyt = FAyt dt + ayt dwt (28) 

3 We are grateful to Emmanuelle Clement for helpful assistance in these Monte Carlo experiments. 
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where twt) is a Brownian motion of variance 1. We want to estimate 8 = (ai, a) from discrete 
observations yl, ..., YT. 

In this particular case, there exists an exact discretization of equation (28), namely: 
2 

Log Yt = Log Yt- + t - + at (29) ~ (29) 

from which the maximum likelihood estimators of t and a are easily deduced and will be used 

0 . 

/ \ 

/ . . 

Uo- /< \: 

/ . \.. 

/- / 

0.04 0.08 0.12 0). 1 6 0.20 0.24 0.20 0.32 0.36 0.40 

Figure4. Geometric Brownian motion: estimation of y. Indirect estimator; _ ML 
estimator; .... naive estimator estimator, .. naive estimator 

-0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5. Geometric Brownian motion: estimation of a. Indirect estimator; ML 
estimator; .... naive estimator 
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Table II. Gometric Brownian motion 

Estimator Mean Bias Standard deviation Root mean square error 

ML 0-201 0 001 0-040 0-040 
a 0-503 0-003 0-030 0-030 

Indirect y 0-201 0.001 0-057 0-057 
a 0-499 -0-001 0-087 0-087 

Naive t 0-220 0-020 0-049 0-053 
a 0-624 0-124 0-061 0-138 

c} 

C, 

C) 

ffJ 

t, 

CI 
1- 

0 
Ct 

0 

c-) 

C 

* .~~~~ 
r~~~~~ 

* /~~~~~ 

r~~~~ 
i~~~ 

0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 

Figure 6. Ornstein-Uhlenbeck process: estimation of a. Indirect estimator; _ ML 
estimator; .... naive estimator 

as a reference for the evaluation of the other estimators. The other estimator considered is the 
'naive' estimator based on the discretization of equation (28): 

Yt = (1 + I)Yt- 1 + yt- let (30) 

Finally, we consider a simple indirect estimator based on simulations of the naive discretization 
(30) with a time unit equal to l/n. The numerical values used are t = 0-2, a = 0.5, T=150, 
yo = 10, and, in the indirection estimation, we use n = 10 and H = 1; the number of replications 
is 200. The results are summarized in Figures 4 and 5, and Table II. 

It is clear that the indirect estimator is much less biased than the naive estimator. In fact, 
the bias of the indirect estimator is comparable (or even smaller for a) with that of the ML 
estimator. The root mean square error of the indirect estimator is also smaller than that of the 
naive estimator (for a) or comparable (for i). 

7.3. Estimation of an Ornstein-Uhlenbeck Process 

The model considered is 

dyt = k(a - yt) dt + a dwt 

..1 I 

c . 
i I I I I 

(31) 
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and we want to estimate = (k, a, a). Again, in this particular model, there exists an exact 
discretization: - 2 k - 1/2 

Yt = a(l -e-k) + e-yt-_l+ a (te 

We also consider the naive discretization: 

(32) 

t = (1 -k)yt-1 +ka+a£et (33) 

and the naive and indirect estimators based on this discretization. 
The numerical values used are k = 0-8, a = 0 1, a = 0-06, yo = 0- 1, T= 250, n = 10, H= 1, 

and the number of replications is 200. The results are given in Figures 6-8 and Table III. 

0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 

Figure 7. Ornstein-Uhlenbeck process: estimation of a. Indirect estimator; __ ML 
estimator; .... naive estimator 

to 
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'4 

I) 

1· 

13 

/· 
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0.4 0.6 0.8 1.0 1.2 1.4 

Figure 8. Ornstein-Uhlenbeck process: estimation of k. Indirect estimator; _ ML 
estimator; .... naive estimator 
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Table III. The Ornstein-Uhlenbeck process 

Estimator Mean Bias Standard deviation Root mean square error 

ML k 0-859 0.059 0-122 0-135 
a 0.100 0.000 0.005 0.005 
a 0-063 0-003 0-004 0.005 

Indirect k 0-811 0.011 0-170 0-170 
a 0.100 0.000 0-007 0-007 

a 0-060 00000 0'005 0'005 
Naive k 0-574 -0-226 0.051 0-232 

a 0.100 0.000 0.005 0.005 
a 0-043 -0-017 0-002 0-017 

It turns out that, by chance, the naive and the ML estimators of a are identical in this 
particular model. This implies that the indirect estimator of a, although perfectly unbiased as 
the other estimators, is slightly less efficient. As far as the estimation of k and a is concerned, 
the indirect estimator is clearly much better, specially for the bias, than the naive estimator, 
and the efficiency loss, compared to the ML estimator, is not high even in this simple case 
where H= 1; moreover the naive estimator shows a misleading accuracy around a biased value. 

8. APPLICATIONS TO FINANCIAL MODELS 

8.1. Estimation of Stochastic Volatility Models 

This kind of model appears in the literature in relation with the option-valuation problem and 
as the natural continuous time analogue of the ARCH processes (Nelson, 1990). In the basic 
model, the stock price is defined by 

dyt = LgYt dt + atYt dwlt (34) 

where the logarithm of the volatility follows an Ornstein-Uhlenbeck process: 

dLog at = a(b - Log at) dt + c dw2t (35) 

and (wlt), (w2t) are two correlated Brownian motions. 
As in the previous section, it is possible to replace models (34) and (35) by a discrete time 

version. However, since only prices are observed and not the volatility, the discrete time model 
appears as a non-linear state space model, for which, in general, no simple filtering algorithm 
exists. 

However, it may be possible to introduce slight modifications of this discrete time model in 
order to be able to apply the standard Kalman filter for the computation of a pseudo-likelihood 
function. Such an idea is described in Harvey et al. (1992) for the proxy model 

[Log yt = Log Yt- + telt (36) 
(Log oat = do + di Log at- + ye2t 

where (elt, e2t) is a Gaussian process with zero mean, unit variance, and an unknown 
correlation. This proxy model is not exactly a discrete version of equations (34) and (35) since 
it is implicitly assumed that the parameters Ap, a, b, c are such that there is no drift on the 
logarithm of the price. It implies that the proxy model (36) has fewer parameters than the 
initial one (equations (34) and (35)), and the binding function is not injective. With such a 
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proxy model it is not possible to identify all the parameters by the indirect estimation 
approach. Nevertheless, if the proxy model is modified into 

fLog t = + Log Yt-1 + atllt (37) 
Log at = do + di Log at-1 + ye2t 

and even if the Kalman filter does not apply to the above equaiton, we could use it inside a 
two-step procedure, as soon as [at) is stationary. Indeed, a consistent estimator of X is 

XT =- (Log yt - Log yt- ) 
Tt=i 

and the Kalman filter may be applied to the variable Log(Log yt - Log Ytr- - XT)2 instead of 
Log(Log ytl(yt-1))2 in order to estimate the other auxiliary parameters do, dl, 7. 

Therefore it is possible to look for values of the parameters ,, a, b, c, for which these two- 
step estimators of the auxiliary parameters determined from the observations and from the 
simulations, respectively, are close together. Of course, the general results on the asymptotic 
variance-covariance matrix are not valid for this two-step estimation procedure of the 
auxiliary parameter, but they can be extended to this case. 

8.2. Factor ARCH Models 

Multivariate ARCH models naturally contain a large number of parameters, and it is necessary 
to introduce constraints to make this number smaller. A usual approach, compatible with the 
needs of financial theory, leads to the introduction of unobserved factors, which drive the 
whole dynamics of the system (Diebold and Nerlove, 1989; Engle et al., 1989; King et al., 
1990; Gourieroux et al., 1991). Let us consider, for instance, a one-factor model of the 
Diebold-Nerlove type: 

Yt = Xft + et (38) 

where [yt) is the observable n-dimensional process, lEt) is a Gaussian white noise with an 
unknown variance-covariance matrix fl, [ft) is a unidimensional unobserved factor 
independent of [et), and X gives the n sensitivity parameters of the components of yt to the 
common factor ft. We assume that the factor follows an ARCH(1) representation: 

ft/ft-i - N[0, ao + aclf2-] (with the identifying restriction ao + il = 1) (39) 

The p.d.f. of yi,fi, ...,r,fT conditional to fo is: 

l(yT,fT,...i,yl,fi/fo)= II 
t=l 

X exp - ½ (yt - )~)' fl X(2fr)1/2 j1 expt(Yt- Xft)'-1(Yt- Xft) 

1 1 1 ft , x exp 
1 f 

2 
1 

(2)/2 ao + 'aif-f 2 ao + ai1t I' 

The likelihood function associated with the observable variables is 

l(YT,. ) = .. ( ...,yl,i,fo) df ... dfi, 

and has the form of an integral whose dimension is equal to the number of observations. 
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Use of the extended Kalman filter 
The model defined by equations (38) and (39) can be put in a state-space form: 

ft = (aco + af- 2 )1/21lt (transition equation) 

Yt = Xft + Et (measurement equation) 

with rt - IIN (0, 1), independent of let . These equations are non-linear with respect to the 
state ft. However, the extended Kalman filter can be used and, in this case, this simply amounts 
to replacing f2 1 in the transition equation by the square of the filtered value obtained at time 
t - 1. If this extended filter is used to compute an approximate likelihood function, the 
estimators obtained are inconsistent, but this estimator can also be considered as the first-step 
estimator of the indirect estimation method, which leads to a consistent estimator. 

State discretization 
Another approach for approximating the exact log-likelihood function consists of 

approximating directly the transition equation. For this purpose it is interesting to replace the 
initial factor by a discretized factor (see Gourieroux, 1992, Chapter 6). Let us consider a 
partition of the range of ft into K given classes (ak, ak+l), k = 0, ..., K - 1, with ao - oo, 
ak = + oo and let us define the discretized factor: 

ft = bk, if ft E (ak, ak+1) (40) 

where bk, k = 0, ..., K- 1, are given real numbers, such as the centres of the classes, except 
for the extreme ones. Then we get: 

P[ft = bklft-i = b] = Pft-1 E (ak,ak+l)l/ft-1i (ai, al+l)) 

P(ft (ak, ak+1)lft-1 = bi) 

=<J ^ak+1 ak ) 

= oo((o + Cail )1/2) ( (ao+ alb 2)1/2 

= Pkl(aoC, a ) (say). 

The initial factor ARCH model can be replaced by the proxy model: 

Yt = Xft + Et (41) 

where {et , (ft are independent, let - IIN(0, Q), and tft is a qualitative Markov process 
with transition probabilities Pkl(oao, ai). 

In this auxiliary model a recursive evaluation of the likelihood function is available (see 
Hamilton, 1989). Moreover, using Kitagawa's (1987) smoothing formula, the EM algorithm 
provides explicit expressions both at the E and at the M stage for the ML estimation of the 
unrestricted parameters. Therefore these parameters can be chosen as the auxiliary parameters 
and the expression of PkI above can provide relevant starting values for the estimators of these 
parameters based on simulations. 

9. APPLICATION TO MICROECONOMETRICS 

In this section we describe a potential application to discrete-choice models. When the 
independence of irrelevant alternatives (IIA) hypothesis is not satisfied and a probit 
formulation is used, the log-likelihood function contains integrals whose dimension is equal 
to the number of alternatives minus one (McFadden, 1976; Hausman and Wise, 1978). When 
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this dimension is small the integrals may be approximated by polynomial expansions: when it 
is reasonably large, they may be approximated by the Monte Carlo approach using, for 
instance, the simulated maximum likelihood method. The indirect estimation approach may 
also be used in the previous context for any dimension of the integrals. In this subsection we 
describe a logit approximation of the c.d.f. of a multivariate normal distribution. This 
approximation should be useful in various contexts and, in particular, for job-search models 
(see Gouri6roux et al., 1992), or for the treatment of the serial correlation in limited dependent 
variables models (Robinson, 1982; Gourieroux et al., 1984). 

Let Z be a Gaussian random vector, with zero mean and a variance-covariance matrix 
Id + R, where matrix R has a zero diagonal. We are interested in an approximation of the 
c.d.f.: 

P[Z < z] = P(Z1 < zl,..., ZK < ZK) 

'Zf 
.. 

ZK 1 1 
x (d+ )-l]d 

_= 
- 

_ (2;r)K/2 [det(Id+ R)] 1/2 exp[-2 '(Id+ R) 1] dz 

To obtain such an approximation, we use the expansion of the probability around R = 0. A 
first-order expansion gives: 

P[Z< -< 
(2.r)K/2 exp[ -z'(Id - R)] dz 

_oo -co (2, ) 

Z\ rzK K 

. \ II ( (Zk) + E PklZkZl dz 
-oo J-o k=l I<k 

= (Zk) 1 + E Pkl p(z ) (Z,3 
k=1 - I<k 'I(Zk) 4(Zi) 

where .p and 4 are the p.d.f. and the c.d.f. of the standard normal, and Pkl the correlation 
between Zk and Zi. 

This approximation may be replaced by another, since: 
K - 

P[Z<z] - i , k = Pkl (zi) (42) 
k=l I<k I (Zl). 

Finally, we know that the logit distribution is close to the normal distribution N[0O, (ir2/3)]. 
Therefore if F(z) = 1/(1 + exp(-z)) is the c.d.f. of the logistic distribution, we have 
approximately: 

P[Z < z] - F Zk + Z Pkl -F z (43) 
k=1 I<k 3 

The above two expansions have two advantages. They avoid the computation of the initial 
integral and they have a product form, which makes simpler the expression of the 
log-probability: 

Log P[Z < z] - Log F Zk + Pkl I -- F 
k=l I<k 3 

Approximation (43) seems better than (42) since it also defines a c.d.f. of a multivariate 
distribution (see e.g. Thelot, 1981, for K= 2). It is not the case in (42). Moreover, it is easily 
seen that the marginal distribution associated with approximation (43) are logistic distributions 
F((7r/J3)zk). In Gourieroux et al. (1992) these results are used for job-search models. 

A difficulty must be stressed in this kind of discrete-choice application. The simulated paths 
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yTH(O) are not continuous with respect to 0 and, therefore, the classical asymptotic theory 
cannot be used. However, following Pakes and Pollard (1989), there is a way of building a 
generalized asymptotic theory. 

10. APPLICATION TO MACROECONOMETRICS 

Macroeconometrics is also a source of potential applications for indirect estimation methods. 
In this section we consider the practice of linearization in macroeconomic models without or 
with latent variables. Some other examples are related to dynamic optimization problems (the 
first application of indirect methods to such a problem is due to Smith, 1993). 

10.1. Model without Latent Variables 

We consider a dynamic model of the form 

Yt = g(yt- i, xt, ut, 0) (44) 

where y and u have the same dimension. If g is a complicated non-linear function or if the 
ut are correlated, equation (44) may be difficult to handle. It is often replaced by a linearized 
version with respect to ut around zero: 

yt = g(yt-l,xt, x,t ) + g (yt-i,xt, O, O)Ut (45) 

or with respect to ut and yt-i, around zero and a long-run equilibrium value y: 

ag ag yt = g(y,xt, 0, y)+ y (y,x, 0, y)(yt-i - y)+ a (y,xt, 0, y)ut (46) 

In such a case the indirect approach corrects for the linearization bias. A priori there is no 
reason to expand around u = 0 rather than around another point u: 

ag 
Yt = g(yt-l,xt, u, 13) + u (yt- ,Xt, f, 1)(ut - u) (47) 

For a given value iu we may maximize the approximated log-likelihood function (in the 
univariate case): 

1 T ag 
QT, -= -Log =a (yt-1, Xtfi, ) T t=1 au 

1 (yt- g(yt-l,xt, iu, 3) + (aOg/u)(yt_l,xt, i, 3))2 (48) 
2T t=1 (og2/ou)(yt_ 1,X, F, )(4 

Thus we derive an indirect estimator whose asymptotic properties depend on the point iu. It 
may also be interesting to see if there exists a point ui for which the asymptotic 
variance-covariance matrix is minimal, since a part of the linearization bias can certainly be 
corrected by a suitable choice of the value u. 

10.2. Model with Latent Variables 

Let us assume that the model can be put in the nonlinear state space form: 

Zt = glt(Zt-i) + g2t(Zt-1)r1t (49) 
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where Zt is a state vector which is, in general (partially) unobserved, and (E/, lt/) is a Gaussian 
white noise. In this case, the extended Kalman filter (Anderson and Moore, 1979) could be used 
to compute an approximate log-likelihood function. The estimator based on this approximate 
log-likelihood function would be inconsistent, but it could be used as a first-step estimator in 
the indirect estimation procedure, which, in its second step, gives a consistent and 
asymptotically normal estimator. 

11. CONCLUSIONS 

In this paper we have proposed general inference methods which should open the way to the 
treatment of complicated models for which the usual methods are intractable. Estimation 
methods, significance tests, and specification tests are based on simulations. Various potential 
applications are proposed and several Monte Carlo experiments show the feasibility and 
efficiency of the methods. These methods seem particularly promising when the criterion is 
based on approximations of the likelihood function, time discretizations, range discretizations, 
linearizations, etc. In this case the method is simpler (since the weighting matrix plays no role) 
and appears as an automatic correction for the asymptotic bias implied by the approximation. 
Moreover, the choice of the criterion function is natural and is likely to capture most features 
of the true distribution (more than a simulated moment type method) even in situations where 
direct simulated maximum likelihood methods are not available. It is clear, however, that there 
is room for further research in several directions: identification conditions, optimal choice of 
the criterion, use of different criteria to estimate different parts of the models, etc. 

APPENDIX 1: ASYMPTOTIC DISTRIBUTION OF THE INDIRECT ESTIMATORS 

The limit of the optimization problem: 

Min OT-- Z f(O,z~) TT-- 
0 H h=l _ h= 

Min[b(Oo) - b(O)] 'l(b(Oo) - b(H)) 

where b(0) is a notation for b(Fo, Go, 0).The consistency of the indirect estimator of 0 follows. 

First-order Conditions for the Indirect Estimator 

The first-order conditions corresponding to the optimization problem 

Mm E Oh; I~T(OZOh) 2T hTjj h= Min 1 ET 
- T o9 ) W T T-- T 0ZS)) 

H- h=l - h= 

are 

1 E 8 T,' TH zoh) QT Oh TH, Z ) O 
1 a- (0z ST Z O OT,zS) =0 

Hh=l O0 M h=1 

The expansion of these first-order conditions gives 
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1 H 0 (TH, ZOh) 'i ( T, Zo 

2' 1 (a/Tzh 
X ST-- H T(O, zoh)-- h T [0o, o] [T-0o] = O 

Hh=l Hh=l 00 
(51) 

T(H _ 'aOb' b -a1 
( - T o) - 

1- (Fo, Go, 0o)Q <- (Fo, Go, 0o) 

H 

x -(Fo, Go, Oo)nT ^T-- - S T(0o,z) 
00 H h=l 

Expansions of /t and T(0o, zO) 
We get asymptotically 

aQ (y, XT, 3T)= 0 

rJ [yQ i r,, o + O2QTr F T [YTJ, XT_, go] + aQ Yl' [yT , x, o](T- 0o) - o p - - d d ,TT 

J(IT- 0o) =- Jo1 - - [yTx, X 0o], 

using (A8) and the fact that yT may be seen as the 'simulation of the nature'. Similarly, we 
get 

JY(OTh(0o, zo) - 3o) = Jo 
- 

- s [[yh(o, zh)] T,, , o] 

Asymptotic Distribution of 

1 (T-- S 0o, ZO h)) 
r T- 

h=i 

We have 
H 

JT HT-- Z T(°o) JO IQYT (Y XT, x o) 
jh=l ap - - 

- 
hZl 

Q (( h (O Z o))T, X, o. 
-Hh=1 al 

T 

Therefore under (A1)-(A8) this difference is asymptotically normal with zero mean and a 
variance-covariance matrix given by: 

V,as4 J T- S i3Th(0O, zoh) = JO 1 + I + H2 K JO VasfT #T-- T 0.. J1 + 2 Ko o 

= (1 + )Jl(o-~Ko)Jo -(1 +)*- 

Proposition 3 is a consequence of this form of the asymptotic distribution and of expansion 
of JT (iT-- o) above. 
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The Indirect Estimator based on fiH7(O, zo) 
The proof is similar, since 

H 

i(rHT(Go, zo)-°o)) SJo1 
J 
TT aH 

T 
[[y (0o, z)] i, xT, 0o] 

h=1 H ap 
where 

zb = [yo, ?o]l 
Zo = IYT (0o, Zo), Ua } 

yYo , = YO [0o, Zo ] 

The second version of the indirect estimator of 0 discussed in proposition 2 has the same 
asymptotic properties as the first. 

The Third Version of the Indirect Estimator 

This is given by 

TH(E) = Argmin aQ [YH(),XTH, T] S TQ [TH(), XTH, 0T] 

The limit of the minimization problem is 

Min aQ (, b(Qo)) E (0, b(o)) 

where b(0o) is a notation for b(Fo, Go, 0o). Since (aQoIa3)(0o, b(0o)) = 0 the consistency of the 
estimator follows. 

The first-order conditions are 

02Qr [ I ~H aQT r 

at' [YTH(OT), T] [YaH(T T ), ] =OT 

An expansion of these conditions gives 

a2Q" a; -O Q O2Qoo a 2Qo0 a M ? aQT (YH(0O), 0o) + a ( at- 0o) + (aT- ( o) - 0 

fTl(H-0) aQ- E 2Q°-' a-OQ 
-oo ag' a3 ao ' ao ag' 

x 4 7 -b$ (o, o0)+ a a ' 

where (aQT/Ola)(Oo, flo) is a notation for (aQTr/a3)(YTH(0), 0o). 
Moreover, we have 

0= aQ (00, TH(O)) a (80, 90) + a2 , [TrH(0) - o0] ap a ap a ' 
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Using this formula we get 

2Qoo 0 2Q0oo- 
2Qoo 

ao aow ao aoG ao aow 
T o) 

2Q° 
~ 

2Q2Q 0 
x E -JT ao ao [(TH(o) - o] + J7 a, (oT- 0) 

or, since (Ob/l') = Jo1 [(02Qoo)/(aO3 0')] and Jo= - [(02Qoo)/af aO')] 

ab' ab1 Ob' 
T(_- 0) - Jo-O J- o - Jo Jo JO [ E JOT[T- TH(0)] ao aeo ao 

Comparing with the expression of FT (S9 - 0o) given above, we see immediately that these 
estimators are asymptotically equivalent if Qt = Jo E Jo. 

The Estimator Based on the Constrained Maximization of the Criterion 

This estimator 0 H is obtained by the following maximization: 

Max QT[y, y , x rTH()] 

The limit problem is 

Max Q(0o, b(0)) 
0 

whose maximum is reached for 0 = 6o and the consistency of the estimator follows. The 
first-order conditions are 

QT [yT, x, lHT(T H)] = 0 00 

or 

F;T aH( O ) aQT [YTX, , HT(O H)] = 0 

A first-order expansion gives, using (0Qoo/0l)(0o, b((o))= 0, 

a TH( (0o) aQT [yI _Xi -A b'(0o) a2 Qo *H O o g [YT, XT, fHT(O)] + o) , (o, b(0o))JT(0T - 0) 

Using again (aQoo/4)(Oo, b(Go)) = 0 and (02Qola 00') = Jo(Ob/l0'), we get 

- Ob' b1 Ob' OQ 
^ ̂  -^ - 

^00 *H Q ) d J- o [y',X-,TH(o)] 

b' Jo - Jo 1 0b' QT [yT,x, X o] - Jo[(TH(o)- 0o] 00o 00o 0a F a0 

0b' 0b-'1 0b' - Jo' Job ' JO T -10- oTH[O1] ] a.o ao ao 
Therefore (TH(O - 0o) has the same asymptotic distribution as J-T[Or(Jo) -o] and 
is asymptotically less efficient than the optimal indirect estimator whose asymptotic 
distribution is that of 7T[ r[Jo(Io - Ko)'Jo] - 0o]. 
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APPENDIX 2: ESTIMATION OF 2* AND WH 

Estimation of Q* and Optimal Estimation of 0 

fQ* is equal to Jo(Io- Ko) -Jo. 
From (17) we that Jo can be consistently estimated by 

a2 QT 1 1 
a ao I (YT, XT, AT) ag2a (y4',x4,3T) 

As far as the estimation of Io - Ko is concerned, let us first consider the particular case where 
there is no exogenous variable and where QT is equal to 

1 r 1 T 

- Z (Yt, ..., Yt-r, 3) t (B ) Tt=l Tt=l 

In this case Ko = 0 and Io is equal to 

lim V -1 - (yt,...Yt-r ) 
T-oo o -T t =1 op 

Therefore Io can be approximated (see Newey and West, 1987) by 

ro+E (1- (r + Pk) 
k=1I K+ 1, 

with 

f1 l alt-k / rk = (AT) ^, (T) T t=k+l aOP aOP 
In the general case, the estimation of Io - Ko is slightly more complex and it is based on the 
following: 

Io-Ko = lim TV a E ( ,I ) 
Tr-oo o ao o I I 

T- oo 0 0 )W 

=lim TV (Q|T/) 
T--oo 0 

This implies that a consistent estimator of Io - Ko is 

T s 
S (Ws- W)(Ws- W) 

S S=1 

with 

QT [(yS( xT)) , r] 

W=- 1 Ws 
S s=1 

and 8 is any consistent estimator of 0 (for instance f8H(Id)). It is also worth noting that, once 
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a consistent estimator Qt of O* is available, an optimal estimator of 0 is readily obtained from 
the linearized minimum distance estimator: 

MO H1 Hd Ob Min ST (, zoT)- , (9)(0-_) fi 
80 h=l a 

T H(/l, ZOh) (/~)(0 -_ ) OT- 
h=l 

which is just a GLS estimator; the derivative (Ob/O0')(`) can be computed numerically by 
replacing the function b(.) by srT(.,zo). 

Estimator of WH* 

Since 

WH= 1 + i aoi a (I - ao as 

a consistent estimator of WH is obtained as soon as we have a consistent estimator of 

(a2QIoo/ 0B'). Such an estimator can be obtained by a numerical derivation of 

(oQTlo1') [(yS(0)T, xT, T] with respect to 0 evaluated at 9H, where (yS(8))T is a simulated 
path of y based on the parameter 0. 

APPENDIX 3: SPECIFICATION TESTS 

Global Specification Test 

The optimal value of the objective function is (for instance, for fT) 

~: ~.-,(O H)] 'i -,- /.. (- H)] f= T[=T- HT T )] T [AT- HT T )] 

where TH is the optimal indirect estimator. A first-order expansion gives 

fT T fT-0oHT(O)-- (0o)(T -0o) 

Ob 
Q* Tr- HT(60o) - (o)( T - T o) 

By using the asymptotic expansion of JT(gH - o0) given in Appendix 1 we get 

ab H( _ 0o) ab ab' jab ab' 
.a (o T- 0) (o) 0 (o)* a ('0) 0D (Do)Q*Or- Hr(o)) 

and therefore, 

JT(T - HT(0O)) - JT (0)( -0) (d- M) (Tr- HT(ro)) 

where 

M b ( 'b' b * ' * ab' ()* M= (D0) (-o0) (o0) - (eo)* 'De' a'3 3D - '3 

S113 

This content downloaded from 134.102.186.160 on Mon, 19 Jan 2015 14:27:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Si 14 C. GOURIEROUX, A. MONFORT AND E. RENAULT 

is the orthogonal projector on the space spanned by the columns of (abC8D ')(Do) for the inner 
product f*. 

From Appendix 1 we know that 

Therefore a usual argument gives 

TH 
1 + H($(T - 3HT(00))(Id- M)Ii*(Id - M) [1T -3HT(o)] -x2(q - p) 

since (ablaD')(0o) is of full-column rank. 

The Consistency Test 

We have under the null hypothesis Do = b [Fo, Go, DO] 

4F[T13- T 3HT(f3T)I 
= 

FT--a (00)(0-T- 00) 

IP(I ~~~~~H(D)0) (DT8)Q3a(8)0 

ao 

ab OQT 
- Id-- (D ) J- 'F7T (YT, xI,Do0) ao' af3 

-1 H - aQT [(~h)4,X ,DoI 
Hh= ao 

Therefore we deduce that JT [1.T - IHTQ3T)I is asymptotically normal, with zero mean, and an 
asymptotic variance-covariance matrix given by 

ab 9bi I ab 
F= Id- (Do) J 

- 
IJo'1 Id (Do) + J61IoJoi1- Id- (Do) J- 'KoJ6-1 

- e aD - ~ de H - .3 

-aJ6T1KoLTH 0" ae H ab' )1KJ1 J 'KoJ ao (0o) + 1 - J6 'oJo' 

APPENDIX 4: THE TEST OF A NULL HYPOTHESIS ON THE PARAMETER OF 
INTEREST 

This parameter D is partitioned into two subvectors 

D=( 1 

By convention, the null hypothesis is defined by Ho = tDi = 0). 

First-order Expansion of the Unconstrained Indirect Estimator 

This expansion has been given in Appendix 1 and it may be rewritten, under the null 

This content downloaded from 134.102.186.160 on Mon, 19 Jan 2015 14:27:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INDIRECT INFERENCE 

hypothesis: 

H i a*lb ai 
2g T - 020 a db' a0°0 a,00 

ab'\ ' 
f*J JO' (IT aQTU7iT E aQ 

ab') Qa J Hh=l a0 
W2 

We deduce the expansion of the first subvector: 

f r-T [All - A12A2221A21] - - A 12A221 ab')l (J T HT(OO Yo)) 

where 

A ab' fl* ab 
A di jao 

We note that 

b' ab' ab' [Id - M2 A 12Ai_21 C[/f-M2] ao1 aO2 aOl 
where 

2 b Ob' f* b - b' 
aO2 aO2 ao. 002 

is the orthogonal projector on the columns of (ab/0a2) for the inner product Q*. Therefore the 
Wald statistic is asymptotically equivalent to 

TW TH T(H T - 3HT)'Q*(Id - M2) ab 
1+H a0 

1 Ob'W-M Ob) fl*/\-la [db (Id -M2)'D Q(Id -M2) a- 1 ao(Id - M2)' Q*(0T - OHT) 

since the asymptotic variance-covariance matrix of fT(IT - iHT) is (1 + (l/H))(Q*)-1. 

First-order Expansion of the Constrained Estimator of 02 

We get 

T(°20T- 020) 

_(ab' fa* aIVab' fl* TT -HT) 

ae2 adb nj2 aO 
ob' - H) = A2-21 Q*TTHT) 
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Difference of the Optimal Values of the Unconstrained and Constrained Objective 
Function 

From Appendix 3 we deduce that the difference between the two optimal values of the 
objective function (the constrained minus the unconstrained one) is such that. 

T 
H 

(T-HT) (Id-M (I - Mz)'*(d - M2)(T- HT) 1 + H 

TH 
1 + H (OT - HT) (Id - M)' Q*(Id - M)(0 - HrT) 1 + HI 

where 
ab a b' 

M2= , A2-21 - 

M= ab ab a* ab - b' b' 

l{c = ,TH (T- tSHT)'*(Id-M2)(/T- / r) 

ao' a o' ao 

TH 
T c( TH T - -HT)' Q*(Id - M2)(r - ( HT) 

I +H 
TH 

1 + H (TT-HT)'Q(Id- M)(WT-fHT) 

TH 
(1 T - HT) n*(M -M2)(fT - IHT) I +H 

A classical argument of block inverse gives 
bab' b -1A 

Q*(M -M2)=*Id - M2 ) = * ( (Id-M2) 'Q*(Id -M2) o aoi \60\ ofi/ 

x b (Id-M2)'Q* aol 

and the asymptotic equivalence between TC and TW follows. 

First-order Expansion of the Score Test Statistic 

The score test statistic is based on the gradient of the objective function with respect to 82 
evaluated under the null hypothesis. This gradient is proportional to 

a 90 * (T- (0- -- Q T-HT) (b ' [ -l, - 
b (0o)9* pT,-- ,(o ) ( 0o)(O°F-O~o) 

ab' ab ab * 
1 

b 
fT,T - / -HT(/~r- A2nT(0o)-T-- A£~T 

1 ab' 
(Id - A M2)'f2*F-T(T- HrT) T ao1 

[A11 - A12A2l'A 21]{lT 
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There is asymptotically a one-to-one linear relationship betweenand 0 and H'T and this shows 
that the score test is asymptotically equivalent to the Wald test. 

Asymptotic variance-covariance matrix of the unconstrained estimator IT and of the score 

We get 

Vas(rfT) = 1i -1(A 1-alA2'A21)-1 

and therefore we deduce 

Vas (-TT) 
= (l + ) (A1l - A12A2A21) 
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