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a b s t r a c t

A framework for determining and estimating the conditional pairwise relationships of
variables in high dimensional settings when the observed samples are contaminated
with measurement error is proposed. The framework is motivated by the task of
establishing gene regulatory networks from microarray studies, in which measurements
are taken for a large number of genes from a small sample size, but often measured
imperfectly. When no measurement error is present, this problem is often solved by
estimating the precision matrix under sparsity constraints. However, when measurement
error is present, not correcting for it leads to inconsistent estimates of the precision
matrix and poor identification of relationships. To this end, a recent iterative imputation
technique developed in the context of missing data is utilized to correct for the biases
in the estimates imposed from the contamination. This technique is showcased with a
recent variant of the spike-and-slab Lasso to obtain a point estimate of the precision
matrix. Simulation studies show that the new method outperforms the naïve method
that ignores measurement error in both identification and estimation accuracy. The new
method is applied to establish a conditional gene network from a microarray dataset.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In biomedical settings, it is often of interest to use gene expression microarray data to construct a gene regulatory
etwork for metabolic processes (Segal et al., 2003). In such studies, the gene measurements follow a multivariate
aussian distribution, where the inverse covariance matrix, known as the precision matrix, characterizes conditional
ependence between two genes (called two dimensions, or two features). This is accomplished by noting that if an element
f the precision matrix is 0, then the two dimensions are conditionally independent; see Lauritzen (1996) for a review.
his setting, often referred to as a Gaussian graphical model, is where our analysis takes place.
Estimating the precision matrix is a difficult task when the number of observations n is often much less than the

dimension of the features d. A naïve approach is to estimate the precision matrix by the inverse of the empirical covariance
matrix; this estimate, however, is known to perform poorly and is ill-posed when n < d (Johnstone et al., 2001). The
common approach is to assume that the precision matrix is sparse (Dempster, 1972); that is, we assume the precision
matrix’s off-diagonal elements are mostly 0. As a result, most pairs of variables are conditionally independent. The sparsity
assumption has led to different lines of research with regularized models to estimate the precision matrix. While some
approaches utilize a sparse regression technique that estimates the precision by iteratively regressing each variable on
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the remaining variables, for instance Khare et al. (2015), we instead focus on the direct likelihood approach. The direct
likelihood approach optimizes the full likelihood function with an element-wise penalty on the precision matrix; common
examples being graphical lasso (Friedman et al., 2008), CLIME (Cai et al., 2011), and TIGER (Liu et al., 2017). We utilize a
recent Bayesian optimization procedure, called BAGUS, that relies on optimization performed by the EM-algorithm, which
was shown to have desirable theoretical properties, including consistent estimation of the precision matrix and selection
consistency of the conditional pair-wise relationships (Gan et al., 2018).

There are many practical issues associated with Gaussian graphical models, such as hyperparameter tuning (Yuan and
in, 2007), missing data (Liang et al., 2018), and repeated trials (Tan et al., 2016), which practitioners need to adjust for a
uccessful analysis. We address another practical issue that is often involved with the microarray studies, measurement
rror. In fact, microarray studies tend to have noisy measurements because of technical variations resulting from sources
uch as sample preparation, labeling, and hybridization (Zakharkin et al., 2005). In other words, the observations are
xpression values that have been additionally perturbed with noise from some measurement process. The effects of
easurement error on statistical models have been studied extensively for classical settings such as density deconvolution
nd regression (Carroll et al., 2006), but, to our knowledge, has not yet been well studied in the context of Gaussian
raphical models, especially in high dimensional settings.
We propose a Bayesian estimator to correct for measurement error in estimating a sparse precision matrix; our new

ethod extends the optimization procedure of Gan et al. (2018), referred to as BAGUS. While directly incorporating the
stimate of the uncontaminated variable is possible, we find the incorporation of the imputation–regularization technique
f Liang et al. (2018) to provide more desirable results. Our procedure imputes the mismeasured random variables, then
erforms BAGUS on this imputation; these steps are iterated for a small number of cycles, requiring more computation but
iving better results than the naïve estimator. We prove consistency of the estimated precision matrix with the imputed
rocedure, and illustrate the performance in a simulation study. Finally, we apply the methodology to a microarray dataset
hat contains gene expression measurements of favorable histology Wilms tumor (Huang et al., 2009).

. Contaminated Gaussian graphical models

Given a d-dimensional random vector, x = {x1, . . . , xd}, we are interested in the conditional dependence of two
variables xi and xj, for any pair (i, j) with 1 ≤ i < j ≤ d, given all the remaining variables. This conditional dependence
structure is usually represented by an undirected graph G = (V , E), where V = {1, . . . , d} is the set of nodes and
E ⊆ V × V = {(1, 1), (1, 2), . . . , (d, d)} is the set of edges (Lauritzen, 1996). In this representation, the two variables
xi and xj are conditionally independent if there is no edge between node i and node j.

If the vector x follows a multivariate normal distribution with mean 0 and covariance matrix Σx, x ∼ Nd(0,Σx), every
dge corresponds to a non-zero entry in the precision matrix Ωx = Σ−1

x , see Lauritzen (1996). The model in this scenario
s often known as a Gaussian graphical model. In the high dimensional setting, the set of edges are usually assumed to be
parse, meaning that only a few pairs (xi, xj) are conditionally dependent. In the Gaussian case, this assumption implies
nly a few off-diagonal entries of Ωx are non-zero.
Suppose the data consist of iid observations w1, . . . ,wn, where wi = xi + ui, i = 1, . . . , n with xi ∼ Nd(0,Σx) and

i ∼ Nd(0,Σu). Here, wi = (w1
i , . . . , w

d
i ), with the subscript and superscript denoting the observation and components

espectively. Denote W as the n × d matrix of observed data. The model is equivalent to the following hierarchical
epresentation. First, the latent random variables xi are generated from a Nd(0,Σx) distribution, and when conditioned on
i and Σu, we have wi|xi,Σu ∼ Nd(xi,Σu) for each i = 1, . . . , n. This forms an intuitive generative process, where first x
s realized, then contaminated by measurement error u, and observed finally as w. The problem of interest is to estimate
he precision matrix Ωx in the high dimensional setting n < d.

Consider an additive measurement error model where w = x+u and w is the observed data. Denote U = (u1, . . . , un)T
as measurement errors that are independent from data X = (x1, . . . , xn)T . For i = 1, . . . , n, the amount of measurement
error is drawn from another multivariate normal distribution with mean 0 and covariance matrix Σu, ui ∼ Nd(0,Σu).
We assume Σu to be diagonal, and hence the amount of measurement error on each variable is uncorrelated. We also
assume that Σu is known or estimable from ancillary data, such as replicate measurements. This is a common occurrence,
such as in microarray studies where multiple replicates of one subject are collected (Nghiem and Potgieter, 2018), and
we illustrate the estimation procedure in Section 5. The contaminated variables w in general have a different conditional
dependence structure from that of x. Indeed, the covariance and precision matrix of w is given by

Σw = Σx + Σu

and

Ωw = Σ−1
w = (Σx + Σu)

−1
= Ωx − Ωx(I + ΣuΩx)−1ΣuΩx, (1)

espectively; here, I denotes the d × d identity matrix. Eq. (1) follows from the Kailath variant formula in Petersen et al.
(2008). Furthermore, Eq. (1) suggests that Ωw and Ωx are equal if the product Ωx(I + ΣuΩx)−1ΣuΩx is equal to a zero
atrix. This is generally not the case when the matrix Σu is not zero.
When no measurement error is present, i.e. the xi are directly observed, the sample covariance matrix S =

−1 ∑n (x − x̄)(x − x̄)⊤, with x̄ being the sample mean, is a consistent estimator for Σ . However it has the rank of at
i=1 i i x
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most n < d, so it is not invertible to estimate Ωx. When measurement error is present, we assume the covariance matrix of
measurement error Σu is known or estimable from replicates. A naïve approach is first to estimate Σx by Σ̃x = Sw − Σu,
here Sw denotes the sample covariance from contaminated data W , and then to invert Σ̃x to estimate Ωx. The main

ssue with this approach is that Σ̃x is generally not positive definite. This implies its inverse is also not positive definite,
hich is necessary to find a consistent estimate Ωx. Hence, a correction procedure to estimate Ωx need not rely upon the
ample covariance matrix Σ̃x directly. Furthermore, the procedure should also be able to incorporate sparsity constraints
o recover the graphical model structure. These requirements are addressed by the procedure described in the next section.

. The IRO-BAGUS algorithm

In a recent work, Liang et al. (2018) develop a methodology to efficiently handle high dimensional problems with
issing data. Their solution is an EM-algorithm variant which alternates between two steps, the imputation step and

egularized optimization step; we refer to their algorithm as the IRO algorithm. Denote the missing data as Y , and observed
ata as X . Also denote the desired parameter to be estimated by θ , and begin with some initial guess θ (0). During the tth
teration, the IRO algorithm generates Y from the distribution given by the current estimate of θ , i.e. Y ∼ π (Y |X, θ (t−1)).
hen, using X and Y , maximizes θ , under regulation, using the full likelihood. Liang et al. (2018) show that this procedure
esults in a consistent estimate of θ (t), and results in a Markov chain with stationary distribution.

We make use of this framework for our current problem pertaining to mismeasured observations instead of missing
alues. The problems are naturally related in the sense that both are generating values of the true process from some
stimated underlying distribution. We return to the hierarchical structure of the problem, i.e. w|x,Σu ∼ Nd(x,Σu) and
∼ Nd(0,Σx). The IRO algorithm proceeds iteratively between the two following steps:

• Imputation step: At iteration t , draw X (t)
= (x(t)1 , . . . , x(t)d ) from the posterior full conditional of X , using the current

estimate of Ω(t−1)
x . Specifically, for i = 1, . . . , n, draw x(t)i |w,Ω

(t−1)
x ∼ Nd(Λ−1Ωuwi,Λ

−1) where Λ = (Ω(t−1)
x + Ωu).

Note that the posterior distribution of xi depends only on wi due to independence. This allows for easy generation
of data from the true underlying distribution.

• Regularization Step: Apply a regularization to the generated X (t) and obtain a new estimate of Ω(t)
x .

In this work, the regularization step is carried out based on a recent Bayesian methodology, called BAGUS. Hence, the
whole algorithm is referred to as the IRO-BAGUS algorithm. We briefly note that the algorithm proposed relies on the,
typically, unknown measurement error covariance Σu. Assume replicates are observed and an independence assumption
is made between the variables, then the diagonal of Σu is estimable, as elaborated in Appendix. The next Sections 3.1–3.3
utline prior specifications, the full model, and variable selection for BAGUS. After that, Section 3.4 discusses consistency
f the IRO-BAGUS estimate.

.1. The spike-and-slab lasso prior specification

Let ωij denote the (i, j) element of Ωx. Recently, a non-convex, continuous relaxation penalty for the spike-and-slab
rior was created for the standard lasso problem (Ročková and George, 2018). This prior was extended to the case of
raphical models by Gan et al. (2018), and is given by

π (ωij) =
η

2v1
exp

{
−

|ωij|

v1

}
+

1 − η

2v0
exp

{
−

|ωij|

v0

}
(2)

for the off diagonal elements (i ̸= j), where 0 < v0 < v1 and 0 < η < 1. This prior can be interpreted as a mixture
f the spike-and-slab prior. The first component of the mixture has prior probability η, and is associated with the slab
omponent, i.e. ωij ̸= 0. Conversely, with prior probability 1 − η the element is from the spike component, suggesting
ij = 0.
Traditionally, the spike-and-slab prior has a point mass component at 0 and some other continuous distribution for the

lab component. This is to represent setting unwanted terms exactly to 0. Here, both the spike and the slab components are
istributed according to a Laplace distribution; both are centered at 0, but the spike is more tightly centered by a smaller
ariance term than the slab. This relaxation of the spike-and-slab prior allows for efficient gradient based algorithms,
hile still being theoretically sound as shown in Ročková et al. (2018).
Shrinkage is not desired on the diagonal elements, so a different weakly informative exponential prior is given instead,

(ωii) = τ exp {−τωii}. Another consideration for the prior of Ωx is to ensure the whole matrix to be positive definite,
enoting as Ωx ≻ 0. Moreover, in line with Gan et al. (2018), we require the spectral norm to be bounded above by
ome value B, ∥Ωx∥ ≤ B. This assumption will be important for establishing consistency going forward. The full prior
istribution for Ωx is then given by

π (Ωx) =

∏
i<j

π (ωij)
∏
i

π (ωii)I(Ωx ≻ 0)I(∥Ωx∥ ≤ B). (3)
3
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3.2. The full model

Without measurement error, the posterior distribution is specified as

π (Ωx|X) ∝

n∏
i=1

π (xi|Ωx)π (Ωx). (4)

he full conditionals can be derived for (4), but, to avoid computationally expensive MCMC sampling for this large
imensional problem, Gan et al. (2018) opted to instead find the mode of the posterior distribution, often referred to
s the MAP. The MAP can be found by minimizing the uncontaminated (UC) objective

LUC(Ωx) = logπ (Ωx|X) =
n
2

(
tr(X TΩxX) − logdet(Ωx)

)
+

∑
i<j

π (ωij) +

∑
i

π (ωii) + K (5)

ith respect to Ωx, where K is the normalizing constant in (4). To this end, Gan et al. (2018) proved the local convexity
f (4) when ∥Ωx∥ ≤ B < ∞, which allows an easy optimization procedure that converges asymptotically to the correct

precision matrix.

3.3. Variable selection

Many practitioners use Gaussian graphical models for the purpose of identifying non-zero entries of Ωx, which signify
onditional dependencies among the two different variables. The spike-and-slab lasso formulation allows for this quite
asily by viewing the optimization as an instance of the EM-algorithm and defining the hierarchical prior{

ωij|rij = 0 ∼ Laplace(0, v0)
ωij|rij = 1 ∼ Laplace(0, v1).

(6)

Here, rij is the random indicator that the element of the precision matrix follows from the spike or the slab component,
where rij ∼ Bern(η). A further hierarchical level can be added by treating η as random instead of a fixed hyperparameter.
Recent work from Deshpande et al. (2017) illustrates this and is line with the spike-and-slab Lasso setting of Ročková and
George (2018). Given our purpose is to study the effect of the measurement error, we choose to treat η as fixed.

The conditional posterior distribution for rij is also Bernoulli, with probability of success

pij =
v1

v0

1 − η

η
exp

{
|ωij|

(
1
v1

−
1
v0

)}
. (7)

We will use the MAP estimate of ωij in (7) to calculate pij and use it as the approximate probability of inclusion. A hard
threshold T will need to be specified for the inclusion probability matrix to select the final model. Let R and P denote the
matrix whose elements are rij and pij respectively for i = 1, . . . , p, j = 1, . . . , p; then, to obtain the final model, the (i, j)
element of Ωx is set to zero if the MAP of pij is less than T . In practice, it might be better to forgo this inclusion threshold,
and instead rank-order the pij for purposes of downstream investigation. This can enable practitioners to consider more
practical aspects of graphical model and application at hand, such as network interpretability and stability,

3.4. Consistency of the IRO-BAGUS algorithm

The entire data generation process for the contaminated sample is summarized below:

wi|xi,Ωx ∼ Nd(xi,Σu),

xi|Ωx ∼ Nd(0,Ω−1
x ),

ωij|rij = 0, v0 ∼ Laplace(0, v0),
ωij|rij = 1, v1 ∼ Laplace(0, v1),
ωii ∼ Exp(τ ),
rij|η ∼ Bern(η);

here, i ̸= j and i, j = 1, . . . , n. Instead of approximating the posterior distribution of all the parameters, the IRO-BAGUS
algorithm iteratively generates realizations of uncontaminated data, X , then optimizes Ωx with these generated values.
Under some technical conditions, the IRO algorithm is shown to produce a consistent estimate after each iteration in
the context of missing data when the regularization step results in a consistent estimate (Liang et al., 2018). We show
that these conditions are also held in the case of contaminated data, so the IRO-BAGUS algorithm results in a consistent
estimate. Theorem 1 is the analogue statement of consistency as in the missing data case. The proof is given in the
appendix.

Theorem 1. With the model assumptions as shown above and assuming ∥Ωx∥ ≤ B, then the estimate Ω
(t)
x is uniformly

consistent to Ω when log(t) = O(n).
x

4
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It can be seen that the nature of the IRO algorithm is similar to that of MCMC. With additional mild conditions, Liang
t al. (2018) note that the IRO results in a Markov chain with a stationary distribution, and hence the average of the
aximization steps are consistent estimates of the underlying parameters. Our final estimates are the averaged regularized
ptimization steps given by BAGUS from the imputed data at each iteration, removing a small number of the beginning
terations as burn-in. By averaging instead of taking only the final iteration, we make the analysis less variable. In this
ense, the relationships that the correction procedure identifies are more likely to be true relationships, cutting down on
he number of false positives.

.5. Parameter tuning

Four hyperparameters are involved in BAGUS, η, τ , v0, and v1, and there is one threshold T that needs to be specified
to determine the final model. For the hyperparameters, as with Gan et al. (2018), we always set η = 0.5 and τ = v0,
which leaves two hyperparameters to tune. For the threshold T , we consider 30 equi-distant values between 0 and 1. To
choose a final model, we follow Gan et al. (2018), who suggest a BIC-like criteria to select the best model from a grid of
hyperparameters. This criteria is

BIC = n(tr(SΩ̂x) − logdet(Ω̂x)) + log(n) × q,

where Ω̂x is the estimated precision matrix and q is the number of non-zero elements of the estimated in the upper
diagonal of the precision matrix. We use this in similar fashion for the IRO procedure, but instead we use the averaged
Ω

(t)
x in the BIC calculation.

4. Simulation study

4.1. Simulation setup

We investigate the performance of our methodology under several different settings. For each setting we generate xi
following a d-variate Gaussian distribution with mean 0 and precision matrix Ωx according to some graphical structure;
we refer to this as the true data. Then, the contaminated observations wi were generated from wi = xi + ui, where
ui ∼ Nd(0,Σu), i = 1, . . . , n. The measurement error covariance matrix Σu is assumed to be a diagonal matrix, with
element [Σu]ii = γ [Σx]ii, where [Σx]ii is the variance of the dimension xi. In other words, the constant γ controls the
noise-to-signal ratio on each variable. For the purposes of simulation, we assume the amount of measurement error to
be known.

To generate the true data we use the huge package (Zhao et al., 2012). We inspect two different types of graphs, referred
to as hub, and random; we expand on these below where ωij denotes the (i, j) element of Ωx.

1. Hub: The d variables are divided into K = d/20 non-overlapping groups, each group having 20 elements. The kth
group has a ‘‘center’’ at X20(k−1)+1, which has connection to every other element in that group, k = 1, . . . , K . In
other words, ωij = ωji = 1 if and only if i = 20(k − 1) + 1, j = i + m, 1 ≤ m ≤ 20, k = 1, . . . , K . With that
structure, the graph only has d − K edges out of d(d − 1)/2 possible edges.

2. Random: For 1 ≤ i < j ≤ d, ωij = 1 with probability 3
d , 0 otherwise.

We illustrate the structures in Fig. 1.
Each model was generated with n = 100 observations. We inspect each model for d = {100, 200} and γ =

{0.1, 0.25, 0.5}. The amount of correction-imputations was set to be 50, with the first 20% discarded as burn-in; we
note that we inspected 25 and 100 imputations with the same percentage of burn-in samples with minimal differences
in output. Each setting was replicated 50 times, and the final results are the average of these replicates. We assume
the measurement error to be known for the correction procedure. Hyperparameter tuning was done as described in
Section 3.5. Because measurement error is often ignored in the context of GGMs, our simulations also provide perspective
onto the negative effect that measurement error can impose on model performance.

To inspect model performance, we examine both the estimated precision matrix and the ability to do variable selection
using BAGUS on the true data (true), BAGUS on the contaminated data (naïve), and our IRO-BAGUS methodology on the
contaminated data (corrected). For each estimated precision matrix Ω̂x, estimation error is measured by ∥Ω̂x −Ωx∥F , and
variable selection, evaluated by different metrics involving the true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN), are reported: specificity (SPE), sensitivity (SEN), precision (PRE), accuracy (ACC), and Matthews
correlation coefficient (MCC); these values are defined as

SPE =
TN

TN + FP
, SEN =

TP
TP + FN

,

PRE =
TP

TP + FP
, ACC =

TP + TN
TP + FP + TN + FN

,

MCC =
TP × TN − FP × FN

.

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

5
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Fig. 1. Graphical representation for d = 100 of the hub (left) and random (right) structure, respectively. While the hub structure is fixed for a given
d, the random graph is subject to change due to the generation process.

Table 1
Simulation results for the hub graph structure, as specified in Section 4.1. For each signal-to-noise ratio
and d, the true, naïve, and corrected models are shown for metrics defined in Section 4.1.
γ d Model SPE SEN PRE ACC MCC FROB AUC

0.1

100
True 0.99 0.75 0.72 0.99 0.72 4.92 0.83
Naïve 0.98 0.71 0.45 0.98 0.55 6.58 0.80
Corrected 0.99 0.63 0.66 0.99 0.64 5.80 0.82

200
True 1.00 0.74 0.64 0.99 0.69 7.18 0.83
Naïve 0.99 0.67 0.43 0.99 0.53 9.40 0.80
Corrected 1.00 0.64 0.57 0.99 0.60 8.35 0.83

0.25

100
True 0.99 0.76 0.72 0.99 0.74 4.89 0.83
Naïve 0.98 0.59 0.34 0.97 0.43 8.15 0.76
Corrected 0.99 0.50 0.56 0.98 0.52 6.86 0.80

200
True 1.00 0.74 0.64 0.99 0.68 7.31 0.83
Naïve 0.98 0.59 0.25 0.98 0.38 11.57 0.77
Corrected 0.99 0.49 0.48 0.99 0.48 9.90 0.81

0.5

100
True 0.99 0.76 0.70 0.99 0.72 4.98 0.83
Naïve 0.98 0.40 0.26 0.97 0.31 9.52 0.71
Corrected 0.99 0.28 0.54 0.98 0.37 7.94 0.76

200
True 1.00 0.74 0.64 0.99 0.68 7.30 0.83
Naïve 0.98 0.41 0.17 0.98 0.26 13.43 0.72
Corrected 1.00 0.24 0.47 0.99 0.33 11.62 0.78

Additionally, we also report the area under the ROC curve (AUC). Since the AUC marginalizes over all possible thresholds
and tuning parameters, it gives us insight into the amount of separation of the non-zero and zero elements for each
method. This reflects the overall ability to recover the graph structure. These different metrics give insight into the
tradeoffs and gains of each setting.

4.2. Simulation results

Tables 1 and 2 present the results for the hub and random structure, respectively.
To begin, we note the effect of the increasing measurement error. This can be observed by examining the growing

ifference in the performance of the true and naïve model when holding d fixed and increasing the amount of
ontamination. Focusing on the hub structure, a decrease in the quality of selection and estimation can be observed
or each setting, which grows worse with more contamination; for example, when d = 100 the AUC drops from 0.83 to
.80 for γ = 0.1, but drops from 0.83 to 0.76 for γ = 0.5. The estimated precision matrix from the naïve model grows

worse with measurement error, and is about 50% worse when the signal-to-noise is γ = 0.5. Additionally, we note that
he random structure is harder to recover than the hub structure; even without measurement error, the true estimator
erforms worse regarding both selection and estimation to recover the random structure.
6
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Table 2
Simulation results for the random graph structure, as specified in Section 4.1. For each signal-to-noise
ratio and d, the true, naïve, and corrected models are shown for metrics defined in Section 4.1.
γ d Model SPE SEN PRE ACC MCC FROB AUC

0.1

100
True 0.98 0.67 0.58 0.98 0.61 5.19 0.81
Naïve 0.97 0.64 0.40 0.96 0.48 5.59 0.79
Corrected 0.99 0.46 0.68 0.98 0.54 5.25 0.81

200
True 0.99 0.56 0.48 0.98 0.50 8.13 0.79
Naïve 0.99 0.40 0.53 0.99 0.45 7.57 0.77
Corrected 1.00 0.36 0.60 0.99 0.45 7.26 0.80

0.25

100
True 0.99 0.65 0.58 0.98 0.60 5.21 0.81
Naïve 0.98 0.47 0.41 0.96 0.42 6.35 0.76
Corrected 0.99 0.29 0.64 0.97 0.42 5.68 0.78

200
True 0.99 0.58 0.45 0.98 0.50 8.31 0.80
Naïve 0.99 0.38 0.34 0.98 0.34 8.78 0.74
Corrected 1.00 0.26 0.52 0.99 0.36 8.02 0.78

0.5

100
True 0.99 0.65 0.58 0.98 0.60 5.20 0.81
Naïve 0.98 0.33 0.34 0.96 0.31 7.61 0.71
Corrected 1.00 0.13 0.59 0.97 0.27 6.55 0.73

200
True 0.99 0.58 0.46 0.98 0.50 8.38 0.80
Naïve 0.98 0.29 0.20 0.97 0.23 10.34 0.69
Corrected 1.00 0.10 0.46 0.98 0.21 9.25 0.72

Next, we compared the performance of the best model obtained for each method using the tuning method as described
in Section 3.5. Regarding the quality of the estimated precision matrix, measured by the Frobenius norm of the difference
of the estimated and true precision matrix, in both settings the corrected model outperforms the naïve model’s estimate
of the precision matrix. In the hub structure this improvement is often of the order of 15%, while in the random structure
a 10% improvement is generally observed.

Regarding selection performance, compared to the corrected estimator, the naïve estimator has a higher sensitivity
and lower specificity, meaning that it does find more true relationships at the expense of identifying more false positives.
Note that because the true graph is sparse, a 1% decrease in specificity already results in many false positives (for instance,
with d = 100 and the hub structure, the number of false negatives is 4855, so a 1% decrease in specificity results in about
50 more false positives). As a result, when considering selection metrics that take both true positives and false positives
into account (such as precision, accuracy, MCC), the corrected still outperforms the naïve estimator in almost all the
considered settings. For example, regarding precision (PRE), which measures the correctness of the identified positives
by the model, the corrected model outperforms the naïve model in every setting by at least a factor of 1.5. When the
measurement error variance grows, the precision of the corrected estimator can sometimes be more than 2 times better
than the naïve estimator. In addition, the MCC shows preferable performance to the corrected model in the hub graph
structure; comparable MCC results are observed in the random graph structure.

Finally, we turn to the overall performance of each method in recovering the graphical model, as measured by the AUC.
t is observed the corrected model outperforms the naïve model in every setting. This suggests an overall improved model
rom the IRO correction. Intuitively, incorporating information across each of the IRO iterations resulted in an analysis
hat favored identifying relationships that were more certain. In practice, practitioners can also use complementary
nformation from the estimated precision matrix for downstream analysis to choose the final model. This enables
ractitioners to take other practical considerations into account, such as complexity or connectivity of the graph.

. Data analysis

A common source of noise in analysis involving gene expression datasets is measurement error (Rocke and Durbin,
001). Gaussian graphical models have been employed to inspect the relationship of different genes in varying experi-
ents (Krämer et al., 2009). We illustrate our methodology using an Affymetrix microarray dataset containing 144 subjects
f favorable histology Wilms tumors hybridized to the Affymetrix Human Genome U133A Array (Huang et al., 2009). The
ata is publicly available on the GEO website, dataset GSE10320 uploaded 1/30/2009. A feature of Affymetrix data, and
any other gene expression measurement platforms, is the use of multiple probes for each gene for each patient, giving

eplicate measurements for each patient’s gene measurement. The replicates for each patient enable an estimate of the
easurement error, where we again assume the amount of contamination is independent across genes.
We follow the preprocessing steps taken in Sørensen et al. (2015) and Nghiem and Potgieter (2018), which applied

heir methods to this study in the context of measurement error in variable selection for linear models. The process begins
y processing the raw data with the Bayesian Gene Expression (BGX) package (Turro et al., 2007). BGX creates a posterior
istribution for the log-scale expression level of each gene in each sample. The study recorded measurements for 22283

ifferent genes.

7



M. Byrd, L.H. Nghiem and M. McGee Computational Statistics and Data Analysis 156 (2021) 107085

t
N
s
b
a
e

v
g
e
o
W

c
e

Fig. 2. The conditional pair-wise relationships for each of the 273 genes remaining after filtering from the Wilms tumor study. Each edge represents
a conditional pair-wise dependency between two nodes. The left shows the naïve analysis, not correcting for measurement error, and the right shows
the corrected analysis, correcting for measurement error. Green edges signify edges found on both graphs, and purple signifies analysis specific edges.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To remove unnecessary computational burden, we reduced the number of genes by applying four different filters in
he following order. The first filter removes expression values that do not have a corresponding Entrez gene ID in the
CBI database (O’Leary et al., 2015). The second filter removes minimally expressed genes by requiring at least 25% of
amples to have intensities above 100 fluorescence units. The third filter removes expression values with low variability
y requiring the interquartile range to be at least 0.6 on the log scale. The last filter removes expression values that have
n error to signal-to-noise ratio greater than 0.5, which we discuss in more depth below. After filtering, there were 273
xpression values remaining for the analysis.
Now, we discuss how we estimate the measurement error of each gene. We assume that the measurement error

ariance is constant across patients for a given gene. We also assume that the measurement error is independent for each
ene, and need not be equal for each gene. Let µ̂ = (µ̂1j, . . . , µ̂nj)T denote the estimated vector of the patient’s gene
xpression levels for gene j. Further, let µ̄ = n−1 ∑n

j=1 µ̂ij and σ̂ 2
j = n−1 ∑

j=1(µ̂ij − µ̄j)2 denote the mean and variance
f each gene, respectively. For patient i, standardized measurements are given by W i = (Wi1, . . . ,Wip), calculated as
ij = σ̂−1

j (µ̂ij − µ̄j) for each j = 1, . . . , 273.
Let var(µ̂ij) denote the posterior variance of the estimated distribution of patient i’s gene j. These estimates are then

ombined as σ̂ 2
u,j = n−1 ∑n

i=1 var(µ̂ij). The measurement error covariance matrix of the standardized data W is then
stimated by diagonal matrix Σ̂u, where (Σ̂u)j,j = σ̂ 2

u,j/σ̂
2
j for j = 1, . . . , p and off-diagonal elements are 0. The fourth

filter can be now formalized, where genes are removed if σ̂ 2
u,j ≥ 0.5σ̂ 2

j ; i.e. only genes with a noise-to-signal ratio less
than 1 are kept for the analysis.

The original BAGUS algorithm and the IRO-BAGUS algorithm were run for the genes remaining after filtering. We
illustrate the conditional pair-wise dependencies of the genes in Fig. 2. The naïve analysis is shown on the left and
the corrected on the right, where the green edges signify relationships found by both procedures and purple edges
signify procedure specific relationships. As with the simulations, the corrected BAGUS found fewer conditional pair-
wise relationships; for this data set, the original BAGUS and IRO-BAGUS found 1045 and 552 conditional pair-wise
relationships, respectively. Of the 1045 naïve pair-wise relationships, 42% were also found in the corrected pair-wise
relationships; similarly, of the 552 corrected conditional pair-wise relationships, 80% were found in the naïve model. The
large percentage overlap of relationships in the corrected model with relationships in the naïve model suggests that most
relationships in the corrected model are true relationships. Conversely, the small percentage overlap of relationships in
the naïve model with those in the correct model suggests that the naïve model is finding many false positive relationships.

In addition, we inspect the quality of the estimates of each precision matrix. The Frobenius norm of the naïve model
was 59.30 for 1045 pairs, whereas the Frobenius norm for the corrected model was 46.83 for 552 pairs. This immediately
suggests that the corrected estimate is more certain of the identified relationships existing, given the magnitude per
element is much greater for the corrected method. The median magnitude of non-zero elements is 0.95 and 1.36 for the
naïve and corrected methods, respectively. When filtering down to overlapping non-zero elements, we find the median
8
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magnitude to be 1.22 and 1.42 for the naïve and corrected, respectively. Although the corrected method possibly misses
some possible relationships, we get stronger signal for the relationships that are present. This occurrence has been also
noted in the previous literature of measurement error correction in high dimensional settings, such as Sørensen et al.
(2015) and Nghiem and Potgieter (2018).

6. Conclusion

We proposed a correction methodology for Gaussian graphical models when contaminated with additive measurement
rror. The core solution to the problem involves using the imputation–regularization algorithm to generate the true values
f underlying process with a consistent estimate of the precision matrix. This provides a consistent, positive-definite
stimate of the true precision matrix, which, as simulations illustrate, removes many false positive pair-wise relationships.
dditionally, we show marked improvements in the AUC of the threshold matrix, indicating better separation of the
nderlying relationships. From a practitioner’s point of view, this allows for more reliable downstream analysis and a
tronger set of results from which to continue research.
To our knowledge, the novel imputation–regularization algorithm has yet to be used for problems pertaining to

ontaminated data. This provides an avenue of future research on measurement error in high-dimensional applications,
hich is starting to gain attention. Moreover, many practical issues still remain in the Gaussian graphical model context,
uch as the tuning of hyperparameters and the interpretation of the output from the Gibbs sampler-like IRO algorithm.
nother potential avenue of research to pursue is when the amount of measurement error is unknown and not assumed
ndependent. In this case, sparsity would need to be imposed on Ωu in conjunction with Ωx, posing a challenging, but
seful, computational procedure.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2020.107085.
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