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The statistical significance of network properties is conditioned on null models which satisfy specified
properties but that are otherwise random. Exponential random graph models are a principled theoretical
framework to generate such constrained ensembles, but which often fail in practice, either due to model
inconsistency or due to the impossibility to sample networks from them. These problems affect the
important case of networks with prescribed clustering coefficient or number of small connected subgraphs
(motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that
overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences
from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the
relation between transitivity and homophily, and we quantify the correlation between different types of
motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.
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Networks form the basis of an ample class of complex
systems. The observed topological patterns of such systems
often yield the only available evidence for the underlying
principles behind their formation. However, the significance
of any observed property can only be assessed in comparison
to a properly defined network ensemble that acts as a “null”
model [1–3]. For instance, clustering (i.e., high density of
triangles), skewed degree distributions, and community
structure are considered significant in real networks because
they are absent in Erdős-Renyi networks. To perform such
comparisons, it is essential not only to properly define such
null models, but also to correctly sample network realiza-
tions from them. This is relatively straightforward when the
ensemble generates networks where the edges are sampled
independently (e.g., Erdős-Renyi and configuration models
[4,5], the stochastic block model [6,7]) and it remains
feasible when strict edge independence is violated due to
hard constraints [8–10]. However, for ensembles with more
generic constraints the sampling is significantly more
challenging. A particularly important example is ensembles
with a prescribed density of connected subgraphs (“motifs”)
[11–13]. For this class of models, one often finds abrupt
phase transitions, where sampled networks possess either
very high or very low motif density [12,13], excluding
intermediary values often encountered in real systems.
Furthermore, they often show strong nonergodic behavior,
with very slow relaxation that forbids unbiased sampling in
practical computational time [13]. Since the edge placement
is not independent, the densities of different motifs are
correlated with each other and also with large-scale network
structures [14,15]. Without addressing the issue of correct
sampling, these correlations cannot be properly identified,
whichmakes the occurrence of these patterns in real systems
difficult to interpret. In particular, it is not possible to

concludewhether a particular motif density profile indicates
a topology optimized towards robustness [16,17] or whether
it is merely a by-product of a specific large-scale structure
[14,18], of combinatorial constraints [19], or of correlations
between motifs.
In this Letter we show how to sample from ensembles

with prescribed motif densities in polynomial time. We
employ a multicanonical Monte Carlo method [20] that
allows the entire range of the order parameter to be
explored. In this manner, not only is the nonergodicity
problem explicitly avoided, but it also becomes possible to
sample networks with arbitrary motif densities, even those
at intermediate values that are unattainable via traditional
importance sampling. This allows us to quantitatively
investigate two fundamental problems in social networks:
the homophily-transitivity relationship and the inter-
dependence of different motif types.
We are interested in network ensembles that possess one

particular observable s of interest, but that are otherwise
maximally random. The last requirement is essential to
ensure that the ensemble is representative of the networks
with a given s and is not subject to additional (hidden)
constraints. Both features are achieved by sampling the
network from an exponential random graph model
(ERGM) [3,10,21–24] G, where each graph g ∈ G occurs
with probability

ΠβðgÞ ¼
eβsðgÞ

Zβ
; where Zβ ¼

X

g∈G
eβsðgÞ; ð1Þ

where sðgÞ is the observable associated with network g, and
β is an inverse-temperature parameter, in analogy to the
canonical ensemble in statistical physics. The distribution
of s is ρβðsÞ ¼

P
g∈Gδ½sðgÞ − s�ΠβðgÞ ¼ ρ0ðsÞeβs=Zβ,
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where ρ0ðsÞ≡ ρβ¼0ðsÞ is called the state density (the
fraction of networks g in the ensemble that have observable
equal to s). The ensemble that acts as a null model for an
empirical network with s ¼ s� is usually constructed fixing
β in such a way that hsiβ ≡P

ssρβðsÞ equals s�. The
number of networks in this ensemble typically grows
exponentially with the number of nodes, and, thus, besides
a small set of observables s that can be treated analytically,
investigation of ERGMs requires sampling networks g
from G using Monte Carlo methods [23].
The usual Markov chain Monte Carlo (MCMC) method

works as follows: starting from one network g ∈ G, a new
network g0 ∈ Gn is proposed by choosing two links at
random and exchanging one of the nodes of each link, thus
preserving the degree sequence of the network [25]. The
proposed network is accepted with the Metropolis-Hastings
probability Aðg↦g0Þ ¼ minf1; eβ½sðg0Þ−sðgÞ�g and the proc-
ess is repeated from g0 (g) if the proposal is accepted
(rejected) [26]. Since the moves fulfill ergodicity and
detailed balance, for sufficiently long times the values of
s in the sampled networks g are distributed as ρβðsÞ.
However, despite this asymptotic guarantee, in practice this
method often fails because the time to approximate ρβðsÞ
grows exponentially with the number of nodes N. This
happens whenever ρβ possesses more than one local
maximum (minimum of the free energy) and the barriers
between them grow with N. As we show below, this
generically happens when the observables s are related to
motifs.
As an alternative to the canonical (simple Metropolis)

sampling method described above, we propose a multi-
canonical sampling to overcome the aforementioned prob-
lem. This method aims to sample networks uniformly on a
predefined observable range ½smin; smax�, thus overcoming
the minima of ρβðsÞ that are responsible for the weak
performance of the canonical method. This is done by
sampling the states according to auxiliary ensemble with
probabilities Π0ðgÞ ∝ 1=ρ0ðsðgÞÞ, achieved by simply
changing the acceptance to Aðg↦g0Þ ¼ minf1; ρ0½sðg0Þ�=
ρ0½sðgÞ�g [20]. However, in order to perform this sampling
we need to know the state density ρ0ðsÞ. In order to estimate
it, we use the Wang-Landau algorithm [20,27], which, in
short, constructs an adaptive histogram to approximate
ρ0½sðgÞ� [28]. After convergence, ρβðsÞ is estimated for all
β’s reweighting ρ0ðsÞ through ρβðsÞ ¼ ρ0ðsÞ expð−βsÞ=Zβ

[20]. Hence, the auxiliary ensemble allows us to explore the
original canonical ensembles without being restricted to the
most probable regions. More importantly, we can impose
the desired value of the observable as a hard constraint
a posteriori, i.e., only sample networks with sðgÞ ¼ s�. The
multicanonical approach has recently been applied to
investigate the spectral gap of networks [29], and related
approaches have been used to investigate percolation [30]
and resilience properties of networks [31].

In Fig. 1 we show how the application of multicanonical
sampling solves the limitations of canonical sampling in the
classical problem of introducing clustering in a k-regular
network [11,13]. Here, nodes are forced to have the same
degree k and the observable of interest is the number of
triangles, sðgÞ ¼ n△. Fixing n△ is the same as fixing the
clustering coefficient c ¼ 3n△=n∧, where n∧ is the number
of connected triples (a constant for all networks with the
same degree sequence) [3]. This model exhibits a transition
at a specific value of β ¼ βPT (≈3.54 for k ¼ 4), separating
low and high-clustering phases [13]. The canonical sam-
pling is unable to compute hci close to the phase transition
because it yields different estimations of hci, depending
whether β is slowly increased (β↑, lower branch) or
decreased (β↓, upper branch). This hysteresis is typical
around first-order phase transitions (coexisting phases) and
indicates that the canonical sampling is in a metastable
state. Indeed, ρβPTðcÞ has two local maxima in which the
canonical sampling becomes trapped (inset in Fig. 1). On
the other hand, the multicanonical sampling is immune to
these problems: it correctly characterizes hci at β ¼ βPT
and reveals the full distribution ρβ¼βPT . Hence, the method
is not only capable of computing the correct ensemble
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FIG. 1 (color online). Multicanonical sampling of exponential
random graphs with imposed clustering avoids the limitations of
canonical sampling. The ensemble G corresponds to k-regular
undirected networks with N ¼ 640 and degree k ¼ 4. The
observable is the clustering coefficient s ¼ c (proportional to the
number of triangles, n△). The main plot shows hci (and standard
deviation) as a function of the inverse temperature β obtained
by canonical (symbols) and multicanonical (continuous thick
line) sampling. Inset: the distribution ρβðcÞ for β ¼ 3.54 ≈ βPT
obtained by the two methods. Canonical samplings used 5 × 105

MCMC steps for equilibration, before another 5 × 105 steps were
used for estimation. After these steps, the value of β was slowly
increased (β↑) or decreased (β↓) and the process repeated. The
multicanonical sampling used 20 Wang-Landau steps to estimate
ρ0ðcÞ (each step used 5 tunneling steps) [20,32].
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average for any β, it yields typical networks with any value
of c, including the significant gap c ∈ ½0.2; 1� which is
unattainable with the canonical sampling. In Fig. 2 we
confirm that the computational cost of the multicanonical
method scales polynomially with system size, a dramatic
improvement over the exponential scaling of the canonical
method.
Next we use the multicanonical method to investigate

two important problems of social networks. The first
problem we consider is to distinguish between homophily
(the tendency of “similar” nodes to connect to each other)
and transitivity (the tendency of nodes that already share
a common neighbor to connect to each other) in social
networks [2,14,34–37]. We use the (undirected) network of
Email exchange within a university [38]. It consists of N ¼
1133 users, andM ¼ 5451 Email exchanges, and a roughly
exponential degree distribution. As observables we con-
sider the clustering coefficient c and the degree assortativity
r [39], for which we obtain c� ¼ 0.166ð12Þ and r� ¼
0.08ð3Þ (uncertainties in the last digit estimated using the
order-10 Jackknife method). We assess the significance of
these values by comparing them to those obtained in the
following three network ensembles with the same degree
sequence as in the original network: (i) Same weight to
all networks g (i.e., the configuration model). Canonical

sampling with β ¼ 0 yields hciβ¼0 ¼ 0.028ð1Þ and
hrβ¼0i ¼ −0.017ð13Þ, much smaller than c� and r� as
typically found in social networks. (ii) ERGMs with
hci ¼ c�. In order to determine whether the assortativity
is a consequence of high clustering [14] we would like
to measure hri from the null model with hci ¼ c�.
This canonical sampling fails because hciβ vs β shows
an hysteresis around s ¼ c� (inset of Fig. 2, in agreement
with our previous discussion). (iii) Hard constraints with
cðgÞ ¼ c�, obtained using multicanonical sampling. As
mentioned before, this type of hard constraint is unfeasible
with canonical sampling, even if the desired observable
value is realizable. With the multicanonical method we
sample points after a number of Monte Carlo steps propor-
tional to the tunneling time, which guarantees that the
sampled points are independent and unbiased [32]. We
performed multicanonical sampling for a desired c and
measured the assortativity r. The results are shown in
Fig. 3 and reveal that random networks with the same
clustering of the Email network c ¼ c� typically show a
much larger assortativity hri > r�. Therefore, although
both c� and r� are larger than one would expect for a
fully random network, the actual value of r� is significantly
less than one would expect by knowing only c�. From this
we conclude that the degree homophily is not explained
alone by transitivity.
The second problem we address is the extent to which

the occurrence of different motifs (connected subgraphs)
are related to each other and the impact of such correlations
on the so-called motif profiles [17]. Here we focus on
directed networks, and the observable of interest is the
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FIG. 2 (color online). Efficiency of the multicanonical method
to sample networks with constraints. The computational cost (in
number of MCMC steps) to generate an independent realization
of a network in the k-regular ensemble with k ¼ 3 is plotted as a
function of N. In the canonical method close to the critical β, this
requires passing the minimum of ρβðcÞ (inset of Fig. 1). We
measured that the height of this barrier increases as Δρ ≈ 0.4N,
which leads to an exponential increase in the cost (dashed line).
Sampling independent realizations in the multicanonical method
requires, at most, a tunneling (the number of MCMC steps to
do c ¼ 0↦c ¼ 1↦c ¼ 0) [32]. The measured tunneling time
(circles and full line) scales polynomially. Inset: convergence of
the relative error in the logarithm of the density of states (entropy)
during convergence of the Wang-Landau algorithm, estimated
comparing the measured value with the exact value on c ¼ 1.
The saturation of the error observed for a large number of steps
does not hinder the sampling of any c (see Ref. [33] for methods
to overcome the saturation).
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Inset: hci obtained using the canonical method.
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number ni of occurrences of a specific motif i. Again,
traditional sampling methods are not suited to address this
problem because of the existence of (potentially multiple
[13]) discontinuous phase transitions. Instead, using the
multicanonical method, we reliably sample networks with a
prescribed count of one particular motif. By measuring the
counts of all other motifs, we obtain the correlations
between them and the constrained motif. In this manner,
we obtain [40] the interdependence between all 13 different
three-node motifs in a directed acquaintance network
between physicians [41] (with N ¼ 241 nodes and M ¼
1098 edges). The results in Fig. 4 reveal strong positive and
negative correlations between pairs of motifs. Two blocks
of motifs can be identified [1,2,3,7,8 and 4,5,6, Fig. 4(a)].
Motifs show positive correlations within their blocks and
are anticorrelated with motifs in the other blocks (the motifs
9 to 13 show a mixed behavior). Given that one motif is
over (under) represented, one should expect also an over
representation in motifs positively (negatively) correlated
with it. As a consequence of this correlation, we find that
single motifs explain up to 60% of the variance of the motif
profile across the other 12 motifs [Fig. 4(b), upper and
middle panel]. Furthermore, if the constrained ensembles
are used to compute alternative z scores, we find that the
resulting motif profiles vary dramatically depending on the
constraint, with some motifs j showing variations from
zj ≫ 0 to zj ≪ 0 [Fig. 4(b), lower panel. This sensitivity of
the motif profile zj shows that such profiles bring limited

insights on the over or under representation of individual
motifs in a network. In particular, since such nontrivial
profiles as those seen in Fig. 4(b) can be obtained by
imposing the occurrence of a single motif, it is questionable
whether conclusions regarding the underlying formation
mechanisms can be reliably reached from them [17,18].
Nevertheless, the null models considered here represent a
principled approach of assessing the relative significance of
motif occurrences that is more meaningful than the usual
comparison to fully random networks.
In summary, we have shown that multicanonical sam-

pling allows for an improved network generation and for
the investigation of problems which were otherwise intrac-
table. In particular, we characterize ERGMs in cases where
the usual canonical sampling fails and we sample networks
imposing hard constraints, an alternative to a direct
sampling of ERGMs even when the usual algorithms are
feasible. Our analysis of empirical networks demonstrates
that using the multicanonical sampling allows the inves-
tigation of the interdependence between network proper-
ties. In particular, we quantified the correlation between
clustering and assortativity, and between different motifs,
as well as the extent to which their significance profiles can
be explained by single motifs. This opens the possibility of
investigating the correlation between motifs as well as other
local-scale properties and the large-scale structure of net-
works [14], such as communities, core peripheries, and
many others. The systematic disentangling of these diverse
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features is a crucial and open problem in the identification
of fundamental models of network formation.
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