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Abstract

Within the canonical ensemble, a partially condensed ideal Bose gas with arbitrary single-
particle energies is equivalent to a system of uncoupled harmonic oscillators. We exploit this
equivalence for deriving a formula which expresses all cumulants of the canonical distribution
governing the number of condensate particles in terms of the poles of a generalized Zeta func-
tion provided by the single-particle spectrum. This formula lends itself to systematic asymptotic
expansions which capture the non-Gaussian character of the condensate 8uctuations with utmost
precision even for relatively small, 9nite systems, as con9rmed by comparison with exact nu-
merical calculations. We use these results for assessing the accuracy of a recently developed
master equation approach to the canonical condensate statistics; this approach turns out to be
quite accurate even when the master equation is solved within a simple quasithermal approxi-
mation. As a further application of the cumulant formula we show that, and explain why, all
cumulants of a homogeneous Bose–Einstein condensate “in a box” higher than the 9rst retain a
dependence on the boundary conditions in the thermodynamic limit. c© 2001 Elsevier Science
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1. Introduction

It sometimes happens that a problem in physics can be solved by two quite diGerent
methods, each one requiring its own propositions and approximations. In such a case it
can be rewarding to compare these two approaches in some detail: What is hard to de-
rive within the 9rst approach might be obvious within the second; both methods might
lend themselves to diGerent generalizations. In such a comparison it is not so much
the result itself that matters, but rather the “best” way to obtain it; the hope is that
a thorough understanding of the solution techniques will provide a key for attacking
more demanding problems.
Such a situation arises when studying the ideal Bose gas in the canonical ensemble.

While the grand canonical treatment of ideal Bose gases constitutes classic textbook
material [1–3], recent experiments with mesoscopic samples of dilute Bosonic atoms
in thermally isolated traps (for a Review, see Ref. [4]) actually call for a microcanon-
ical analysis. The canonical ensemble provides a convenient intermediate step: It still
assumes that the trapped gas exchanges energy with a heat bath, as in a grand canon-
ical setting, but it embodies the constraint that the number of gas particles, N , be
9xed. Experiments with 4He in a porous medium [5] provide an interesting example
of Bose–Einstein condensation in the canonical ensemble.
One approach to the canonical statistics of ideal Bose gases, presented in Ref. [6]

and developed further in Ref. [7], consists in setting up a master equation for the
condensate and 9nding its equilibrium solution. This approach has the merit of being
technically lucid and physically illuminating, since it reveals important parallels to the
quantum theory of the laser [8]. For deriving that master equation, in the approxima-
tion of detailed balance in the excited states, it was assumed that given an arbitrary
number n0 of atoms in the condensate, the remaining N − n0 excited atoms are in an
equilibrium state at the prescribed temperature T—or, in other words, that the occu-
pation numbers of the excited-states subsystem thermalize signi9cantly faster than the
condensed ones, no matter how many particles the condensate contains. Whereas the
existence of two separate time scales is evident in laser physics, where the atomic
dynamics usually are fast compared to the escape of photons from the cavity, the
physical motivation for such a separation of time scales seems less obvious in the
present case. However, it was shown [9] that indeed the time scale of long-range
coherent ordering is much greater than the collisional time scale responsible for the
kinetic equilibration of above-condensate atoms. Thus, while this assumption might not
be suKcient for describing the details of the process of equilibration, it does lead, in
principle, to the correct canonical-ensemble equilibrium state [10]. Still, for evaluating
that equilibrium state one has to make certain additional approximations, as detailed in
Section 2, so that it is desirable to check conclusions drawn from the master equation
approach against the results provided by independent techniques.
A classic technique that almost seems to suggest itself for studying canonical

statistics is the saddle-point method: Starting from the known grand canonical par-
tition function one employs the saddle-point approximation for extracting its required
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canonical counterpart, which then yields all desired quantities by taking suitable deriva-
tives. It turns out that this program requires some caution, since the customary form
of the saddle-point approximation, as advocated by SchrLodinger in his famous treatise
[11], is not correct in the condensate regime; the close approach of the saddle-point to
the ground-state singularity of the grand partition function forbids the usual Gaussian
approximation. Fortunately, this diKculty can be overcome with the help of a strategy
that has been suggested by Dingle [12] and worked out in detail in Refs. [13,14]; this
approach furnishes canonical occupation numbers and their 8uctuations, say, for reason-
ably large, experimentally relevant particle numbers N and all temperatures. However,
accurately solving the equation for the saddle-point requires some numerical skills.
In this paper, therefore, we will follow still another avenue for checking the master

equation approach. Instead of aiming for approximations valid at all temperatures—as
provided by the proper saddle-point method—we will restrict ourselves to temperatures
below the onset of Bose–Einstein condensation. In this case there exists a transparent
approximation which allows us to bring the canonical partition function into a simple
form—namely into that of a system of independent harmonic oscillators [15–18]. Using
this, we derive a formula which expresses all the cumulants �k(�) of the canonical
distribution p(ex)

N (M ; �)—i.e., the probability distribution for 9nding M of the N atoms
in an excited state at inverse temperature �, and hence n0 =N − M atoms in the
condensate—in terms of the poles of a generalized Zeta function determined by the
system’s single-particle energies. This result is of substantial interest, since systems
that lend themselves to an explicit calculation of all higher moments beyond the usual
Gaussian second order are quite rare in physics. Our approach enables us, 9rst of all,
to make contact with the master equation, and to disperse possible objections against it:
The 9rst and the second moment of p(ex)

N (M ; �), as obtained from the master equation
within a “quasithermal” approximation, merge exactly into the corresponding results
provided by the bona 9de partition function; the higher moments are systematically
approximated in a mean 9eld-like fashion. The Zeta-function technique also allows
us to clarify an important issue: In the case of the homogeneous Bose gas “in a
box”, the “higher” statistical properties (i.e., the cumulants �k(�) with order k¿ 2)
do depend on the particular boundary conditions even in the thermodynamic limit.
When it comes to a detailed discussion of the statistics of occupation numbers, simply
taking the homogeneous Bose gas with the convenient periodic boundary conditions
might, therefore, not be suKcient.
We restrict this paper to the discussion of orthodox equilibrium statistical mechan-

ics and do not consider the method of canonical quasiparticles, which was intro-
duced [17,18] on the basis of a particle-number conserving formalism established by
Girardeau and Arnowitt [19,20]. That method is very eKcient for the solution of var-
ious non-equilibrium problems in the canonical ensemble, such as the dynamics of
condensate formation, vortex evolution, and the kinetics of correlations, both for the
ideal and the interacting Bose gas.
The main part of this paper is organized as follows: In Section 2, we summarize the

master equation approach [6,7], to the extent that it will be needed later. In Section 3,
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we then explain why the canonical partition function of the ideal Bose gas reduces
in the condensate regime to a partition function of independent harmonic oscillators,
and quantify the accuracy of the master equation by comparing the canonical cumu-
lants �k(�) obtained from this approach with those following from the “independent
oscillator” point of view, and with results of exact numerical calculations. In Section 4,
we elaborate the connection between the cumulants and the poles of the generalized
Zeta functions, while Section 5 contains the explicit evaluation of our general formula
for an isotropic harmonic trapping potential, and for the “box” potential with periodic
or Dirichlet boundary conditions, respectively. The detailed analysis of the higher cu-
mulants, in particular, of those of third and fourth order (skewness and 8atness), yields
interesting insight into the non-Gaussian nature of the condensate 8uctuations. A brief
discussion concludes the paper in Section 6. Since the required techniques for handling
the generalized Zeta functions might not be generally known, and in order to keep the
paper self-contained, Appendix A oGers the relevant mathematical details.

2. Essentials of the master equation approach

We consider an ideal Bose gas that consists of N particles and is stored in some
arbitrary trap. The trapping potential determines the discrete single-particle energies

�; the index �=0; 1; 2; : : : labels the individual single-particle eigenstates. It is further
assumed that this system is kept in thermal contact with a harmonic-oscillator heat
bath of temperature T ; at suKciently low T a fraction of the particles undergoes
Bose–Einstein condensation and occupies the ground state �=0. We require that the
spectral density of the bath be 8at, so that for each transition of a gas particle, involving
an energy diGerence 
� − 

, there is always the same number of frequency-matched
oscillators which can provide or accept this quantum. The average occupation number
of such a heat-bath oscillator is written as

��
 =
1

exp[�(
� − 

)]− 1
; (1)

where �=1=kBT , with kB denoting Boltzmann’s constant.
Starting from the equation of motion for the total density matrix, tracing out the

bath degrees of freedom in the usual manner, and making the Markov approximation
of very fast relaxation in the bath compared to the dynamics of the system of excited
and condensed Bose particles in the trap, one obtains a master equation for the Bose
gas. This equation can be further reduced to a master equation for the condensate alone,
if one assumes that the state of the excited particles is determined by detailed balance
[6,7]. The condensate master equation describes the evolution of the probability pn0

that the condensate contains n0 out of the N particles, and includes information about
the excited-state occupations only through the “cooling coeKcients”

Kn0 =
∑
�¿1

(��0 + 1)〈n�〉n0 (2)
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and the “heating coeKcients”

Hn0 =
∑
�¿1

��0(〈n�〉n0 + 1) ; (3)

where 〈n�〉n0 is the canonical expectation value for the number of particles occupying
the �th excited state, subject to the condition that there be n0 condensate atoms. In
terms of these coeKcients, the master equation reads

d
dt

pn0 =−�{Kn0 (n0 + 1)pn0 − Kn0−1n0pn0−1 + Hn0n0pn0

−Hn0+1(n0 + 1)pn0+1} : (4)

The constant � obviously carries the dimension of an inverse time. It embodies the
spectral density of the bath and the coupling strength of the bath oscillators to the gas
particles [7], and determines the rate of condensate evolution since there is no direct
interaction between the particles of an ideal Bose gas. Here, as in Ref. [7], we study
the equilibrium solution of Eq. (4), so that the question how fast the equilibration
proceeds is not important.
The content of this master equation (4) can be grasped in an intuitive manner, even

without a formal derivation. The cooling coeKcient Kn0 describes all those processes
that add another particle to a condensate consisting so far of n0 atoms: The new
particle originates from one of the excited states �¿ 1, each of them endowed with the
occupation number 〈n�〉n0 . The particle’s transition to the ground state is accompanied
by the emission of a phonon of energy 
� − 
0 into the heat bath, as expressed by the
additional factor (��0 + 1) in Eq. (2). Likewise, the heating coeKcient (3) summarizes
all those processes through which an n0-particle condensate loses one of its constituents:
By absorbing a phonon with the appropriate energy from the heat bath (—multiplicity
factor ��0—), the particle can make a transition to any of the excited states. Since,
prior to the arrival of the new particle, the occupation number of such a state was
〈n�〉n0 , the factor (〈n�〉n0 + 1) properly accounts for the “emission” of the new particle
into this mode. As indicated in Fig. 1, there are four contributions that aGect the rate of
change of pn0 : an (n0 − 1)-particle condensate acquiring an additional particle through
cooling, an (n0 + 1)-particle condensate losing one particle through heating, and an
n0-particle condensate either picking up or losing one particle; these four contributions
make up the right-hand side of Eq. (4).
The above discussion also highlights an important diGerence between the canoni-

cal ensemble studied here and a microcanonical ensemble. In a canonical setting, the
energy of each transition from or to the condensate is provided or accepted by the
heat bath, implying that such transitions do not lead to correlations among the other
gas particles. This is no longer the case under microcanonical conditions; here each
amount of energy associated with a particle’s transition to or from the condensate has
to be compensated by the other particles themselves. Assuming the presence of an
external heat bath enormously simpli9es the analysis, but it also aGects the results: For
instance, microcanonical 8uctuations of the number of condensate particles are smaller
than their canonical counterparts [16,21].
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Fig. 1. Visualization of the condensate master equation (4). There are four contributions that aGect the rate
of change of pn0 , the probability of 9nding n0 particles in the condensate: An (n0 − 1)-particle condensate
(upper horizontal line) gaining one particle through cooling (upper downward arrow), an (n0+1)-particle con-
densate (lower horizontal line) losing one particle through heating (lower upward arrow), and an n0-particle
condensate gaining or losing one constituent. These four contributions add up to give the right-hand side of
Eq. (4).

For evaluating the master equation (4), one now needs an approximation to the
cooling and heating coeKcients (2) and (3). In Ref. [7], a quasithermal approximation
for the conditional occupation numbers of the excited states was suggested:

〈n�〉n0 = (N − n0)
��0
H

; (5)

where

H=
∑
�¿1

��0 =
∑
�¿1

1
exp[�(
� − 
0)]− 1

: (6)

Summing Eq. (5) over �¿ 1, one 9nds∑
�¿1

〈n�〉n0 =N − n0 ; (7)

so that this ansatz incorporates the particle number constraint in an exact manner;
moreover, 〈n�〉n0 is taken to be proportional to the phonon occupation number ��0.
Within this approximation, the cooling coeKcient (2) is given by

Kn0 =
∑
�¿1

��0〈n�〉n0 + (N − n0)

≡ (1 + �)(N − n0) ; (8)

where the “cross-excitation parameter” [7]

�=
1

N − n0

∑
�¿1

��0〈n�〉n0 =
1
H

∑
�¿1

�2�0

=
1
H

∑
�¿1

1
(exp[�(
� − 
0)]− 1)2

(9)
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has been introduced. Likewise, Eq. (3) now yields

Hn0 =H+ (N − n0)� : (10)

With these approximations (8) and (10), the steady-state solution

pn0 =
N−1∏
i=n0

Hi+1

Ki
pN (11)

to the condensate master equation (4) takes the form

pn0 =
1
ZN

(
H=�+ N − n0 − 1

N − n0

)(
�

1 + �

)N−n0

; (12)

with ZN =1=pN 9xed through the normalization condition
∑N

n0=0 pn0 = 1, giving the
formal representation

ZN =
N∑

n0=0

(
H=�+ N − n0 − 1

N − n0

)(
�

1 + �

)N−n0

(13)

of the canonical partition function. Interestingly, the distribution (12) closely resembles
a negative binomial distribution; the only diGerence lies in the fact that here N − n0
is restricted to integers in the range from 0 to N , whereas all non-negative integers
9gure in the true negative binomial case. All moments of this distribution (12) can be
calculated analytically. In particular, one 9nds

〈n0〉=
N∑

n0=0

n0pn0

=N −H+ p0(H+ �N ) (14)

as the canonical expectation value of the number of condensate particles; its variance

Sn20 = 〈n20〉 − 〈n0〉2

= (1 + �)H− p0(H+ �N )(1 + �−H+ N )− p2
0(H+ �N )2 ; (15)

the third centered moment

〈(n− 〈n0〉)3〉=−(1 + �)(1 + 2�)H

+p0(H+ �N )[1 + (H− N )2 + 2(�2 + N (1 + �))

+3(�−H(1 + �))] + 3p2
0(H+ �N )2(1 + �−H+ N )

+2p3
0 (H+ �N )3 ; (16)

and the fourth centered moment

〈(n− 〈n0〉)4〉= (1 + �)[1 + 3(1 + �)(H+ 2�)]H

−p0(H+ �N )[1−H+ 3(1 + �−H+ N )(N + 2�2)
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− (H− N )3 + �(7− 3(N + 2)(H− N ) + �(H+ 6))]

− 2p2
0(H+ �N )2[2 + 2(H− N )2 + 4(�2 + N (1 + �))

+3(2�−H(1 + �))]− 6p3
0(H+ �N )3(1 + �−H+ N )

− 3p4
0(H+ �N )4 : (17)

Thus, assuming the validity of the quasithermal approximation (5), the master equation
(4) provides a complete description of the canonical statistics of ideal Bose–Einstein
condensates.
For later reference, let us specialize the moments (14)–(17) to the condensate

regime, that is, to temperatures so low that p0; the probability for 9nding no par-
ticle at all in the ground state, is practically zero. Recall 9rst that within the grand
canonical ensemble the occupation numbers take the form 〈n�〉gc = [z−1exp(�
�)−1]−1;
with the fugacity z being tied to the ground state energy, z ≈ exp(�
0). Since for large
N these grand canonical occupation numbers equal their canonical counterparts 〈n�〉
(where the absence of the index n0 distinguishes these expectation values from the
conditional occupation numbers entering the heating and cooling coeKcients (2) and
(3)), one has

〈n�〉= 1
exp[�(
� − 
0)]− 1

in the condensate regime ; (18)

so that the parameters H and �; de9ned in Eqs. (6) and (9), can be expressed through
these occupation numbers 〈n�〉 as

H=
∑
�¿1

〈n�〉 and �=

∑
�¿1〈n�〉2∑
�¿1〈n�〉

: (19)

Accordingly, taking the limit p0 → 0; we obtain for the centered moments

〈n0〉=N −H=N −
∑
�¿1

〈n�〉 ; (20)

Sn20 = (1 + �)H=
∑
�¿1

〈n�〉(〈n�〉+ 1) ; (21)

〈(n0 − 〈n0〉)3〉=−(1 + �)(1 + 2�)H

=−
∑
�¿1

〈n�〉 − 3
∑
�¿1

〈n�〉2 − 2
(
∑

�¿1〈n�〉2)2∑
�¿1〈n�〉

; (22)

〈(n0 − 〈n0〉)4〉= (1 + �)(1 + 6�+ 6�2)H+ 3[(1 + �)H]2

=
∑
�¿1

〈n�〉+ 7
∑
�¿1

〈n�〉2 + 12
(
∑

�¿1〈n�〉2)2∑
�¿1〈n�〉

+ 6
(
∑

�¿1〈n�〉2)3
(
∑

�¿1〈n�〉)2
+ 3(Sn20)

2 : (23)
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Eq. (20) is self-evident, but Eq. (21) contains an important insight: Since 〈n�〉(〈n�〉+
1)=Sn2� is the 8uctuation of the occupation number n� of the �th excited state (�¿ 1),
Eq. (21) expresses the fact that in the condensate regime these occupation numbers are
uncorrelated stochastic variables; one simply has to add up their variances to obtain the
variance Sn20 of the ground-state occupation number n0 =N −∑�¿1 n�. This 9nding
is a 9rst hint that within the canonical ensemble there exist independent degrees of
freedom in the condensate regime; this will become more clear from the “independent
oscillator” point of view outlined in the following section.

3. Cumulants for the ideal Bose–Einstein condensate

The canonical condensate distribution (12), and the moments (14)–(17) derived
from it, hinge on the validity of the quasithermal approximation (5). This ansatz
appears quite reasonable, and it manifestly takes the constraint of 9xed particle number
into account, but its level of accuracy still needs to be quanti9ed. In order to assess the
accuracy of this quasithermal approximation, we will now tackle the problem of canon-
ical condensate statistics from a diGerent angle, staying strictly within the framework
of orthodox equilibrium statistical mechanics, and trying to avoid any uncontrolled
approximation. The price to pay for the mathematical rigor that will be attained in this
and the following sections is that we have to remain restricted to temperatures below
the onset of Bose–Einstein condensation, whereas the distribution (12) applies at all
temperatures.
We start from the familiar representation [1–3]

ZN (�)=
∑
{n�}

′
exp

(
−�
∑
�

n�
�

)
(24)

of the canonical N -particle partition function, where the prime indicates that the sum-
mation runs only over those sets of occupation numbers {n�} that comply with the
constraint

∑
� n�=N . Singling out the ground-state energy N
0, we write the total

energy of each such con9guration as∑
�

n�
� =
∑
�

n�(
� − 
0) + N
0

≡ E + N
0 ; (25)

so that E denotes the true excitation energy of the respective con9guration. Grouping
together con9gurations with identical excitation energies, we have

ZN (�)=
∑
E

�(E; N ) exp(−�E − N�
0) ; (26)

with �(E; N ) denoting the number of microstates accessible to an N -particle system
with excitation energy E; that is, the number of microstates where E is distributed over
N or less particles: �(E; N ) counts all the con9gurations where E is concentrated on



442 M. Holthaus et al. / Physica A 300 (2001) 433–467

one particle only, or shared among two particles, or three, or any other number M up
to N .
Detailed understanding of canonical (or microcanonical) statistics, however, requires

knowledge of the number of microstates with exactly M excited particles, for all M
up to N ; these numbers are provided by the diGerences

�(E;M) ≡ �(E;M)− �(E;M − 1); M =0; 1; 2; : : : ; N : (27)

By de9nition, �(E;−1)=0. Given �(E;M); the canonical probability distribution for
9nding M excited particles (and, hence, N − M particles still residing in the ground
state) at inverse temperature � is determined by

p(ex)
N (M ; �) ≡

∑
E e−�E�(E;M)∑
E e−�E�(E; N )

; M =0; 1; 2; : : : ; N : (28)

This distribution is merely the mirror image of the condensate distribution pn0 con-
sidered in the previous section, i.e., we have p(ex)

N (M ; �)=pN−M . Since the de9nition
(27) obviously implies

N∑
M=0

�(E;M)=�(E; N ) ; (29)

it is properly normalized,

N∑
M=0

p(ex)
N (M ; �)= 1 : (30)

In the following, we will derive a general formula which gives all cumulants of the
canonical distribution (28), provided the temperature is so low that a signi9cant fraction
of the particles occupies the ground state—that is, provided there is a condensate.
To this end, we recall that the set of canonical M -particle partition functions ZM (�)

is generated by the grand canonical partition function, which has a simple product form
[1–3]:

∞∑
M=0

zMZM (�)=
∞∏
�=0

1
1− z exp(−�
�) ; (31)

here, z is a complex variable. However, every single M -particle partition function
enters into this expression with its own, M -particle ground-state energy M
0. In order
to remove these unwanted contributions, we de9ne a slightly diGerent function �(�; z)
by multiplying each ZM (�) by (ze�
0 )M ; instead of zM ; and then summing over M;
obtaining

�(�; z)≡
∞∑
M=0

(ze�
0 )MZM (�)

=
∞∏
�=0

1
1− z exp[− �(
� − 
0)]

: (32)
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On the other hand, in view of Eq. (26) this function also has the representation

�(�; z)=
∞∑
M=0

zM
∑
E

�(E;M) exp(−�E) : (33)

Therefore, multiplying �(�; z) by 1− z and suitably shifting the summation index M;
we arrive at a generating function for the desired diGerences �(E;M):

(1− z)�(�; z) =
∞∑
M=0

(zM − zM+1)
∑
E

�(E;M) exp(−�E)

=
∞∑
M=0

zM
∑
E

[�(E;M)− �(E;M − 1)] exp(−�E)

=
∞∑
M=0

zM
∑
E

�(E;M) exp(−�E) : (34)

Going back to the representation (32) now reveals that multiplying �(�; z) by 1 − z
means amputating the ground-state factor �=0 from this product and retaining only
its “excited” part; we therefore denote the result as �ex(�; z):

(1− z)�(�; z) =
∞∏
�=1

1
1− z exp[− �(
� − 
0)]

≡�ex(�; z) : (35)

Moreover, from Eq. (34) it is obvious that the canonical moments of the unrestricted
set �(E;M) (that is, the moments pertaining to all �(E;M) with M¿ 0) are obtained
by repeatedly diGerentiating �ex(�; z) with respect to z; and then setting z=1:(

z
@
@z

)k
�ex(�; z)

∣∣∣∣∣
z=1

=
∑
E

exp(−�E)
∞∑
M=0

Mk�(E;M) : (36)

So far, all rearrangements have been exact.
For making contact with the actual N -particle system under consideration, we now

have to restrict the summation index M : If the sum over M did not range over all
particle numbers from zero to in9nity, but rather were restricted to integers not exceed-
ing the actual particle number N; then Eq. (36), together with the representation (35),
would yield precisely the non-normalized kth moments of the canonical distribution
(28). As it stands, however, exact equality is spoiled by the unrestricted summation.
At this point, there is one crucial observation to be made: In the condensate regime the
diGerence between the exact kth moment, given by a restricted sum, and the right-hand
side of Eq. (36) must be exceedingly small [16]. Namely, if there is a condensate, then
�(E; N )=�(E; N ) is negligible, since the statistical weight of those microstates with the
energy E spread over all N particles must be insigni9cant—if it were not, so that
there was a substantial probability for all N particles being excited, there would be no
condensate! Consequently, we have �(E;M)=�(E; N ) ≈ 0 also for all M larger than
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N : In the condensate regime it does not matter whether the upper limit of the sum
over M in Eq. (36) is the actual particle number N; or in9nity;

∞∑
M=0

Mk�(E;M) ≈
N∑

M=0

Mk�(E;M) in the condensate regime : (37)

Within this approximation—which will remain the only approximation in the entire
argument!—the amputated function �ex(�; z) provides, by means of Eq. (36), the
moments of the excited-states distribution (28), as long as one stays in the condensate
regime.
The rationale behind this reasoning can be interpreted in a twofold manner. Intu-

itively, one may divide a partially condensed Bose gas into the excited-states subsystem,
and a supply of condensate particles. The approximation (37) then means replacing the
actual condensate, consisting of a 9nite number of particles, by an in9nite particle
reservoir [21]; this point of view goes back to Fierz [22]. Of course, the added con-
densate particles do not take part in the dynamics, so that the statistical properties of
the excited subsystem remain unchanged. For our purposes, another interpretation is
more telling: For k =0; and utilizing the representation (35) of the moment-generating
function �ex(�; z); the approximation (37) brings Eq. (36) into the form

∞∏
�=1

1
1− exp[− �(
� − 
0)]

=
∑
E

exp(−�E)
N∑

M=0

�(E;M)

=
∑
E

exp(−�E)�(E; N ) (38)

—stating that in the condensate regime, where (37) holds, the canonical partition func-
tion of the Bose gas on the right-hand side equals that of a system of harmonic
oscillators, with frequencies 
� − 
0 (�¿ 1), on the left-hand side of Eq. (38). While
the original particles are indistinguishable, and subject to Bose statistics, the substitut-
ing oscillators obey Boltzmann statistics; the partition function of the oscillator system
being the simple product of the geometric series representing the partition functions
of the individual oscillators. It should be noted that this (almost-) isomorphism of a
partially condensed, ideal Bose gas and a Boltzmannian harmonic oscillator system
holds for any form of the single-particle spectrum, not only for harmonic traps.
Since, according to Eq. (36), the function �ex(�; z) generates the moments of the

canonical distribution (28) in the condensate regime, its logarithm generates the cumu-
lants �k(�):

�k(�)=
(
z
@
@z

)k
ln �ex(�; z)

∣∣∣∣∣
z=1

: (39)

As is well known from elementary statistics, the kth order cumulant of the sum of
independent stochastic variables is the sum of their individual kth order cumulants;
moreover, all cumulants higher than the second vanish exactly for a Gaussian stochastic
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variable [23]. In the present case, taking the required derivatives of ln �ex(�; z) and
using expression (18) for the canonical occupation numbers 〈n�〉 in the condensate
regime, we 9nd for k =1; : : : ; 4:

�1(�)=
∑
�¿1

〈n�〉 ; (40)

�2(�)=
∑
�¿1

〈n�〉(〈n�〉+ 1) ; (41)

�3(�)=
∑
�¿1

(〈n�〉+ 3〈n�〉2 + 2〈n�〉3) ; (42)

�4(�)=
∑
�¿1

(〈n�〉+ 7〈n�〉2 + 12〈n�〉3 + 6〈n�〉4) : (43)

The fact that �3(�) and �4(�) are non-zero signals the non-Gaussian nature of the
8uctuations; the fact that all cumulants are given as simple sums over the oscillator
index � re8ects the independence of the individual Boltzmannian oscillators.
Because the excited-states distribution (28) is related to the ground-state distribution

pn0 through pn0 =p(ex)
N (N − n0; �); one also has

�1(�)=N − 〈n0〉 ;
�2(�)= 〈(n0 − 〈n0〉)2〉 ;
�3(�)=− 〈(n0 − 〈n0〉)3〉 ;
�4(�)= 〈(n0 − 〈n0〉)4〉 − 3〈(n0 − 〈n0〉)2〉2 : (44)

Comparison of Eqs. (40)–(43) derived here from orthodox statistical mechanics with
the previous master-equation results (20)–(23) thus shows that the master equation,
solved within the quasithermal approximation (5), actually had yielded the 9rst two cu-
mulants exactly; the eGect of the quasithermal approximation only consists in breaking
higher-order moments into suitable combinations of 9rst- and second-order ones:

∑
�¿1

〈n�〉3 →
(
∑

�¿1〈n�〉2)2∑
�¿1〈n�〉

;

∑
�¿1

〈n�〉4 →
(
∑

�¿1〈n�〉2)3
(
∑

�¿1〈n�〉)2
: (45)

In this respect, the quasithermal approximation is a kind of mean 9eld approximation.
For general k¿ 1; the cumulant �k(�) is a linear combination of all moments of

order lower than and equal to k:

�k(�)=
∑
�¿1

k∑
m=1

(m− 1)!
(m)k 〈n�〉m ; (46)
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where 
(m)k are the Stirling numbers of the second kind [18,24]; for k =1; : : : ; 4; this
formula (46) leads back to Eqs. (40)–(43). While it directly expresses the cumulants
through the non-centered moments, Eq. (46) still leaves the cumbersome sums over �
to be evaluated. In the following section, we will show how these summations can be
circumvented by means of a Mellin–Barnes integral transformation.

4. Integral representation of the cumulant formula

We now exploit the representation (35) of the ground-state amputated function
�ex(�; z) for writing the cumulant-generating function ln�ex(�; z) in the form

ln �ex(�; z) =−
∞∑
�=1

ln(1− z exp[− �(
� − 
0)])

=
∞∑
�=1

∞∑
n=1

znexp[− �(
� − 
0)n]
n

; (47)

where we have made use of the series

ln (1− x)=−
∞∑
n=1

xn

n
for − 16 x¡ 1 : (48)

Next, we employ the Mellin–Barnes integral representation [25]

e−a=
1
2 i

∫ !+i∞

!−i∞
dt a−t"(t) ; (49)

valid for real !¿ 0 and complex numbers a with Re(a)¿ 0; to arrive at

ln�ex(�; z) =
∞∑
�=1

∞∑
n=1

1
2 i

∫ !+i∞

!−i∞
dt "(t)

zn

n
1

(�[
� − 
0]n)t

=
1
2 i

∫ !+i∞

!−i∞
dt "(t)

∞∑
�=1

1
(�[
� − 
0])t

∞∑
n=1

zn

nt+1 : (50)

The last step, the interchange of summation and integration, is crucial; it requires that
the sums be absolutely convergent. This, in turn, means that the real number ! has to
be adjusted accordingly: The path of integration parallel to the imaginary axis of the
complex t-plane has to lie on the right of all poles of the integrand.
Recalling now the series representation of the Bose functions g%(z),

g%(z)=
∞∑
n=1

zn

n%
; (51)

and introducing the generalized, “spectral” Zeta function [16]

Z(�; t) ≡
∞∑
�=1

1
(�[
� − 
0])t

; (52)
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the formula (35) thus yields, without any approximation at all, the convenient integral
representation

ln Vex(�; z)=
1
2 i

∫ !+i∞

!−i∞
dt "(t)Z(�; t)gt+1(z) : (53)

The derivatives required by Eq. (39) for calculating the kth cumulant �k(�) in the con-
densate regime now act only on the Bose function gt+1(z) appearing in the integrand.
Utilizing the well-known relations

z
d
dz

g%(z)= g%−1(z) (54)

and

g%(1)= &(%) ; (55)

where &(z) denotes the ordinary Riemann Zeta function, Eqs. (39) and (53) then lead
directly to the appealingly compact formula

�k(�)=
1
2 i

∫ !+i∞

!−i∞
dt "(t)Z(�; t)&(t + 1− k) : (56)

This formula is a principal result of the present paper. By means of the residue theorem
it links all the cumulants of the canonical distribution (28) in the condensate regime
to the poles of the generalized Zeta function Z(�; t), which embodies all the system’s
properties, and to the pole of a system-independent Riemann Zeta function, the location
of which depends on the order k of the respective cumulant. Already at this point, an
interesting competition becomes apparent: In the thermodynamic limit it is only the
rightmost pole that matters, and this rightmost pole is provided either by Z(�; t), or
by &(t+1− k). Since the poles of Z(�; t) do not depend on k, and that of &(t+1− k)
lies at t= k, it is clear that for suKciently large k it is always the Riemann function
that determines the exponent of �, namely �k(�)˙ �−k for large k. It is only for low
k, when the rightmost pole of Z(�; t) takes over, that a particular system—that is, a
particular type of trap—can mould exponents of its own.

5. Application to di erent traps

The usefulness of the cumulant formula (56) for practical purposes rests in the
fact that there exist standard techniques for analytically continuing the generalized
Zeta functions (52) to the complex t-plane; analytic continuation of the Riemann Zeta
function &(t)=

∑∞
n=1 n

−t is standard textbook knowledge [26]. Then the residues of the
analytically continued integrands, taken from right to left, provide systematic asymptotic
expansions of the cumulants �k(�). In this section, we will exercise this program in
detail for three diGerent types of single-particle spectra, that is, for diGerent types of
trapping potentials.
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5.1. The three-dimensional isotropic harmonic oscillator trap

In the case of an isotropic, three-dimensional harmonic oscillator potential with
oscillator frequency !, the single-particle energies read


�=˝!(�+ 1=2); �=0; 1; 2; : : : ; (57)

their degree of degeneracy is

g�= 1
2�

2 + 3
2�+ 1 : (58)

Therefore, the generalized Zeta function (52) reduces to a sum of Riemann Zeta func-
tions and thus acquires a particularly simple form [16]:

Z(�; t) =
∞∑
�=1

g�
(�˝!�)t

= (�˝!)−t
[
1
2
&(t − 2) +

3
2
&(t − 1) + &(t)

]
: (59)

Hence, all we need to know is that &(z) possesses only one simple pole, located at
z=1 with residue +1, namely [26]

&(z) ≈ 1
z − 1

+ ( for z ≈ 1 ; (60)

where ( ≈ 0:57722 is Euler’s constant. Because temperature enters into the cumulants
(56) only via the prefactor (�˝!)−t of the spectral Zeta function (59), for tempera-
tures T large compared to the level spacing temperature ˝!=kB (that is, for �˝!�1,
so that the gas occupies more than just the lowest few trap states) the temperature
dependence of the kth cumulant �k(�) is governed by the factor (�˝!)−p, where p is
the position of the rightmost pole appearing in the integrand (56). Now "(t) has poles
at t=0;−1;−2; : : : ; the spectral function (59) has poles at t=3; 2; 1; and &(t + 1− k)
has a pole at t= k. Thus, for k =1; 2 it is rightmost pole of the spectral Zeta function
(59) that dominates, implying �1(�) ˙ (�˝!)−3 and �2(�) ˙ (�˝!)−3. For k =3,
the leading pole of Z(�; t) at t=3 coincides with the pole of &(t + 1 − k), so that
�3(�)˙ (�˝!)−3 with logarithmic corrections due to the double pole. For k¿ 4, the
dominant pole is provided by &(t+1−k), giving �k(�)˙ (�˝!)−k . Collecting also the
next-to-leading poles, and computing the respective residues, we obtain the following
asymptotic expressions, valid for kBT=(˝!)�1 in the condensate regime:

• The 9rst cumulant �1(�) of distribution (28) equals the canonical expectation value
〈Nex〉 of the number of excited particles. In the condensate regime, the expectation
value 〈n0〉 for the number of condensate particles is then given by N −〈Nex〉=N −
�1(�):

〈n0〉 ∼ N −
(
kBT
˝!

)3
&(3)−

(
kBT
˝!

)2 3
2
&(2)− kBT

˝!

[
ln
(
kBT
˝!

)
+ (− 19

24

]
;

(61)
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where we have taken into account the three poles at t=3; 2; 1; the logarithm in the
last term stems from the double pole at t=1.

• The second cumulant �2(�) yields the mean-square 8uctuation of the number of
excited particles. Since the total particle number N is constant, this equals the
mean-square 8uctuation of the number of condensate particles, �2(�)=SN 2

ex =Sn20.
To the same accuracy as Eq. (61), we 9nd

Sn20 ∼
(
kBT
˝!

)3
&(2) +

(
kBT
˝!

)2 [3
2
ln
(
kBT
˝!

)
+

3
2
(+

5
4
+ &(2)

]

+
kBT
˝!

(
−1
2

)
; (62)

the double pole now appearing at t=2 in the integrand (56). The leading term here
agrees with the result 9rst stated by Politzer [27], but obviously the corrections to
this term are quite signi9cant for 9nite, moderate N .

• The third cumulant equals the third central moment, implying �3(�)= 〈(Nex −
〈Nex〉)3〉=− 〈(n0 − 〈n0〉)3〉. Therefore,

〈(n0 − 〈n0〉)3〉 ∼−
(
kBT
˝!

)3 [
ln
(
kBT
˝!

)
+ (+

3
2
+ 3&(2) + 2&(3)

]

+
(
kBT
˝!

)2 3
4
+

kBT
˝!

1
12

: (63)

• The calculation of all higher cumulants is even simpler, since there are no more dou-
ble poles and, consequently, no more logarithmic corrections like those in
Eqs. (61)–(63). For example, the fourth cumulant, related to the fourth central
moment by �4(�)= 〈(n0 − 〈n0〉)4〉 − 3�2(�)2, turns out to be

�4(�)∼
(
kBT
˝!

)4
[3&(2) + 9&(3) + 6&(4)]

+
(
kBT
˝!

)3(
−1
2

)
+
(
kBT
˝!

)2(
−1
8

)
: (64)

It is an elementary fact that for some given distribution either all cumulants higher
than the second vanish—in which case the distribution is Gaussian—or that there are
in9nitely many non-vanishing cumulants [23]. Therefore, the distribution (28), which
describes the number of excited particles in a partially condensed ideal Bose gas,
is non-Gaussian; the deviations from a Gaussian distribution being quanti9ed by the
magnitude of �k(�), k¿ 3. It should be noted that the above results are independent
of the particle number N , so that one does not recover a Gaussian distribution in the
(unphysical) limit N → ∞, when ! and T are held constant.
For checking these asymptotic formulae, we resort to the familiar recursion relation

[28,29]

ZN (�)=
1
N

N∑
k=1

Z1(k�)ZN−k(�); Z0(�) ≡ 1 ; (65)
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Fig. 2. Exact distributions p(ex)
N (M ; �) for N =1000 particles in a three-dimensional harmonic oscillator trap:

Curve (a) corresponds to kBT=(˝!)= 8:0, lower than the onset of Bose–Einstein condensation. In this case,
the distribution has no appreciable weight at the maximum argument M =1000, so that the approximation
(37) is safe. Curve (b) corresponds to a temperature in the transition regime, kBT=(˝!)= 8:7. Since the
number M of excited particles cannot exceed the total particle number N , the exact distribution now is
strongly asymmetric. The approximation (37), ignoring this restriction, would yield the dashed distribution.

which allows us to obtain the exact canonical partition functions at least numerically.
The canonical probability for 9nding n out of the N particles in the %th excited state
then follows from [30]

P%(n|N )= exp(−�
%n)ZN−n(�)
ZN (�)

− exp[− �
%(n+ 1)]
ZN−n−1(�)
ZN (�)

: (66)

Specializing %=0 gives the ground-state occupation probability pn0 as considered in
Section 2; pn0 =p(ex)

N (N − n0; �)=P0(n0|N ).
We use these relations 9rst for visualizing the content of the key approximation

(37): Fig. 2 shows the exact distribution p(ex)
N (M ; �) for N =1000 particles in a

three-dimensional isotropic harmonic oscillator trap with kBT=(˝!)= 8:0, a tempera-
ture well below the onset of Bose–Einstein condensation. In this case, the expected
number of excited particles is roughly 800; the distribution decays so rapidly towards
higher M that its tail contains no appreciable weight when reaching the largest pos-
sible value, Mmax =N =1000. Therefore, it would remain practically unchanged—so
that approximation (37) is entirely safe—if the particle number N were increased to
any higher value, or even to in9nity, as it happens when adopting approximation (37).
This is what eGectuates the N -independence of the condensate’s statistical properties,
as met in Eqs. (62)–(64). The situation is diGerent, however, for kBT=(˝!)= 8:7, a
temperature in the transition regime: On the average, almost all particles are excited
then. Since it is obviously impossible to excite more than the available N particles, the
exact distribution now becomes highly asymmetric. Approximation (37), on the other
hand, assumes an in9nite supply of condensate particles and thus ignores the restriction
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Fig. 3. Root-mean-square 8uctuation Sn0 = (Sn20)
1=2 for N =1000 particles in a three-dimensional harmonic

oscillator trap. The full line is the result provided by the solution of the master equation within the qua-
sithermal approximation, circles indicate exact numerical data, and the dashed line is the prediction made
by the cumulant formula (56).

M6N ; in the present example, the distribution implied by this approximation would
be correct only if the total particle number were larger than about 1200. In general,
the approximation (37) remains reliable just as long as the support of the distribution
p(ex)
N (M ; �) stays away from the “wall” at M =N , and in this way remains insensitive

to the magnitude of N . In short, one requires

〈(n0 − 〈n0〉)2〉1=2�〈n0〉 : (67)

Fig. 3 depicts the r.m.s.-8uctuation Sn0 ≡ (Sn20)
1=2 of the number of condensate parti-

cles, again for N =1000 Bosons in an isotropic harmonic trap. In this and all following
9gures, the full line indicates the result obtained from solution (12) to the master equa-
tion (4)—which embodies the quasithermal approximation (5)—circles correspond to
exact numerical data calculated with the help of the recursion relation (65), and the
dashed line is the prediction of the asymptotic approximation (62) to the cumulant
formula (56). Temperature is scaled with respect to the characteristic temperature

T0 =
˝!
kB

(
N
&(3)

)1=3
(68)

which marks the Bose–Einstein transition temperature for rather large N [31]; T0 is ob-
tained formally by setting 〈n0〉=0 in Eq. (61) and ignoring all temperature-dependent
terms except for the leading, T 3-proportional one. For the relatively small number
N =1000 considered here, this furnishes only a rough approximation to the actual tran-
sition temperature (which, of course, is not a sharply de9ned quantity in 9nite systems),
since the neglected next-to-leading term amounts to a reduction of the ground-state
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Fig. 4. Skewness �3(�)=�2(�)3=2 for N =1000 particles in a three-dimensional harmonic oscillator trap. The
symbols have the same meaning as in Fig. 3. The inset emphasizes that the cumulant formula (56) provides
a perfect description of the exact data in the condensate regime, as expected. Note that the dashed line
approaches the Gaussian value 0.

population. Therefore, keeping this term gives a downward shift of the transition tem-
perature [32,33],

ST0
T0

=− &(2)
2&(3)2=3

1
N 1=3 ; (69)

this shift is in good agreement with the numerical data. For N =1000 one 9nds ST0 ≈
−0:073T0, locating the transition at about 0:93T0; the maximum of the exact 8uctuation
data is found at 0:89T0. As witnessed by Fig. 3, in the condensate regime there is perfect
agreement of all three data sets. This, of course, is only to be expected: The condensate
regime corresponds to distributions of the type (a) in Fig. 2, so that approximation
(37) has almost no eGect and the cumulant formula (56), or its elementary, equivalent
precursor (39) is practically exact. As noted before, for k =2 the “oscillator” viewpoint
leads to the same result as the master equation approach; Eq. (41) equals Eq. (21).
What could not be expected, though, is that the master equation leads to excellent
agreement with the exact 8uctuation data for all temperatures, whereas the cumulant
formula, by its very construction, is invalid for temperatures above T0: In that regime
it provides the curve which the exact data would follow if the number of particles were
increased.
In contrast to the orders k =1; 2, the calculation of the higher cumulants consti-

tutes a non-trivial test of the master equation in the condensate regime. To this end,
Fig. 4 shows the skewness (that is, the asymmetry coeKcient) �3(�)=�2(�)3=2, and
Fig. 5 depicts the 8atness �4(�)=�2(�)2 + 3 (the excess coeKcient, which equals the
ratio of the fourth central moment to the square of the second central moment). The
master equation does quite well for the skewness, underestimating the exact data just
slightly in the condensate regime—where, of course, the cumulant formula (56) yields
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Fig. 5. Flatness �4(�)=�2(�)2 +3 for N =1000 particles in a three-dimensional harmonic oscillator trap. The
symbols have the same meaning as in Fig. 3. Note that the dashed line approaches the Gaussian value 3.

perfect agreement—but then actually locks on to the exact data above T0. The same
tendency is observed in Fig. 5: The master equation data underestimate the true 8atness
in the condensate regime, but are fairly accurate for higher temperatures.
It is also of interest to investigate the behavior of the cumulants in the large-system

limit [7]. Since merely increasing the particle number N in a trap with 9xed oscillator
frequency ! would be accompanied by an unlimited increase of the characteristic
temperature (68), we stipulate that, while N increases, ! be decreased proportionally
to N−1=3, so that T0 stays constant. Substituting

kBT
˝! =

T
T0

(
N
&(3)

)1=3
; (70)

Eqs. (62)–(64) immediately show that in the condensate regime both skewness and
8atness adopt precisely the Gaussian values in this limit,

�3(�)
�2(�)3=2

→ 0

�4(�)
�2(�)2

+ 3 → 3; T=T0 9xed : (71)

This recovery of Gaussian properties for “large” oscillator traps has already been hinted
at by the dashed lines in Figs. 4 and 5, through their approach to the Gaussian values
at high temperatures. But this does not mean that one is always left with Gaussian
condensate 8uctuations for suKciently large systems; the following two examples will
reveal that, and elucidate why, the cumulants can even retain a sensitivity to the bound-
ary conditions in the thermodynamic limit.
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5.2. The three-dimensional box with periodic boundary conditions

An ideal Bose gas con9ned to a cubic volume V =L3 with periodic boundary con-
ditions imposed on the wave functions is a somewhat arti9cial model system, if one
is thinking of a mesoscopic sample of Bosonic atoms stored in a magnetic trap, but it
is this model which is traditionally used in textbook treatments of the ideal Bose gas
[1–3]. We write its single-particle energies as


n1 ; n2 ; n3 =
˝2(2 )2
2mL2

(n21 + n22 + n23)

≡ ˝�(n21 + n22 + n23) with n�=0;±1;±2± · · · ; (72)

where m is the particle mass, and we have introduced the characteristic frequency

�=
˝(2 )2
2mL2

: (73)

Therefore, the spectral Zeta function now becomes

Z(�; t) = (�˝�)−t
+∞∑

n1 ; n2 ; n3=−∞

′ 1
(n21 + n22 + n23)t

≡ (�˝�)−tS(t) (74)

the prime indicating that, according to the general recipe (52), the ground state
(n1; n2; n3)= (0; 0; 0) has to be omitted from the sum S(t). Rewriting this sum such
that only positive indices occur, it can be expressed as

S(t)= 8E3(t) + 12E2(t) + 6E1(t) ; (75)

where

Ed(t) ≡
∞∑

n1 ;:::; nd=1

(n21 + : : :+ n2d)
−t (76)

is a d-dimensional Epstein Zeta function [34]; obviously, we have E1(t)= &(2t). The
three terms on the right-hand side of Eq. (75) re8ect, respectively, the contributions
from the eight octants in the space of all triples (n1; n2; n3) where all three indices n�
are non-vanishing, from the twelve quarter-planes with one vanishing index, and from
the six half-lines where two indices are zero. Adding up the residues of these Epstein
functions, as obtained in Eqs. (A.11), (A.13), and (A.15) of Appendix A, we 9nd that
S(t) has merely one simple pole at

t= 3
2 with residue 2 ; (77)

the additional poles provided by E3(t), E2(t) and E1(t) at t=1 and t= 1
2 cancel exactly

in the sum S(t). This is no accident: Since the single-particle energies are determined
by the spectrum of the Laplacian, the pole structure of Z(�; t) encodes, in a sense,
the geometry of the underlying domain; but for a simple cube with periodic boundary
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conditions there is not much to encode. In any case, this knowledge (77), together
with the pole structure (60) of the Riemann Zeta function, is all that is required for
evaluating the cumulant formula (56):

• For k =1, the pole of S(t) at t= 3
2 lies to the right of the pole placed by &(t+1−k)

at t=1. Therefore, the canonical expectation value 〈n0〉=N −�1(�) for the number
of condensate particles becomes

〈n0〉 ∼N − "(3=2) (�˝�)−3=2 2 &(3=2)− (�˝�)−1S(1)

= N −  3=2&(3=2)
(
kBT
˝�

)3=2
− S(1)

kBT
˝� : (78)

Inserting de9nition (73) of the frequency �, writing the periodicity volume as
V =L3, and using the thermal wavelength

.T =
2 ˝√
2 mkBT

; (79)

this Eq. (78) can be recast in the form

〈n0〉 ∼ N − &(3=2)
V
.3T

− S(1)
V 2=3

 .2T
: (80)

In the thermodynamic limit (that is, for N → ∞ and V → ∞, such that the density
N=V remains constant) the last term on the right-hand side may be neglected. Then
one recovers a familiar textbook expression for the number of condensate particles,
usually derived within the grand canonical ensemble [1–3], instead of the canonical
ensemble employed here. It is valid as long as 〈n0〉¿ 0; the equation 〈n0〉=0 de9nes
the condensation temperature T0: In the thermodynamic limit, one has

T0 =
˝�
 kB

(
N

&(3=2)

)2=3
; (81)

for 9nite systems, where the additional term in Eq. (78) eGectively increases the
ground state occupation number (—observe that S(1) ≈ −8:9136 is negative—), the
transition temperature is minutely shifted upward.

• For k¿ 2 the situation is reversed: Now the pole of &(t+1− k) at t= k lies to the
right of its rival (77), giving

�k(�) ∼ (k − 1)!S(k)
(
kBT
˝�

)k
+  3=2&(5=2− k)

(
kBT
˝�

)3=2
: (82)

Specializing this latter result (82) to k =2, and inserting the numerical value S(2)=
8E3(2) + 12E2(2) + 6&(4) ≈ 16:532 together with &(1=2) ≈ −1:4604, we 9nd the
condensate 8uctuations

Sn20 ≈ 16:532
(
kBT
˝�

)2
− 8:132

(
kBT
˝�

)3=2
: (83)
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Fig. 6. Skewness �3(�)=�2(�)3=2 for N =1000 particles in a “box” trap with periodic boundary conditions.
The symbols have the same meaning as in Fig. 3. Note that, in contrast to Fig. 4, the dashed line does not
approach the Gaussian value 0, but rather 0:25.
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Fig. 7. Flatness �4(�)=�2(�)2 + 3 for N =1000 particles in a “box” trap with periodic boundary conditions.
The symbols have the same meaning as in Fig. 3. Note that, in contrast to Fig. 5, the dashed line does not
approach the Gaussian value 3, but rather 3:1525.

The Figs. 6 and 7 show, respectively, skewness and 8atness of the excited-particles
distribution (28) for N =1000 ideal Bosons in a “box” trap with periodic boundary
conditions; the reference temperature being given by Eq. (81). As before, exact data
are compared to the predictions made by the master equation and the cumulant formula.
Qualitatively, these 9gures resemble the previous Figs. 4 and 5 for the oscillator trap:
The master equation data slightly underestimate skewness and 8atness in the condensate
regime, but 9t surprisingly well for higher temperatures; the asymptotic expressions
derived from the cumulant formula yield perfect agreement in the condensate regime.
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There is, however, an important diGerence: As follows from Eq. (82), the dashed lines
do not approach the Gaussian values at high temperatures; rather, the limit of skewness
is 0:2500; the limit of 8atness turns out to be 3:1525. The same values also characterize
the thermodynamic limit:

�3(�)
�2(�)3=2

→ 0:2500 ;

�4(�)
�2(�)2

+ 3 → 3:1525; N → ∞; V → ∞; N=V =const : (84)

Thus, in contrast to the oscillator trap, the condensate 8uctuations remain non-Gaussian
even when the system becomes in9nitely large [7]. We postpone a discussion of this
9nding to the next subsection, in order to emphasize its dependence on the boundary
conditions.

5.3. The three-dimensional box with hard walls

If the N -particle Bose gas is stored in a cube V =L3 with impenetrable walls, which
from the physical viewpoint might be a more realistic assumption than that of periodic
boundary conditions, we have to replace the former boundary conditions by Dirichlet
ones, that is, the wave functions have to vanish at the walls of the container. This
requirement yields the single-particle spectrum


n1 ; n2 ; n3 =
1
4˝�(n

2
1 + n22 + n23) with n�=1; 2; 3; : : : ; (85)

with � as de9ned in Eq. (73). Compared with spectrum (72) for periodic boundary
conditions, the level spacings now are reduced, as expressed by the prefactor 1

4 , but
the quantum numbers n� comprise positive integers only, to the eGect that the re-
spective leading terms of the two densities of states /(
) coincide, in accordance with
Weyl’s celebrated theorem on the asymptotics of the spectrum of the Laplacian [35,36].
Therefore, in the thermodynamic limit all those quantities that can be evaluated with the
help of the density of states do not depend on the respective boundary conditions. This
applies, in particular, to the condensation temperature, or (what amounts to the same
thing) to the 9rst cumulant �1(�). Namely, following London’s classic work [37] we
may approximate∑

�¿1

1
exp[�(
� − 
0)]− 1

≈
∫ ∞

0

/(
) d

exp(�
)− 1

; (86)

with the density /(
) adapted to the boundary condition under study; in the thermo-
dynamic limit the boundary-condition independence of the leading term of /(
) then
implies the boundary-condition independence of �1(�).

However, when dealing with a box potential this continuous-spectrum approximation
ceases to work already for sum (41) which gives the second cumulant �2(�), because
the emerging integral is formally infrared-divergent [7]. Such a divergence occurs also
for all higher cumulants; it is re8ected by the fact that the rightmost pole in the
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cumulant formula (56) is that of &(t+1−k). Then Weyl’s theorem cannot be invoked,
so that there is no reason at all to assume that the boundary-condition independence of
the 9rst cumulant (in the thermodynamic limit) also extends to the higher cumulants.
The study of the in8uence of the boundary conditions on these “higher” statistical
properties, for which the cumulant formula (56) furnishes a most valuable tool, is thus
a non-trivial enterprise.
The generalized Zeta function (52) associated with the spectrum (85) takes the form

Z(�; t) =
(
1
4
�˝�

)−t ∞∑
n1 ; n2 ; n3=1

′ 1
(n21 + n22 + n23 − 3)t

≡
(
1
4
�˝�

)−t

S̃(t) ; (87)

with the ground-state triple (n1; n2; n3)= (1; 1; 1) being excluded from the sum S̃(t).
As opposed to the case of periodic boundary conditions, subtraction of the non-zero
ground-state energy now results in an inhomogeneous Zeta function. Paralleling the
reasoning behind the arrangement (75), we disentangle those contributions where none,
or one, or two of the indices n� equal 1, and write

S̃(t)= Ẽ3(t) + 3Ẽ2(t) + 3Ẽ1(t) ; (88)

with inhomogeneous d-dimensional Epstein functions [34]

Ẽd(t) ≡
∞∑

n1 ;:::; nd=2

(n21 + · · ·+ n2d − d)−t : (89)

Note that all indices of summation now start only at n�=2. Adding the residues found
in Eqs. (A.19), (A.21), and (A.23) with the proper weights, one sees that the leading
three poles of S̃(t) reside at

t=3=2; 1; 1=2 with residues
 
4
;−3 

8
;
3 + 3 

8
; (90)

further poles at negative half-integer t will be neglected. With this input, the cumulant
formula (56) can be set to work:

• For k =1, we encounter simple poles at t= 3
2 and t= 1

2 , together with a double pole
at t=1. Therefore, we also need the 9nite part 0 of S̃(t) at t=1, which plays the
same role as Euler’s constant ( did in Eq. (60):

S̃(t) ≈ − 3 =8
t − 1

+ 0 for t ≈ 1 : (91)

The number of condensate particles, 〈n0〉=N − �1(�), is then found to be

〈n0〉 ∼N −  3=2&(3=2)
(
kBT
˝�

)3=2
+
[
3 
2
ln
(
4kBT
˝�

)
− 40

]
kBT
˝!

−3
4
(1 +  )

√
 &(1=2)

(
kBT
˝�

)1=2
: (92)
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• For k¿ 2 there are simple poles at t= k; 32 ; 1;
1
2 . Thus, the evaluation of the cumulant

formula (56) is merely a matter of routine:

�k(�)∼ 4k(k − 1)! S̃(k)
(
kBT
˝�

)k
+  3=2&(5=2− k)

(
kBT
˝�

)3=2

−3 
2
&(2− k)

kBT
˝� +

3
4
(1 +  )

√
 &(3=2− k)

(
kBT
˝�

)1=2
: (93)

It is worthwhile to discuss these results in some detail. To begin with, the ground-state
occupation number (92) in a box with hard walls is logarithmically enhanced over the
corresponding expression (78) for periodic boundary conditions. The reason for this en-
hancement derives from the observation that the quantum numbers n� range from −∞
to +∞ for periodic boundary conditions, see Eq. (72), whereas they are restricted to
strictly positive integers in the hard-wall case, as stated in Eq. (85). Obviously one
does not obtain the equivalent of all triples (n1; n2; n3), with −∞6 n�6 + ∞, by
taking eight times the octant of triples with strictly positive entries, since the planes
with at least one of the n� equal to zero are still missing then. Hence, compared to
the case of the periodic box, the density of states /(
) for Dirichlet boundary condi-
tions is slightly reduced. This reduction does not concern the leading “volume” term of
/(
), but merely constitutes a “surface” correction [35,36]. Thus, at low temperatures
there are slightly less states accessible in a hard box than there would be in a hypo-
thetical, same-sized box with periodic boundary conditions. This lack of states results
in an enlarged ground state occupation number, so that Bose–Einstein condensation
in a hard box sets in already at a higher temperature than it would in the periodic
case [38]. Since the reduction of the density of states is not a leading-order eGect,
both condensation temperatures still agree in the thermodynamic limit, as already an-
ticipated, and as clearly borne out by Eqs. (78) and (92): In the large-volume limit,
where � becomes arbitrarily small, so that kBT=(˝�) becomes very large even in the
condensate regime, the logarithmic enhancement of 〈n0〉 in Eq. (92) remains hidden
behind the T 3=2-proportional term. Our cumulant formula (56) expresses this asymp-
totic equality of both cumulants �1(�) by means of its asymptotic sensitivity to only
the rightmost pole. For k =1, this is the pole of Z(�; t) at t= 3

2 , with Z(�; t) being
given by either Eq. (74) or Eq. (87); asymptotic equality becomes visible through
the fact that the residue (77) for the periodic box is just eight times the leading
residue in Eq. (90) for its Dirichlet counterpart, corresponding to the eight octants of
triples.
In contrast, for k¿ 2 the rightmost pole in Eq. (56) is no longer provided by the

spectral Zeta function Z(�; t), but rather by &(t + 1 − k), so that Z(�; t) does not
enter, to leading order, through its residue, but through its very value Z(�; k) instead.
Consequently, the “missing states” make themselves felt regardless of the system size:
4k S̃(k) is not equal to S(k), which means that all higher cumulants (82) for the
periodic box do not agree with their counterparts (93) for the Dirichlet box even in
the thermodynamic limit. Taking k =2, for instance, we had found S(2) ≈ 16:532 in
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Fig. 8. Skewness �3(�)=�2(�)3=2 for N =1000 particles in a “box” trap with hard walls. The symbols have
the same meaning as in Fig. 3. The dashed line approaches the value 0:3445, substantially higher than the
limit attained with periodic boundary conditions in Fig. 6. Observe that the scale of the inset here diGers
from that in Fig. 6.

Eq. (83), whereas 16 S̃(2) ≈ 14:297, so that Eq. (93) becomes

Sn20 ≈ 14:297
(
kBT
˝�

)2
− 8:132

(
kBT
˝�

)3=2
+ 2:356

kBT
˝� − 1:145

(
kBT
˝�

)1=2
:

(94)

Even in the thermodynamic limit, where only the leading term matters, the mean-square
8uctuation of the number of condensate particles in a Dirichlet box is by 13:5% smaller
than in a 9ctitious box with periodic boundary conditions.
Con9rmation of these analytical deductions is drawn from Figs. 8 and 9, which

quantify skewness and 8atness of the distribution (28) for N =1000 particles in a
hard-walled box; in both cases the dashed line, drawn on the basis of the approxi-
mation (93), fully captures the exact non-Gaussian condensate statistics. The upward
shift of the condensation temperature, as compared to periodic boundary conditions,
is evident when juxtaposing these 9gures with the previous Figs. 6 and 7. Whereas
this shift vanishes in the thermodynamic limit, another diGerence persists: As follows
immediately from Eq. (93), skewness and 8atness do not approach the values (84)
here, but rather the substantially higher limits

�3(�)
�2(�)3=2

→ 0:3445 ;

�4(�)
�2(�)2

+ 3 → 3:3084; N → ∞; V → ∞; N=V =const : (95)

The mechanism sustaining this boundary-condition dependence even in the thermody-
namic limit is, of course, the same as discussed before for the 8uctuations; when the
density of states cannot be invoked for converting sums like that in Eq. (41) into
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Fig. 9. Flatness �4(�)=�2(�)2 + 3 for N =1000 particles in a “box” trap with hard walls. The symbols have
the same meaning as in Fig. 3. The dashed line approaches the value 3:3084, substantially higher than the
limit attained with periodic boundary conditions in Fig. 7.

integrals, because the integrals would be infrared-divergent, Weyl’s theorem does not
come into play.

6. Discussion

The 8uctuation of the number of condensate particles in an ideal Bose gas depends
on the statistical ensemble involved: The large 8uctuations arising in the grand canon-
ical ensemble, Sn20 = 〈n0〉(〈n0〉+ 1), in a canonical setting give way to much smaller
8uctuations Sn20 =

∑
�¿1 〈n�〉 (〈n�〉 + 1), i.e., when there is no exchange of particles

with a reservoir, and they are reduced still further under microcanonical conditions
[14,16,21], when the system is also thermally isolated from its environment. The de-
cision on which ensemble gives the right answer depends, of course, on the particular
situation; if it were feasible to come up with an experiment that conforms to the grand
canonical ensemble, the large grand canonical 8uctuations should actually be observed.
At present, experiments with dilute Bosonic atoms in magnetic, magneto-optical or op-
tical traps [4] fall into the realms of the microcanonical ensemble, once the evaporative
cooling process has come to an end and the state of equilibrium is reached. In contrast,
the experiments of Reppy and co-workers [5] performed with 4He in a porous medium
are much closer to the physics of the canonical ensemble: In this case the contact with
the host medium (vycor glass) entails heat exchange, while the particle number is held
constant.
Within the canonical ensemble studied in this paper, a partially condensed ideal Bose

gas is equivalent to a system of uncoupled harmonic oscillators. This is expressed most
clearly by the partition function (38); the only approximation required to establish this
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(almost-) equivalence is stated in Eq. (37). Pictorially speaking, adopting this approx-
imation means replacing the 9nite condensate by an in9nite reservoir of condensate
particles, as suggested by Fierz already in 1956 [22], and, more recently, by Navez et
al. in the context of the “Maxwell’s demon ensemble” [21]. This allows one to bypass
the canonical constraint of 9xed particle number N , and to treat canonical statistics in
great analytical detail. The central result of this work, the cumulant formula (39) and
its integral representation (56), furnishes a direct link between single-particle spectrum
and condensate statistics.
The integral representation (56) of the cumulant formula is distinguished by its con-

ceptual clarity. For a speci9c trap, the kth cumulant is determined by the pole structure
of the product Z(�; t) &(t + 1 − k) in the complex t-plane, the 9rst factor incorporat-
ing the trap properties, the second the cumulant order. The large-system behavior is
extracted from the leading pole, 9nite-size corrections are encoded in the next-to-leading
poles, and the non-Gaussian nature of the condensate 8uctuations is immediately visi-
ble. We have taken some eGort to show in detail how the generalized Zeta functions
Z(�; t) appear in a natural manner, and have considered three particular examples.
Actually, such Zeta functions play a prominent role in several areas of mathematical
physics, and there exists a substantial amount of knowledge about them [39], so that
the investigation of other traps, with other single-particle spectra, poses no problem.
The master equation approach to canonical condensate statistics [6,7] has other, dis-

tinct merits. It is not limited to the condensate regime and in principle reproduces the
canonical ensemble statistics exactly [10]; approximations enter only when the exact
values of the heating and cooling coeKcients (2) and (3) are not known. Within the
mean 9eld-like quasithermal approximation (5) introduced for calculating these coef-
9cients, it describes the statistics of the ground state occupation number quite well
even in the transition regime to the condensate. One might perhaps feel tempted to
improve this quasithermal approximation, and to introduce further parameters besides
the two basic parameters H and �, such that, for instance, also skewness and 8atness
of the distributions (28) are reproduced perfectly. This can be done, but it might well
be counterproductive. The actual virtue of the master equation lies in the fact that it
appeals to the intuition, and yields reliable results even within the scope of simple,
physically well motivated approximations. Therefore, one may hope to develop a sim-
ilar approach for studying, with equal transparency, condensate statistics in interacting
Bose gases.
One might wonder why one should pay so much attention to the ideal Bose gas,

arguing that an interacting gas might behave in an entirely diGerent manner. The
well-studied example of a weakly interacting, homogeneous Bose gas in a box with
periodic boundary conditions suggests that, on the contrary, many of the structures
encountered in this paper are preserved when the interaction is turned on. In partic-
ular, while the ideal gas corresponds to a system of uncoupled harmonic oscillators,
the Bogoliubov approximation leads to pairwise coupling between such oscillators—an
oscillator corresponding to a particle with momentum k is coupled only to its coun-
terpart with momentum −k—, so that at low temperatures the number of degrees of
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freedom in the interacting gas is eGectively half the number one 9nds in the ideal
case [17,18]. As a consequence, in comparison with the ideal gas all cumulants for
the interacting system are merely suppressed by a factor of 2. This relation between
the interacting and the ideal gas, 9rst observed for the 8uctuation Sn20 of a weakly
interacting, homogeneous condensate by Giorgini et al. [40] and extended to arbitrary
interaction strength in Ref. [41], is thus far from being accidental. In view of the ex-
amples studied in Section 5, it would be instructive to evaluate the condensate statistics
for the weakly interacting Bose gas in a box with hard walls, and for other types of
traps. After all, a “periodic” box and a hard-walled one are two diGerent systems, with
quite diGerent single-particle ground states, so that some diGerences between the re-
spective 8uctuation characteristics should remain at least for weak interactions. It would
be interesting to explore if, and to what extent, the increase of the interaction strength
wipes out the diGerence between the 8uctuation properties of mesoscopic condensates
in diGerent traps.
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Appendix A. Poles and residues of generalized Zeta functions

In this appendix, we explain brie8y how to compute the locations of the poles
of analytically continued generalized Zeta functions (52), and their residues. We fo-
cus on the homogeneous and inhomogeneous Epstein Zeta functions encountered in
Eqs. (76) and (89), but the same scheme can be employed in general. For further
details and references, we point to the exhaustive articles by Kirsten [34,42]. The key
point consists in the following observation [39]:
If 0¡.16 .26 .36 · · · is a sequence of real numbers with .� → ∞, such that

the partition function

1(�)=
∞∑
�=1

exp(−�.�) (A.1)

converges for Re(�)¿ 0, and possesses for � → 0 (i.e., for high temperatures) the
asymptotic expansion

1(�) ∼
∞∑
n=0

cin�
in (A.2)
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with a strictly increasing sequence of real exponents in starting with a negative number
i0¡ 0, then 1(�) admits, for Re(t)¿− i0, a Mellin transform M1(t), de9ned by

M1(t)=
∫ ∞

0
d� �t−11(�) ; (A.3)

this Mellin transform exhibits simple poles at t=− in with residues cin . The associated
Zeta function, that is, the analytic continuation of

Z(t)=
∞∑
�=1

1
.t�

; (A.4)

is then given by

Z(t)=
1

"(t)
M1(t) : (A.5)

Therefore, there are potential poles of Z(t) at

t=− in with residue cin ="(−in) ; (A.6)

keeping in mind that the singularities of the Gamma function will eliminate those poles
of M1(t) that are located at zero or negative integer numbers. This connection provides
the strategy we have to follow: Given some Zeta function of the form (A.4), de9ned
for such t which render the sum absolutely convergent, we focus on the corresponding
partition function (A.1) and 9nd its asymptotic (high-temperature) expansion (A.2).
The exponents and coeKcients emerging in this expansion then provide, by means of
Eq. (A.6), the positions and residues of the poles of the analytically continued Zeta
function.
To see how this works in practice, let us 9rst study the Zeta function

E1(t)=
∞∑
n=1

(n2)−t : (A.7)

To 9nd expansion (A.2), we recall the Poisson resummation formula
+∞∑

n=−∞
exp(−�n2)=

(
 
�

)1=2 +∞∑
n=−∞

exp(− 2n2=�) ; (A.8)

and rearrange it to read
∞∑
n=1

exp(−�n2)= 1
2

[(
 
�

)1=2
− 1 + 2

(
 
�

)1=2 ∞∑
n=1

exp(− 2n2=�)
]
: (A.9)

Seen from the viewpoint of statistical mechanics, this identity links the low-temperature
behavior (�→∞ on the left-hand side) of the partition function of a system with
quadratic spectrum to its high-temperature counterpart (1=�→∞ on the right-hand
side). Leaving out those terms in Eq. (A.9) that are exponentially damped for �→ 0,
we arrive at the required asymptotic expansion,

∞∑
n=1

exp(−�n2) ∼ 1
2

(
 
�

)1=2
− 1

2
: (A.10)
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Thus, we have i0 =− 1
2 , ci0 =

√
 =2, and i1 = 0, ci1 =− 1

2 ; all other coeKcients cin vanish.
Since the Gamma function is singular at t=0, the analytic continuation of E1(t) has
merely a single pole, located at

t=− i0 = 1=2 with residue
c−1=2

"(1=2)
=

1
2
: (A.11)

Of course, since E1(t)= &(2t), we could also have inferred this result from Eq. (60).
But now we got our machinery running: Multiplying the expansion (A.10) with itself,
we 9nd

∞∑
n1 ; n2=1

exp(−�(n21 + n22)) ∼
 
4�

− 1
2

(
 
�

)1=2
+

1
4
; (A.12)

implying that the Epstein function E2(t) de9ned in Eq. (76) has poles at

t=1; 1=2 with residues
 
4
;−1

2
: (A.13)

Multiplying then Eq. (A.10) by Eq. (A.12), we arrive at
∞∑

n1 ; n2 ; n3=1

exp(−�(n21 + n22 + n23)) ∼
1
8

(
 
�

)3=2
− 3 

8�
+

3
8

(
 
�

)1=2
− 1

8
; (A.14)

stating that E3(t) has poles at

t=3=2; 1; 1=2 with residues
 
4
;−3 

8
;
3
8
: (A.15)

Next, we turn to the inhomogeneous Epstein functions introduced in Eq. (89). The
partition function associated with Ẽ1(t), namely

1(�)= exp(�)
∞∑
n=2

exp(−�n2) ; (A.16)

forces us to rewrite identity (A.8) as
∞∑
n=2

exp(−�n2)

=
1
2

[(
 
�

)1=2
− 1− 2 exp(−�) + 2

(
 
�

)1=2 ∞∑
n=1

exp(− 2n2=�)
]
: (A.17)

Again discarding terms that are exponentially damped for �→ 0, multiplying by exp(�),
and expanding this latter exponential, we 9nd

∞∑
n=2

exp(−�(n2 − 1)) ∼ 1
2

(
 
�

)1=2
− 3

2
+

( �)1=2

2
− �

2
+ · · · : (A.18)

In contrast to its counterpart (A.10), this expansion in powers of �1=2 does not ter-
minate, so that Ẽ1(t) possesses in9nitely many poles. For our purposes, it will be
suKcient to account for only the leading of these poles, located at

t= 1
2 with residue 1

2 : (A.19)



466 M. Holthaus et al. / Physica A 300 (2001) 433–467

Multiplying Eq. (A.18) by itself, we obtain
∞∑

n1 ; n2=2

exp(−�(n21 + n22 − 2)) ∼  
4�

− 3
2

(
 
�

)1=2
+

2 + 9
4

− 2( �)1=2 + · · · ;

(A.20)

so that the leading poles of Ẽ2(t) are found at

t=1; 1=2 with residues
 
4
;−3

2
: (A.21)

Finally, multiplying Eq. (A.18) by Eq. (A.20) results in
∞∑

n1 ; n2 ; n3=2

exp(−�(n21 + n22 + n23 − 3)) ∼ 1
8

(
 
�

)3=2
− 9 

8�

+
27 + 3 

8

(
 
�

)1=2
+ · · · ; (A.22)

from which we deduce in the usual manner that the leading poles of Ẽ3(t) lie at

t=3=2; 1; 1=2 with residues
 
4
;−9 

8
;
27 + 3 

8
: (A.23)

Comparing the poles and residues of the inhomogeneous Zeta functions Ẽd(t) to those
of their homogeneous counterparts Ed(t), we see that neither the positions nor the
residues of the leading poles at t=d=2 are aGected by the inhomogeneity, whereas the
next-to-leading poles of Ẽd(t), which are found at the same positions as those of Ed(t)
for d¿ 2, already exhibit a diGerent residue.
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