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Abstract

In an important paper, M.E.J. Newman claimed that a general network-based
stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic
to a bond percolation model, where the bonds are the edges of the contact net-
work and the bond occupation probability is equal to the marginal probability
of transmission from an infected node to a susceptible neighbor. In this paper,
we show that this isomorphism is incorrect and define a semi-directed random
network we call the epidemic percolation network that is exactly isomorphic
to the SIR epidemic model in any finite population. In the limit of a large
population, (i) the distribution of (self-limited) outbreak sizes is identical to
the size distribution of (small) out-components, (ii) the epidemic threshold cor-
responds to the phase transition where a giant strongly-connected component
appears, (iii) the probability of a large epidemic is equal to the probability that
an initial infection occurs in the giant in-component, and (iv) the relative final
size of an epidemic is equal to the proportion of the network contained in the
giant out-component. For the SIR model considered by Newman, we show that
the epidemic percolation network predicts the same mean outbreak size below
the epidemic threshold, the same epidemic threshold, and the same final size
of an epidemic as the bond percolation model. However, the bond percolation
model fails to predict the correct outbreak size distribution and probability of
an epidemic when there is a nondegenerate infectious period distribution. We
confirm our findings by comparing predictions from percolation networks and
bond percolation models to the results of simulations. In an appendix, we show
that an isomorphism to an epidemic percolation network can be defined for any
time-homogeneous stochastic SIR model.



1 Introduction

In an important paper, M. E. J. Newman studied a network-based Susceptible-
Infectious-Removed (SIR) epidemic model in which infection is transmitted
through a network of contacts between individuals [1]. The contact network
itself is a random undirected network with an arbitrary degree distribution of
the form studied by Newman, Strogatz, and Watts [2]. Given the degree dis-
tribution, these networks are maximally random, so they have no small loops
and no degree correlations in the limit of a large population [2–4].

In the stochastic SIR model considered by Newman, the probability that an
infected node i makes infectious contact with a neighbor j is given by Tij =
1 − exp(−βijτi), where βij is the rate of infectious contact from i to j and
τi is the time that i remains infectious. (We use infectious contact to mean
a contact that results in infection if and only if the recipient is susceptible.)
The infectious period τi is a random variable with the cumulative distribution
function (cdf) F (τ), and the infectious contact rate βij is a random variable
with the cdf F (β). The infectious periods for all individuals are independent
and identically distributed (iid), and the infectious contact rates for all ordered
pairs of individuals are iid.

Under these assumptions, Newman claimed that the spread of disease on
the contact network is exactly isomorphic to a bond percolation model on the
contact network with bond occupation probability equal to the a priori proba-
bility of disease transmission between any two connected nodes in the contact
network [1]. This probability is called the transmissibility and denoted by T :

T = 〈Tij〉 =

∫ ∞

0

∫ ∞

0

(1 − e−βijτi)dF (βij)dF (τi). (1)

Newman used this bond percolation model to derive the distribution of finite
outbreak sizes, the critical transmissibility Tc that defines the epidemic (i.e.,
percolation) threshold, and the probability and relative final size of an epidemic
(i.e., an outbreak that never goes extinct).

As a counterexample, consider a contact network where each subject has
exactly two contacts. Assume that (i) τi = τ0 > 0 with probability p and
τi = 0 with probability 1 − p and (ii) βij = β0 > 0 with probability one for
all ij. Under the SIR model, the probability that the infection of a randomly
chosen node results in an outbreak of size one is p1 = 1−p+pe−2β0τ0 , which is the
sum of the probability 1−p that τ = 0 and the probability pe−2β0τ0 that τ = τ0

and disease is not transmitted to either contact. Under the bond percolation
model, the probability of a cluster of size one is pbond

1 = (1 − p + pe−β0τ0)2,
corresponding to the probability that neither of the bonds incident to the node
are occupied. Since

p1 − pbond
1 = p(1 − p)(1 − e−β0τ0)2,

the bond percolation model correctly predicts the probability of an outbreak of
size one only if p = 0 or p = 1. When the infectious period is not constant,
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it underestimates this probability. The supremum of the error is 0.25, which
occurs when p = 0.5 and τ0 → ∞. In this limit, the SIR model corresponds to
a site percolation model rather than a bond percolation model.

When the distribution of infectious periods is nondegenerate, there is no
bond occupation probability that will make the bond percolation model isomor-
phic to the SIR model. To see why, suppose node i has infectious period τi

and degree ni in the contact network. In the epidemic model, the conditional
probability that i transmits infection to a neighbor j in the contact network
given τi is

Tτi
=

∫ ∞

0

(1 − e−βijτi)dF (βij). (2)

Since the contact rate pairs for all ni edges incident to i are iid, the transmission
events across these edges are (conditionally) independent Bernoulli(Tτi

) random
variables; but the transmission probabilities are strictly increasing in τi, so the
transmission events are (marginally) dependent unless τi = τ0 with probability
one for some fixed τ0. In contrast, the bond percolation model treats the infec-
tions generated by node i as ni (marginally) independent Bernoulli(T ) random
variables regardless of the distribution of τi. Neither counterexample assumes
anything about the global properties of the contact network, so Newman’s claim
cannot be justified as an approximation in the limit of a large network with no
small loops.

In Section 2, we define a semi-directed random network called the epidemic
percolation network and show how it can be used to predict the outbreak size
distribution, the epidemic threshold, and the probability and final size of an
epidemic in the limit of a large population for any time-homogeneous SIR model.
In Section 3, we show that the network-based stochastic SIR model from [1]
can be analyzed correctly using a semi-directed random network of the type
studied by Boguñá and Serrano [3]. In Section 4, we show that it predicts
the same epidemic threshold, mean outbreak size below the epidemic threshold,
and relative final size of an epidemic as the bond percolation model. In Section
5, we show that the bond percolation model fails to predict the distribution
of outbreak sizes and the probability of an epidemic when the distribution of
infectious periods is nondegenerate. In Section 6, we compare predictions made
by epidemic percolation networks and bond percolation models to the results
of simulations. In an appendix, we define epidemic percolation networks for a
very general time-homogeneous stochastic SIR model and show that their out-
components are isomorphic to the distribution of possible outcomes of the SIR
model for any given set of imported infections.

2 Epidemic percolation networks

Consider a node i with degree ni in the contact network and infectious period
τi. In the SIR model defined above, the number of people who will transmit
infection to i if they become infectious has a binomial(ni, T ) distribution re-
gardless of τi. If i is infected along one of the ni edges, then the number of
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people to whom i will transmit infection has a binomial(ni−1, Tτi
) distribution.

In order to produce the correct joint distribution of the number of people who
will transmit infection to i and the number of people to whom i will transmit
infection, we represent the former by directed edges that terminate at i and the
latter by directed edges that originate at i. Since there can be at most one
transmission of infection between any two persons, we replace pairs of directed
edges between two nodes with a single undirected edge.

Starting from the contact network, a single realization of the epidemic per-
colation network can be generated as follows:

1. Choose a recovery period τi for every node i in the network and choose a
contact rate βij for every ordered pair of connected nodes i and j in the
contact network.

2. For each pair of connected nodes i and j in the contact network, con-
vert the undirected edge between them to a directed edge from i to
j with probability (1 − e−βijτi)e−βjiτj , to a directed edge from j to i

with probability e−βijτi(1 − e−βjiτj ), and erase the edge completely with
probability e−βijτi−βjiτj . The edge remains undirected with probability
(1 − e−βijτi)(1 − e−βjiτj ).

The epidemic percolation network is a semi-directed random network that
represents a single realization of the infectious contact process for each connected
pair of nodes, so 4m possible percolation networks exist for a contact network
with m edges. The probability of each possible network is determined by the
underlying SIR model. The epidemic percolation network is very similar to
the locally dependent random graph defined by Kuulasmaa [5] for an epidemic
on a d-dimensional lattice. There are two important differences: First, the
underlying structure of the contact network is not assumed to be a lattice.
Second, we replace pairs of (occupied) directed edges between two nodes with
a single undirected edge so that its component structure can be analyzed using
a generating function formalism.

In the Appendix, we prove that the size distribution of outbreaks starting
from any node in a time-homogeneous stochastic SIR model is identical to the
distribution of its out-component sizes in the corresponding probability space
of percolation networks. Since this result applies to any time-homogeneous
SIR model, it can be used to analyze network-based models, fully-mixed models
(see [6]), and models with multiple levels of mixing.

2.1 Components of semi-directed networks

In this section, we briefly review the structure of directed and semi-directed
networks as discussed in [3, 4, 7, 8]. In the next section, we relate this to the
possible outcomes of an SIR model.

The indegree and outdegree of node i are the number of incoming and out-
going directed edges incident to i. Since each directed edge is an outgoing edge
for one node and an incoming edge for another node, the mean indegree and
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outdegree are equal. The undirected degree of node i is the number of undi-
rected edges incident to i. The size of a component is the number of nodes it
contains and its relative size is its size divided by the total size of the network.

The out-component of node i includes i and all nodes that can be reached
from i by following a series of edges in the proper direction (undirected edges
are bidirectional). The in-component of node i includes i and all nodes from
which i can be reached by following a series of edges in the proper direction.
By definition, node i is in the in-component of node j if and only if j is in the
out-component of i. Therefore, the mean in- and out-component sizes in any
(semi-)directed network are equal.

The strongly-connected component of a node i is the intersection of its in-
and out-components; it is the set of all nodes that can be reached from node
i and from which node i can be reached. All nodes in a strongly-connected
component have the same in-component and the same out-component. The
weakly-connected component of node i is the set of nodes that are connected to
i when the direction of the edges is ignored.

For giant components, we use the definitions given in [8, 9]. Giant compo-
nents have asymptotically positive relative size in the limit of a large population.
All other components are “small” in the sense that they have asymptotically
zero relative size. There are two phase transitions in a semi-directed network:
One where a unique giant weakly-connected component (GWCC) emerges and
another where unique giant in-, out-, and strongly-connected components (GIN,
GOUT, and GSCC) emerge. The GWCC contains the other three giant com-
ponents. The GSCC is the intersection of the GIN and the GOUT, which
are the common in- and out-components of nodes in the GSCC. Tendrils are
components in the GWCC that are outside the GIN and the GOUT. Tubes are
directed paths from the GIN to the GOUT that do not intersect the GSCC. All
tendrils and tubes are small components. A schematic representation of these
components is shown in Figure (1).

2.2 Epidemic percolation networks and epidemics

An outbreak begins when one or more nodes are infected from outside the pop-
ulation. These are called imported infections. The final size of an outbreak
is the number of nodes that are infected before the end of transmission, and
its relative final size is its final size divided by the total size of the network.
In the epidemic percolation network, the nodes infected in the outbreak can
be identified with the nodes in the out-components of the imported infections.
This identification is made mathematically precise in the Appendix.

Informally, we define a self-limited outbreak to be an outbreak whose relative
final size approaches zero in the limit of a large population and an epidemic to be
an outbreak whose relative final size is positive in the limit of a large population.
There is a critical transmissibility Tc that defines the epidemic threshold: The
probability of an epidemic is zero when T ≤ Tc, and the probability and final
size of an epidemic are positive when T > Tc [1, 10–12].

If all out-components in the epidemic percolation network are small, then
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only self-limited outbreaks are possible. If the percolation network contains
a GSCC, then any infection in the GIN will lead to the infection of the entire
GOUT. Therefore, the epidemic threshold corresponds to the emergence of the
GSCC in the percolation network. For any finite set of imported infections,
the probability of an epidemic is equal to the probability that at least one
imported infection occurs in the GIN. The relative final size of an epidemic is
equal to the proportion of the network contained in the GOUT. Although some
nodes outside the GOUT may be infected (e.g. nodes in tendrils and tubes),
they constitute a finite number of small components whose total relative size is
asymptotically zero.

3 Analysis of the SIR model

To analyze the SIR model from [1], we first calculate the probability generating
function (pgf) of the degree distribution of the corresponding epidemic percola-
tion network. Then we use methods developed by Boguñá and Serrano [3] and
Meyers et al. [4] to calculate the in- and out-component size distributions and
the relative sizes of the GIN, GOUT, and GSCC.

3.1 Degree distribution

If pn is the probability that a node has degree n in the contact network, then

G(z) =

∞∑
n=1

pnzn

is the probability generating function (pgf) for the degree distribution of the
contact network. If pjkm is the probability that a node in the epidemic perco-
lation network has j incoming edges, k outgoing edges, and m undirected edges,
then

G(x, y, u) =

∞∑
j=0

∞∑
k=0

∞∑
m=0

pjkmxjykum

is the pgf for the degree distribution of the percolation network. Suppose nodes
i and j are connected in the contact network with contact rates (βij , βji) and
infectious periods τi and τj . Let g(x, y, u|βij , βji, τi, τj) be the conditional pgf
for the number of incoming, outgoing, and undirected edges incident to i that
appear between i and j in the percolation network. Then

g(x, y, u|βij, βji, τi, τj) = e−βijτi−βjiτj + e−βijτi(1 − e−βjiτj )x

+ (1 − e−βijτi)e−βjiτj y + (1 − e−βijτi)(1 − e−βjiτj )u.

Given τi, the conditional pgf for the number of incoming, outgoing, and undi-
rected edges incident to i that appear in the percolation network between i and
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any neighbor of i in the contact network is

g(x, y, u|τi) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

g(x, y, u|βij , βji, τi, τj)dF (βij)dF (βji)dF (τj)

= (1 − Tτi
)(1 − T ) + (1 − Tτi

)Tx + Tτi
(1 − T )y + Tτi

Tu. (3)

The pgf for the degree distribution of a node with infectious period τi is

G(x, y, u|τi) =

∞∑
n=0

pn(g(x, y, u|τi))
n = G(g(x, y, u|τi)). (4)

Finally, the pgf for the degree distribution of the epidemic percolation network
is

G(x, y, u) =

∫ ∞

0

G(x, y, u|τi)dF (τi). (5)

If a, b, and c are nonnegative integers, let G(a,b,c)(x, y, u) be the derivative
obtained after differentiating a times with respect to x, b times with respect to
y, and c times with respect to u. Then the mean indegree and outdegree of the
percolation network are

〈kd〉 = G(1,0,0)(1, 1, 1) = G(0,1,0)(1, 1, 1) = T (1 − T )G′(1),

and the mean undirected degree is

〈ku〉 = G(0,0,1)(1, 1, 1) = T 2G′(1).

3.2 Generating functions

When the contact network underlying an SIR epidemic model is an undirected
random network with an arbitrary degree distribution, the pgf of its degree
distribution can be used to calculate the distribution of small component sizes,
the percolation threshold, and the relative sizes of the GIN, GOUT, and GSCC
using methods developed by Boguñá and Serrano [3] and Meyers et al. [4].
These methods generalize earlier methods for undirected and purely directed
networks [1, 2, 13–16]. In this section, we review these results and introduce
notation that will be used in the rest of the paper. We discuss the case of
networks with no two-point degree correlations, which is sufficient to analyze
the SIR model from [1].

Let Gf (x, y, u) be the pgf for the degree distribution of a node reached
by going forward along a directed edge, excluding the edge used to reach the
node. Since the probability of reaching any node by following a directed edge
is proportional to its indegree,

Gf (x, y, u) =
1

〈kd〉

∑
j,k,m

jpjkmxj−1ykum =
1

〈kd〉
G(1,0,0)(x, y, u). (6)
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Similarly, the pgf for the degree distribution of a node reached by going in
reverse along a directed edge (excluding the edge used to reach the node) is

Gr(x, y, u) =
1

〈kd〉
G(0,1,0)(x, y, u), (7)

and the pgf for the degree distribution of a node reached by going to the end of
an undirected edge (excluding the edge used to reach the node) is

Gu(x, y, u) =
1

〈ku〉
G(0,0,1)(x, y, u). (8)

3.2.1 Out-components

Let Hout
f (z) be the pgf for the size of the out-component at the end of a directed

edge and Hout
u (z) be the pgf for the size of the out-component at the “end” of

an undirected edge. Then, in the limit of a large population,

Hout
f (z) = zGf (1, Hout

f (z), Hout
u (z)), (9a)

Hout
u (z) = zGu(1, Hout

f (z), Hout
u (z)). (9b)

The pgf for the out-component size of a randomly chosen node is

Hout(z) = zG(1, Hout
f (z), Hout

u (z)). (10)

The probability that a node has a finite out-component in the limit of a large
population is Hout(1), so the probability that a randomly chosen node is in the
GIN is 1 − Hout(1).

The coefficients on z0 in Hout
f (z) and Hout

u (z) are Gf (1, 0, 0) and Gu(1, 0, 0)

respectively. Therefore, power series for Hout
f (z) and Hout

u (z) can be computed
to any desired order by iterating equations (9a) and (9b). A power series for
Hout(z) can then be obtained using equation (10). For any z ∈ [0, 1], Hout

f (z)

and Hout
u (z) can be calculated with arbitrary precision by iterating equations

(9a) and (9b) starting from initial values y0, u0 ∈ [0, 1). Estimates of Hout
f (z)

and Hout
u (z) can be used to estimate Hout(z) with arbitrary precision.

The expected size of the out-component of a randomly chosen node below
the epidemic threshold is Hout′(1). Taking derivatives in (10) yields

Hout′(1) = 1 + 〈kd〉Hout′
f (1) + 〈ku〉Hout′

u (1). (11)

Taking derivatives in equations (9a) and (9b) and using the fact that Hout
f (1) =

Hout
u (1) = 1 below the epidemic threshold yields a set of linear equations for

Hout′
f (1) and Hout′

u (1). These can be solved to yield

Hout′
f (1) =

1 + G
(0,0,1)
f − G

(0,0,1)
u

(1 − G
(0,1,0)
f )(1 − G

(0,0,1)
u ) − G

(0,0,1)
f G

(0,1,0)
u

(12)
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and

Hout′
u (1) =

1 − G
(0,1,0)
f + G

(0,1,0)
u

(1 − G
(0,1,0)
f )(1 − G

(0,0,1)
u ) − G

(0,0,1)
f G

(0,1,0)
u

, (13)

where the argument of all derivatives is (1, 1, 1).

3.2.2 In-components

The in-component size distribution of a semi-directed network can be derived
using the same logic used to find the out-component size distribution, except
that we consider going backwards along directed edges. Let Hin

r (z) be the pgf
for the size of the in-component at the beginning of a directed edge, Hin

u (z) be
the pgf for the size of the in-component at the “beginning” of an undirected
edge, and Hin(z) be the pgf for the in-component size of a randomly chosen
node. Then, in the limit of a large population,

Hin
r (z) = zGr(H

in
r (z), 1, Hin

u (z)), (14a)

Hin
u (z) = zGu(Hin

r (z), 1, Hin
u (z)), (14b)

Hin(z) = zG(Hin
r (z), 1, Hin

u (z)). (14c)

The probability that a node has a finite in-component is Hin(1), so the proba-
bility that a randomly chosen node is in the GOUT is 1−Hin(1). The expected
size of the in-component of a randomly chosen node is Hin′(1). Power series
and numerical estimates for Hin

r (z), Hin
u (z), and Hin(z) can be obtained by

iterating these equations.
The expected size of the out-component of a randomly chosen node below

the epidemic threshold is Hout′(1). Taking derivatives in equation (14c) yields

Hin′(1) = 1 + 〈kd〉Hin′
r (1) + 〈ku〉Hin′

u (1). (15)

Taking derivatives in equations (14a) and (14b) and using the fact that Hin
r (1) =

Hin
u (1) = 1 in a subcritical network yields

Hin′
r (1) =

1 + G
(0,0,1)
r − G

(0,0,1)
u

(1 − G
(1,0,0)
r )(1 − G

(0,0,1)
u ) − G

(0,0,1)
r G

(1,0,0)
u

(16)

and

Hin′
u (1) =

1 − G
(1,0,0)
r + G

(1,0,0)
u

(1 − G
(1,0,0)
r )(1 − G

(0,0,1)
u ) − G

(0,0,1)
r G

(1,0,0)
u

, (17)

where the argument of all derivatives is (1, 1, 1).

3.2.3 Epidemic threshold

The epidemic threshold occurs when the expected size of the in- and out-
components in the network becomes infinite. This occurs when the denom-
inators in equations (12) and (13) and equations (16) and (17) approach zero.
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From the definitions of Gf (x, y, u), Gr(x, y, u) and Gu(x, y, u), both conditions
are equivalent to

(1 −
1

〈kd〉
G(1,1,0))(1 −

1

〈ku〉
G(0,0,2)) −

1

〈kd〉 〈ku〉
G(1,0,1)G(0,1,1) = 0.

Therefore, there is a single epidemic threshold where the GSCC, the GIN, and
the GOUT appear simultaneously in both purely directed networks [1,2,13–16]
and semi-directed networks [3, 4].

3.2.4 Giant strongly-connected component

A node is in the GSCC if its in- and out-components are both infinite. A ran-
domly chosen node has a finite in-component with probability G(Hin

r (1), 1, Hin
u (1))

and a finite out-component with probability G(1, Hout
f (1), Hout

u (1)). The prob-
ability that a node reached by following an undirected edge has finite in- and
out-components is the solution to the equation

v = Gu(Hin
r (1), Hout

f (1), v),

and the probability that a randomly chosen node has finite in- and out-components
is G(Hin

r (1), Hout
f (1), v) [3]. Thus, the relative size of the GSCC is

1 − G(Hin
r (1), 1, Hin

u (1)) − G(1, Hout
f (1), Hout

u (1)) + G(Hin
r (1), Hout

f (1), v).

4 In-components

In this section, we prove that the in-component size distribution of the epidemic
percolation network for the SIR model from [1] is identical to the component
size distribution of the bond percolation model with bond occupation probability
T . The probability generating function for the total number of incoming and
undirected edges incident to any node i is

G(x, 1, x|τi) = G(g(x, 1, x|τi)) = G(1 − T + Tx),

which is independent of τi. If node i has degree ni in the contact network, then
the number of nodes we can reach by going in reverse along a directed edge or an
undirected edge has a binomial(ni, T ) distribution regardless of τi. If we reach
node i by going backwards along edges, the number of nodes we can reach from
i by continuing to go backwards (excluding the node from which we arrived) has
a binomial(ni − 1, T ) distribution. Therefore, the in-component of any node
in the percolation network is exactly like a component of a bond percolation
model with occupation probability T . This argument was used to justify the
mapping from an epidemic model to a bond percolation model in [1], but it does
not apply to the out-components of the epidemic percolation network.

Methods of calculating the component size distribution of an undirected
random network with an arbitrary degree distribution using the pgf of its degree
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distribution were developed by Newman et al. [2, 13–16]. These methods were
used to analyze the bond percolation model of disease transmission [1], obtaining
results similar to those obtained by Andersson [17] for the epidemic threshold
and the final size of an epidemic. In this paragraph, we review these results
and introduce notation that will be used in this section. Let G(u) be the pgf for
the degree distribution of the contact network. Then the pgf for the degree of a
node reached by following an edge (excluding the edge used to reach that node)

is G1(u) = 〈n〉
−1

G′(u), where 〈n〉 = G′(1) is the mean degree of the contact
network. With bond occupation probability T , the number of occupied edges
adjacent to a randomly chosen node has the pgf G(1−T +Tu) and the number
of occupied edges from which infection can leave a node that has been infected
along an edge has the pgf G1(1−T +Tu). The pgf for the size of the component
at the end of an edge is

H1(z) = zG1(1 − T + TH1(z)) (18)

and the pgf for the size of the component of a randomly chosen node is

H0(z) = zG(1 − T + TH1(z)). (19)

The proportion of the network contained in the giant component is 1 − H0(1),
and the mean size of components below the percolation threshold is H ′

0(1).
H0(z) and H1(z) can be expanded as power series to any desired degree by
iterating equations (18) and (19), and their value for any fixed z ∈ [0, 1] can be
found by iteration from an initial value z0 ∈ [0, 1).

We can now prove that the distribution of component sizes in the bond
percolation model is identical to the distribution of in-component sizes in the
epidemic percolation network.

Lemma 1 Gr(x, y, u) = Gu(x, y, u) for all x, y, u.

Proof. From equation (7),

Gr(x, y, u) =
1

T (1 − T )G′(1)
G(0,1,0)(x, y, u)

=
1

TG′(1)

∫ ∞

0

G′(g(x, y, u|τi))Tτi
dF (τi).

From equation (8),

Gu(x, y, u) =
1

T 2G′(1)
G(0,0,1)(x, y, u)

=
1

TG′(1)

∫ ∞

0

G′(g(x, y, u|τi))Tτi
dF (τi).

Thus, the degree distribution of a node reached by going backwards along an
edge is independent of whether it was a directed or undirected edge.

10



Lemma 2 Hin
r (z) = Hin

u (z) = H1(z) for all z.

Proof. From equations (14a) and (14b),

Hin
r (z) = zGr(H

in
r (z), 1, Hin

u (z))

= zGu(Hin
r (z), 1, Hin

u (z)) = Hin
u (z).

Let Hin
∗ (z) = Hin

u (z) = Hin
r (z). Since g(x, 1, x|τi) = 1 − T + Tx for all τi,

Hin
∗ (z) =

z

TG′(1)

∫ ∞

0

G′(1 − T + THin
∗ (z))Tτi

dF (τi)

=
z

G′(1)
G′(1 − T + THin

∗ (z)).

From equation (18), we have

H1(z) =
z

G′(1)
G′(1 − T + THin

1 (z)).

Since there is a unique pgf that solves this equation, Hin
∗ (z) = H1(z). Thus,

the in-component size distribution at the beginning of an edge is the same for di-
rected and undirected edges, and it is identical to the distribution of component
sizes at the end of an occupied edge in the bond percolation model.

Theorem 3 Hin(z) = H0(z).

Proof. Let Hin
∗ (z) = Hin

r (z) = Hin
u (z). From equation (14c), the probability

generating function for the distribution of in-component sizes in the percolation
network is

Hin(z) = zG(Hin
∗ (z), 1, Hin

∗ (z))

= z

∫ ∞

0

G(g(Hin
∗ (z), 1, Hin

∗ (z)|τi))dF (τi)

= zG(1 − T + THin
∗ (z)).

When H1(z) is substituted for Hin
∗ (z) (which is justified by the previous Lemma),

this is identical to equation (19) for H0(z) in the bond percolation model. Since
there is a unique pgf solution to this equation, Hin(z) = H0(z), so the distribu-
tion of in-components in the percolation network is identical to the distribution
of component sizes in the bond percolation model.

Since the mean size of out-components is equal to the mean size of in-
components in any semi-directed network, the bond percolation model correctly
predicts the mean size of outbreaks below the epidemic threshold. Since the
mean sizes of in- and out-components diverge simultaneously, the bond perco-
lation model also correctly predicts the critical transmissibility Tc. Since the
probability of having a finite in-component in the percolation model is equal to
the probability of being in a finite component of the bond percolation model,
the bond percolation model also correctly predicts the final size of an epidemic.

11



5 Out-components

In this section, we prove that the distribution of out-component sizes in the epi-
demic percolation network for the SIR model from [1] is always different than
the distribution of in-component sizes when there is a nondegenerate distribu-
tion of infectious periods. As a corollary, we find that the probability of an
epidemic in the SIR model from the Introduction is always less than or equal
to its final size, with equality only when epidemics have probability zero or the
infectious period is constant. This is similar to a result obtained by Kuulasmaa
and Zachary [18], who found that an SIR model defined on the d-dimensional
integer lattice reduced to a bond percolation process if and only if the infectious
period is constant.

The probability generating function for the total number of outgoing and
undirected edges incident to a node i with infectious period τi is

G(1, y, y|τi) = G(g(1, y, y|τi)) = G(1 − Tτi
+ Tτi

y),

where Tτi
is the conditional probability of transmission across each edge given

τi, as defined in equation (2). The number of nodes we can reach by going
forwards along edges starting from i has a Binomial(ni, Tτi

) distribution. If
we reach a node j by following an edge, then the number of nodes we can
reach from j by continuing to go forwards (excluding the node from which we
arrived) has a binomial(kj −1, Tτj

) distribution. Unless τi is constant, the out-
components of the epidemic percolation network are not like the components of
a bond percolation model.

Suppose i and j are connected in the contact network. The conditional
transmission probability from j to i given τi is always T . Thus, an edge across
which we leave any node is directed (i.e., outgoing) with probability 1 − T

and undirected with probability T . This allows us to calculate the pgfs of
the out-component distributions without differentiating between outgoing and
undirected edges: Let

Go(x, y, u) = (1 − T )Gf (x, y, u) + TGu(x, y, u)

=
1

G′(1)

∫ ∞

0

G′(g(x, y, u|τi))dF (τi)

be the probability generating function for the degree distribution of a node that
we reach by going forward along an outgoing or undirected edge (excluding the
edge along which we arrived). Let

Hout
∗ (z) = (1 − T )Hout

f (z) + THout
u (z)

be the probability generating function for the size of the out-component at the
end of an outgoing or undirected edge.

12



Lemma 4 For the SIR model from [1],

Hout
f (z) = zGf (1, Hout

∗ (z), Hout
∗ (z)),

Hout
u (z) = zGu(1, Hout

∗ (z), Hout
∗ (z)),

Hout(z) = zG(1, Hout
∗ (z), Hout

∗ (z)),

and we have the following self-similarity equation:

Hout
∗ (z) = zGo(1, Hout

∗ (z), Hout
∗ (z)).

Proof. From equation (3), we have

g(1, (1 − T )y + Tu, (1 − T )y + Tu|τi) = 1 − Tτi
+ Tτi

[(1 − T )y + Tu]

= g(1, y, u|τi)

for all y, u, and τi. This allows us to rewrite equation (9a):

Hout
f (z) = zGf (1, Hout

f (z), Hout
u (z))

=
z

(1 − T )G′(1)

∫ ∞

0

G′(g(1, Hout
f (z), Hout

u (z)|τi))(1 − Tτi
)dF (τi)

=
z

(1 − T )G′(1)

∫ ∞

0

G′(g(1, Hout
∗ (z), Hout

∗ (z)|τi))(1 − Tτi
)dF (τi)

= zGf (1, Hout
∗ (z), Hout

∗ (z)).

Similarly, we can rewrite equation (9b):

Hout
u (z) = zGu(1, Hout

f (z), Hout
u (z))

=
z

TG′(1)

∫ ∞

0

G′(g(1, Hout
f (z), Hout

u (z)|τi))Tτi
dF (τi)

=
z

TG′(1)

∫ ∞

0

G′(g(1, Hout
∗ (z), Hout

∗ (z)|τi))Tτi
dF (τi)

= zGu(1, Hout
∗ (z), Hout

∗ (z)).

Finally, we can rewrite equation (10):

Hout(z) = zG(1, Hout
f (z), Hout

u (z))

= z

∫ ∞

0

G(g(1, Hout
f (z), Hout

u (z)|τi))dF (τi)

= z

∫ ∞

0

G(g(1, Hout
∗ (z), Hout

∗ (z)|τi))dF (τi)

= zG(1, Hout
∗ (z), Hout

∗ (z));

but then

Hout
∗ (z) = (1 − T )Hout

f (z) + Hout
u (z)

= z[(1 − T )Gf (1, Hout
∗ (z), Hout

∗ (z)) + TGu(1, Hout
∗ (z), Hout

∗ (z))]

= zGo(1, Hout
∗ (z), Hout

∗ (z)).
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As a corollary, we find that the analysis in Ref. [1] can be corrected if we let
G0(x) = G(1, x, x) and G1(x) = Go(1, x, x) (see equations (13) and (14) in [1]).

Lemma 5 Hin
∗ (z) ≤ Hout

∗ (z) for all z ∈ [0, 1].

Proof. Since G′ is convex,

Hout
∗ (z) = zGo(1, Hout

∗ (z), Hout
∗ (z))

=
z

G′(1)

∫ ∞

0

G′(1 − Tτi
+ Tτi

Hout
∗ (z))dF (τi)

≥
z

G′(1)
G′(1 − T + THout

∗ (z))

by Jensen’s inequality. Equality holds only if z = 0, Hout
∗ (z) = 1, G′ is constant,

or τi is constant. Since Hin
∗ (z) is the solution to

Hin
∗ (z) =

z

G′(1)
G′(1 − T + THin

∗ (z)),

we must have Hout
∗ (z) ≥ Hin

∗ (z). This can be seen by fixing z and considering
the graphs of y = zGo(1, x, x) and y = z

G′(1)G
′(1 − T + Tx). Hout

∗ (z) is the

value of x at which y = zGo(1, x, x) intersects the line y = x. Hin
∗ (z) is the

value of x at which y = z
G′(1)G

′(1 − T + Tx) intersects the line y = x. Since

zGo(1, x, x) ≥ z
G′(1)G

′(1 − T + Tx), we must have Hout
∗ (z) ≥ Hin

∗ (z).

Theorem 6 Hin(z) ≤ Hout(z) for all z ∈ [0, 1]. Equality holds only when
z = 0, z = 1 and the percolation network is subcritical, or the infectious period
is constant.

Proof. From equation (14c),

Hin(z) = zG(Hin
∗ (z), 1, Hin

∗ (z))

= zG(1 − T + THin
∗ (z)).

From equation (10),

Hout(z) = zG(1, Hout
∗ (z), Hout

∗ (z))

= z

∫ ∞

0

G(1 − Tτi
+ Tτi

Hout
∗ (z))dF (τi)

≥ zG(1 − T + THout
∗ (z))

≥ zG(1 − T + THin
∗ (z)).

The first inequality follows from the convexity of G and Jensen’s inequality. The
second follows from the fact that G is nondecreasing and Hout

∗ (z) ≥ Hin
∗ (z).

Equality holds in both inequalities only if z = 0, G is constant, Hin
∗ (z) = 1, or

τi is constant.
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Since the probability of an epidemic is 1 − Hout(1) and the final size of
an epidemic is 1 − Hin(1), it follows that the probability of an epidemic is
always less than or equal to its final size in the SIR model from [1]. When
the infectious period is constant, Hout(z) = Hin(z) for all z ∈ [0, 1], so the in-
and out-component size distributions are identical and the probability and final
size of an epidemic are equal. When the infectious period has a nondegenerate
distribution and the percolation network is subcritical, Hout(z) > Hin(z) for all
z ∈ (0, 1) (so the in- and out-components have dissimilar size distributions) but
Hout(1) = Hin(1) = 1 (so the probability and final size of an epidemic are both
zero). If the network is supercritical and the infectious period is nonconstant,
Hout(z) > Hin(z) for all z ∈ [0, 1], so in- and out-components have dissimilar
size distributions and the probability of an epidemic is strictly less than its final
size.

Since the bond percolation model predicts the distribution of in-component
sizes, it cannot predict the distribution of out-component sizes or the proba-
bility of an epidemic for any SIR model with a nonconstant infectious period.
However, it does establish an upper limit for the probability of an epidemic
in an SIR model. We have recently become aware of independent work [19]
that shows similar results for more general sources of variation in infectiousness
and susceptibility in a model where these are independent and uses Jensen’s
inequality to establish a lower bound for the probability and final size of an
epidemic. The lower bound corresponds to a site percolation model with site
occupation probability T , which is the model that minimized the probability of
no transmission in the Introduction.

6 Simulations

In a series of simulations, the bond percolation model correctly predicted the
mean outbreak size (below the epidemic threshold), the epidemic threshold, and
the final size of an epidemic [1]. In Section 4, we showed that the epidemic
percolation network generates the same predictions for these quantities.

In Newman’s simulations, the contact network had a power-law degree distri-
bution with an exponential cutoff around degree κ, so the probability that a node
has degree k is proportional to k−αe−1/κ for all k ≥ 1. This distribution was
chosen to reflect degree distributions observed in real-world networks [1,13–15].
The probability generating function for this degree distribution is

G(z) =
Liα(ze−1/κ)

Liα(e−1/κ)
,

where Liα(z) is the α-polylogarithm of z. In [1], Newman used α = 2.
In our simulations, we retained the same contact network but used a contact

model adapted from the counterexample in the Introduction. We fixed βij =
β0 = 0.1 for all ij and let τi = 1 with probability 0.5 and τi = τmax > 1
with probability 0.5 for all i. The predicted probability of an outbreak of size
one is G(1, 0, 0) in the epidemic percolation network and G(0, 1, 0) in the bond
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percolation model. The predicted probability of an epidemic is 1 − Hout(1)
in the epidemic percolation network and 1 − Hin(1) in the bond percolation
model. In all simulations, an epidemic was declared when at least 100 persons
were infected (this low cutoff produces a slight overestimate of the probability of
an epidemic in the simulations, favoring the bond percolation model). Figures
2 and 3 show that percolation networks accurately predicted the probability
of an outbreak of size one for all (n, κ, τmax) combinations, whereas the bond
percolation model consistently underestimated these probabilities. Figures 4
and 5 show that the bond percolation model significantly overestimated the
probability of an epidemic for all (n, κ, τmax) combinations. The percolation
network predictions were far closer to the observed values.

7 Discussion

For any time-homogeneous SIR epidemic model, the problem of analyzing its
final outcomes can be reduced to the problem of analyzing the components of
an epidemic percolation network. The distribution of outbreak sizes starting
from a node i is identical to the distribution of its out-component sizes in the
probability space of percolation networks. Calculating this distribution may
be extremely difficult for a finite population, but it simplifies enormously in
the limit of a large population for many SIR models. For a single randomly
chosen imported infection in the limit of a large population, the distribution of
self-limited outbreak sizes is equal to the distribution of small out-component
sizes and the probability of an epidemic is equal to the relative size of the GIN.
For any finite set of imported infections, the relative final size of an epidemic is
equal to the relative size of the GOUT.

In this paper, we used epidemic percolation networks to reanalyze the SIR
epidemic model studied in [1]. The mapping to a bond percolation model
correctly predicts the distribution of in-component sizes, the critical transmissi-
bility, and the final size of an epidemic. However, it fails to predict the correct
distribution of outbreak sizes and overestimates the probability of an epidemic
when the infectious period is nonconstant. Since all known infectious diseases
have nonconstant infectious periods and heterogeneity in infectiousness has im-
portant consequences in real epidemics [20–22], it is important to be able to
analyze such models correctly.

The exact finite-population isomorphism between a time-homogeneous SIR
model and our semi-directed epidemic percolation network is not only useful be-
cause it provides a rigorous foundation for the application of percolation meth-
ods to a large class of SIR epidemic models (including fully-mixed models as well
as network-based models), but also because it provides further insight into the
epidemic model. For example, we used the mapping to an epidemic percolation
network to show that the distribution of in- and out-component sizes in the SIR
model from [1] could be calculated by treating the incoming and outgoing in-
fectious contact processes as separate directed percolation processes, as in [19].
However, in contrast with [19], the semi-directed epidemic percolation network
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isolates the fundamental role of the GSCC in the emergence of epidemics. The
design of interventions to reduce the probability and final size of an epidemic is
a central concern of infectious disease epidemiology. In a forthcoming paper, we
analyze both fully-mixed and network-based SIR models in which vaccinating
those nodes most likely to be in the GSCC is shown to be the most effective
strategy for reducing both the probability and final size of an epidemic. If the
incoming and outgoing contact processes are treated separately, the notion of
the GSCC is lost.
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A Epidemic percolation networks

It is possible to define epidemic percolation networks for a much larger class
of stochastic SIR epidemic models than the one from [1]. First, we specify
an SIR model using probability distributions for recovery periods in individuals
and times from infection to infectious contact in ordered pairs of individuals.
Second, we outline time-homogeneity assumptions under which the epidemic
percolation network is well-defined. Finally, we define infection networks and
use them to show that the final outcome of the SIR model depends only on the
set of imported infections and the epidemic percolation network.

A.1 Model specification

Suppose there is a closed population in which every susceptible person is as-
signed an index i ∈ {1, ..., n}. A susceptible person is infected upon infectious
contact, and infection leads to recovery with immunity or death. Each person
i is infected at his or her infection time ti, with ti = ∞ if i is never infected.
Person i is removed (i.e., recovers from infectiousness or dies) at time ti + ri,
where the recovery period ri is a random sample from a probability distribution
fi(r). The recovery period ri may be the sum of a latent period, when i is
infected but not yet infectious, and an infectious period, when i can transmit
infection. We assume that all infected persons have a finite recovery period.
Let S(t) = {i : ti > t} be the set of susceptible individuals at time t. Let
t(1) ≤ t(2) ≤ ... ≤ t(n) be the order statistics of t1, ..., tn, and let i(k) be the

index of the kth person infected.
When person i is infected, he or she makes infectious contact with person

j 6= i after an infectious contact interval τij . Each τij is a random sample from
a conditional probability density fij(τ |ri). Let τij = ∞ if person i never makes
infectious contact with person j, so fij(τ |ri) has a probability mass concentrated
at infinity. Person i cannot transmit disease before being infected or after
recovering, so fij(τ |ri) = 0 for all τ < 0 and all τ ∈ [ri,∞). The infectious
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contact time tij = ti + τij is the time at which person i makes infectious contact
with person j. If person j is susceptible at time tij , then i infects j and tj = tij .
If tij < ∞, then tj ≤ tij because person j avoids infection at tij only if he or
she has already been infected.

For each person i, let his or her importation time t0i be the first time at
which he or she experiences infectious contact from outside the population,
with t0i = ∞ if this never occurs. Let F0(t0) be the cumulative distribution
function of the importation time vector t0 = (t01, t02, ..., t0n).

A.2 Epidemic algorithm

First, an importation time vector t0 is chosen. The epidemic begins with
the introduction of infection at time t(1) = mini(t0i). Person i(1) is as-
signed a recovery period ri(1) . Every person j ∈ S(t(1)) is assigned an in-
fectious contact time ti(1)j = t(1) + τi(1)j . We assume that there are no
tied infectious contact times less than infinity. The second infection occurs
at t(2) = minj∈S(t(1)) min(t0j , ti(1)j), which is the time of the first infectious
contact after person i(1) is infected. Person i(2) is assigned a recovery period
ri(2) . After the second infection, each of the remaining susceptibles is assigned
an infectious contact time ti(2)j = t(2) + τi(2)j . The third infection occurs at
t(3) = minj∈S(t(2)) min(t0j , ti(1)j , ti(2)j), and so on. After k infections, the next
infection occurs at t(k+1) = minj∈S(t(k)) min(t0j , ti(1)j , ..., ti(k)j). The epidemic
stops after m infections if and only if t(m+1) = ∞.

A.3 Time homogeneity assumptions

In principle, the above epidemic algorithm could allow the infectious period and
outgoing infectious contact intervals for individual i to depend on all information
about the epidemic available up to time ti. In order to generate an epidemic
percolation network, we must ensure that the joint distributions of recovery
periods and infectious contact intervals are defined a priori. The following
restrictions are sufficient:

1. We assume that the distribution of the recovery period vector r = (r1, r2, ..., rn)
does not depend on the importation time vector t0, the contact interval
matrix τ = [τij ], or the history of the epidemic.

2. We assume that the distribution of the infectious contact interval matrix
τ does not depend on t0 or the history of the epidemic.

With these time-homogeneity assumptions, the cumulative distributions func-
tions F (r) of recovery periods and F (τ |r) of infectious contact intervals are com-
pletely specified a priori. Given r and τ , the epidemic percolation network is a
semi-directed network in which there is a directed edge from i to j iff τij < ∞
and τji = ∞, a directed edge from j to i iff τij = ∞ and τji < ∞, and an
undirected edge between i and j iff τij < ∞ and τji < ∞. The entire time
course of the epidemic is determined by r, τ , and t0. However, its final size
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depends only on the set {i : t0i < ∞} of possible imported infections and the
epidemic percolation network corresponding to τ . In order to prove this, we
first define the infection network, which records the chain of infection from a
single realization of the epidemic model.

A.4 Infection networks

Let vi be the index of the person who infected person i, with vi = 0 for imported
infections and vi = ∞ for uninfected nodes. If tied finite infectious contact times
are possible, then choose vi from all j such that tji = ti. The infection network
has the edge set {vii : 0 < vi < ∞}. It is a purely directed subgraph of the
epidemic percolation network corresponding to τ because τvii < ∞ for every
edge vii. Since each node has at most one incoming edge, all components of
the infection network are trees or isolated nodes. Every imported case is either
the root node of a tree or an isolated node. Every person infected through
transmission within the population is a nonroot node in a tree. Uninfected
persons are isolated nodes.

The infection network can be represented by a vector v = (v1, .., vn), as in
Ref. [23]. If vj = 0, then tj = t0j . If 0 < vj < ∞, then j is in a component of
the infection network with a root node impj and its infection time is

tj = timpj
+

m∑
k=1

τikjk
,

where the edges i1j1, ..., imjm form a directed path from impj to j. This path
is unique because all nontrivial components of the infection network are trees.
If vj = ∞, then tj = ∞. The removal time of each node i is ti + ri. If there
is more than one possible infection network, they must all be consistent with
(t1, ..., tn) by definition of vi. Therefore, the entire time course of the epidemic
is determined by the importation time vector t0, the recovery period vector r,
and the infectious contact interval matrix τ .

A.5 Final outcomes and epidemic percolation networks

Theorem 7 In an epidemic with infectious contact interval matrix τ , a node
is infected if and only if it is in the out-component of a node i with t0i < ∞
in the percolation network. (Equivalently, a node is infected if and only if its
in-component includes a node i with t0i < ∞.) Therefore, the final outcome of
the SIR model depends only on the set of imported infections and the epidemic
percolation network corresponding to τ .

Proof. Suppose that person j is in the out-component of a node i with t0i <

∞ in the epidemic percolation network corresponding to τ . Then there is a
sequence i1j1, ..., imjm such that i1 = i, jm = j, and τikjk

< ∞ for 1 ≤ k ≤ m,
so

tj ≤ t0i +

m∑
k=1

τikjk
< ∞,
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and j must be infected during the epidemic. Now suppose that tj < ∞. Then
there exists an imported case i and a sequence i1j1, ..., imjm such that i1 = i,
jm = j, and

tj = ti +

m∑
k=1

τikjk
.

Since tj < ∞, it follows that τikjk
< ∞ for all k. But then the epidemic

percolation network corresponding to τ has an edge with the proper direction
or an undirected edge between ik and jk for all k, so j is in the out-component
of i.

By the law of iterated expectation (conditioning on τ), this result implies
that the distribution of outbreak sizes caused by the introduction of infection
to node i is identical to the distribution of his or her out-component sizes in the
probability space of epidemic percolation networks. Furthermore, the proba-
bility that person i gets infected in an epidemic is equal to the probability that
his or her in-component contains at least one imported infection. This isomor-
phism holds in any finite population. In the limit of a large population, the
probability that node i is infected in an epidemic is equal to the probability that
he or she is in the GOUT and the probability that an epidemic results from the
infection of node i is equal to the probability that he or she is in the GIN. This
logic can be extended to predict the mean size of self-limited outbreaks and the
probability and final size of an epidemic for outbreaks started by any given set
of imported infections.

B Figures and tables
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Figure 1: Schematic diagram of the giant components, tendrils, and tubes of
a supercritical semi-directed network. Adapted from Broder et al. [7] and
Dorogovtsev et al. [8].
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Figure 2: The predicted and observed probabilities of an outbreak of size one
on a contact network with κ = 10 as a function of τmax. Models were run for
τmax = 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100. Each
observed value is based on 10, 000 simulations in a population of size n. For
n = 10, 000, 1, 000 simulations were conducted on each of 10 contact networks.
For n = 1, 000, 100 simulations were conducted on each of 100 contact networks.
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Figure 3: The predicted and observed probabilities of an outbreak of size one
on a contact network with κ = 20 as a function of τmax. Models were run for
τmax = 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60, 70, 80, 90, and
100. Each observed value is based on 10, 000 simulations in a population of size
n. For n = 10, 000, 1000 simulations were conducted on each of ten contact
networks. For n = 1000, 100 simulations were conducted on each of 100 contact
networks.

25



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

τ
max

P
ro

ba
bi

lit
y

Pr(epidemic) for κ = 10

Bond percolation
Epidemic percolation network
Observed (n=10,000)
Observed (n=1,000)

Figure 4: The predicted and observed probabilities of an epidemic on a contact
network with κ = 10 as a function of τmax. Models were run for τmax = 10, 12,
14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, and 100. Each observed value
is based on 10, 000 simulations in a population of size n. For n = 10, 000, 1000
simulations were conducted on each of ten contact networks. For n = 1000,
100 simulations were conducted on each of 100 contact networks.
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Figure 5: The predicted and observed probabilities of an epidemic on a contact
network with κ = 20 as a function of τmax. Models were run for τmax = 5,
6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100. Each
observed value is based on 10, 000 simulations in a population of size n. For
n = 10, 000, 1000 simulations were conducted on each of ten contact networks.
For n = 1000, 100 simulations were conducted on each of 100 contact networks.
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