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 41, No. 2, pp. 113-147

 Reference Posterior Distributions for Bayesian Inference

 By JOSE M. BERNARDOt
 Universidad de Valencia and Yale University

 [Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION on Wednesday,

 December 6th, 1978, Professor J. F. C. KINGMAN in the Chair]

 SUMMARY

 A procedure is proposed to derive reference posterior distributions which approxi-
 mately describe the inferential content of the data without incorporating any other
 information. More explicitly, operational priors, derived from information-
 theoretical considerations, are used to obtain reference posteriors which may be
 expected to approximate the posteriors which would have been obtained with the
 use of proper priors describing vague initial states of knowledge. The results
 obtained unify and generalize some previous work and seem to overcome criticisms
 to which this has been subject.

 Keywords: NON-INFORMATIVE PRIORS; VAGUE INMTIAL KNOWLEDGE; OPERATIONAL PRIORS;

 INFORMATION THEORY; MARGINALIZATION PARADOX; STEIN'S PARADOX; FIELLER-
 CREASY PROBLEM.

 1. INTRODUCTION

 COHERENCE requirements lead one to believe that, given a sampling model, the only sensible
 way to make inferences about its parameters is to assess a prior distribution describing one's
 initial knowledge about their values and to use the data to derive, via Bayes' theorem, the
 appropriate posterior distribution (see, for example, Lindley, 1971, and references therein).

 To some statisticians, the obvious dependence of the results on the prior distribution is
 somewhat disturbing. A possible solution to this difficulty, suggested by Dickey (1973),
 is to require that a scientific report should display the functional dependence of the posterior
 distribution on the choice of the prior, for a broad enough range of choices. Among those
 choices, one would like to include a prior which roughly describes a situation in which little
 relevant information is available, if -only because the resulting reference posterior distribution
 would provide a standard to which other distributions could be referred in order to assess
 the relative importance of the initial knowledge in the final results.

 Much work has been done to formulate prior distributions which add little information to
 the sample information; this goes back to the early work of Bayes (1763) and Laplace (1825)
 based on the principle of insufficient reason. Modem approaches to this problem are often
 based on different, types of invariance requirements, as those of Jeffreys (1946, 1939/67),
 Perks (1947), Barnard (1952), Hartigan (1964, 1965), Stone (1965, 1970), Villegas (1971,
 1977a, b), Box and Tiao (1973, Section 1.3), Piccinato (1973, 1977) and Jaynes (1978). Other
 approaches include the use of limiting forms of conjugate priors as in Haldane (1948), Novick
 and Hall (1965), Novick (1969) and DeGroot (1970, chapter 10), and different forms of
 information-theoretical arguments as those of Lindley (1961), Jaynes (1968), Good (1969),
 Kashyap (1971), Zellner (1971, pp. 51-53, 1977), Bernardo (1975) and Akaike (1978). More-
 over, although not directly concerned with the specification of reference priors, results on
 the conditions for numerical equivalence between classical and Bayesian inference, as those
 contained in Lindley (1958, 1965), Welch and Peers (1963), Geisser and Cornfield (1963)
 and Bartholomew (1965), are often relevant for its discussion.

 t Now at Departamento de Bioestadistica, Facultad de Medicina, Ave. Blasco Ibafiez 17, Valencia-10,
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 114 BERNARDo - Reference Posterior Distributions [No. 2,

 However, although we have many results which provide seemingly appropriate reference
 priors for a number of inference problems, no general theory has emerged which is capable
 of dealing with them all. More important, however, is that none of the procedures so far
 proposed seem to be able to deal with a number of serious criticisms raised against the
 uncritical use of (usually improper) reference priors. These criticisms include the
 inadmissibility results of Stein (1956), the marginalization paradoxes of Dawid et al. (1973),
 the results on strong inconsistency of Stone (1976) and Stein's paradox on the sum of squares
 of normal means (Stein 1959; Efron, 1973; Cox and Hinkley 1974, p. 383), and clearly apply
 as well to fiducial and to structural inference.

 This paper is an attempt to overcome these difficulties and suggest an operative procedure
 to derive reference posterior distributions which approximately describe the kind of inferences
 which one is entitled to make with little relevant initial information. The approximation
 referred to is to be taken in the sense of Dickey (1976); indeed, a real situation in which little
 initial information is available will be modelled by an operational (often improper) reference
 prior in such a way that the resulting reference posterior may be expected to approximate the
 posterior which would have been obtained with the use of a proper prior describing such
 vague initial knowledge. With expressions like "little initial information" or "vague initial
 knowledge" we intend to describe a situation in which most remains to be learned from the
 data, in a sense to be made precise.

 We shall conclude that the relevant reference prior may differ according to the parameter
 of interest. Thus, the operational prior used to derive the reference posterior for a normal
 mean turns out to be different from that required to obtain a reference posterior for the
 coefficient of variation. This was only to be expected, since vague initial information about
 the mean approximates a different state of knowledge from vague initial information about
 the coefficient of variation, and should therefore be modelled by a different function.

 People have sometimes questioned the need for reference distributions. We find it difficult
 however to avoid the need for an origin from which to measure precisely the relevance of the
 initial information. Particularly in scientific work, it seems difficult to deny the convenience
 of the eventual availability of standard posterior distributions which do not incorporate the
 scientist's personal opinions. The point was argued in Novick (1969) and ensuing discussion.

 Nevertheless, although the proposed operational priors depend on the likelihood function,
 we claim that their use as technical tools to obtain reference posteriors which provide origins
 for admissible inferences is compatible with a subjective view of probability. Here, and in
 the rest of the paper, we mean by admissible inferences those which may be produced, via
 Bayes' theorem, with a proper prior compatible with whatever "objective" knowledge one
 is willing to assume. Indeed, a reference posterior may be seen as an approximation to the
 personal posterior which would have been obtained by someone who happened to have little
 initial information; a Bayesian statistician with a subjective prior could presumably be
 interested in comparing his own posterior with the reference posterior obtained by his
 uninformed colleague.

 In this paper we intend only to provide a heuristic discussion of the basic ideas underlying
 our construction of reference posterior distributions to see whether they are sound; we feel
 that, at this point, much attention to mathematical detail would be premature.

 In the next section, some notation is introduced and the procedure to derive reference
 posterior distributions is described. In Section 3, their behaviour is investigated in a number
 of examples; in particular, it is proved that in the finite discrete case our result coincides with
 Jaynes' solution (1968) and that in the one-dimensional continuous case, under regularity
 conditions, Jeffreys' prior is obtained.

 Section 4 deals with the general situation in which nuisance parameters are present and
 offers some examples. In Section 5 it is found that, with this formulation, marginalization
 paradoxes do not seem to appear; moreover, reference posterior distributions are obtained
 for inference problems which have been regarded as somewhat controversial. These include
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 Stein's paradox on the sum of the squares of normal means and the Fieller-Creasy problem
 on the ratio of normal means.

 Finally, we consider in the last section the limitations of the proposed procedure and
 suggest areas for additional research.

 2. REFERENCE DIsTRIBurIoNs

 Let us assume that the objective of a piece of research is to improve one's knowledge
 about some parameter of interest 0 belonging to a parameter space 0. Let e = {X, E,p(xj I)}
 be the experiment which consists of one observation of the random quantity x c X which is
 distributed, for some e 0, according to the probability density p(x| 0) with respect to some
 a-finite dominating measure on X. Without loss of generality, we shall assume that the
 probability densities of x which correspond to different values of 0 differ at least on a set of
 non-zero (dominating) measure. Reference will often be made to the experiment e(k) which
 consists of k independent replications of s, each with the same value of 0.

 For simplicity in notation, we shall not generally attempt to be specific in describing the
 density functions. Thus, p(x) will denote the density function of the random quantity x and
 p(G) that of the random quantity 0 without any suggestion that the random quantities x and 0
 have the same distribution. Specific densities, used to construct examples, will be denoted by
 specific symbols. Thus, if 0 has a Beta distribution with parameters a and b, its density
 function will be denoted by Be (O Ia, b), where

 Be(O I a, b) = r(a ) (b)) a-lo - O)b-l.

 Let p(G) be a prior probability density of 0 with respect to some dominating measure on 0.
 Without loss of generality, assume p(G) strictly positive, i.e. such that p(G) >0 for all 0e0.
 Following Lindley (1956), the expected information about 0 to be provided by 8 = {X, O,p(xI 0)}
 when the prior density of 0 is p(G) is defined to be

 I @{e, p(0)}= (X) |( I x) logp( l x) dG dx., (1)

 where p(x) = fp(xJ I)p(Q) do and p(G Ix) = p(x| I)p(0)/p(x).
 It is worth pointing out that the amount of information defined by (1) does not depend on

 the dominating measures and may be expressed directly in terms of Radon-Nikodym
 derivatives as

 10{e, P(0)} FFdP(01 x) dP(x) log dP(0 I x) = ~~x) log dP(0)

 However, for the sake of simplicity, we shall be using the definition in density form with either
 the Lebesgue or the counting measures as dominating measures.

 Although other measures of information have been proposed in the literature, the
 logarithmic measure defined above seems clearly preferable to us, both in terms of its
 properties: invariance, non-negativity, concavity; see Lindley (1956), and in terms of its
 axiomatic justification: Shannon (1948) and Lee (1964) for the discrete case; Good (1966)
 for a probabilistic explanation of information; Bernardo (1979) for a general decision-
 theoretical argument.

 The basic idea underlying the construction of a reference posterior may now be stated as
 follows. Consider the quantity 10{e(k),p(6)}, i.e. the amount of information about 0 to be
 expected from k independent replications of s, and let C be the class of admissible priors, i.e.
 those compatible with whatever agreed "objective" initial information one is willing to
 assume. By performing infinite replications of e one would get to know precisely the value
 of 0. Thus, 0{e(oo),p(O)} measures the amount of missing information about 0 when the
 prior is p(O). It seems natural to define "vague initial knowledge" about 0 as that described
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 by the density 7r(O) which maximizes the missing information in the class C. The reference

 posterior distribution for 6 after x has been observed, to be denoted 17(Olx), may now be
 obtained via Bayes' theorem so that 7r(OI x) cc p(x I 6) 7r(O).

 In the continuous case, it is usually true that I09{(oo), p(O)} = +00, for all p(6). This is to
 be expected since an infinite amount of information would be required to know exactly a
 real number. However, one may define a reference posterior as a limiting result. By
 limpk(O) = p(O) we mean that the corresponding sequence of distribution functions converges
 to the distribution function of the limit in all its points of continuity. We shall assume that
 the class C of admissible priors is compact with respect to the topology induced by such
 convergence.

 Definition 1. Let x be the result of an experiment e = {X, E,p(x I 0)} and let C be the class
 of admissible priors. The reference posterior of 6 after x has been observed is defined to be

 7T(O Ix) = lim7rk(6 Ix), where 7ik(6 Ix) ocp(xj 6) Tk(O) is the posterior density corresponding
 to that prior 7rk(O) which maximizes IP{e(k),p(6)} in C. A reference prior for 6 is a positive
 function ir(6) which satisfies 7r(6I x) oc p(x 6) 7)r(6).

 The compactness requirement for C is necessary to guarantee the existence of the maxima
 involved in the definition. Since IO is concave as a functional of p(6) (Lindley, 1956) these
 maxima will be unique. If the class of admissible pnors is not compact one could construct
 an expanding sequence of compact sets converging to C, derive the corresponding sequence
 of reference posteriors using Definition 1, and define its limit to be the appropriate reference
 density.

 It may seem unnecessarily complicated to define 7r(O) indirectly using the limiting process
 in the sequence of posteriors. However, a direct definition in terms of IT(O) = lim irk(O)
 entails difficulties. For instance, with a sequence of priors 7k(O) = Be (O l/k, l/k) the limit of
 the corresponding sequence of posteriors after observing r successes in n Bernouilli trials

 with parameter 0 would be 7T(O Ir) = Be (Of r, n- r), implying an operational prior
 7r(O) c 0-1(1 - 0)-'; however, with the topology adopted, lim7Tk(O) is the discrete distribution
 lT(O = 0) = 7T(6 = 1) = i.

 Very often, under regularity conditions, a reference prior may be obtained much more
 rapidly than Definition 1 may suggest. For, if z- {x, ..., xk} is the result of ?(k), we may
 write

 IO{e(k),p(6)} = fp(z) fp(6 z) logp(oI z) d6dz

 =H{p(O)}- Jp(z) {p(I z)} dz, (2)
 where H{p(6)} fp(6) logp(6) dO is called the entropy of p(O) for historical reasons. Using
 p(z) = Sp(zI 6)p(6) dO and reversing the order of integration in (2) we have

 I1{s(k),p(6)} = H{p(0)}- Jp() jp(z 6) H{p(6f z)}dzd6

 = f() log exp (- jP(zI 0) H{p(6 z)}dz)/P()} dO (3)

 and, also,

 I1{e(k)vp(O)} = H{p(6)}+ Jp(6) JP(zi 0)logp( Iz) dzd6

 = fp(0) log {exp (fp(z 0) logp( z) dz)/p(O)} d. (4)
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 The equivalent expressions (3) and (4) are both of the form fp(6) log {f(0)/p(0)} do, which is
 maximized (provided ff(O) dO <oo) when f(O) oc p(O) as an elementary exercise in calculus of
 variations shows. Thus, under regularity conditions to guarantee the operations involved,
 two sequences of prior distributions approaching the reference prior, in the sense of
 Definition 1, are approximately provided by

 7Tk(O) oc exp (- JP(zI )H{p*(O! z)}dz) (5)
 and

 'Tk() oc exp (fP(zI O) logp*(O z)dz) (6)

 for large values of k, where p*(0I z) is the asymptotic posterior density of 0, which is
 independent of the prior.

 It may be noted that, as one would require, the results of (5) or (6) are not affected if the
 data z are replaced by a sufficient statistic t = t(z). Indeed, their common limiting result in
 the sense of Definition 1, the reference prior 7(O), will not even be affected if the data z in (5)
 or (6) are replaced by an asymptotically sufficient statistic, that is by some function t = t(z)
 such that, as k-oo, p(O z) = p(O t){l +o(l)} uniformly.

 Moreover, as a consequence of the invariance of 10 under one-to-one transformations of
 O the procedure is invariant under reparametrization. This is trivial in the discrete case for
 then reparametrization reduces to a relabelling which does not affect the probabilities. If 0
 is continuous and ~ = {(O) is a one-to-one transformation of 0, a sequence of priors
 approaching the reference prior for g is

 Vk( oc exp (j|p(z|I )logp*(G z)dz)

 = exp (jP(ZI O)log{lJlp*(Olz)dz)

 I Ix P(Jep (zI O)logp*(01z)dz) =J1fk(0), (7)

 where IJI = I a0/a I is the Jacobian of the transformation. Thus, as one would require, the
 reference prior for a one-to-one transformation of 0 may be obtained from that of 0 by the
 appropriate change of variable.

 3. SOME EXAMPLES

 3.1. The Finite Discrete Case

 If 0 may only take a finite number of values (say m) then, for any experiment 6, the
 reference prior in the unrestricted class of all probability distributions of 0 is the uniform
 distribution iT(0) = {l/m,..., l/m}. For, Renyi (1964) showed that, in the discrete finite case,
 limk OH{p(0I z)} = 0 and thus, using (5), we have 4(0) oc 1.

 More generally, using (2), we obtain that in the finite discrete case, the missing amount of
 information is precisely the original Shannon entropy, i.e. I{e(c),p(O)} = H{p(O)}. One
 may note that the Shannon entropy was axiomatically developed as a measure of uncertainty
 in the finite discrete case. We see that the concept of missing information contains this as a
 particular case. As a consequence, the reference prior in a given class C is here that which
 maximizes the entropy in such a class. This agrees with Jaynes (1968).

 The infinite discrete case cannot be handled in a similarly easy way because no general
 results seem to be available on the asymptotic posterior entropy of a discrete variable which
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 may take an infinite number of values. However, the problem may usually be solved by
 embedding the model in a continuous one for which such type of results do exist (see
 Section 3.3).

 3.2. The General Continuous Case

 Under regularity conditions, the limiting form of (5) and (6) takes a very simple form.
 For, if a maximum likelihood estimate #= 8(z) exists, the asymptotic posterior distribution
 p *(6 z) usually depends only on the data through #. Thus, the asymptotic posterior entropy
 may be written as

 H{p*(OI z)} =- JP*(GI O) logp *(6 I)d6

 = -logp*(#l 0)+o(1)
 = K(O)+o(1) (8)

 where K(8) = l-ogp*(#I #), since for large k the posterior density will concentrate around 6.
 Moreover, since for large k the likelihood p(zJ 6) will also concentrate around its maximum
 6, we have

 jzP(zI a K(8) dz = K() + o(l)

 so that both equations (5) and (6) become

 XTk(O) oc exp{-K(6)}{1 +o(1)} (9)
 and the reference posterior density of 0 after x has been observed is simply

 7f(OI x) ocp(x| 0) exp{-K(6)}. (10)

 3.3. The "Regular" Continuous Case

 Assume the usual regularity conditions for asymptotic normality of the posterior
 distribution of 6 (cf. Lindley, 1961; Walker, 1969; Johnston, 1970; Dawid, 1970) so that

 p*(O Iz) is normal with mean 0, the maximum likelihood estimate, and precision (inverse of
 the variance) ki(&), where

 i(0) = 0j'P(xI 0)6 2logp(xl 0)dx. (11)

 It is easily verified that if 6 has a normal distribution with mean , and precision h, its entropy is

 H{N(O I jt, h)} = 1log (27Te/h). (12)
 Using (12), the asymptotic posterior entropy of 6 is

 H{p*(OI z)} = 1 log (27re/k) - 1logi(o) + o(1)

 so that using (8) and (9) and leaving out an irrelevant constant

 Tr(6) oc exp{-K(6)} cc i(8)* (13)

 which is, of course, Jeffreys' (1946, 1939/67) prior.
 Alternative justifications for this prior have been given by Perks (1947), Lindley (1961),

 Welch and Peers (1963), Hartigan (1965), Good (1969), Kashyap (1971), Box and Tiao (1973,
 1.3) and Akaike (1978). From our own approach, Jeffreys is the appropriate reference prior
 if, and only if, there are no nuisance parameters, and the usual form of asymptotic normality
 may be guaranteed.

 The argument may easily be extended to the multivariate case, so that we obtain Jeffreys'
 multivariate prior for simultaneous inference about all the parameters. We do not know of
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 any objection to the use of such a prior for simultaneous inferences, i.e. to derive a joint
 reference posterior. If, however, we are interested in, say, one of the parameters, the rest
 being nuisance parameters, the situation is quite different, and the appropriate reference
 prior is no longer Jeffreys' multivariate prior. Indeed the reference prior to obtain a reference

 posterior for , in a Normal situation with both parameters unknown is 7T(,, Or) oc OrX- and not
 Jeffreys' w(p, or) oc or-2 (see Section 4).

 The preceding argument may easily be modified to obtain the reference prior for a quantity
 O whose asymptotic posterior distribution is known. If, in particular, the asymptotic posterior
 distribution of 0 is known to be normal with variance or2(0)/k which depends on some
 asymptotically consistent estimate 0 of 0 then, by the argument just presented, the reference
 prior for 0 will be i(6) = 1/o(6). This makes precise the conditions under which Perks'
 (1947) suggestion, based purely on intuitive grounds, is to be used. An interesting application
 of this result occurs in Stein's paradox about the sum of squares of normal means (see
 Section 5.3).

 3.4. Binomial Data

 The problem of making inferences about the parameter 0 of a binomial distribution has
 often been regarded as controversial. Suggested reference priors are uniform (Bayes, 1763;
 Laplace, 1825); ai(6)oc 0-i(-1 0)-) (Jeffreys, 1946; Perks, 1947) and () OC 0-1(1 - 0)-'
 (Haldane, 1948; Jaynes, 1968; Novick, 1969). Their relative merits are discussed in Jeffreys'
 book (1939/67, p. 184) and in the discussion following Novick's (1969) paper. It follows from
 the results in Section 3.3 that our approach leads to Jeffreys'. Thus, if n independent
 observations are taken from a Bernouilli process with parameter 0, r of which result in
 successes, our reference posterior would be Be (6| r + ,n - r + -). In particular, if r = 0, we
 obtain the reference posterior Be (6 ,n + ) while the posterior density using Haldane's
 prior would still be improper. Now consider that a random sample of 60 individuals is
 checked for lung cancer and none of them has the disease. We would conclude for instance
 that, in the absence of other sources of information, we are prepared to bet approximately
 evenly on the proportion of people in the population with lung cancer being less than 04
 per cent. With Haldane's prior, inferences about 0 cannot be made since the posterior is
 improper; we find this less than adequate.

 3.5. Non-regular Continuous Case

 We shall conclude this section by considering an example in which the asymptotic posterior
 distribution is not normal. Let z = {xl, ..., Xk} be a random sample from a uniform
 distribution over the interval (0- 1, 0 + -) and suppose that we are interested in the value of 0.
 It may be verified that the asymptotic posterior distribution of 0 is uniform over the interval

 (x max- xmi + 21) where xmax and xmin are respectively the maximum and minimum values
 in the sample. Thus,

 -H{P*(OI Z)} = J' I z) lOg)gP*(OI z) dO

 =-log {1 -(xmax-Xmin)} + o()

 and, moreover,

 -JP~(zI 0) H{p*(0I z)}dz = log l(k+ 1) + o(l)

 which is independent of 0. Thus, using (5), the reference prior for 0 is uniform and therefore,
 using Bayes' theorem, the reference posterior distribution 7T(O I z) is a uniform distribution
 over (xmax. - xm + D)
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 4. NUISANCE PARAMETERS

 Let us consider now the general case in which we want to use the result x of an experiment

 e = {X, T,p(xJ I1)} to make inferences about some function of the parameter 0 = 6(Ol) rather
 than about the parameter 3l itself. Without loss of generality, assume that the quantity of
 interest 6 = 0(f) consists of the first component of 3A so that = (6, co), where X is some
 nuisance parameter since, otherwise, an appropriate transformation could be made to achieve
 such a situation.

 Extending Lindley's (1956) definition, the expected information about 6 to be provided

 by ? = {X, T, p(xI 0, w)} when the prior density of b = (6, c) is p(b) = p(O)p(o I 0) is defined
 to be

 I0{e,p(, o = (x) jp(OI x) logp(o ) dOdx, (14)

 withp(x) = fp(x 0, co)p(O, c) dOdw,p(xf 6) = fp(xI 0, w)p(oI 0) do andp(f Ix) =p(xI 0)p(6)/p(x).
 Note that the expected information about 0 depends on the entire prior p(/) = p(6, co) and
 not only on the corresponding marginal p(6). It may be shown (Bernardo, 1978) that I1
 retains the appealing properties (additivity, non-negativity, etc.) which IO' has and, further-
 more, that for all p(6, co) one has

 B"{e,p(0, wo)} I'{e, p(O, o)} + fP(0) I'A0{e, p(6, w)} dO, (15)

 where

 It{-,p(0, )} = jP(XI JP() I 6X)log (16 I I ' ) do dx (16)

 so that, in particular, IO < IO.
 For any given conditional priorp(w 1 6) on the nuisance parameter, the expected information

 about 6 may be computed from (14) and thus, using the argument in Section 2, a reference
 prior r(6) for the parameter of interest may be derived as the limit of

 lTk(6) cc exp (- JP(zI )H{p*(6 Iz)}dz) (17)

 where p(z I 6) = fp(zI 0, w)p(w I 0) dw. A reference posterior distribution for 6 may now be
 obtained by the formal use of Bayes' theorem so that

 IT(6 Ix) J p(xI 0, )p(coI 0) g(6) do. (18)

 The reference posterior thus obtained will generally depend on p(w 1 0).

 The conditional prior of the nuisance parameters p(w I 6) may be chosen so as to describe
 personal opinions, previous empirical "objective" knowledge or, alternatively, to describe
 some form of diffuse opinions about cv given 6, using the procedure described in Section 2.
 Each of these assessments of p(co I 6) will give rise to a different reference posterior distri-
 bution for the parameter of interest 6. This battery of reference posteriors would establish
 different "origins" to make inferences about the parameter of interest depending on the
 assumptions that one is willing to make about the nuisance parameters.

 Occasionally, one may find a conditionally sufficient statistic t = t(x) whose sampling
 distribution only depends on 6, i.e. such that p(tI 0, co) = p(tI 6). By conditionally sufficient we
 mean that, givenp(coI 6), the posterior distribution of 6 only depends on t, i.e. p(OI x) = p(OI t)
 whatever the prior p(6) might be. This is the situation in which the marginalization paradoxes
 (Dawid et al., 1973) may occur. If t is conditionally sufficient for 0 then the reference posterior

 density of 0, 7T(6J x) = 7r(OI t) ocp(t| 0) w(6) does not depend on the exact form of p(co I 0) and
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 may be interpreted as (i) an origin for those inferences about 0 from priors for which t is
 conditionally sufficient or (ii) an origin for those inferences about 6 based solely on t, rather
 than the complete data x, whatever the prior p(O, co) might be.

 It is important to distinguish between the quantity of interest 6 and the complete parameter
 = (6, co); this, to the best of our knowledge, has not been done previously. We proceed to

 illustrate the difference by means of some examples.

 4.1. The Counterfeit Coin

 Let us suppose that s consists of one toss of a coin which is known to be fair (f = 00) or
 double headed (V = 01) or double tailed (/ = 02), and let x be the result of the toss, where
 x = 1 stands for "head" and x = 0 for "tail". Thus,

 (Xl I 0) = isl (X I 01) = Xi, p(X 102) = l -x xI = O,0 1.
 Moreover, assume that we are interested on whether the coin is fair or not. We may describe
 the parameter 0 as 0 = (6, co), where 6 specifies whether the coin is fair (6 = 00) or not (6 = 06)
 and co specifies whether the coin is double headed (co = co,) or double tailed (c = c02) given
 that it is not fair. We are interested in a reference posterior distribution for 0.

 According to the result stated in Section 3.1, the reference prior for 6 is the uniform
 distribution 7T(0O) = 7T(O1) = i whatever the prior for co might be. Similarly, if we do not have
 (or do not wish to use) any relevant information about co given 0, we may use the same
 argument to obtain the reference prior for co given 0 which, again, will be uniform; indeed,

 we would need that prior 7T(co I 0) which maximizes the missing information about co given 0,
 i.e. Pd"0{e(oo),p(6,co)} = H{p(col 0)}. This is maximized by ir(cv1 6 = 01) = 7T(CO21 6 = 06 =i
 Thus, the operational prior to make inferences about 6 is

 s() = i(6) r(cJ 6) = (i, 1, ,). (19)
 Using Bayes' theorem it is easily established that the corresponding reference posterior

 for 6 after n tosses of the coin, r of which resulted in heads, is

 7T(60 Ir) = 1/(1 +24-1), if r = O or r = n

 = 1, otherwise (20)

 and 7T(01 r) = 1-7r(O Ir). Inspection shows that (20) behaves as one would expect from a
 posterior which reflects the inferential content of the data without incorporating any other
 information. For example, if n = 1, then 7T(0oI r) = i (r = 0, 1) corresponding to the obvious
 fact that the first toss of the coin gives no information on its own about whether the coin is
 fair or not and thus, in the absence of any other source of information, both possibilities should
 have the same probability. Note that the uniform prior for V, w(b) = {J, j, J} which has often
 been described as a "universal" representation of ignorance in the discrete case yields, for
 n = 1, lp(OI r) = I (r = 0,1) pointing out the fact that although "non-informative" with
 respect to b, the uniform prior {J, 1, i} describes some information about 0, making twice as
 likely that the coin is not fair than that it is fair.

 A superficial analysis of this example could lead one to think that this approach can
 justify all sorts of priors on discrete parameters, simply by considering suitable many-to-one
 transformations. Of course, what we argue is that one should have a reference uniform prior
 in the discrete case on the parameter of interest, i.e. on that which is the immediate object of
 inference, regardless of how it may relate to other parameters in the model.

 4.2. Reference Posteriors for the Normal Case

 Let z = {x1, ..., xk} be a random sample from a normal distribution with mean It and
 standard deviation a, and suppose that we are interested in the value of ,u, a being a nuisance
 parameter.
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 It is well known (see, for example, DeGroot, 1970, Section 10.10) that the asymptotic
 posterior distribution of ,u is normal with mean x = Ex*/k and variance &2/k where

 a2 = S2 = 2(xi-x)2/k. Thus, using (17) and (12), the reference prior for ,. will be the limit,
 in the sense of Definition 1, of

 Vpk() = exp (- P(zI p) - log {(2lTe/k) 2}dz). (21)

 where p(z I.) = f rIN(x Ipu, ai)p(a I p) da. Thus, since the likelihood will concentrate for
 large k on its maximum,

 Tr,k(O) cc exp (- P(aI p) log a da) + o(l) (22)
 so that, as we have anticipated, the reference (marginal) prior of p. will generally depend on
 p(acI p.). If ai is a priori considered independent of p. so that p(caI p.) = p(ca), and only then, the
 integral (22) will not depend on it and the reference prior for p. will be uniform.

 We may want p(aijp.) to describe diffuse opinions about a given It. Then, using the
 argument in Section 2, one would like to maximize the missing information about a given pt.
 The same argument used to derive (5) leads then to

 ITk(&iI p.) cC exp (- p(zI pz, a) H{p*(a I , z)} dz). (23)

 Now, the asymptotic posterior distribution of a given p. is normal with variance a2/2k so that
 using (23) and (12),

 7Tk(ai p) oc exp (-|fHN(x*I Ca) -log{(we/k)a2}dz)

 and therefore

 7Tk(aiI it) Oc ac1{1 + o(1)}.

 Consequently, the joint reference prior to make inferences about ,u is

 7TA(p., a) = 7T(p.)n(acI p.) = i',

 that is the left Haar invariant measure already defended by Jeffreys (1939/67, p. 138), Barnard

 (1952) and Stone (1965) on different grounds. The corresponding reference posterior for /I
 is the familiar Student t with n- 1 degrees of freedom, i.e.

 'f ... * **, x") cc [1 + {(x- p)/s}2Ji",

 where s2= =(X -x)21n.
 Similarly, if we are interested in a, it being now the nuisance parameter, one may use an

 analogous argument to obtain ar0(p., c) = c-' as the reference prior to make inferences about a,.
 The corresponding reference posterior distribution of a is

 iic(ac x1, ..., X.) c a-It exp { - ns2/2ci2},

 i.e. ns2/c2 has the familiar X2-1 distribution.
 However, as we shall see in the next section, the reference prior to make inferences about

 A= p/ci is no longer a-1 but one that avoids the marginalization paradox discussed by Stone
 and Dawid (1972).

 5. A SOLUTION TO SOME CONTROVERSIAL PROBLEMS

 5.1. Marginalization Paradoxes

 Let us suppose that in the normal case discussed in Section 4.2, one is interested in the
 value of A = p./cl. Then, if one insists on using v(p., ci) oc a-I as an operational prior, problems
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 arise. For (Stone and Dawid, 1972) the posterior distribution of A obtained with such a

 prior depends on the data through the statistic r = (1xi)/(4Ex,2) whose sampling distribution
 r0

 p(r I u, a) = exp (-nnA2) {1-(r2/n)}i(-) J exp {- CO2 + rAco} dco

 only depends on A. Therefore, one would expect to be able to "match" the original inferences
 about A by the use of p(r j A) together with some appropriate prior for A. However, no such
 a prior exists. This type of marginalization paradox further explored by Dawid et al. (1973)
 and recently discussed by Jaynes (1978), appears in a large number of multi-parameter
 problems. This makes it difficult to believe that such a thing as an all-purpose representation
 of "vague knowledge" about the parameters of a given model is possible.

 In a previous paper (Bernardo, 1977b) we applied the procedure described above to derive

 the reference prior to make inferences about A = H4cl. It turns out that, in terms of A and a
 and whatever the conditional prior p(a I A) might be, the reference prior for A is

 ir(A) cr (1 + IA2)4

 and that of a given A, 7T(al A) oc a-1, so that the appropriate operational prior is

 7TA(A, a) = 7T(A) 7T(a I A) Oc (1 + IA2)4 a-1

 or, in terms of the original metric,

 W4t, a) = (1+ JA2)4 a-2

 The corresponding reference posterior density of A is

 7r(AI z) = 7r(AI r)

 o (1+JA2)-"4exp(- fnA2) con-' exp (- Iw2+ rAw) dw}

 One may observe that the factor in brackets is proportional to p(r IA) and thus the
 marginalization paradox does not occur. Similar results are obtained with the other examples
 in Dawid et al. (1973). We conjecture that our procedure always avoids the marginalization
 paradoxes; however, we do not have a proof.

 5.2. The Fieller-Creasy Problem

 In biological assay work one is often interested in the relative power of two treatments on
 drugs, and the following problem suggests itself. Suppose that two samples x = {xl, ..., X.}
 and y = {Yi' .. .,Yn} are available from two independent normal populations with unknown
 means ,u, -? and common unknown variance 2. The problem is to make inferences about the
 value of 0 = /ky, the ratio of the means.

 This problem was discussed in a symposium on Interval Estimation held by this Society.
 Fieller (1959) and Creasy (1959) presented there two different solutions that both claimed to
 be fiducial. Fieller's solution, defended by R. A. Fisher in the discussion, is difficult to accept
 for it can lead, for instance, to a "confidence" interval consisting of the whole real line.
 Kappenman et al. (1970) showed that Creasy's solution may be reproduced from a Bayesian

 point of view by the use of the familiar "non-informative" prior 7T(it, -q, a) oc a-1.
 In a previous paper (Bernardo, 1977a) we obtained the reference prior to make inferences

 about 0 = u/v4 using the procedure described above. In terms of {0, -, a} such a prior turns
 out to be

 Te(8s X,oa) = f(O) T(- I)i (a I, 0) oc (1 + 02)4u1
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 or, in terms of the original parameters,

 o(/Qt, -j, a) OC (/-2 + 2)i4 a-1.

 The corresponding reference posterior distribution of 0 after the samples x and y have
 been observed is

 g(? I X. c -4S }(n + 0 M)-1 2 +mn(fc- 0 2 -i (mf+n-v 24 i(J, y) oc (1 + 02Y4(+ n4S +~ )2p (24)

 where x = Exi/m, j = ZyJ/n, and S2 = Z(Xi-X)2 +(yi-)2. This is of the form

 _f(OIx,y) oc (1 + 02)4p(x,yI 0),

 where the term in brackets in (24), p(x, y I 0) is an integrated likelihood which, as one would
 expect, coincides with the integrated likelihood derived by Kalbfleish and Sprott (1970) for
 this example.

 The reference posterior (24) has been studied using Monte Carlo methods with satisfactory
 results. Clearly, it is a symmetric density about the origin when either x? = 0 or j = 0. This
 is to be expected since, in either case, there is no information to decide on the sign of 6. This
 feature is not obtained with the usual prior t(u, -, a) = a-1.

 5.3. Stein's Paradox

 Marginalization paradoxes may be considered to be a powerful argument against the use
 of a unique reference prior for a given model. Since those paradoxes disappear when one
 uses proper priors, one is tempted to blame impropriety for the unsatisfactory results often
 obtained in multi-parameter situations with the usual improper operational priors. However,
 to use proper approximations to those priors when trying to describe the inferential content of
 the data does not work either. This is clearly demonstrated in Stein's (1959) example on the
 sum of the squares of normal means. Indeed, the universally recommended operational prior

 for a multivariate normal model with known precision matrix is 7f(1,..., 1pk) OC 1, which we
 certainly regard as appropriate to produce reference posterior distributions for any set of the

 ,uj's, and this prior may be approximated by the proper density p(p,, ...,* k) = ffN(pUi IO, a)
 where a is very large. Now, suppose that we desire to make inferences about the value of
 o = Z4tA; it is easily verified (Efron, 1973) that the use of such a prior overwhelms, for large k,
 what the data have to say about 6, so that the corresponding posterior distribution for 0 is
 rather unsatisfactory.

 From our point of view, the use of a uniform prior does not make sense if one is
 interested in 0; indeed, to obtain a reference posterior for 0 we have to maximize the missing
 information about 0, a completely different situation to one in which you want to maximize

 the missing information about the pi's. We now turn to derive our reference posterior
 distribution for 0.

 Let e(n) be the experiment which consists of n observations from each one of k independent

 normal distributions with means pi (i = 1, ..., k) and variance 1. Let xq be the mean of the n
 observations from population i, and let V. and x be the corresponding vectors in Rk. Thus,
 p(i I ) = N(xf ,u, n-1 1k) and p(p, I x) cc p(x I ,u)p(p,). For large n, the prior density p(p,) may
 be ignored so that the asymptotic posterior distribution of V. is p*(,u Ix) = N( I 3,n-I k)
 and therefore (see, for example, Graybill, 1961, chapter 4) with 0 -= I= pT P and
 t = ZX2 = XTX, nO has asymptotically a non-central x2 distribution with k degrees of freedom
 and parameter nt. It follows (see, for example, Johnson and Kotz, 1970, p. 139) that the
 posterior distribution of 0 is asymptotically normal with variance (2/n){2t+(k/n)}. More-
 over, the sampling distribution of nt is a non-central x2 distribution with k degrees of freedom
 and parameter nO, so that E(t| 0) = 0+ (k/n) and therefore t is an asymptotically consistent
 estimate G of 0. It now follows from the last paragraph of Section 3.3 that the reference
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 prior for 8 is 3-(8) oc 0A. One may note in passing that this could theoretically have been

 obtained from the sampling distribution of t, p(tl 0), assuming t conditionally sufficient, by
 the use of Jeffreys' formula; this proves to be however a difficult exercise in calculus.

 Thus, if the conditional prior p(pu I 8) is such that t is sufficient or, alternatively, if inferences
 about 8 are desired solely based on the value of t, the appropriate reference posterior is

 ir(8J t) OC ir(8)p(t 0) = 084x2(ntIk,n8). (25)
 A student of mine, J. R. Ferrandiz, has recently shown that the same reference posterior is
 obtained without the assumption of sufficiency; thus, if one works in polar coordinates, in
 terms of 8 and the corresponding vector w of angles, the reference prior to make inferences
 about 8 is, for some functionf(w),

 ,9(0, ) = f(0))f(W I 8) cc a-if(w)
 and the corresponding reference posterior distribution for 8 is again (25).

 In his recent address to this Society, Wilkinson (1977) makes Stein's example central
 for his argument of "fiducial" versus Bayesian inference. We proceed to compare his
 solution with ours. Indeed, with the data he uses, i.e. with n = 1, k = 50 and t = 100, the
 95 per cent shortest credible interval for 8 is (19-4, 88-2) as derived from (25) by numerical
 integration. This is not far from the fiducial interval (21, 89) which he quotes.

 Consider however the data n = 1, k = 10 and t = 9-133. The value 9'133 for t = 2x2 was
 obtained by simulation as the sum of the squares of ten normal deviates with zero mean and
 unit variance. Thus, the "true" value of 0 is 0. Note that there is nothing special about this
 value, since p(t 18 = 0) is a central x2 distribution with 10 degrees of freedom so that the
 value of t would be expected to lie between 6'7 and 12'5 with probability i. The corresponding
 posterior density of 8 obtained from (25) decreases monotonically from 0 and, in particular,

 P(8 < I = t) = 0'3952 and P(8 <51 t) = 0'7903. The corresponding upper bounds obtained
 using Wilkinson's method are 0'6003 and 0-8247 but this leaves an "unassigned" probability
 of po = P{X2(l0) > 9'133} = 0-5195 so that, for him, p(O < If t) could lie anywhere between
 0'0808 and 0-6003. Wilkinson claims that "a high value of p0 would indicate evidence that the
 observed point is too close to 0 to be statistically compatible with the assumed covariance
 matrix Ik of x or else with the normal form of the distribution". However, our data were
 obtained by simulation precisely from a multinormal distribution with Ik as covariance
 matrix !

 Finally, as Smith (1977) clearly shows, Wilkinson's results are inconsistent with those
 directly obtained for the one-dimensional normal case. Indeed, using Smith's example, if
 one obtains x = 1'1503 as a realization of a normal random variable with unknown mean p
 and unit variance, the reference posterior distribution for ,u is 7T(X 1 x) = N(p I x, 1) so that
 P(-1 <,< 1 <lx = 1.1503) = f'1N(uf 1l1503, 1)d,u = 0'4245. This is consistent with the
 result P(p2< 1 t = 1-15032) = 0'4245 obtained using (25) with n = k = 1 and t = x2, and one
 may prove that this is true for all x. This was to be expected since we have calculated in two
 alternative ways the probability of the same event, given the same information. This is to be
 compared with Wilkinson's rather surprising results 0'2060 <P(j.<2 <lIt = 1-15032) <0'4560,
 but P(-1 < ,t< 1 x = 1.1503) = 0'4245 exactly!

 6. DiscussioN

 The derivation of reference posterior distributions may be seen as a part of an analysis
 of the sensitivity of the posterior distribution to changes in the prior. The reference posterior
 distribution provides an origin for those statements about the parameter of interest which
 may be regarded as admissible, given the model and the data. Being an origin for admissible
 inferences, the reference posterior distribution need not be itself admissible but only
 arbitrarily close to admissible posteriors; indeed zero, which is not positive, is an appropriate
 origin for positive quantities.
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 In a private conversation, G. A. Barnard suggested to me the appealing name information-
 modulated likelihoodfunction for the product 7(O)p(xI 0). However, no claim of "objectivity"
 is made for the set of inferences that could be produced from its normalized form, the reference

 posterior r(O I x). It is only argued that r(O Ix) gives a coherent feeling of the values of 0
 that the data x are supporting, under the assumptions that p(6) E C and that the model is true.

 One should compare the reference posterior 7T(O I x) with the posterior density p(OI x) obtained
 from a personal prior p(6) which describes the scientist's initial information; the distance

 between p(O I x) and 7T( I x) would be a measure of the relevant information contained in p(6).
 A reference prior does not describe a situation of "non-information" about the parameters

 of a model; the examples in Section 5 show that such a description is not possible. Instead,

 if (0, c) are the parameters of the model, 7T9(0, c) describes the limit of a particular kind of
 knowledge about (0, co): that which leaves most to be learned from the data about the value
 of 0. This is why, although invariant to one-to-one transformation of the parameter space,
 the method is not invariant to marginalization. We maintain that the reference posterior which
 corresponds to such a prior is a useful distribution to quote in a scientific report about 0.

 If it is desired to restrict the sensitivity analysis to some specific class C of priors, e.g. those
 compatible with some accepted information or those introducing some assumptions, this is
 done by maximizing the missing information in C rather than in the class of all probability
 densities. Although in this paper we have only worked in the latter case, we believe this is a
 promising field of research. It could be used, for instance, to derive reference priors for the
 last step of hyperparameters in a hierarchical prior specification as those used by Lindley and
 Smith (1972) and Smith (1973); here, C would be the class of priors with the assumed
 hierarchical structure, and one would have to find a reference prior by maximizing in C the
 missing information about the parameter of interest.

 It should be clear to the audience that an entirely satisfactory mathematical presentation
 of the methods suggested in this paper would require much more attention to detail than
 has been attempted here. In particular, the asymptotic behaviour of posterior entropies, and
 the maximization process which Definition 1 requires, should be more carefully investigated.
 However, an understanding for the foundations and consequences of the procedure advocated
 here can be achieved with the informal approach adopted.

 I would like to conclude by quoting the last paragraph of Professor Novick's address to
 this Society (Novick, 1969) on precisely the same topic I have been discussing tonight, for it
 describes precisely my own feelings: "The paper is put forward as a further foray into the
 unknown to see if the basic principles are sound. Naturally, the emphasis has been on the
 case for the defence, though no relevant, possibly embarrasing facts have been suppressed.
 The case for the prosecution will, I am sure, follow shortly".
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 DISCUSSION OF PROFESSOR BERNARDO'S PAPER

 Professor J. B. COPAS (University of Salford): I would like to start by welcoming Professor
 Bernardo to the Society and complimenting him on the presentation of his case both tonight and in
 his written paper. I believe we have before us a paper which is both important and challenging, and
 I am pleased to have the privilege of opening the discussion. There are several points I would like
 to take up, but perhaps it is incumbent on the opening prosecution witness to start off by taking
 his spade to the very roots of the edifice, leaving it to the later witnesses, many more expert than I,
 to comment on more particular matters.

 The backbone of the method is equation (1), Professor Bernardo's idea being that to maximize
 this expression one maximizes the contribution of the data and minimizes the contribution of the
 prior distribution. The argument rests on the belief that the entropy of a distribution is a measure of
 uncertainty. Consider the distribution shown in Fig. Dl. If this is cut in half, and the two halves
 moved apart, the variance increases dramatically. For example, if we are forecasting next year's
 company profits, then the original distribution says that we are sure to break almost even over the
 year, whereas the displaced distribution says we are sure to make almost Elm profit or Elm loss,
 but we have no idea which. Surely, the company is operating under much greater uncertainty in the
 second case than in the first, yet the entropies of the two distributions are exactly the same. This is
 because entropy depends only on the distribution of the different heights of the probability function,
 and pays no regard to the values of the variable at which these various heights are attained. Entropy
 is the average amount of information which has to be transmitted in order to specify without error
 which particular value of a random variable is obtaining at any particular time, a quite different
 matter from measuring the statistical uncertainty in the value of the random variable itself. Given,
 then, that entropy is a very imperfect measure of statistical uncertainty, how does Professor
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 FIG. D1.

 Bernardo's method apparently remain unscathed? It is because asymptotic posterior distributions
 are usually normal, when the entropy is essentially the log of the standard deviation and thus a
 monotonic function of variance.

 If the asymptotic posterior of 0 is independent of the prior, then the equation leading to (3)
 can be written

 M(p(0)) - E o (0), (A)

 where

 oa(0) = E{M(p(0 I z)) I 0}

 and M is the measure of uncertainty, taken in the paper to be entropy. Here, once the experiment
 is specified, the function oa(O) is fixed, and expression (A) is the quantity to be maximized over p(O).
 To minimize the second term, the prior should concentrate on those values of 0 which make oa(O)
 small, but on the other hand, to maximize the first term requires probability over a wide range of
 values; Professor Bernardo's solution is the compromise between these two opposing forces, and
 naturally the resulting prior density in (5) is a monotonically decreasing function of oa(0). An
 important special case is when oa(O) is constant, as for instance happens for an unknown location
 parameter. One is then left to maximize just M(p(O)), which by any reasonable definition of M will
 spread the probability out to a uniform distribution. Thus, as Professor Bernardo rightly says, the
 uniform prior does not require asymptotic normality, but neither does it require the use of entropy;
 it would just as well result if M was variance, assuming one only wished to optimize within
 unimodal distributions. Similarly, the uniform prior on log 0 would result for a scale parameter.

 If (A) is univariant under one-to-one transformations of 0, then this argument extends to the
 regular continuous case. For in the notation of the paper, the asymptotic posterior distribution of
 the transformed parameter f defined by

 'A =f0i(O)'dO

 is normal with variance independent of i, and so b is assigned a uniform prior distribution, or 0
 itself the Jeffreys' prior as in (13). The essential property required of M is that (A) be invariant, not
 specifically, that it be entropy. It would be interesting to know whether there is some other measure
 M which more directly relates to statisticians' ideas of uncertainty and yet which leaves (A) invariant.
 If such a measure exists, it might form a better rationale for the results derived in tonight's paper.

 As I have remarked already, entropy pays no regard to the metric of the sample space of the
 relevant random variable, and so can take no account of smoothness of the resulting distribution.
 I think this is another difficulty with entropy. Professor Bernardo emphasizes that his method can
 apply to the situation when one wants to incorporate some specific knowledge about 0 by maximiz-
 ing within the restricted class C of prior distributions consistent with that knowledge. Perhaps this
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 is the most promising aspect of his technique but unfortunately the results can be somewhat un-
 appealing. For instance, suppose we wish to incorporate the knowledge that the prior probability
 of 0 belonging to some set S isp. Then a straightforward extension of the analysis given in Section 3
 shows that in the regular continuous case the prior distribution for 0 is

 ( c1i(0)1, 0eS,
 iT(0) =

 where c1 and c2 are chosen such that P(0 e S) and P(0 0 S) are proportional to p and (1 -p) respec-
 tively. The discontinuities on the boundaries of S do not make much sense from a practical point
 of view, since the choice of both S and p are likely to be somewhat arbitrary. However, when C
 takes the form of specifying prior moments, Professor Bernardo's technique can give a simple and
 rather appealing solution. For instance, if the prior mean and variance of 0 are to be fixed in
 advance, one obtains the solution

 7T(0) oc i(0)+ exp (Al 0+ A2 02),

 where A1 and A2 are specified in order to give n(O) the required mean and variance. The first term
 is the distribution obtained when no information about 0 is assumed, and the second term is simply
 a normal density. Interestingly, this is roughly equivalent to assuming one has available the data
 from a supplementary sampling experiment which gives rise to a "normal" likelihood function
 which is then multiplied in accordance to Bayes' theorem.

 Professor Bernardo points out that his method is not invariant under many-to-one transforma-
 tions or under marginalization. As he says, this means that one's choice of prior depends on which
 aspect of the parameter is under study. But there are cases where the choice of a "natural" para-
 meterization is not clear. For instance, in the counterfeit coin example in Section 4.1, suppose
 we are interested in whether the coin is double-headed (01). What is the alternative hypothesis?
 If it is the composite of 00 and 02, then P(01) = i, but if there are two separate simple alternatives
 00 and 02, P(01) = i. Does the author's analysis of this example imply that the probability of any
 simple hypothesis that we care to examine in the finite discrete case is i? I find the discussion of
 this in the paper less than adequate. Similarly, in Stein's paradox in Section 5.3 one may be interested
 in making separate decisions for each component problem. As such, the complete vector of para-
 meters ,. is the object of inference. But it so happens that, using a combined loss function, risks of
 symmetric decision rules depend on ,. only through a scalar function such as 0 = z ,u. Is then 0
 the object of inference? More generally, the parameter in a decision problem may not be an
 object of inference at all, but simply that part of the model which links the loss function to the
 likelihood function.

 If tonight's speaker is serious in his claim that the method is consistent with a subjectivist view
 of probability, then reference prior distributions cannot possibly be interpreted as inferences in
 their own right. In the tone of his discussion of the examples in Sections 4 and 5, however, I detect
 that Professor Bernardo comes very close to interpreting them as if they in fact are. One of the
 most compelling consequences of the Bayesian argument is that inferences can be updated in a
 sequential way as new information arises; this too cannot be so for reference posterior distributions,
 as the complete form of the likelihood function has to be known before the initial prior can be
 formulated. Perhaps Professor Bernardo is himself near the brink of his own trap, but I think there
 is a great danger that some, who from indoctrination believe they should always find Bayesian
 solutions to data problems, will dive into the trap headlong and interpret the method of tonight's
 paper as a recipe for prescribing prior distributions which do indeed represent ignorance. One is
 back to the position of interpreting the reference posterior merely as a yardstick. But what is the
 use of a yardstick if we do not know how to measure with it? I look forward to hearing Professor
 Bernardo expand on his meaning of "origin" and "reference".

 Tonight's paper has been stimulating and provocative, but as perhaps should always be the
 case with a good read paper, there are many questions left unanswered. It gives me great pleasure
 to propose the vote of thanks.

 Dr A. O'HAGAN (University of Warwick): "Ignorance is bliss", they say, but the question of
 whether it really serves any useful purpose to represent prior ignorance formally is highly con-
 tentious. Nevertheless, I will confine my remarks to operational behaviour of Professor Bernardo's
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 reference posteriors, because despite his protestations that they only represent an "origin" or
 "reference" it is clear from his examples that he sees them as being meaningful, and perhaps useful,
 in themselves.

 It is obviously a significant achievement to derive, from a single framework, the uniform prior
 for "finite discrete" cases and the Jeffreys' prior for suitable continuous cases. Moreover, it is very
 important that Professor Bernardo has indicated regularity conditions for the Jeffreys' prior to be
 appropriate. Consider, for instance, a simple class of problems where the posterior distribution is
 not asymptotically normal and therefore Jeffreys' prior is not obtained: let the observation x have
 density function given 0 of the form

 p(x I 0) = f(x, A(0)),

 depending on 0 only through the function O(0). Then if f(0) is not a one-to-one transform, the
 whole parameter 0 is not identified. The Jeffreys' prior is clearly a function of O(0) alone, implying
 that the conditional prior distribution of 0 given O(0) is uniform. Now it is well known that in such
 a case the data do not modify the distribution of 0 given O(0), so it will be uniform in the posterior
 also, which may well result in the posterior being improper. But Professor Bernardo's basic

 approach of Section 2 recognizes the fact that the data tell us nothing about 0 given O(0) and, quite
 properly, admits defeat-the reference prior for 0 given O(0) turns out to be arbitrary. This in turn
 highlights the fact that posterior distributions, reference or otherwise, require a conscious specifica-
 tion of prior information.

 But whereas I am impressed by Section 2, I find Professor Bernardo's handling of nuisance
 parameters in Section 4 much less convincing. We are treated to some elegant verbal sidestepping
 but the basic idea must still amount to a way of representing total ignorance about the parameter
 0 = (0, co). First we pretend ignorance about co for every possible value of 0, yielding a set of
 conditional reference priors 7(co I 0). Then we pretend ignorance about 0 to obtain a reference
 prior r(0). Yet the result of multiplying these two is different from pretending ignorance about b
 directly. To see how different they can be, consider the "counterfeit coin" example of Subsection 4.1.
 The direct approach yields what I will call the unconditional reference prior {j, i, i} with entropy
 log 3. Using the methods of Section 4 to obtain 7(cw I 0) r(0) yields what I will call the conditional
 reference prior {j, i, i} with entropy 1-5 log 2, which is only 5 per cent less than log 3. This is only
 a small difference, but suppose we extend the example to allow the coin to be biased not just to the
 two extremes of double-headed or double-tailed but to k different degrees. The unconditional and
 conditional reference priors are

 k+A 1... k+1 and Tk 2k

 respectively, and the entropy of the latter for large k is only about half that of the former. So the
 conditional reference prior contains up to half of the missing information: how can these both be
 representations of total ignorance? Even greater discrepancies can be achieved with multinomial
 sampling. Professor Bernardo tries to justify his conditional reference prior by arguing that a single
 toss of a coin tells us nothing about whether it is fair, but the Bayesian argument acknowledges this
 fact regardless of the prior-by the prior and posterior probabilities that the coin is fair being equal.

 But even if the conditional priors are sensible, by changing which aspect of the parameter we
 regard as being a nuisance we change the reference prior, and hence the reference posterior, for the
 full parameter. In his very first sentence Professor Bernardo invokes coherence to justify being a
 Bayesian, and yet his approach to nuisance parameters is incoherent. Referring again to the
 counterfeit coin, imagine that a single toss of the coin results in heads. Then the reference posterior
 distribution for inference about whether it is fair is {2, i, O}. But the reference posterior for inference
 about whether it is double-headed is {i, 4s, O}. If asked to bet on whether the coin is fair, Professor
 Bernardo refers to the first posterior distribution and will accept any odds better than evens. And
 if asked to bet on whether it is double-headed he refers to the second distribution and accepts odds
 better than 4-1 on. It would be very easy, with these highly incoherent beliefs, for him to place
 bets which would lose him money whatever the true state of the coin, and yet which he would
 believe were to his advantage! I would like to be his bookmaker!

 So inferences about different aspects of the full parameter do not cohere, and the prime symptom
 is that probability laws fail-the same probability evaluated two different ways yields two different
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 answers. As another example consider evaluating the probability that the next toss of the coin will
 also be heads. We should completely reformulate the problem so as to express the result of the
 next toss as a function of the parameter (and I would be interested to see how Professor Bernardo
 would do this), but one might be tempted, naively, to use probability calculus via

 P(heads next) = P(heads next I fair) P(fair) +P(heads next double-headed) P(double-headed).

 With the above reference posteriors we find

 P(heads next) = ix + 1 x -P05!

 Although I think Professor Bernardo would have been safer sticking to his unconditional theory
 of Section 2, I am glad that he did not. As a result he has given us a paper which is not only lucid and
 stimulating but also challenging. It gives me very great pleasure to second the vote of thanks.

 The vote of thanks was carried by acclamation.

 Professor A. F. M. SMITH (University of Nottingham): It has long been a source of considerable
 embarrassment to dwellers in the Bayesian citadel that it houses so many improper waifs and strays,
 most of hideously deformed appearance. How fitting that a Dr Bernardo should appear with the aim
 of providing a respectable shelter for these outcasts!

 My own view of "vague" or "improper" priors is that they are simply mathematical artefacts
 (having no intrinsic interest in their own right) whose justification rests on the fact that their use in
 Bayes' theorem results in a posterior distribution which is a "good approximation", in some sense,
 to what would have been obtained using the "non-informative" prior anticipated from careful
 assessment. It is clear that the quality of an approximation will depend both on the parameter of
 interest and on the likelihood, and so it should not be a matter of surprise, or concern, if the form
 of representation of the "vague" prior (i.e. mathematical artefact) depends on the data, or does not
 transform in an "obvious" way when we change the parameter of interest. I certainly have no
 objection to Bernardo's results on these grounds.

 But, from this "pragmatic" standpoint, how should one react in general to Professor Bernardo's
 rather formal approach? In a sense, if we take the "good approximation" idea seriously, then the
 whole business seems rather circular. An "actual" prior is "non-informative" (by definition!) only
 if the posterior it would lead to is well approximated by Bernardo's reference posterior. A possible
 alternative reaction is to note that the reference recipes seem intuitively satisfying and also provide an
 elegant unification and clarification of many hitherto messy issues. I suggest that we should,
 therefore, be pragmatically delighted with this paper, whilst continuing to bear in mind that
 approximation is the real issue.

 I have some queries. First, there seems to be a promise, in the Introduction, to shed further
 light on the Stein inadmissibility result (Stein, 1956) and the strong inconsistency result of Stone
 (1976), in so far as they relate to particular improper prior representations. This promise does not
 appear to be fulfilled. Secondly, have some "possibly embarrassing facts" been inadvertently
 suppressed following equation (18)? The author has noted that, in the presence of nuisance para-
 meters, the reference prior for 6 will generally depend on p(co I 0). One option would appear to be
 to use the reference form 7r(co I 0). But is this an unambiguous procedure if co = (w1, W2), say? We
 could proceed directly to obtain f(co1, C2 1 0), or we could obtain w(wl I 0, w2), -r(w2 1 0) in two
 stages. Would the author comment on whether these alternatives necessarily lead to the same
 results? And what should we do in cases where they do not?

 Finally, I should like to ask the author whether he feels his approach can help with the following
 important class of problems. Suppose we have a finite list of alternative models (for example,
 location-scale families with different tail behaviours, or alternative regression models) and wish to
 obtain posterior probabilities on the individual models, having assigned "non-informative" priors
 to parameters within each model. Should the non-informative priors for location and scale differ
 from family to family? If so, how? And what are the appropriate "constants" for "uniform"
 priors assigned to alternative vectors of regression coefficients having different dimensionalities?

 Professor A. P. DAWID (The City University): I feel well placed to appreciate Professor
 Bernardo's achievement, since some time ago I myself tried, and failed, to carry out a similar

This content downloaded from 138.38.154.78 on Thu, 25 May 2017 19:35:03 UTC
All use subject to http://about.jstor.org/terms



 1979] Discussion of Professor Bernardo's Paper 133

 programme. My approach was to consider an uncertainty function U(H) defined for distributions 7r
 for the parameter. This might, as in tonight's paper, be the entropy of [I, but I was thinking in
 terms of a decision problem with specified loss function, and taking U to be the expected loss
 consequent on taking the optimal decision for the state of information [I. Defining nIo as the prior
 distribution for 0, and IH. the posterior based on data X = x, the expected value of sample informa-
 tion in the experiment is U(HIo)-E[U(L[ ,)]. It seems reasonable that an "uninformative" prior
 (relative to U) is one for which this quantity is maximized.

 This idea occurred to me and to several others at about the same time, but no simple general
 solution emerged. While some special cases may be solved, these give little insight. Moreover,
 some of these answers seemed somehow "wrong".

 Professor Bernardo has hit on the idea of maximizing the expected value of information from a
 large number of replications of the experiment. This gives more elegant and more acceptable
 answers. I should like to know if the method might extend to a general uncertainty function. For
 one based on a decision problem, we would actually get a "reference decision" for any observation.

 This raises a general problem of interpretation. Reference posteriors (or decisions) are not for
 use: they are for reference. But just how are we supposed to make the comparison between our real
 (informed) analysis and the reference? And what use are we to make of this comparison?

 A further problem arises from the "incoherence" of reference priors for different parameters.
 Suppose, for example, A = 02- 01 represents the effect of applying some treatment, and we are
 interested in whether the treatment has a positive effect. We want a reference posterior probability
 P(A > 0). What reference prior is called for ? One might use that appropriate for inference about A,
 and integrate the posterior reference density over the event "A > 0". But one could also construct a
 new parameter: D = 1 if A> 0, (D = 0 otherwise; and use a reference prior for (D to obtain a
 (presumably) different reference value for P(D = 1). In other words, if we want to find the reference
 posterior probability of a set in the parameter space, this is not done by integrating the reference
 posterior density over that set. But if this is so, what use are we to make of reference densities?

 Professor D. J. BARTHOLOMEW (London School of Economics): For a long time now I have only
 been a spectator in the game of hunting the prior but that, perhaps, provides a vantage point from
 which to make observations and ask questions. The author is to be congratulated for providing
 what, to me at least, is a convincing and impressive method of deriving what used to be called
 ignorance priors. It gives me some satisfaction to note that in the regular continuous case the
 Jeffreys' prior to which the method leads is also the one which Welch and Peers (1963) arrived at
 using frequentist arguments. In this connection it is worth observing (though somewhat remote from
 the rarified atmosphere of this evening's meeting) that we now have a further justification for some
 of the inference procedures which form the backbone of the elementary courses which we teach.
 I must confess to some slight amusement at the verbal manoeuvres in which the author has had to
 engage to maintain his Bayesian faith but, even so, he comes perilously close to heresy. For
 example, reference priors involve integration over the sample space and hence they depend on the
 sampling rule. It would be interesting to know how much the form of the reference prior is affected
 by the choice of sampling rule. Would it make sense, I wonder, to use the authors' method with
 sequential sampling schemes where the stopping rule might depend on the observations obtained to
 date. If so the relationship between the sampling rule and the prior might throw some further light
 on whether the basic principles are sound. Another direction in which the author might extend his
 work is to predictive inference where we are interested in the values of future observations rather than
 in parameters. This is a field where Bayesian methods are attractive from a practical point of view.
 Does the author think that his information criterion provides an approach to the choice of prior for
 that problem? There was much discussion of the correct choice of prior in the case of observations
 on Bernoulli variables following Thatcher (1964).

 Professor D. V. LINDLEY (Somerset): The author of today's paper is to be congratulated on
 the ingenious ways that he has overcome the difficulties usually associated with reference priors.
 However one snag remains: the distributions derived by his procedure violate the likelihood
 principle, and therefore violate the requirements of coherence that he mentions. It is easy to see
 this because the method depends on repetitions, not of the result of an experiment, but of results
 like those obtained in an experiment, namely those in the sample space. It is even more transparent
 in the regular case where the expectation operator is used (equation (11)).
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 An example is illuminating. Suppose r successes and n-r failures have been observed in a
 Bernoulli sequence with unknown chance of success 0. If n is fixed (binomial sampling) the reference
 prior is proportional to {0(1 - 0)}-i (Section 3.4). In contrast, if r is fixed (Haldane sampling) this is
 replaced by {02(1 - 0)}-4. Consequently if you or I were to make inferences about 0, we could use
 our personal probabilities, but if we wanted to engage in scientific reporting, then we would have
 to go back to the data (r, n - r), which had so far proved adequate, and enquire what the sampling
 rule was. I find it unnatural that completely new information should be needed for scientific, as
 distinct from personal, reporting.

 A further example sheds more light. The trinomial distribution with chances A{1 -(1 - 8) o},
 (1- SA) 0 and (1- A) (1- 0) occurs in the analysis of life-tables and yields numbers D of deaths,
 W of withdrawals and S of survivors in the three classes. Here we take 8 to be a known value in
 [0, 1]. The likelihood factors into a function of 0 times one of A. It might be expected that the
 reference prior would factor, giving independence, but this appears not to be so. Suppose C is
 restricted to the class of priors that do factor. Then we can isolate A say and have likelihood
 AD(1 - SA)S(l - A)w. For 8 = 0 or 1 this is Bernoulli, yet the reference prior in neither case is
 {A(1 - A)}-* suggested by Professor Bernardo. I find this strange. But he has been so successful in
 overcoming other difficulties, and the rewards of success would be so great, that I am sure he will
 be able to overcome these teasers.

 Dr P. J. BROWN (Imperial College, London): In the search for "non-informative" priors the
 subjective element is at least crucial in deciding between the benefits and drawbacks of each candidate
 prior. A difficulty for me with tonight's approach arises in the context of medical diagnosis pre-
 sented here in a very simplified form. The essence of the problem has been touched on by both
 Professors Copas and A. F. M. Smith. In the decision theory framework the parameter of interest
 may not be fixed and the dimension of the parameter space may be changing.

 In an important paper, Lindley (1978) in response to Hughes (1968), has considered the case
 of two multinomial populations described by two sets of probabilities 0s for the first, i for the
 second, i = 1, ..., n, E 0 = 1, E i = 1. Training data in the form of N observations from each
 population are available. The two populations may be thought of as two diseases and it is also
 envisaged that n = 28 so that the labels to the cells of the multinomial are considered as strings of s
 binary symptoms. A change from n = 28 to 28+1 is equivalent to introducing an extra symptom.
 Suppose there is a single undiagnosed case and it is desired to predict its population of origin.
 Now one would hope that the sequence of prior distributions obtained by increasing the number of
 symptoms observed would be such that the expected diagnostic accuracy would be non-decreasing.
 Use of Jeffreys' multiparameter prior as suggested by Professor Bernardo for this regular continuous
 case (Dirichlet with indices D for any two numbers of symptoms s, s' would mean that the priors
 would not cohere and as pointed out by Lindley this leads to problems such as those of Hughes
 (1968) where you can actually expect to do worse by observing extra symptoms. That you might
 expect to do no better is reasonable but to expect to do worse within a Bayesian framework is
 disturbing. In an as yet unpublished paper I have shown that in the simple case when the training
 sets are very large (N -> oo) so that 0 and b are determined, the expected probability of correct
 classification pn, given by

 = Pn =2.I1 E max (0i, oi)

 is monotone non-decreasing for coherent specifications of sequences of priors and may approach
 any limit in [j, 1] as n -> oo (contrary to a conjecture of Lindley, 1978). However, there is no such
 guarantee of monotonicity if the priors are not coherent. Mr P. Rundell at Imperial College is
 working on priors which are coherent and also informative in this diagnostic situation.

 That said, I found this a very interesting paper.

 Professor C. A. B. SMITH (University College London): A recently discovered missing page from
 Alice in Statland reads:
 White Rabbit (to Alice): I've grown 10 lettuces in a magnetic field, and 10 unmagnetized, and

 weighed them. I want to know if magnetism has made them bigger. How can I find out?
 Alice: Ask "Significant Statisticians Ltd: Enquiries" over there.
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 Significant Statisticians: (Looking at data.) We are in agreement: it depends on why you grow 20
 lettuces. If you decided beforehand on the number 20, the magnetic field had a significant effect.
 If you stopped at 20 because you thought you had proved the point, the effect of magnetism was
 insignificant and presumably zero.

 White Rabbit: I just put seed in on rainy days.
 Significant Statisticians: What a way to proceed! Always consult a statistician before you do an

 experiment!
 Alice: I don't see how intentions can influence the growth of the lettuces: these statisticians seem

 incoherent to me. Let's try the "Strict Savages Enquiry Office" over there. (Going in). Are you
 coherent ?

 Strict Savages: Of course. (Looking at the data.) Smith here calculates that magnetism increased
 the mean weight by 13 grams. Jones thinks it decreases it by 6 grams...

 Alice: You're hardly united.
 Strict Savages: We never are: we each rely on our own prior opinion.
 Alice: Let's try the "United Bayesians" office over there. (Going in.) Are you coherent and united?
 United Bayesians: Yes, of course. We decide beforehand on our shared prior beliefs using the

 "Fisher information" which depends on how you plan your experiment. Thus, if you decide you
 will weigh the lettuces exactly, we have one opinion. If you weigh them to the nearest 10 grams,
 we have another.

 Stone and Dawid (walking in): Beware! Their views are paradoxical.
 Alice: Well, let's try the Better Bernardians over there. (Entering enquiry office.) Are you coherent,

 united, and Stone-resistant?
 Better Bernardians: Yes. But of course the answer depends on whether you're interested only in the

 mean effect of the magnetic field, which then comes to 16 grams, or whether you're interested in
 the variability as well, when the mean effect comes to only 12 grams.

 Alice: But how do you work that out?
 Better Bernardians: By taking the prior corresponding to the limit of posteriors maximizing the

 missing information...
 Alice: What is "information"?
 Better Bernardians: Negative expected log probability.
 Alice: If negative expected log probability is information, then I am the Queen of Hearts. Off with

 all your heads.

 Desist, oh brutal Queen; these statisticians are laudably trying to find a universally acceptable
 compromise. But psychologically a successful compromise must stand out as as a specially unique
 and convincing solution. Do any of these qualify?

 Professor BRUNO DE FINETTI (University of Rome): After a hasty reading of this beautiful paper,
 I suggest a modified version of Dickey's solution. After considering, for a broad range of choices,
 the pairs of priors and posteriors, choose that pair which gives the most subjectively satisfactory
 result. In other words, take an overall, rather than a one-sided, view of an acceptable choice.

 Professor M. H. DEGROOT (Carnegie-Mellon University, Pittsburgh): Congratulations to
 Professor Bernardo on an interesting and stimulating paper. Unfortunately, because of space
 limitations, I must skip over the many features that I liked and proceed directly to the few aspects
 with which I had difficulty. First, since the notion of reference posteriors depends on the idea of
 an infinite number of replications of e, is this notion relevant to experiments that cannot be
 replicated ?

 Second, we cannot measure meaningfully the amount of information about 0 in e without con-
 sidering the use to which this information is to be put. Choosing a measure of information is
 equivalent to considering a particular decision problem with a decision space D and loss function
 L(6, d), as follows: For any density p E C, let U(p) = mindf L(6, d) p(6) dO denote the uncertainty
 in p. Let Pk denote the posterior density p(O I z), and let E[U(pk)] = f U(pk) p(z) dz. Then the
 expected information in e(k) is I{e(k), p(O)} = U(p) - E[U(pk)], the expected reduction in un-
 certainty. Any such measure of information satisfies the properties of invariance, non-negativity,
 concavity and additivity mentioned by Professor Bernardo. He has taken U to be the entropy
 function H throughout his paper. Although H is useful in theory of communication, there is no
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 compelling reason to restrict ourselves to this particular measure of uncertainty in statistical experi-
 ments. Using His equivalent to considering a decision problem in which the statistician must choose
 a density function f from the class of all densities on E subject to the loss function

 L(O,f) = -logf(G).

 The Bayes' decision is then to choose f to be the statistician's prior (or posterior) density p and the
 Bayes' risk U(p) is just H(p). The appropriateness of H in statistics is therefore no greater than the
 appropriateness of this decision problem.

 The discussion in Section 3.4 suggests that it may be useful to partition prior distributions into
 three types: (i) proper priors, (ii) improper priors which must yield proper posteriors after some
 fixed number of observations and (iii) improper priors which do not satisfy (ii). In Section 3.4,
 Jeffreys' prior 7T(O) cc {i(0)}* is proper. For the mean of a normal distribution, i(0) is constant, and
 for the mean of a Poisson distribution, i(0) = 1/0i. In each case, Jeffreys' prior belongs to category
 (ii). Haldane's prior in Section 3.4 belongs to category (iii).

 Two final comments: (1) The rate at which the posterior distribution approaches normality
 seems to be irrelevant to the reference prior. Thus, at the end of Section 3.3 we could replace k in
 a2(6)/k by any function of k. Is this reasonable? (2) In Definition 1, the reference prior was obtained
 from the reference posterior. (Can we always obtain one?) But in Section 4, when nuisance
 parameters are present, the reference posterior is obtained from the reference prior. Is this switch
 necessary?

 Dr A. W. F. EDWARDS (Gonville & Caius College, Cambridge): The first sentence of the paper
 contains the fallacy known to logicians as petitio principii, the fallacy of taking for granted a premiss
 which is equivalent to the conclusion. For although it might go without saying that the correct use
 of probability entails coherence, it does not go without saying that the correct medium for statistical
 inference is probability. This premiss is disputed.

 Professor D. A. S. FRASER (University of Toronto): In this paper Professor Bernardo offers a
 thoughtful and comprehensive discussion within the Bayesian commitment. He acknowledges the
 familiar Bayesian difficulties involving reparameterization effects, marginalization paradoxes and
 strong inconsistency. He then confronts the prime Bayesian characteristic, that the results depend
 on the prior distribution. His approach is to seek a reference prior, "little relevant initial informa-
 tion" and to use the corresponding posterior directly or as a reference for other posteriors based on
 personal priors.

 The marginalization paradoxes are avoided by a currently familiar procedure (Wilkinson, 1977),
 by making a virtue of a failure. The problem of inconsistent posteriors vanishes by having a wealth
 of priors and a corresponding compound wealth of posteriors. However, the procedure for com-
 ponent parameters does produce interesting and appealing results. It also raises the question as to
 what a distribution means if most of the probabilities cannot be used. In the extreme, each indicator
 parameter of a model, as a parameter of interest, could have its own prior and thus its own posterior
 probability: a prior for each possible posterior probability, conceivably all mutually inconsistent.
 The discrete example (coin) indicates the possibilities in this direction.

 The author-within the Bayesian frame-focuses on the choice of a prior to describe "little
 relevant information". The difficulties lie in the commitment to the Bayesian frame; for some
 discussion see Fraser (1974).

 Some recent research on information with and for statistical models (with D. Brenner, evolving
 from Fraser, 1972) leads to a classification of information as categorical, frequency and diffuse.
 Information can be available that is neither categorical nor frequency; the Bayesian approach makes
 no allowance for this, with resultant difficulties. Also, the proper classification for no information
 within a range is pure categorical. The Bayesian approach forces a measure on this range; the
 present paper attempts to minimize the effect.

 To someone without a Bayesian commitment this thoughtful paper seems close to an interment
 of the Bayesian philosophy as an answer to statistics.

 Professor S. GEISSER (University of Minnesota): Inferential theories directed towards statements
 about parameters are largely irrelevant except they serve as a vehicle for theorists to beat one
 another over the head with. However, the notion of a reference prior is useful, not so much for the
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 ostensible purpose intended-a statement about parameters-but as a device that permits the
 introduction of a predictive distribution of potential observables based principally on the observa-
 tions at hand.

 In a not too limited sense, the predictive distribution of a future observation is a surrogate for
 the sampling distribution of that observation, Geisser (1971). With this in mind, we outline another
 approach to the reference prior enigma.

 Let DN = (X1, ..., XN) represent a set of random variables which are to be observed and have
 joint density f(d,, I 0), 0 being an unknown set of parameters. Let a future random variable
 X-f(x I 0). For each p(O) belonging to an admissible class C of prior densities for 0, a predictive
 density of X is obtained, say g(x I dN) = ff(x I I)p(O I dN) dO where p(O I dN) = f(dN | 0)p(6)If(dN).

 Using the Kullback and Leibler (1951) information distance (or some such other reasonable
 measure)

 K(f,g1 I,dN)= EO 109g(X I d)

 and averaging over the sample space yields M(f, g I 0) = EDN,0 K(f, g I 6, DN). Then a reference
 prior (artifactual prior might be a better term, since the reference is to presumptive ignorance of an
 artifact of a statistical model imposed on the generation of data) could be defined as that member of

 the class C which minimizes M(f, g I 0) provided one exists, say p*(O) resulting in g*(x I dy), for all
 admissible 0. The class C may actually be defined in a manner such that certain restrictions on the
 behaviour of g(x I dN) are incorporated. Such an approach has already been hinted at in Geisser
 (1971, 1977), Aitchison (1975) and Murray (1977).

 Its first advantage is that predictive inference is stressed, not an irrelevant intermediary.
 Secondly, the question of nuisance parameters is avoided as interest is not focused on a marginal
 distribution of a particular set of parameters. Further, it also has a frequentist interpretation, if
 one prefers to think in those terms, in that g* can be considered, for the given distance measure, as
 an optimal estimator of f(x I 0) amongst estimators g generated by C.

 All this is not meant to gainsay the interesting approach of Professor Bernardo which attempts
 to avoid some of the usual difficulties associated with the production of reference priors.

 Professor I. J. GOOD (Virginia Polytechnic, U.S.A.): Professor Bernardo's paper is meaty but
 the central idea of considering the prior that "maximizes the missing information" was I think
 anticipated in Good (1969), to which Bernardo refers, and in Good (1968), where some of the
 results were announced. Those works mentioned among other things that (a) the concept of the
 "utility" or "quasi-utility" of a distribution merited more attention (see also Good, 1960); (b) when
 the distribution is parameterized this amounts to talking about the utility of assigning values to the
 parameters; (c) when one has such measures of utility, the minimax prior for the parameters is
 known, by Wald's theorem, to be one of smallest prior utility; (d) although minimax priors have
 disadvantages they have nice invariant properties; (e) an interesting quasi-utility is an information
 measure or expected weight of evidence as in Bernardo's work and as used by Turing (see Good,
 1979 for more history); (f) in this case the minimax prior is the least informative one and could
 be called the minimax-information or minimax-evidence prior; (g) this is the Jeffreys' prior in the
 continuous case; (h) "the 'least favourable' initial distribution, if it exists ... is ... invariant....
 It generalizes (i) the Jeffreys-Perks invariance theory; (ii) a principle of minimum discriminability
 for determining a distribution (Kullback, 1959); and (iii) the similar principle for maximum entropy
 for initial distributions (Jaynes, 1957)."

 I was pleased to see the concept of minimax-information priors developed so well in so many
 directions by Bernardo. In particular I was intrigued by his proposal in Section 6 for applying the
 idea to hyperpriors, for I have been advocating hierarchical Bayesian methods for a very long time
 (Good, 1952), especially in connection with multinomials and contingency tables (for example,
 Good, 1965, 1967, 1976; Good and Crook, 1974). In these applications improper hyperpriors,
 such as the Jeffreys-Haldane prior, cannot be used but can be approximated so as to model
 "ignorance". It might be interesting to consider the minimax-information hyperpriors for these
 applications and to compare the effects with those of the log-Cauchy hyperpriors that I used.

 Professor J. A. HARTIGAN (Yale University): Although Professor Bernardo states that "much
 attention to mathematical detail would be premature", my own belief is that the difficulty with
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 "improper" priors is one of mathematical detail. For this reason, Definition 1 of a reference prior,
 in which a limiting notion is used to avoid explicit handling of improper priors, demands careful
 attention to mathematical detail. What is the role of the compact class C of admissible priors
 which is never mentioned in later derivations? It does not appear that compactness of C in the
 topology of weak convergence of priors is sufficient to "guarantee the existence of the maximum".
 Consider Example 3.5; if the prior density is p, and prior distribution function is P,

 I6(e, P) = -f {P(x + O-P(x-D} log {P(x+ D-P(x- D} dx
 which is infinite for the discrete prior P(0 = k) = ax/k(log k)2. In general 16(e(k), P) will be infinite,
 for all k, for the prior density

 p(O) = A/0(log 0)2 0>2,

 p(O) = O, 0<2.
 It will be infinite for many proper priors with the appropriate tail behaviours. The same sort of
 degeneracy applies to normal location. Expected increase of information is technically inadequate
 as a criterion for evaluating priors, since so many give infinite increases in information.

 Professor S. JAMES PRESS (University of California): The author has written what I feel is an
 important paper in the field of Bayesian inference. I am sure it will be cited on numerous occasions
 in the future, and will be used by many research workers in this field to justify the prior distributions
 that they use.

 The principal concern I have with the paper revolves around the nature of the approximations
 used by the author to develop sequences of prior distributions approaching the reference prior.
 The quality and implications of the approximations are not clear. What constraints are being
 imposed on the analyst's subjective beliefs by this approximation?

 The notion of using Jeffreys' invariant prior for simultaneous inference about all parameters is
 useful. It is also useful for the author to point out the importance of distinguishing between the
 quantity of interest and the complete parameter (in the final paragraph before Section 4.1). It
 should be noted that Professor Arnold Zellner and I have made this distinction also, in our paper
 on the posterior distribution of the multiple correlation coefficient (1978). There, we showed that
 if this distinction is ignored, the likelihood function will not be the correct one to use and an
 apparent paradox arises. The way the problem is resolved is consistent with the argument of
 Jaynes (1978), which is supported by the approach of the present paper.

 I congratulate the author on making inroads on a difficult, but very important problem.

 Dr A. M. SKENE (University of Nottingham): I find this paper interesting and I applaud its
 objective. However, I would be grateful for some further explanation on one matter and I wish to
 offer an additional comment.

 Consider the balanced one-way random effects model, (see, for example, Box and Tiao, 1973,
 p. 244). An experimenter approaches me with suitable data and expresses an interest in the overall
 mean and both variance components. I duly supply him with the joint posterior reference distribu-
 tion. Can the experimenter use this to calculate the marginal distribution for, say, the within groups
 variance? If so, what, if anything, is he allowed to infer from that margin? I feel that there exists a
 practical distinction between those parameters which are deemed to be nuisance parameters,
 a priori, and those which are temporarily so designated while investigating individual margins of a
 joint posterior density.

 The concept of a reference posterior distribution forces one to consider the consequences of
 different choices of prior. In a somewhat cursory numerical investigation which set out to show
 that the choice of prior was immaterial given sufficient data, marginal distributions for the two
 variance components of the model previously mentioned were plotted for six different choices of
 prior. Let a2 and ua be the within and between groups variance components having unbiased
 estimates S2 and S2 respectively. The priors chosen were (i) uniform, (ii) a -2(a2+Ja)-l', where J
 is the number of observations per group, (iii) a-2. a-2, (iv) independent X12 densities whose modes
 coincided with the unbiased estimates, (v) independent X12 densities whose modes differed from the
 unbiased estimates, (vi) r-2 exp (- S2/a2). a-2 exp -Sa2/a), the last being the product of two
 improper limiting distributions obtained from the x-2 distribution. The two examples illustrated
 in Figs D2 and D3 are due to Box and Tiao (1973, p. 246) and Hill (1976), respectively. In view of
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 Within groups variance Between groups variance

 FIG. D2. Variance components of a one-way ANovA having six groups and five observations per group

 Within groups variance Between groups variance

 FiG. D3. Variance components of a one-way ANOVA having twenty groups and ten observations per group

 the marked effects of these priors, all of which purport to provide little information, a major
 question which is still to be answered is simply "when, for the purposes of inference, is one curve a
 valid approximation for another?"

 The AuTHoR replied later, in writing, as follows.
 I am most grateful to the contributors for interesting and very useful comments. I have to thank

 most of them for their generally warm and encouraging tone, despite of this Societys' reputation as
 a forum for violent exchanges; for providing further insight into the consequences of the procedure
 proposed and for suggesting new problems for research. In the following, I shall try to give an
 answer to the queries which have been raised.

 Professor Copas is certainly right when he mentions that the expected information IO defined by
 (1) depends only on the shape of the distribution and is independent of the actual values of the
 variables. He goes on to describe a situation in which the risk involved in decision-making is higher
 when the probability distribution is the same. However, he misses that, in this paper, we are facing
 a purely inferential case, where one is only interested in gaining knowledge about the parameter of
 interest and has no specific decision in mind. The connection between the logarithmic measure of
 information and scientific inference has been established elsewhere (Bernardo, 1979) within a
 Bayesian framework. The reason why the method works, as illustrated by the examples of Sections
 3.1, 3.5 and 4.1 and by that provided by Dr O'Hagan in the discussion, is not asymptotic normality
 but the deep connection between scientific inference and Shannon's information measure.

 It must be stressed, however, that the relevant quantity is information not entropy. For, the
 axiomatic justification of entropy does not extend to the continuous case and, moreover, for a
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 continuous random quantity X, H{p(x)} = - fp(x) log p(x) dx is not the limit of discrete entropies,
 is not invariant under one-to-one transformations of X and has no precise meaning as a measure

 of the uncertainty attached to X. However, IO{ Y, p(x)} = H{p(x)} - E, H{p(x I y)} is invariant under
 one-to-one transformations of X and is a measure of the amount of information that Y is expected
 to provide about the value of X with a precise interpretation in terms of the expected number of
 questions about X that it would be necessary to ask to obtain the same level of knowledge as that
 expected to be provided by Y (Renyi, 1970, p. 564). I believe IO relates very directly to statisticians'
 ideas of information and inference although certainly not to those of risk and decision.

 It seems rather likely that if one had a prior knowledge of the form p(G E S) = p, one would
 also have a similar knowledge of the form p(G E Si) = pi for other sets Si close to S. It is clear that
 a number of statements of this form will produce a more smooth reference prior. In any case, the
 object of discussion and interpretation should be the reference posterior, not the operational prior.

 A situation in which p(G E S) = p may be the only prior knowledge available is when {O E S} is a
 consequence of some scientific theory, the prior probability of which is p. This really occurs when
 the parameter of interest is not 0 but /(O) defined by O(/) = 1 if G E S, O(/) = 0 otherwise, with
 p(o = 1) = p and p(/ = 0) = 1-p. The operational prior is then that quoted by Professor Copas
 and the resulting reference posterior for the parameter of interest is such that

 AO II x) = p(x I ) i()f dGI(I -p) rp(x I ) i(O)* dO
 -0J =OIX) js

 which is, I feel, a rather sensible result.
 Reference posteriors are not inferences in their own right in the sense that they do not describe

 the scientist's personal opinions but those of someone with a very special kind of knowledge: that
 which leaves most to be said by the data. However, reference posteriors may certainly be updated
 in a sequential way as new information arises from the same model. Indeed, the operational prior
 depends on the model only through the asymptotic posterior of its parameters which is, of course,
 independent of the particular sample one might have obtained.

 Finally, I hope that reference posteriors will not prove to be so dangerous as Professor Copas
 fears. The proposal is very simple: people should quote both the personal and the reference
 posterior and explain that the discrepancy among them is solely due to the prior knowledge they had
 about the parameters.

 Dr O'Hagan insists on treating operational priors as a representation of ignorance and proceeds
 to measure this ignorance by using entropies. I have just mentioned that operational priors are
 not representations of ignorance but approximate descriptions of a very specific type of knowledge:
 that in which most remains to be learned from the data about the parameter of interest 0. No
 wonder that the description of such knowledge depends on the choice of the parameter of interest;
 the entropy of the resulting prior is thus irrelevant. He goes on to mention that the Bayesian argu-
 ment acknowledges the fact that a single toss of the coin tells us nothing about whether it is fair,
 by the prior and posterior probabilities that the coin is fair being equal; but the fact remains that
 (i, , D) is the only prior which produces the reference posterior (1, 1) one would expect to obtain.

 I have tried to stress that a reference posterior is an origin for inference. It should be used to
 measure the relative importance of prior knowledge, but it would certainly be foolish to use it to
 take a personal decision in lieu of the personal posterior which describes the decision-maker's
 opinions. Only if, by some personal or political reason, one wanted to justify a decision in terms
 of some agreed initial knowledge and some data, one could use the reference posterior compatible
 with such knowledge. In this case, one should identify the utility function, treat as parameter of
 interest the parameters from which this function depends and use a reference posterior for them to
 obtain a reference decision. The procedure will be coherent in that one would be adopting a reference
 posterior as a personal one and acting accordingly. In Dr O'Hagan's example, the decision problem
 (to accept or not a set of bets) involves all the parameters. I would decide on the basis of my
 personal opinions about them, which only in very special circumstances would be described by the
 corresponding reference posterior (1, i, 0). Clearly, to use this distribution without good reason
 may well be foolish, but it is not incoherent; I am afraid that Dr O'Hagan will not become rich by
 being my bookmaker. I will outline later a procedure to produce reference posteriors that could be
 used in decision-making to produce reference decisions; this takes into account the utility function
 of the decision problem.
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 In his last point, Dr O'Hagan is interested in the probability of the next toss of the counterfeit
 coin being heads. Thus, the quantity of interest is whether the next toss is heads (y = 1) or not
 (y = 0). It will be shown later that the operational prior required to obtain reference predictive
 distributions is precisely that required to obtain the joint reference posterior for all the parameters

 in the model. In this example, such operational prior is obviously -ffP(/) = (-, 1, D; the corre-
 sponding reference posterior distribution after one toss of the coin resulting in heads is
 7f(o I x = 1) = ( 0, , 0) and thus the reference predictive probability desired 7r(y = 1 I x = 1) =
 and certainly not 1 05!

 In conclusion, although some obscurities may remain in the construction of what Dr O'Hagan
 calls conditional reference priors, I do not think his testimony provides evidence against them.
 Moreover, to judge them fairly, one should keep in mind the rather appealing solutions obtained
 with their use to the problems discussed in Section 5.

 Professor A. F. M. Smith complains that further light is not shed on the problems raised by
 Stein (1956) and Stone (1976). With respect to Stein's inadmissibility result I have two comments:
 (i) Reference posteriors are intended to be an origin for admissible inferences and must therefore
 produce results which are arbitrarily close to admissibility but are not necessarily admissible;
 although the mean x of the reference posterior for the means of a multivariate model is an inadmis-
 sible estimator for dimensions larger than two, it is arbitrarily close to estimators of the form
 ac + (1 - o) o, which are posterior means for suitably chosen proper priors and are, therefore,
 admissible. (ii) Indeed, one may have a prior knowledge about some kind of relation among the
 <i's; in this case, one may obtain the reference posterior in the restricted class of priors compatible
 with such assumption and this will produce admissible estimators of the type mentioned above.

 I have not included a discussion of Stone's examples of strong inconsistency to keep the paper
 within reasonable size, but it may be verified that maximization of the missing information produces
 sensible answers in the two examples discussed in that paper. Indeed, in the Flatland example there
 is a relevant nuisance parameter co, namely the position of the woman and the soldier just before
 leaving the treasure, which was ignored in Stone's "Bayesian" analysis. Thus, the data x will
 consist on the direction in which the thread is pointing from the endpoint (N, S, E, W). The para-
 meter of interest 0 concerns the position of the treasure relative to the endpoint (N, S, E, W) and
 the nuisance parameter co the position of the woman and the soldier one step before leaving the
 treasure, relative to 0, {N(O), S(0), E(8), W(O)}. Clearly, the likelihood of, say x = E is given by

 p{x = El = E, co = W(0)} = 0, p{x = E IO = S, c = N(0)} = ,

 p{x=EIO=E, wcW(0)}= 1, p{x=EjO=S, w?N(0)}=O,

 p{x = E 0 = N, c = S(0)} = i, p{x = El = W, co = E(0)} = ,

 p{x = E I = N, CL w S(0)} = 0, p{x = E I J = W, c : E(8)} = 0.

 Using the results in Section 3.1, the missing information about 0 is maximized when

 1T{O = E} = 70{ = N} = $0{O = W} = 1T(0 = S} =

 and the missing information about co given 0 when

 -f{E(O) I 0} = ff{N(0) I 0} = -f{W(0) I 0} = {S(0) j 0} =

 Using this operational prior, the reference posterior for the parameter of interest is clearly

 7${0=Elx=E}=i, $0{ =Slx=E}=$0{O = Wlx = E} =$0{O = NIx = E} = 12
 in agreement with the coverage probabilities. Moreover, as Professor Stone mentions in his reply
 to the discussion, the reason for the strong inconsistency in his Example B is surely the non-
 identifiability of 0. But, as Dr O'Hagan has just remaked, the procedure described in this paper
 makes explicit the inexistence of a reference posterior for a non-identifiable parameter by producing
 an arbitrary operational prior.

 Professor Smith is right when he notes that in the presence of several nuisance parameters, say
 w = (w1, W2), the joint reference conditional prior $w(O1, w2 1 0) might be different from the product
 I7(CO1 I Cw2, 0) $02 1 0); this was to be expected since, given 0, the first alternative is equivalent to a
 situation in which the parameter of interest is (w1, W2) while the second is equivalent to one in
 which c1 is the parameter of interest and )2 a nuisance parameter. The choice among them will
 depend on the type of reference knowledge one wants to describe.

 7
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 Finally, Professor Smith mentions the truly important class of problems which arise in Bayesian
 choice of model, when one is interested in the posterior probabilities of a list of alternative models
 with possibly different dimensionalities. I have reasons to believe that the method of maximizing
 the missing information does indeed produce sensible answers in this area too. However, the topic
 is much too vast to be covered here; I hope to be able shortly to report on it elsewhere.

 Professor Dawid asks whether the procedure described may be extended to produce reference
 decisions. I think this can be done. Consider a decision problem (D, E), u) where D is the decision
 space, 0 the parameter space and u(d, 0) the utility function. Let x be the result of some experiment

 e and z = {xj, ..., xk} that of k independent replications of S. The expression

 fmax u(d, 0)p(OI x) dOp(x)dx-max fu(d, 0)p(O)dO (1)

 then measures the increase in utility to be expected from performing s. A measure of the missing
 utility that could eventually be provided by infinite replications of e is

 limf maxf u(d, 0) p(0 j z) dOp(z) dz- max u(d, 0) p(O) dO (2)
 ko)0 dd

 which, under suitable conditions, will be simply

 {max u(d, 0)) p(Q) dO-max u(d, 0) p(0) dO, (3)

 i.e. the expected value of perfect information. The prior 7T(O) which maximizes (2) within the class
 C of admissible priors may be seen as a reference prior for the decision problem considered, in that
 it leaves most to be gained from the data. The optimal decision attached to the corresponding
 reference posterior would be a suitable reference decision to be compared with the optimal decisions
 attached to personal posteriors.

 A very simple example is provided by the decision problem of estimation with quadratic loss.
 Here, D = 0 and u(d, 0) = - A(d- 0)2; the first integral in (2) vanishes and the second term is the
 prior variance of 0. Thus, the reference estimator with quadratic loss is the posterior mean corre-
 sponding to that prior with larger variance among those compatible with the assumptions made.
 It is apparent from this example, that reference decisions are not necessarily unique although, often,
 sensible restrictions in the class of admissible priors will imply uniqueness.

 It may be verified that the method proposed in this paper to derive reference posteriors is the
 special case of the procedure outlined above, where D is the class of distributions of 0 (so that we
 are in a problem of pure inference) and the utility function is of the form

 u(d, 0) = A logp(0) + B(0). (4)

 Indeed, in this case expression (1) becomes I{e,,p(O)}, and maximizing the missing utility means
 maximizing the missing information. The rationale for using the particular utility function (4) may
 be found in Bernardo (1979).

 In the second part of his remarks, Professor Dawid worries about the procedure to obtain a
 reference posterior probability for the event that the parameter of interest 0 belongs to a given set S.
 As he mentions, one could define a new parameter of interest e such that e = 1 if 0 E S and 6 = 0
 otherwise and determine its reference posterior diztribution or, alternatively, to compute the
 probability fs 7n(O I x) dO attached to S by the reference posterior distribution. It may be seen how-
 ever that both methods give the same result.

 Indeed, the reference conditional prior a(O 1 {) is, as mentioned by Professor Copas, of the form

 7T(O I e = 1) = cl T(O), if 0 e S, 7T(0 I = O) = C2 (O), if 0 O S,

 where 7T(O) is the reference prior for 0.

 Ci' = r(0) dO and ci-=j X (0) d0.
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 Moreover, the reference (unconditional) prior for f is found to be 7TN( = 11 = cl-1 and 7r( = 0) = cr 1.
 It follow that

 T(e= 1 x) =P(x I 0a,)() dO; fr(: = O (x I fP(x I ) 7r(O dO

 and therefore ff(e = 1 1 x) = fs fr(O I x) dO as desired. Consequently, one may integrate in reference
 posterior distributions to obtain reference posterior probabilities.

 Professor Bartholomew wonders whether the procedure presented may be applied with sequential
 sampling schemes where the stopping rule depends on the observations obtained to date. I do
 not see why not. The likelihood of the result finally obtained when the experiment comes to an end
 will be of the form

 p(x I , co, -) = f(x I j, co) g(n I x, O, co, x), (5)

 where x = {xl, ..., x"}, f(x I 0, w) is the probability of obtaining the sample x given 0, co and n and
 g(n I x, 0, co, r) the probability of stopping there after observing x. Thus, the only consequence of
 the stopping rule is the introduction of the new nuisance parameter r, and the methodology
 described may be used to obtain the reference posterior for the parameter of interest 0.

 On his second point, Professor Bartholomew is certainly right when he mentions that the para-
 meter of interest is often a future observation; a simple example of this was mentioned by Dr
 O'Hagan in the discussion. According to the procedure proposed in the paper, if the parameter of
 interest is a future observation y from p(y I 0), the operational prior for the parameter of interest,
 i.e. the predictive distribution 7(y) = fp(y I 0) 7(0) dO should be one maximizing the missing
 information about y and, among those prior distributions of 0 which satisfy this condition, one
 should select that maximizing the missing information about the nuisance parameter, i.e. the
 missing information about 0. We shall now show that the result of such a programme is simply the
 operational prior for 0, 7TO(0).

 Indeed, if z = {xl, ..., xk}, we have by definition

 I"{e(k), p(0)} = fp(z) fp(y I z) log ' z I ) dy dz.
 p(Y)

 Under regularity conditions, for large k we have p(y I z) = p(y j ) with 9 in a neighbourhood of 0.
 Thus,

 Iv{e(k),p(0)} = p(z)f p(y j ) log AY I ) dy dz+ 0(1)

 = rP(0)P(Z 0) P(Y 0) log AY I )) dy dz+ 0(1)

 = P()fP(Y 0) log X1yI 0) dy dO+o(l) (k -> o?). (6)

 But, if we write p(y) + oAS(y) in place of p(y), a necessary condition for p(y) to be an extreme of (6)
 such that Jp(y) dy = 1 is, using Lagrange multipliers, that

 fp(0)f ( p(y) - A 8(y) dy dO = 0 for any 8(y).

 This implies f p(0)p(y I 0) dO = Ap(y), which is simply the definition of the predictive density p(y).
 Thus, the first condition on 7(O) turns out to be vacuous, and one must simply maximize the missing
 information about 0 to obtain the operational prior for 0, 7ro(0), which will therefore be the prior
 required to produce reference predictive distributions.

 In the case of Bernoulli observations, the operational prior is Be (0 1 , ) and, thus, the reference
 predictive probability of obtaining a new success if one has previously obtained r successes out of n
 trials is fr(y = 1 X r, n) = (r+ /(n + 1).

 Professor Lindley is worried by the dependence of the reference posterior on the sampling rule
 in violation of the likelihood principle; I must admit that I was puzzled myself when I first realized
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 this. However, when one looks more closely into the problem of scientific reporting, one realizes
 that scientists are usually required by their colleagues to specify not only their results but also the
 conditions in which the experiment has been performed, i.e. the design of the experiment; if I am
 right, they should be asked to do so. Indeed, it is known that, even from a purely personalistic
 point of view, one must integrate over the sample space to design an experiment. It does not seem
 unnatural to me that one has to do the same to analyse the implications of its results.

 In Haldane sampling, when one is sampling until r successes are obtained, one is somehow
 assuming that r successes will eventually appear, a different situation from that in ordinary sampling.
 This is duly reflected in the reference posterior for Haldane sampling,

 7T(0 I n) oc {02(1-0)}-ip(r I 0) cc Be (0 I r, n-r+ )

 which is not proper if r = 0. This is only natural, for we are assuming that a success will appear
 and, in the absence of other information, we cannot make inferences otherwise. However, with
 ordinary sampling, we have the situation described in Section 3.4 and we can make inferences even
 if r = 0. I find these results quite reasonable, and I would suggest that, indeed, scientific reporting
 on the implications of some experimental results requires the knowledge of their design.

 In his second example, Professor Lindley proposes to obtain the reference prior for (0, A) after
 x = (D, W, S) have been observed when

 p(D, W, SI 0, A) = r(D+ W+S) {A[1-(1-8) 0]}D{(1 -A) O}W{(1 A) (1-)} r(D)Pr(W)Ir(S)

 and 8 is a known constant, i.e. a trinomial with Pi = (1- 8A) 0, P2 = (1- A) (1-0) and

 p3 = 1 -PAi P2. A straightforward extension of the results in Section 3.3 shows that, under
 regularity conditions, the reference prior to make inferences about a vector 0 with no nuisance

 parameters is Jeffrey's multivariate I F(0) 11 where F(0) is Fisher's information matrix. In the
 trinomial case with parameters Pi and P2, it is easily verified that

 pi(i-p1) P1P2
 F-1(pl,P2) = (7)

 LPP2 P2(l-P2)

 Moreover, if e = e(0) is a one-to-one transformation of 0, it is easily established that the corre-
 sponding information matrix F(O) is related to F(0) by the equation

 F-1(O) = (V)-1 F-1(0) {(V )T}-1, (8)

 where (V{) is the square matrix of typical element alJ@. Thus, using (7) and (8), the inverse of
 the information matrix of (0, A) is

 F-1(0, A) = TF-"(p1,p2)T T,
 where

 [1-A -80 1
 T-1 =

 - (U-A) -(1- 0),

 F-1(pL,p2) is given above, Pi = (1- SA) 0 and P2 = (1- A) (1- 0). The reference prior for (0, A) is
 then

 7r(0, A) oc I F-1(0, A) X

 After some rather tedious algebra, this becomes

 7r(0, A) = {A(1 - SA) (1- A)}-i[{1 -(1-8) 0} 0(1- *

 which does factorize.
 Moreover, the reference prior for A, i.e.

 7r(A) cc {A(1 - 8A) (1-A)}-*

 does reduce to A-*(1 -A)-A when 8 = 0. If 8 = 1, it reduces to A-8(1 -A)-', i.e. the reference prior
 for Haldane sampling with 0 = (1- A); I suspect that 8 = 1 is a limiting condition which precisely
 implies this type of sampling rule.

 Dr Brown proposes to consider a problem of diagnosis where the new undiagnosed case is
 known to belong to one of two multinomial populations. As he mentions, the problem is a specific
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 example of the model choice problem mentioned by Professor A. F. M. Smith. In Dr Brown's
 problem, the likelihood of the symptoms x observed in the new case is of the form

 n In

 p(X I as 0, 8 = 1 = i atipX|a s )=H0

 and one is interested in the reference posterior probability of 8 after some training data z and the
 symptoms x of the new case have been observed.

 Since the parameter of interest is not (8, q) but 8, while co = (s, 0) is a set of nuisance parameters,
 the appropriate operational prior is not a Dirichlet but one of the form 7r(8) 7r(CO 8) where 7r(8)
 maximizes the missing information about 8 and r(w 1 8) the missing information about co given 8.
 I have not worked out the details, but I would expect 7r(8) to depend on n in a way that will avoid the
 problems pointed out by Lindley.

 Professor C. A. B. Smith is to be congratulated for his discovery of a missing page of Alice in
 Stat/and which we have all enjoyed so much. I am afraid, however, that the author of the book did
 not transcribe properly the conversation between Alice and the Better Bernardians' Enquiry Office.
 Indeed, in the internal report from that conversation, I have found that what Alice was told was
 that the mean effect of the magnetic field comes to 16 grams whether you are interested or not in the
 variability as well, and that the concept of information may well be taken as primitive and proba-
 bility derived from it.

 Professor de Finetti suggests that one could assess subjectively whether the posterior distribu-
 tion gives a satisfactory result. I believe one should certainly do that: how would one deal otherwise
 with, say, totally unexpected results? I only hope that some people will find subjectively satis-
 factory reference posterior distributions as a description of the knowledge provided by the data.

 Professor De Groot wonders whether the notion of reference posteriors is relevant to experi-
 ments that cannot be replicated. Since only a formal, conceptual replication of the experiment
 performed is necessary, and one can always imagine this, I think the procedure may be used to analyse
 the result of any experiment.

 I certainly agree with Professor De Groot's general definition of information; this, in turn, is a
 special case of the approach to reference decisions I have outlined above. Indeed, the appropriate-
 ness of Shannon's information measure in statistics is not greater than that of the utility function
 u(p, 0) = logp(6); but, possibly, this is the utility function appropriate to scientific inference
 (Bernardo, 1979).

 The idea of a reference posterior is based on some sort of "measure" of the "distance" between
 between prior and perfect knowledge; I do not see why this distance should depend on the rate at
 which perfect knowledge may be obtained any more than the distance between Pittsburgh and
 Valencia should depend on the speed at which my friend could come to visit me.

 A formal definition of the operational prior when nuisance parameters are present should also
 be given in terms of the reference posterior to avoid convergence problems. Thus, the operational
 prior would be that function 7r9(0, ) which produces, via Bayes' theorem, the posterior

 where 7T(G I X) = limpk(O IX)s
 Pk(G I X) oc k (0) p(X I 0, CO) 7k (cv I O), d@,

 where k (C I 8 maximizes Iw/9{e(k), p(co I 0)} and 7k(8), maximizes I0{e(k),p(G) cvk IO )}, within the
 class of admissible priors. Under mild regularity conditions, the reference posterior will always
 exist, since the maxima exist by the concavity of the information measure as a functional of the
 prior and their limit by the asymptotic convergence of posterior distributions.

 Dr Edwards does not comment on the paper: he simply refuses to accept the Bayesian approach to
 inference. I do not think this is the best occasion to discuss foundations, but I would like to see
 Dr Edwards' explicit solutions to any of the problems mentioned in Section 5, and I would like to
 know whether he claims them to be better in any well-defined sense.

 Professor Fraser wonders what a distribution means if, according to him, most of the probabili-
 ties cannot be used. As I have mentioned before, in reply to Professor Dawid, all the relevant
 probabilities, i.e. the posterior probabilities of the parameter of interest belonging to any set, may
 be used and are consistent with those obtained when their respective indicators are considered as
 parameters of interest.

 I am afraid that I cannot agree with Professor Fraser's apocalyptic conclusion. Indeed, the
 standard arguments against Bayesian methods focus on their dependence on prior opinions which
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 somehow conflict with scientific reporting, and reference posteriors provide a procedure to bypass
 this problem.

 Professor Geisser stresses quite properly the practical importance of prediction and goes on to
 propose as an operational prior, when interest is in prediction of the next observation x, that which,
 for every 0, minimizes

 P(ZI 0 P(xI 0) log xI 0) dxdz (9)
 XxI z)

 where z = {xl, ..., xJ}. This is the expected value of the amount of information about x which
 perfect knowledge about 0 would provide over and above that contained in p(x I z); it is therefore a
 non-negative quantity whose minimum value, zero, is attained for each 0, when p(x I z) = p(x I 0).

 I do not think this procedure will produce sensible answers, if only because the prior which
 minimizes (9) will generally depend on 0. Moreover, the results obtained may be far from satis-
 factory. To see this, consider the problem introduced by Dr O'Hagan in the discussion where one
 is interested in predicting the second toss from the counterfeit coin of Section 4.1. Expression (9)

 is then minimized by 7r(b) = (1,0,0) if b = ,0, (fair coin) and by any prior of the form
 1(o) = (0, p, 1 -p) if f is either 01 or 0a2. I do not know how Professor Geisser would choose
 among those priors, but I suspect that he would not like to use either of them.

 I certainly agree with Professor Geisser in that when one is interested in prediction the question
 of nuisance parameters is irrelevant. But, as I have shown above in reply to Professor Bartholomew,
 the reference predictive distribution is obtained using a reference prior for all the parameters
 involved in the model so that, as he requires, the question of nuisance parameters is then avoided.

 I am grateful to Professor Good for his comments. As A. P. Dempster once remarked, "In the
 area of statistical inference, there must be little that anyone has thought about that Dr Good has
 not written about, to the point that a computerized information retrieval system would be very
 helpful to scholars in the area."

 I am aware of Professor Good's interest in multinomial problems, which also do intrigue me.
 I hope to be able in the near future to devote some time to study them from the perspective of this
 paper.

 Professor Hartigan is certainly right in demanding more careful attention to mathematical
 detail if the procedure is to be systematically used. I insist, however, that this was premature before
 we could understand what reference posteriors really meant.

 I believe that pathological cases as those mentioned by Professor Hartigan may be avoided with
 some mild regularity conditions for the class of admissible priors. Two such reasonable conditions
 are that (i) the joint measure p(z, 0) should be absolutely continuous with respect to the product
 measure p(z)p(0) (see Osteyee and Good, 1974, p. 32) and (ii) the priors p(0) should be strictly
 positive. It is clear that none of Professor Hartigan's examples meets these conditions.

 I am grateful to Professor Press by his encouraging comments and by bringing to my attention
 an interesting paper which I had overlooked.

 I have not fully investigated the implications of the approximations used but I suspect that one is
 only imposing mild regularity conditions to the class of admissible priors such as those mentioned
 above in reply to Professor Hartigan.

 Dr Skene wonders what is the use of a marginal distribution f 7(O, X I x) dO from a joint
 reference posterior r(O, o I x). None, I would say, unless the operational prior which produces the
 joint reference posterior a(0, Xv I x) happens to coincide with the operational prior which produces
 the reference posterior for t).

 Inference about the two variance components in the random effects model is an important
 problem where no generally accepted solution exists. I would be glad if Dr Skene could devote some
 of his time to produce and analyse the relevant reference posterior distributions.

 I would like to thank all the discussants for the stimulus they have provided in making me think
 about the issues raised in the paper. The best way to understand an argument is, possibly, to be
 obliged to defend it.
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