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A B S T R A C T   

Missing data is a common, difficult problem for network studies. Unfortunately, there are few clear guidelines 
about what a researcher should do when faced with incomplete information. We take up this problem in the third 
paper of a three-paper series on missing network data. Here, we compare the performance of different imputation 
methods across a wide range of circumstances characterized in terms of measures, networks and missing data 
types. We consider a number of imputation methods, going from simple imputation to more complex model- 
based approaches. Overall, we find that listwise deletion is almost always the worst option, while choosing 
the best strategy can be difficult, as it depends on the type of missing data, the type of network and the measure 
of interest. We end the paper by offering a set of practical outputs that researchers can use to identify the best 
imputation choice for their particular research setting.   

Introduction 

Network data are often incomplete, with nodes and edges missing 
from the network of interest. Missing data can create problems when 
analyzing network data because network measures are often defined 
with respect to a fully observed graph (Borgatti et al., 2006; Smith and 
Moody, 2013). For example, measures that depend on the paths between 
all actors (e.g., closeness centrality and betweenness centrality) tend to 
be particularly sensitive to missing data (Kossinets, 2006; Smith et al., 
2017; Rosenblatt et al., 2020). A researcher faced with incomplete 
network data must decide what, if any, imputation should be employed 
to limit the biasing effect of missing data (Huisman, 2009; Žnidaršič 
et al., 2018). Unfortunately, there are few clear guidelines for making 
imputation decisions. Recent work has shown that imputation can 
reduce the bias resulting from missing data, but we are only beginning to 
understand the returns to imputation (e.g., Koskinen et al., 2010; Gile 
and Handock, 2017; de le Haye et al., 2017; Krause et al., 2018a,b, 
2020). For instance, is it always best to impute network data, or can we 
sometimes get away with doing nothing? And more pressing, how 
should a researcher choose which imputation method is optimal? Does 
one approach offer a universally robust option, or does it depend on the 
circumstances of the study? 

This paper is part of a three-paper series on missing network data, 
with the overall goal of offering practical advice and tools for network 
researchers faced with missing data (Smith and Moody, 2013; Smith 
et al., 2017). We focus on a common situation: where the network data is 
incomplete because a subset of actors has provided no information about 
their network ties (e.g., Galaskiewicz, 1991; Costenbader and Valente, 
2003; Silk et al., 2018). For example, a network study of high school 
students may miss students because they were absent the day of the 
survey, or simply because they refused to participate in the study. Even 
automated data (e.g., based on Bluetooth proximity) may suffer from 
missing data problems (Wang et al., 2012). 

Paper 1 and paper 2 of this series explored the effect of missing data 
on network measures across a wide range of networks and missing data 
scenarios. We find that bias can vary dramatically across settings, where 
the level of bias depends crucially on the measure of interest, the 
network being analyzed and the type of missing data (see also Frantz 
et al., 2009; Huisman, 2009; Martin and Niemeyer, 2019). For example, 
the same measure (e.g., Bonacich centrality) calculated on the same 
network can yield very different levels of bias, depending on if the 
missing nodes are central or peripheral actors (Smith et al., 2017). 

In this paper, we focus on the question of imputation: how do 
different imputation methods fare under different research settings—in 
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terms of measures, network features and missing data types.1 In this 
way, we combine the literature on missing data effects (where is missing 
data most problematic?) with the literature on imputation (what kinds 
of strategies can we use to impute network data?). We consider a range 
of imputation methods, from simple imputation to more complex model- 
based approaches (Žnidaršič et al., 2017; Krause et al., 2018a,b, 2020). 
Simple imputation approaches attempt to ‘rebuild’ the network as best 
as possible from the information found in the data itself (i.e., if i nom
inates j and j is missing we might impute a tie from j to i) (Huisman, 
2009). Model-based approaches use sophisticated statistical models to 
probabilistically fill in the missing data (Koskinen et al., 2010; Wang 
et al., 2016). From the perspective of a researcher, it is crucial to know 
which approaches will work for their particular setting. An approach 
that is effective for one measure and/or network type may be ineffective 
for another. The effectiveness of the approach may even depend on the 
type of missing data. 

Our ultimate goal is to offer a set of practical outputs for researchers 
trying to decide what imputation approach to implement. A researcher 
will be able to identify the case closest to their own (in terms of mea
sures, missing data type, and network features) and then use our results 
to look up the optimal imputation choice. A researcher would, of course, 
have to balance the performance of the imputation method (in terms of 
lowering bias) with the difficulty of implementing it. Our results will 
make it easier for a researcher to perform such cost-benefit analyses, 
given the features of their research setting. 

We begin the paper with a short background section on missing 
network data and imputation. We then describe the imputation methods 
of interest, as well as the networks, measures and sampling setup that 
will form the basis of the analysis. Our analysis follows past work in the 
literature. We begin by taking a complete network and simulating 
different missing data scenarios. We then impute the missing data (on 
the now incomplete network), recalculate the measures of interest, and 
compare the resulting value to the true value. We present results for 
three types of network measures: centrality, centralization and topology. 

Theory 

Our paper contributes to a growing literature on non-response 
treatments to missing network data (Wang et al., 2016; Žnidaršič 
et al., 2017; Krause et al., 2018a,b). We focus on a key form of missing 
data, actor non-response. We define a non-respondent as an actor that 
fails to offer any nomination information (i.e., no information on 
out-going ties). We assume that non-respondents are not completely 
missing, however, and can still be nominated by other actors.2 This is a 
common form of missing data, particularly in well-defined, bounded 
settings. For example, in a school, a student may be out sick the day of 
the survey but still be on the roster, so that other students could nomi
nate them. In this way, we have observations of a non-respondent’s 
in-coming ties but not of their out-going ties. 

The two most common approaches for inferring missing ties are 
simple imputation and model-based imputation. We discuss each in 
turn. 

Simple imputation leverages information about the incoming ties to 
non-respondents to help reconstruct the network (Stork and Richards, 
1992; Huisman, 2009). If node k is a non-respondent and is nominated 
by i and j (who are not missing), we begin by including the ties from i→k 
and j→k. Additional heuristics can then be applied to help fill in the 

network. For example, a researcher may assume reciprocal ties going out 
from the non-respondents to those who nominated them, imputing k→i 
and k→j. Assuming reciprocity, however, runs the risk of adding ties that 
do not really exist, while doing no further imputation may fail to add ties 
that do exist. Much of the methodological work on simple imputation 
has asked how well such methods work in practice. For example, 
Huisman (2009) compared an imputation strategy based on the 
observed network’s density to a preferential attachment strategy and a 
unit imputation strategy. He found that simple imputation generated 
stable estimates of reciprocity, mean degree, and inverse geodesic dis
tance for undirected networks with a 40 % non-response rate or less, but 
preformed less well for directed networks. 

Recent work has considered more complicated (non-model based) 
imputation methods; where the rules for adding ties are dependent on 
other properties of the graph, like the reciprocity rate or the indegree of 
a node’s nearest neighbors (Žnidaršič et al., 2017). For example, 
Žnidaršič et al. (2017) explored a range of actor non-response treat
ments, finding that imputing ties based on the incoming ties of ego’s 
k-nearest neighbors significantly reduces non-response bias in valued 
networks, but that the macro-structure of the network (e.g., core pe
riphery networks, networks with cohesive subgroups, and hierarchical 
networks) significantly influences the effectiveness of such strategies 
(see also Žnidaršič et al., 2018). 

Model-based imputation methods are an alternative approach for 
inferring missing data (Robins et al., 2004; Kolaczyk and Csárdi 2014). 
As with simple imputation, model-based methods begin by leveraging 
the information provided by the incoming ties to non-respondents. 
Model-based approaches, however, go further by proposing a para
metric model that derives the likelihood of the observed data as a 
marginalization of the complete-data likelihood over the possible states 
of the missing variable (in our case a given adjacency matrix) (Gile and 
Handcock, 2017). The advantage of this approach is that it allows the 
researcher to incorporate more information about the network’s nodes, 
dyads, and local structure when estimating the likelihood of a given tie, 
as well as information about the survey instrument such as number of 
alters each respondent could nominate (Wang et al., 2016). Similarly, a 
model-based approach makes it possible to impute ties between 
non-respondents, which is difficult with simple imputation approaches. 
Model-based imputation also has the advantage of considering multiple 
plausible states of the network to generate a summary measure that 
accounts for the increased variability of parameter estimates due to 
imputation (Huisman and Krause, 2017). In this way, a researcher is 
better able to take into account the uncertainties in the imputation 
process, consistent with best practices from the literature on multiple 
imputation (Allison, 2002). 

For example, Wang et al., 2016 used an imputation method based on 
exponential random graph models (ERGM); they found, on average that, 
73 % of the missing ties could be effectively imputed, although smaller, 
sparser networks were harder to fit. Krause et al., 2018a,b expanded on 
this approach by employing a Bayesian ERGM (see also Koskinen et al., 
2013) to impute missing ties, finding that Bayesian models are partic
ularly useful when the percentage of missing data approaches 50 % and 
the measure in question is sensitive to misspecification (such as with 
transitivity). The main disadvantage of model-based imputation is that it 
can be difficult to implement (given the need to specify and estimate a 
model). Model-based imputation may also introduce bias by over 
generalizing tendencies observed in information rich parts of the 
network to the entire network. Nevertheless, these methods are often 
warranted, particularly in longitudinal network analysis where missing 
data is likely due to the repeated nature of the sampling, and where 
biases present in the initial network will affect the estimates of all 
subsequent networks (Hipp et al., 2015; Krause et al., 2018a,b). 

Imputation strategies thus have great potential to limit bias due to 
missing data. Nevertheless, the practical problem remains of how to 
choose an imputation approach in a given research setting, especially as 
an imputation method that works well in one setting may not work well 

1 Note that the problem of imputation of missing data is distinct from the 
problem of network inference from independently sampled data, as the kind of 
approaches that are likely to be successful in each case are different (Handcock 
and Gile, 2010; Smith, 2012; McPherson and Smith, 2019).  

2 This information was ignored in Part I and Part II of this study, which 
assumed that non-respondents were completely removed from the network 
when calculating summary statistics. 
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in another (Hipp et al., 2015). Different factors such as the network type, 
the kind of missing data, and the measure of interest are likely to in
fluence the performance of different imputation methods, as different 
conditions magnify (or hide) the relative weaknesses of each approach. 
For example, we might expect that estimates of transitivity for a directed 
core-periphery network are particularly vulnerable to approaches that 
add reciprocated ties, as this runs the risk of inflating the estimated 
number of closed triads. In this case, the researcher should avoid 
reciprocated imputation; but what imputation strategy should be used, 
and are there other cases where reciprocated imputation works well? 

In short, different approaches are likely to work better/worse in 
different settings, and it is crucial for a researcher to understand the 
consequences of different imputation choices. With this is mind, our 
analysis will extend past work by considering different imputation op
tions across a much wider range of network types, measures and missing 
data features than is typically considered. It is only by considering such a 
complex set of conditions that we can begin to offer practical advice to 
researchers, as we can say under what conditions a given imputation 
approach is most appropriate. 

Data 

We examine the efficacy of different imputation methods across 
twelve empirical networks, seven directed networks and five undirected 
networks. These networks vary widely in terms of network features and 
substantive contexts, although all networks are limited to under 1000 
nodes. Medium to small networks are sensitive to missing data and are 
conducive to additional data collection efforts, making them particu
larly appropriate for the study of missing data and imputation methods 
(Gile and Handcock, 2017). All networks are binary. Binary network 
data are still commonly used, and it is important to understand how 
missing network information affects this baseline case. The networks are 
the same as in papers I and II of this study.3 They include: “data on elites 
(corporate interlocks: “Mizruchi Interlock” and “River City Elite”), 
young youth networks (“Gest 6th graders”, “Prosper s220”)4, adolescent 
and young adult networks (“Sorority Friendship”, “High School (p13 & 
p24)”, the Gagnon prison network (MacRae, 1960), science networks 
(the sociological abstracts collaboration graph, the Social Networks 
article co-citation graph, and the biotechnology exchange network) and 
epidemiological networks (Colorado Springs HIV risk network - Morris 
and Rothenberg, 2011)5 ” (quoted from Smith and Moody, 2013). See 
Fig. 1 for plots and summary statistics (Table 1). 

Measures 

Our analysis includes 16 different measures which we broadly divide 
into three classes: centrality, centralization and topology. By looking at a 
wide range of measures, we can better describe the conditions under 
which different imputation approaches offer the best choice. 

Centrality 

Our centrality measures include in-degree, total degree, Bonacich 
power centrality, closeness and betweenness. For the undirected net
works, we only include a measure of degree (as total degree, out-degree, 
and in-degree are the same). Note that Bonacich power centrality is 
calculated on a symmetrized version of the network (for the directed 

networks). We calculate closeness centrality based on the inverse dis
tance matrix, so that disconnected nodes have a value of 0 and directly 
connected nodes have a value of 1. We use the inverse distance matrix so 
that the summation does not include undefined values, a problem when 
pairs of people in the network cannot reach one another. 

Centralization 

Centralization measures the variation in the distribution of the given 
centrality measure, and is a graph-level statistic (whereas centrality 
captures an individual-level characteristic). We include centralization 
scores for each of our centrality measures. Our measure of centralization 
is a simple standard deviation of the individual centrality scores. 

Topology 

We include six topological measures. We include two global mea
sures of connectivity, component size and bicomponent size. We mea
sure component size as the proportion in the largest component. We first 
calculate the number of actors in the largest component, defined as the 
largest set of actors connected by at least one path. We then divide by the 
size of the network, defined as the number of nodes in the network being 
analyzed (i.e., the observed network after any nodes have been removed 
as part of the missing data treatment). A bicomponent is defined as a set 
of actors connected by at least two independent paths (Moody and 
White, 2003). As with component size, we divide the size of the largest 
bicomponent by the size of the network being analyzed, yielding the 
proportion in the largest bicomponent. Our third measure is distance, 
measured as the mean inverse distance between pairs of nodes (meaning 
that higher values actually indicate lower distances). We scale the value 
by the log of network size.6 Our fourth measure is transitivity, measured 
as the relative number of two-step paths that also have a direct path; 
more substantively, transitivity captures the tendency for a “friend of a 
friend to be a friend”. Our fifth measure is the tau statistic, a weighted 
summary statistic based on the triad distribution (Wasserman and Faust, 
1994). The tau statistic captures the local processes that govern tie 
formation (like clustering and hierarchy). The tau statistic is a summa
tion over the specified triads, conditioned on the dyad distribution in the 
network. Here, we use the ranked-cluster (RC) weighting scheme.7 Our 
last topological measure is based on blockmodeling the network (White 
et al., 1976). We begin by partitioning the full network into a set of 
equivalence blocks, where nodes with similar pattern of ties are placed 
together.8 We use the Rand statistic (Rand, 1971) to compare the par
titioning found in the incomplete data to the partitioning observed in the 
full, true network. The unadjusted Rand statistic shows the proportion of 
pairs in one partition (the true partitioning) that are placed together in a 
second partition (the partitioning under missing data). 

Missing data 

Our study is focused on the efficacy of different imputation methods 

3 We thank the following authors for providing data for this study: Mark 
Mizruchi (Interlock network); Scott Gest (6th grade data); Lisa Keister (River 
City Elite); Walter Powell (Biotechnology exchange data).  

4 The Prosper data were made available through the following grants: NSF/ 
HSD: 0624158, W.T. Grant Foundation 8316 &NIDA 1R01DA018225− 01.  

5 The Colorado Spring HIV network was made available through NIH R01 DA 
12831 (PI Morris). 

6 Different imputation strategies can yield different size networks to analyze, 
while component size, bicomponent size and distance are particularly sensitive 
to network size. We thus scale these measures, making it easier to interpret the 
results across imputation strategies.  

7 We do not claim that a ranked cluster weighting scheme will offer the best 
fit for every network; we are only concerned if this summary measure of the 
triad distribution is measured better/worse across imputation strategies.  

8 We utilize the simple CONCOR algorithm to place actors into equivalent 
blocks, setting the depth to 3 for all networks. We have also run analogous tests 
where the depth was allowed to vary across networks. Here, we determine the 
best fitting blockmodel on each network (without missing data), using that to 
set the depth when fitting the blockmodel on the networks with missing data. 
The results are very similar to what we see setting the depth to be constant and 
we only present those results here. 
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under different conditions of missing data. In order to explore different 
imputation approaches, it is first necessary to generate missing data 
from the observed data in a controlled, systematic way. We follow a 
standard protocol when inducing missing data: for each network (and 

level of missing data), we identify a portion of the nodes as non- 
respondents, individuals for whom we have no information on out- 
going edges. We construct the observed (incomplete) network by 
removing the out-going edges from the non-respondents. Once the 

Fig. 1. Networks Used for Sampling Simulations.  
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appropriate edges are removed, we apply different imputation methods 
to the same network, with the same missing data. We repeat this process 
1000 times for each level of missing data: 1 %, 2 %, 5 %, 10 %, 15 %, 20 
%, 25 %, 30 %, 40 %, 50 %, 60 %, 70 %.9 

We also consider different types of missing data, defined by which 
nodes are most likely to be non-respondents: central nodes, peripheral 
nodes, or nodes selected at random. Past work has shown that missing 
more central nodes generally yields larger bias (at least when the 
researcher takes no action to impute the missing cases) (Smith et al., 
2017). Research contexts vary with respect to who is most likely to be a 
non-respondent. For example, central actors are less likely to provide 
nomination data when studying organizations (e.g., public officials in an 
elite network), where central actors are more likely to have scheduling 
conflicts and may be less willing to cooperate. Peripheral actors are 
more likely to be non-respondents in settings like schools, where actors 
who are not socially embedded in the network are more likely to be 
disengaged and thus less likely to take the survey. Network measures are 
typically robust to missing peripheral members of the network, but 
imputation procedures may struggle in such cases. We have very little 
information about nodes on the periphery (as few people nominate 
them), making it harder to impute where ties should be added for those 
actors. It is unclear how different imputation procedures will fare when 
periphery nodes are non-respondents (compared to more central nodes). 

Formally, our missing data conditions are set based on the correla
tion between centrality and the probability of being a non-respondent. 
We have five correlation values: strong negative correlation (− .75), 

weak negative correlation (− .25), missing at random (0), weak positive 
correlation (.25) and strong positive correlation (.75). Cases with a 
negative correlation between centrality and missingness correspond to 
situations where those on the periphery are more likely to be non- 
respondents. A zero correlation corresponds to random selection of 
non-respondents, while a positive correlation means that more central 
actors are more likely to be non-respondents. We consider two defini
tions of central actors, one based on closeness and one based on in- 
degree. There are thus 9 different missing data types (− .75 closeness, 
− .75 in-degree, − .25 closeness, − .25 in-degree, 0, .25 closeness, .25 in- 
degree, 75 closeness, and .75 in-degree). We will not distinguish be
tween the closeness and in-degree results here as they offer very similar 
findings, so we simply aggregate them in the final figures and tables. 

Imputation methods 

We consider the effectiveness of six different approaches for dealing 
with missing data. In each case, we first construct a network with 
missing data, where a subset of nodes is treated as non-respondents, with 
no out-going edge information. We then take the incomplete network 
and impute the missing edges using different imputation approaches. 
Fig. 2 presents the different imputation options in a simple network with 
5 nodes. On the left-hand panel, we have the complete network with 
non-respondents and edges highlighted in red. Here, we see that nodes E 
and F are missing. All edges going from E or F to other actors (like E→D) 
will not be observed, including any edges between the non-respondents 
(see Handcock and Gile, 2010). A researcher will, however, typically 
have information on edges going to non-respondents (for example 
D→E), and we assume that this is the case for our analysis. 

Given these conditions, we break out the imputation methods into 
three large classes: listwise deletion, simple imputation and model- 
based. The simple imputation methods include asymmetric, symmetric 

Table 1 
Sample network descriptive statistics.   

Inter- 
lock 

Prison Sorority 6th Grade Co- 
author 

Prosper Co- 
citation 

Elite HS 13 Bio-tech HS24 HIV Risk 

Directed? No Yes Yes Yes No Yes No Yes Yes No Yes No 
Centrality 
In – Degree 3.02 

(1.93) 
2.72 
(2.02) 

2.89 
(1.75) 

8.86 
(5.26) 

6.16 
(5.98) 

3.83 
(2.69) 

9.32 
(10.62) 

2.39 
(7.59) 

6.06 
(4.42) 

3.85 
(4.99) 

5.71 
(3.96) 

6.05 
(8.12) 

Out – Degree 3.02 
(1.93) 

2.72 
(1.48) 

2.89 
(1.85) 

8.86 
(4.67) 

6.16 
(5.98) 

3.83 
(2.36) 

9.32 
(10.62) 

2.39 
(1.63) 

6.06 
(2.90) 

3.85 
(4.99) 

5.71 
(2.99) 

6.05 
(8.12) 

Symmetric 
Degree 

3.02 
(1.93) 

5.43 
(2.73) 

5.78 
(2.88) 

17.7 
(7.73) 

6.16 
(5.98) 

7.65 
(3.85) 

9.32 
(10.62) 

4.78 
(7.83) 

12.1 
(6.04) 

3.85 
(4.99) 

11.43 
(5.84) 

6.05 
(8.12) 

Closeness 0.36 
(0.08) 

0.18 
(0.08) 

0.15 
(0.09) 

0.35 
(0.12) 

0.32 
(0.06) 

0.18 
(0.09) 

0.38 
(0.09) 

0.03 
(0.02) 

0.22 
(0.05) 

0.26 
(0.04) 

0.2 
(0.06) 

0.25 
(0.04) 

Betweenness 0.06 
(0.07) 

0.03 
(0.05) 

0.04 
(0.05) 

0.01 
(0.02) 

0.02 
(0.06) 

0.02 
(0.03) 

0.01 
(0.02) 

0 
(0) 

0.01 
(0.01) 

0.01 
(0.02) 

0.01 
(0.01) 

0 
(0.02) 

Bonacich Power 0.82 
(0.58) 

0.86 
(0.52) 

0.86 
(0.51) 

0.9 
(0.43) 

0.58 
(0.82) 

0.82 
(0.57) 

0.63 
(0.78) 

0.64 
(0.77) 

0.83 
(0.55) 

0.6 
(0.8) 

0.83 
(0.56) 

0.57 
(0.82)  

Centralization 
In – Degree 0.10 0.08 0.06 0.14 0.19 0.08 0.26 0.29 0.04 0.07 0.03 0.09 
Out – Degree 0.10 0.08 0.06 0.15 0.19 0.02 0.26 0.03 0.01 0.07 0.01 0.09 
Symmetric 

Degree 
0.10 0.06 0.05 0.08 0.19 0.05 0.26 0.15 0.03 0.07 0.02 0.09 

Closeness 0.27 0.12 0.17 0.16 0.35 0.11 0.48 0.06 0.08 0.36 0.08 0.28 
Betweenness 0.20 0.17 0.16 0.06 0.37 0.16 0.12 0.01 0.05 0.24 0.03 0.17 
Bonacich Power 0.20 0.18 0.14 0.13 0.26 0.16 0.22 0.41 0.13 0.29 0.12 0.23  

Topology 
Component Size 43 67 72 147 148 155 162 250 556 571 619 908 
Bicomponent 

Size 
27 62 59 145 75 147 118 195 545 336 605 517 

Distance 0.36 0.18 0.15 0.35 0.32 0.18 0.38 0.03 0.22 0.26 0.2 0.25 
Transitivity 0.11 0.28 0.36 0.29 0.63 0.29 0.44 0.17 0.22 0.02 0.22 0.32 
TauRC − 0.91 2.35 4.65 17.75 17.65 7.22 − 27.36 163.6 23.66 − 91.61 22.91 − 104.22 

Standard deviations are in parentheses. 

9 Note that for the small networks it is likely that some of the 1000 samples 
will be duplicates, with the same pattern of missing data. This means that the 
variability in the smaller networks might be biased downwards slightly, espe
cially at lower sampling rates. Our analysis here focuses on the expected level of 
bias, rather than the variability, and such concerns are thus minimized. 

J.A. Smith et al.                                                                                                                                                                                                                                 



Social Networks 68 (2022) 148–178

153

and probabilistic treatments; the model-based methods include simple 
and complex exponential random graph models. Thus, we consider six 
approaches: listwise deletion, asymmetric, symmetric, probabilistic, 
model-based simple and model-based complex. 

Listwise deletion 

The simplest option is to remove all nodes with incomplete infor
mation from the network. This is pictured in the top right-hand plot in 
Fig. 2. Here, non-respondents are not present in the network, while all 
incoming ties to non-respondents are not considered. This amounts to 
listwise deletion, where only those cases with full information, or those 

present at the time of data collection, are included in the network used 
for analysis. In this case, E and F and all ties going to and from E and F 
are missing. Note that this is the typical strategy for most network 
studies (Smith et al., 2017; Silk et al., 2015). Also, note that listwise 
deletion will yield a network that is smaller than the true network. 

Simple imputation 

The second class of imputation methods that we consider is simple 
imputation. Here, the researcher uses the tie information from the 
observed nodes to the non-respondents to help ‘fill in’, or reconstruct, 
the network (Huisman, 2009). The basic idea is that when an actor who 

Fig. 2. Demonstrating Imputation Strategies on Toy Network.  
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is present in the survey nominates someone who is absent; that this is 
useful information that should not be thrown away, as is done in listwise 
deletion. For example, in Fig. 2, nodes A and D nominate E, who has 
missing data on all out-going ties. A simple imputation approach would 
begin by putting E back into the network with edges from A→E and 
D→E. This is demonstrated in the simple imputation plots in Panel B. 
Note that node F, who is also a non-respondent, is not put back into the 
network as none of the observed nodes nominated them. Once the 
missing nodes are put back, the researcher must decide on how to 
impute the missing edges from the non-respondents to the nodes who 
nominated them. No other ties are imputed. This means that all potential 
ties between non-respondents who were put back into the network are 
assumed not to exist, taking a value of 0 in the matrix.10 In our little 
example, we need to impute whether E sends ties back to A and D. Note 
that for undirected networks this choice is simple as all ties are recip
rocated. The directed case is more difficult and we consider three 
different options. 

Asymmetric imputation 
First, a researcher could employ an asymmetric approach, where no 

ties from non-respondents are added to the nodes who nominated them 
(past work has also labeled this null tie imputation; Žnidaršič et al., 
2017). In the second plot in Panel B, we see that there are ties from D to E 
and A to E but no ties from E, the non-respondent, back to D or A. This 
strategy privileges the observed data by removing from consideration 
ties from the non-respondents to the respondents who nominated them. 
The downside of this approach is that it assumes that an asymmetry 
exists between all non-respondents and respondents, an assumption that 
is unlikely to be true in many cases. It could, however, be useful for 
certain measures, especially those where adding an incorrect tie badly 
biases the results (like transitivity). 

Symmetric imputation 
The second option is symmetric imputation (also referred to as 

reconstruction in past work: Huisman, 2009; Žnidaršič et al., 2017). 
Here, a researcher always assumes that an edge from a non-respondent 
to a respondent is reciprocated. In our example, the edges from A and D 
to E (non-respondent) is returned, so we impute edges E→A and E→D. In 
this case, a researcher would get the E→D edge correct but would 
incorrectly add the E→A edge. A symmetric option is likely to work well 
when the reciprocity rate is high. It is also likely to work well in cases 
where the measure of interest does not rely heavily on the direction of 
the ties or in cases where missing edges are more consequential than 
adding incorrect edges. 

Probabilistic imputation 
The last simple imputation option is probabilistic imputation. Here, 

edges from non-respondents to the respondents who nominated them 
are imputed probabilistically, based on the rate of reciprocity in the 
observed network. A researcher first calculates the reciprocity rate as the 
proportion of ties that exist such that if i nominates j then j also nomi
nates i. For this initial calculation, we only include dyads where both i 
and j are observed nodes (i.e., both respondents). For our example 
network in Fig. 2, the reciprocity rate in the observed, incomplete 

network is .25. A researcher would then take this rate and use it to 
impute the ties from non-respondents to respondents. Here, our 
researcher would basically flip a weighted coin, adding an edge with the 
probability set to .25. This would be done, in this case, for E→A and 
E→D. This process can itself be repeated a number of times (as there will 
be stochastic variation). Each iteration will yield a slightly different 
network, which can then be used in subsequent analysis. One could then 
summarize the results over the imputed networks. In our analysis, we 
repeat the imputation process over 100 networks, using the mean value 
(for the statistic of interest) over the 100 networks as the summary 
measure of interest. A probabilistic option falls somewhere between the 
asymmetric and symmetric options, in terms of adding or not adding 
edges. The probabilistic option is likely to be a fairly safe choice, 
although it may not always be the best option in every setting. 

Overall, the simple imputation methods have the advantage of being 
very easy to implement while taking advantage of data from the survey 
itself. The disadvantage is that these methods miss any edge from non- 
respondents to other non-respondents (such as E ↔ F). It also systemat
ically misses any asymmetric edge from a non-respondent to an observed 
node (such as E→C). Couple these built-in biases with the possibility of 
adding edges that are not really there, and it is unclear how far we can 
push simple imputation options, particularly given difficult combina
tions of measures and missing data types. 

Model-based 

The third class of imputation methods is model-based approaches. 
Here, a researcher takes the observed network, and estimates a statis
tical network model predicting the presence/absence of a tie between all 
ij pairs. The researcher then takes the underlying model and uses the 
model to predict, probabilistically, the ties that exist for nodes that are 
missing. For example, we know that networks tend to be homophilous (i. 
e., two actors who are similar are more likely to form a tie). A researcher 
can estimate the strength of this tendency (e.g., in terms of race or 
gender) and then use that information to help predict if a missing edge 
exists. We assume that the researcher has basic information on all actors, 
even the missing cases. Thus, an actor may have missing network data 
but basic demographic (or other) information about them may still be 
available. This may be acquired through administrative records, third 
hand reports or even from the ‘missing’ respondent, as they may begin 
the survey but not finish it. 

A model-based imputation approach is depicted at the bottom of 
Panel B in Fig. 2. We assume that a researcher employing a model-based 
approach will begin by first performing a simple asymmetric imputation 
of the data. For example, in Fig. 2, Actor E is put back into the network 
and edges from A→E and D→E are added. The researcher will then take 
the remaining non-respondents, those who received no nominations 
from the observed nodes and put them back into the network. In our 
example actor F would be added to the network. The next step is to 
estimate a model predicting an edge between actors, only including the 
observed edges in the model. 

We use exponential random graph models (ERGM) to impute the 
missing data. There are a number of possible options, but ERGM is a 
commonly used model and is quite flexible, making it an ideal choice. 
ERGMs are statistical models used to test hypotheses about network 
structure and formation (Hunter et al., 2008; Wasserman and Pattison, 
1996). Formally, we define a network, Yij, over the set of nodes N, where 
Y is equal to 1 if a tie exists and 0 otherwise. Define y as the observed 
network. Y is then a random graph on N, where each possible tie, ij, is a 
random variable. ERGMs estimate the Pr(Y=y), where the “independent 
variables” are counts of local structural features in the network (Good
reau et al., 2009; Robins et al., 2007), such as number of ties and 
homophily. The model can be written as: 

P(Y = y) =
exp(θT g(y) )

κ(θ)
(1) 

10 This approach has the advantage of simplifying the analysis considerably, 
but also has the disadvantage of making pretty stringent, perhaps unrealistic, 
assumptions about the ties between missing actors. A researcher could alter
natively opt for a more complicated approach. For example, one could assume 
that a ‘friend of a friend is a friend’, such that if i nominates j and i nominates k, 
then one would impute that j nominates k (with some probability), assuming 
that both j and k are missing. As a researcher adds increasingly more compli
cated imputation rules, however, the approach veers increasingly towards what 
a model-based approach is already doing and that is likely the better option; as 
one can include many terms, or rules, together in a single, systematic model. 
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where g(y) is a vector of network statistics, θ is vector of parameters, and 
κ(θ) is a normalizing constant. 

In this case, the model is estimated based on the incomplete network, 
where edges from non-respondents to other nodes are unobserved. Note 
that all missing edges are treated as NAs when estimating the model (i.e., 
missing instead of 0 s), and are thus not included in the estimation of the 
coefficients. The estimated coefficients may be biased, depending on the 
terms included and the type of missing data. It is, nonetheless, our best 
guess (given the data at hand) at what the underlying local tendencies are 
for the network. We can then take that estimated model and predict the 
missing edges. This amounts to simulating networks from the underlying 
model. Note that this includes missing edges from non-respondents to re
spondents (E→A) as well as edges between non-respondents (E and F). All 
observed edges (including edges from respondents to non-respondents) are 
held fixed and not allowed to vary as different networks are generated from 
the estimated model. In Fig. 2, we have plotted an example simulated 
network, with the missing edges colored green. This represents one 
possible imputation, or draw form the underlying model; another gener
ated network would look slightly different (with different ‘green’ edges 
added to the network). A researcher could repeat this process a number of 
times, calculating the statistics of interest for each simulated network (with 
observed edges held fixed), summarizing over all of the calculated values. 

The main benefit of a model-based approach is that we are able to 
recover nodes that are non-respondents and received no nominations from 
respondents (actor F in Fig. 2). We are also able to apply a better model to 
recover the edges between respondents and non-respondents (i.e., going 
beyond just reciprocity). Model-based approaches are thus likely to fare 
well when looking at measures that capture structural features at an 
aggregate level, like component size. The main drawback to a model- 
based approach is that the imputed network will deviate further from 
the raw data than with any of the simple imputation approaches. Mea
sures that are sensitive to getting the specific edges correct, such as cen
trality measures, may be more difficult for a model-based approach. 

We consider two versions of model-based imputation. One we denote as 
‘simple’ and the other we denote as ‘complex’. Each has the same basic form 
but the simple model includes fewer terms, and is thus easier to estimate. 

Simple model-based 
The simple model-based approach includes three basic terms. First, we 

include a term for the base rate of tie formation in the network (edges). 
Second, we include terms for homophily on two attributes.11 We assume 
these attributes are known for both non-respondents and respondents. 
Third, for directed networks, we include a term capturing reciprocity, the 
count of the number of dyads where ij exists and ji exists. We then take the 
estimated model12, based on number of edges, reciprocity, homophily and 
simulate a set of networks from the underlying model. Only the missing 
edges are allowed to vary run to run, as the observed edges are held fixed.13 

Within these simulations, we put constraints on the outdegree of each 
node, constraining the simulations so that each node has the same out- 
degree as the observed values (these values are imputed for the non-re
spondents).14 In this way, we ensure that out-degree in the simulated 
networks is consistent with the observed data, matching the respondents 
and matching our best guess for non-respondents. In the end, we calculate 
the statistics of interest for each generated network (we generate 100 
networks each time)15 and take the mean over all networks as the measure 
of interest. All models are estimated in R using the ergm package (Hand
cock et al., 2019). 

Complex model-based 
The complex model-based approach is exactly the same as the simple 

approach expect that it includes a term to capture triadic processes. The 
simple model only includes terms at the node or dyadic level. For the 
complex model, we take the same model and add a GWESP (geometri
cally weighted edgewise shared partner) term to the model. GWESP is a 
weighted summation of the counts of how many shared partners each ij 
pair have (restricted to cases where i and j have a tie), capturing the 
tendency for groups (or local clusters) to emerge in the network. Adding 
GWESP allows us to capture tendencies towards transitivity and higher 
order closure. It also makes the model harder (and longer) to estimate. 

In short, the model-based approach is more complicated than with 
simple imputation approaches. A researcher must make a number of 
difficult modeling choices (terms, constraints, etc.), and must then 
actually estimate and simulate from the specified model. Thus, one of 
the main questions of this study is about the relative payoffs and 
tradeoffs between simple imputation and model-based approaches. 
Simple imputation approaches are much easier to implement. But will 
they yield valid results? And if the model-based approach yields better 
estimates, is the improvement worth the added effort that a model-based 
approach requires? Thus, we want to identify the conditions (measure of 
interest, type of missing data, etc.) where one can ‘get away with’ the 
simpler network options, compared to the conditions where a more 
complicated model-based approach is necessary. 

It is worth noting that our model-based imputation approaches 
employ particular forms, with particular terms and constraints included. 
It is possible that alternative specifications (i.e., using a Bayesian 
approach) would offer better results than that presented here (Krause 
et al., 2018a,b). Our results are, however, still instructive, as they 
represent the kinds of tradeoffs and models that a researcher in the field 
is likely to consider. 

Presentation of results 

Our results offer a presentation challenge. We have 12 networks, 5 
missing data types, 12 missing data levels, 16 measures, and 6 imputa
tion approaches. For each of these combinations, there are 1000 itera
tions (with different actors treated as non-respondents each time). The 
combinatorics make it difficult to present the results in a raw form. Our 
strategy is to calculate summary statistics across these iterations and 
then to use different plots and regression models as a means of sum
marizing the results. 

11 The attributes themselves are based on constructed variables. The attributes 
are constructed to maintain a desired level of homophily (low and high) for that 
attribute. This was done as there is no common attribute across all networks to 
include in the analysis. In general, the attributes mimic the kinds of data a 
researcher is likely to have at their disposable when estimating the initial 
model.  
12 The initial ERGM is estimated while constraining the max degree of each 

node to be below the observed outdegree (for the missing nodes this value is 
imputed).  
13 We hold the observed edges fixed as we assume those values are known and 

thus do not need to be imputed. A more general view of a model-based 
approach could allow all ties to vary probabilistically based on the estimated 
model. A researcher would then calculate the network statistics of interest over 
a large set of possible networks, using the estimated features in the analysis of 
interest. The advantage of this approach is that captures the uncertainty in the 
underlying network. The disadvantage is that it requires the researcher to have 
a very good model of the network, otherwise the estimated features will not 
reflect the actual population. 

14 For the non-missing nodes, we constrain out-degree to match the observed 
network perfectly (as we know all edges from i to other nodes). For missing 
nodes, we first predict what each missing node’s outdegree would have been, 
had they filled out the survey. We first estimate a model predicting outdegree 
based on indegree, restricted to the non-missing cases. Using this regression 
model as a basis for prediction, we then predict the outdegree of each missing 
case based on their indegree (the nominations from non-missing nodes to the 
missing node), adjusting for the fact that the indegree is itself biased (missing 
any nomination from other missing nodes).  
15 Note that this is different than the sample of 1000 networks (for each level 

of missing data) that the entire analysis is run over. 

J.A. Smith et al.                                                                                                                                                                                                                                 



Social Networks 68 (2022) 148–178

156

For each scenario (network, measure, and missing data type), we 
begin by comparing the true values to that observed in the networks 
with missing data—where a subset of nodes are treated as non- 
respondents and different imputation strategies are used to deal with 
the missing data. We first calculate a bias score, capturing how far the 
observed value is from the true value. The observed value is the measure 
calculated on the imputed networks (i.e., the network we observe the 
imputation is performed). For the centrality scores, we calculate the 
centrality of the nodes in the complete network (no missing data), 
calculate it again using the networks with imputed data, and correlate 
these two vectors. The higher the correlation, the greater is the effec
tiveness of that imputation method for that missing data scenario. To 
make this a bias score, we calculate 1 minus the correlation between the 
true and observed centrality scores. 

biascentrality = 1 − cor(True, Observed) (2) 

When we correlate the two vectors, we only include respondents, 
thus excluding non-respondents that we have brought back into the 
network through the imputation process. This makes the calculations 
consistent across different imputation strategies. It is also the likely 
choice that researchers would make in their own analysis (as the bias 
will be much higher for non-respondents). We have also performed an 
analysis where we keep all actors in the calculation (respondents and 
non-respondents). The imputation strategies fare much worse in this 
case, suggesting some of the costs of including the missing cases. The 
results for this additional analysis are presented in Table A13 in the 
Appendix.16 

We use a standardized bias score for our graph level measures of 
centralization and topology. We define bias as: 

biascentralization; topology =

⃒
⃒
⃒
⃒
True − Observed

True

⃒
⃒
⃒
⃒ (3) 

A bias score captures how much the observed score (in the imputed 
networks) differs from the true value. The bias scores are relative to the 
size of the true value, making it easier to compare across networks and 
statistics. The bias scores can be negative (over-estimates) or positive 
(under-estimates). For simplicity, we take the absolute value of the bias 
scores, making them comparable in all analyses. 

We begin each set of results with a bias ratio table. The bias ratio 
tables show the total improvement in the measure for each imputation 
type relative to listwise deletion. We first calculate the total bias that 
results from doing listwise deletion. We calculate the bias score (for the 
given measure) under listwise deletion, summing up the bias at each 
level of missing data to arrive at a total bias score. We then repeat this 
process for the same network and missing data, but now we assume that 
the data are imputed under different approaches. We take the total bias 
under each imputation approach and divide that by the total bias under 
listwise deletion, multiplying it by a 100 to arrive at a percent decrease 
in bias (or improvement in fit). Larger values are better, with negative 
values suggesting that the imputation method actually performed worse 
than listwise deletion. 

For our second set of analyses, we take the bias scores and regress 
them on the level of missing data. We thus predict bias for each scenario 
as a function of percent missing nodes: bias = β0 + β1(

%missing
10 ). The 

estimated slope coefficient, β1, captures the expected increase in bias for 
a 10 % increase in number of non-respondents. The slope coefficients (β 
1) are used as a summary measure, showing how quickly bias increases 

as the level of missing data goes up. 
We then use a series of regression models to summarize the results, 

providing an overall picture of bias across all networks, measures, 
missing data types and imputation approaches. We run separate Hier
archical Linear Models (HLM) for each measure, using the bias slopes 
(β1) as the dependent variable (bias slopes are nested within networks). 
Larger coefficients mean that bias is predicted to be higher, as bias in
creases at a faster rate as missing data increases. Our main independent 
variable is the type of imputation, represented by a set of dummy var
iables: Asymmetric, Probabilistic, Symmetric, Model-based simple and 
Model-based complex. Listwise deletion serves as the reference cate
gory. We also include a variable for missing data type, ranging from -.75 
(low degree nodes are more likely to be non-respondents) through .75 
(high degree nodes are more likely to be non-respondents). The 
remaining variables capture network properties that may be correlated 
with higher levels of bias. We include predictors for network size (log
ged) and concentration (measured as the standard deviation of in- 
degree). We run separate models for the directed and undirected net
works. We also include interactions between imputation type and the 
missing data type, as well as interactions between imputation type and 
network features. In this way, we can see the relative effectiveness of 
different imputation strategies under a variety of conditions. See 
Tables A2, A4, A6, A8, A10, and A12 in the Appendix. 

We use the estimated regression models to produce a series of sum
mary plots. We present two basic figures for each measure type (cen
trality, centralization, topology). The first figure focuses on the 
effectiveness of different imputation approaches across different mea
sures and types of missing data. For each subplot, the x-axis is the level 
of missing data and the y-axis is the expected bias, under the scenario of 
interest. The results are based on a network with moderate features, one 
that is medium sized and moderately/weakly centralized. We have re
sults for each measure and three different types of missing data (missing 
low centrality nodes, random missing data and missing high centrality 
nodes). Within each subplot there are 6 lines, one for each of the 
imputation approaches. The lines represent the predicted bias based on 
the regression model, using the regression coefficients for that model 
and setting the network features to the scenario of interest. Higher 
values in the plot indicate more bias and thus worse performing impu
tations. The second set of figures focuses on the effectiveness of impu
tation approaches across networks with different features. Here, we 
systemically vary the size and centralization of the networks, but hold 
the type of missing data fixed (only looking at random missing data). We 
include 4 combinations of size and centralization: large centralized, 
small centralized, large decentralized, small decentralized. The key 
question is how well different imputation methods fare for different 
measures under different conditions. 

Results 

Centrality 

We begin our discussion of centrality by examining the undirected 
networks as they represent the simpler case. Table 2 captures a quali
tative summary of the ‘best’ imputation approach under different con
ditions, while the main numerical results are presented in Fig. 3 and 
Tables A1 and A2. Table A1 is our bias ratio table, where each value in 
the table reports the decrease in total bias (over all levels of missing data 
and all runs) for that imputation approach compared to listwise dele
tion. Fig. 3 presents example predicted bias plots for one network for 3 
different missing data types. The results are based on the HLM results 
presented in Table A2, predicting bias as a function of the missing data 
type and network characteristics. 

The results for degree are very straightforward. We see that all 
imputation methods lower the bias to 0, or perfectly impute the missing 
data. The imputation methods add ties between i and j in cases where i 
nominates j and j is a non-respondent. There is no error possible here as 

16 Note that the main analysis does not include results for out-degree, but the 
additional results do. This is the case because out-degree will be recorded 
perfectly for those nodes that are respondents (as we know who they nomi
nated), so no bias is possible there and the imputation results are not very 
informative. When we include non-respondents in the calculation, bias is once 
again possible for out-degree and the imputation results are worth reporting. 
See Table A13 for results that include out-degree. 
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the return tie (j to i) is assumed to be reciprocated, as the network is 
undirected. Note that this perfect correlation only holds if we restrict our 
attention to the degree of the respondents in the network (as there could 
be still unobserved edges between the missing cases that leads to bias).17 

Bonacich, closeness and betweenness centrality offer a slightly more 

complicated story. In general, we find that the model-based imputation 
methods offer the best option, although the differences between the 
model-based and symmetric approaches are relatively small, especially 
for Bonacich centrality. For example, looking at closeness for the Biotech 
network, total bias decreases by 83 % using the model-based approaches 
and 78 % using the symmetric option, assuming we are missing high 
centrality nodes. The differences are even smaller when missing low 
centrality nodes, where the symmetric option is even sometimes 
preferred. More generally, we see that imputing (using any option) 
drastically reduces the bias compared with listwise deletion. Looking at 
betweenness with 40 % of the network missing and missing high degree 
nodes (assuming the network is medium-sized and decentralized), we 
would expect a bias of .21 under listwise deletion, .07 under the sym
metric approach, and .052 under the simple and complex model-based 
approaches. The symmetric approach is particularly attractive here 
because it is so simple to implement, but still yields results that are close 

Fig. 3. Predicted Bias for Centrality Measures for a Large, Undirected, Moderately Centralized Network.  

Table 2 
Summary of Best Imputation Options for Centrality Measures.  

Measure Directed or Undirected Non-response Type Size and Centralization Best Imputation Option 

Degree Undirected Any Any Any strategy except Listwise Deletion 
Bon Power 

Betweenness 
Closeness 

Undirected Central Nodes Any Model-Baseda 

Bon Power 
Betweenness 
Closeness 

Undirected Less Central Nodes Any Any strategy except Listwise Deletion 

Indegree Directed Central Nodes Any Probabilistic 
Indegree Directed Less Central Nodes Any Probabilistic, Listwise Deletion or Asymmetric 
Total Degree Directed Any Any Asymmetric or Probabilistic 
Bon Power Directed Any Any Probabilistic, Symmetric or Asymmetric 
Closeness Directed Any Any Model-Based 
Betweenness Directed Any Any Probabilistic 

Notes. 
a: The model-based approach is assumed to correspond to complex or simple unless explicitly noted. 

17 We present additional results in the appendix. Table A13 shows the 
maximum level of missing data that a researcher could have and still maintain 
at least a .9 correlation with the true centrality values. Higher values suggest 
the strategy is more robust to missing data. We present these results for the case 
where non-respondents are not kept in the correlation calculation (as in the 
main analysis), and for the case where the non-respondents are kept in the 
correlation calculation. Overall, keeping the non-respondents in the calculation 
increases bias. This is particularly true for out-degree, which is perfectly 
recorded amongst respondents, while trying to impute the missing cases (where 
there is no information on out-going ties) can lead to considerable bias. 
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to the more onerous model-based approaches. See Fig. 3 for the full 
results. 

We now turn to the directed networks, where the results are more 
variable across measures and networks. The main results are presented 
in Tables A3 and A4 and Fig. 4. We will also refer to Table 2, capturing 
the best option for each scenario (in terms of measure, missing data type, 
etc.). Looking at indegree, we see that the probabilistic imputation 
method fares the best, although the real story is how badly imputation 
methods perform in general. The probabilistic approach is only 
marginally better than listwise deletion, while the symmetric and 
model-based approaches are actually worse than listwise deletion. 

Looking at Table A3, the bias ratio table, we see negative numbers for 
the symmetric and model-based approaches, suggesting higher bias than 
listwise deletion. Indegree is difficult to impute because it is based on the 
specific number of nominations sent to each actor. An imputation 
method will add ties that are generally consistent with the existing data, 
but this does not mean that it will add the specific ties sent to a specific 
actor. 

The imputation methods are more effective for total degree and 
Bonacich power centrality. With total degree, for example, the proba
bilistic and asymmetric approaches are almost always better than list
wise deletion, and typically outperform the model-based and symmetric 

Fig. 5. Predicted Bias for Centrality Measures for Four Network Types.  

Fig. 4. Predicted Bias for Centrality Measures for a Large, Directed, Moderately Centralized Network.  
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approaches. For example, in our large, moderately centralized network, 
the expected bias under 30 % missing data (with high degree nodes) is 
.049, .052, .062, .073, and .15 for the asymmetric, probabilistic, sym
metric, model-based (simple) and listwise deletion approaches respec
tively. Fig. 4 also makes clear that the differences between listwise 
deletion and the imputation methods are highest when central nodes are 
more likely to be non-respondents. The returns to imputation are larger 
when central nodes are non-respondents because the bias under listwise 
deletion can be quite high (see Smith et al., 2017), while the imputation 
methods see only a slight increase in bias when missing central actors. 
The imputation methods tend to fare well when central nodes are 
non-respondents because there is so much information about central 
nodes (i.e. many people nominate them), making it easier to impute ties 
for those actors. 

The exceptional case, as it often is, is the RC elite network, where 
imputation using the model-based or symmetric approaches are worse 
than listwise deletion, especially when missing less central nodes (the 
probabilistic and asymmetric approaches are similar to listwise dele
tion). The RC elite network is highly centralized, meaning if low cen
trality nodes are non-respondents, and we add reciprocated ties from the 
highly centralized node back to the peripheral nodes, and they do not 
exist, then we may greatly deviate from the true centralities in the 
network. There is, in that sense, the danger of over fitting/imputing 
what is essentially a hub and spoke structure. 

Closeness offers a different story than the degree-based measures. All 
imputation methods are still better than listwise deletion, but here the 
model-based approaches fare considerably better. The model-based 
approaches are generally the best option, except for a few cases in the 
smaller networks (most noticeably the Sorority network where the 
probabilistic approach is best). For example, in the Proper network, the 
improvement using the model-based approach (simple or complex) is 
around 79 % compared to 61 % with probabilistic imputation or 67 % 
with symmetric imputation (missing high degree nodes). 

Fig. 5 offers a final set of comparisons, focusing on the performance 
of different imputation approaches in networks with different features. 
The figure presents the predicted bias for four different example net
works, with varying combinations of size and centralization. The results 
are presented for directed networks with random non-response (also the 
case for Figs. 8 and 11) We focus on the results for betweenness cen
trality as the effect of centralization is so stark here. Overall, the prob
abilistic approach is consistently the best for betweenness, but otherwise 

the results are quite contingent. When the network is decentralized, the 
model-based and symmetric approaches perform adequately, offering 
better results than listwise deletion (although not as good as the prob
abilistic option). When the network is centralized, however, the model- 
based approach is the worst option, often little better than listwise 
deletion. We get similar results for closeness, where the model-based 
approaches are particularly preferred in large, decentralized networks 
(although the differences are less extreme). The symmetric and model- 
based approaches fare less well in centralized networks because both 
approaches tend to add more ties to the reconstructed network, poten
tially underestimating the centrality of the key actors while over
estimating the centrality of the peripheral actors. 

Overall, for the directed networks, simple imputation strategies are 
preferred when estimating degree-based centrality measures, with 
probabilistic, asymmetric or sometimes even listwise deletion faring 
quite well. These imputation methods are less biased when estimating 
degree-based measures because they stick close to the actual data, and 
thus are better at recovering the specific number of alters. In contrast, 
with the path-based measures (particularly closeness), more compli
cated model-based approaches perform well, along with the probabi
listic approach. For these path-based measures, the advantage of 
recovering more of the paths tends to outweigh the risk of (potentially) 
inflating the degree of any one node, as the model-based approaches are 
able to recover the pattern of ties. The probabilistic approach is unique 
in that it performs well in almost every case, a robust option when 
measuring centrality scores on directed networks. 

Centralization 

The centralization results are presented in Figs. 6 and 7, as well as 
Tables A5–A8. Table 3 offers a broad qualitative summary of the find
ings. We again start with a brief discussion of the undirected networks. 
Looking at degree centralization, all methods fare equally well in 
reducing bias and all outperform listwise deletion by a considerable 
margin (although some bias remains even after imputation). The returns 
to imputation are especially large when central nodes are more likely to 
be missing. For example, for an undirected, large, moderately central
ized network with 40 % missing data, the predicted bias is .48 under 
listwise deletion and .13 after applying any of the imputation methods 
(assuming central nodes are more likely to be missing). 

The results are quite different for Bonacich Power centralization, as 

Table 3 
Summary of Best Imputation Options for Centralization Measures.  

Measure Directed or Undirected Non-response Type Size and Centralization Best Imputation Option 

Degree Std Undirected Any Any Any strategy except Listwise Deletion 
Bon Power Std Undirected Any Small Model-Baseda 

Bon Power Std Undirected Any Medium/Large Listwise Deletion 
Closeness Std Undirected Any Any Model-Based 
Betweenness Std Undirected Any Any Any strategy except Listwise Deletion 
Indegree Std Directed Any Any Model-Based (complex) 
Total Degree Std Directed Any Any Model-Based (complex) or Symmetric 
Bon Power Std Directed Any Any Model-Based 
Closeness Std Directed Central Nodes Decentralized Model-Based (complex) or Symmetric 
Closeness Std Directed Less Central Nodes Decentralized Symmetric or Probabilistic 
Closeness Std Directed Any Centralized Probabilistic or Listwise Deletion 
Betweenness Std Directed Any Decentralized Model-Based or Symmetric 
Betweenness Std Directed Any Centralized Model-Based or Probabilistic 

Notes. 
a: The model-based approach is assumed to correspond to complex or simple unless explicitly noted. 
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Fig. 7. Predicted Bias for Centralization Measures for a Large, Directed, Moderately Centralized Network.  

Fig. 6. Predicted Bias for Centralization Measures for a Large, Undirected, Moderately Centralized Network.  
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listwise deletion is actually a better option than any of the imputation 
methods for every network but the small Interlock network (see 
Table A5 and Fig. 6). In general, the bias for Bonacich Power centrali
zation is quite low, even when high degree nodes are non-respondents 
and we use listwise deletion. Thus, any imputation method that ad
justs the centrality of the respondents (while excluding the missing cases 
from the calculation) runs the risk of adding bias where little was pre
sent to begin with. 

The closeness results show the clearest differentiation between 
imputation options, with the model-based approaches (simple or com
plex) being preferred over listwise deletion and the symmetric approach. 
This holds across all missing data types and networks. For example, for 
the Co-authorship network, the total decrease in bias is 85 % for the 
complex model (compared to listwise deletion) and 73 % under the 
symmetric option. The median bias for the Co-authorship network with 
30 % missing data is less than .05 with the model-based approach (under 
random missing nodes); compare this to .88 bias under listwise deletion. 

Overall, the undirected networks for the centralization measures 
yield a straightforward story. In every case besides Bonacich Power, it is 
better to impute than listwise deletion, and in most cases any of the 
imputation approaches will work, making simple imputation particu
larly attractive. Note that the returns to imputation are typically larger 
when more central nodes are non-respondents, as imputation tends to 
weaken the deleterious effects of missing central actors. 

We now turn to the directed networks, presented in Fig. 7 and 
Table A7 (the bias ratio table). We start with indegree centralization. 
The results clearly point to the complex model-based approach offering 
the greatest reduction in bias, followed by the symmetric approach and 
the simple model-based approach. The asymmetric and probabilistic 
methods do not offer much (or any) improvement over listwise deletion. 
For example, looking at Fig. 7, the expected bias for a large, moderately 

centralized network (under random missing nodes) with 30 % missing 
data is about .05 for the complex-model imputation, .127 for symmetric 
imputation, and .26 for listwise deletion and asymmetric imputation. 
The results are similar for total degree centralization, although here the 
asymmetric and probabilistic approaches are somewhat better than 
listwise deletion. Additionally, the symmetric approach offers no worse 
estimates than the model-based approach, and is often the best option. 
For example, the decrease in total bias for the HS 24 network (missing 
low degree nodes) is 87 % for both the symmetric and the complex 
model-based approach. The decrease is 31 % for the asymmetric option 
and 48 % for the probabilistic option. 

The Bonacich centralization results mirror the undirected results in 
many ways, with most imputation methods offering worse estimates 
than listwise deletion under conditions of missing data (note that the 
symmetric, asymmetric and probabilistic are all equivalent in this case). 
The exceptions are the model-based approaches, which consistently 
outperform listwise deletion for all directed networks, save for the RC 
elite network (where listwise deletion is preferred). Thus, while a 
symmetric imputation would be a good option for indegree or total 
degree centralization, this does not extend to the case of Bonacich 
power. Boncacich centrality depends on the degree of one’s neighbors, 
while the symmetric approach only imputes the degree of the missing 
nodes in a limited way, compared to the model-based approach. Sym
metric imputation, thus, tends to overestimate the level of centralization 
in the network for Bonacich centrality (as the method potentially un
derestimates the degree of one’s neighbors). 

Closeness and betweenness centralization offer more contingent, 
complicated stories. The best imputation approach for closeness 
centralization depends heavily on the features of the network and the 
kinds of nodes that are missing. When the network exhibits low to 
moderate centralization and central nodes are more likely to be non- 

Fig. 8. Predicted Bias for Centralization Measures for Four Network Types.  
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respondents (bottom row in Fig. 7), the best option is either the model- 
based or the symmetric approach. On the other hand, when low cen
trality nodes are more likely to be non-respondents, the best options are 
the probabilistic or symmetric approaches. For example, consider the 
Prison network, which has low centralization. When low degree nodes 
are non-respondents, the median bias is .11, .12 and .15 under the 
probabilistic, symmetric and model-based approaches, assuming 40 % 
missing data. When high degree nodes are non-respondents, the analo
gous values are: .20 (probabilistic), .15 (symmetric), and .10 (model- 
based). In this case, the symmetric approach would be a robust choice, 
although not necessarily the best one in terms of lowering bias. Simple 
imputation works less well for the more centralized networks. Listwise 
deletion is often just as good (or even better) as the imputation methods, 
especially when the network is very centralized (such as the RC elite 
network) or the non-respondents are less central. See Table A7 for the 
full results. 

For betweenness, the results also depend heavily on the features of 
the network, and we can see this most clearly in Fig. 8. Fig. 8 presents 
the expected bias (based on the regression results presented in Table A8) 
for four different kinds of networks: large centralized, small centralized, 
large decentralized and small decentralized. The bottom row shows the 
results for betweenness. For the decentralized networks, the model- 
based and symmetric approaches are clearly preferred. For moderately 
centralized networks, the model-based approaches remain a good op
tion. The model-based approaches fare quite poorly, however, for the RC 
elite network, the most centralized network. Here taking a model-based 
approach yields worse bias than listwise deletion, making the probabi
listic and asymmetric approaches more appropriate. More striking, 
perhaps, is the poor performance of the symmetric option. In centralized 
networks, measures of betweenness centralization are sensitive to any 
imputation that changes the paths from the most central actors; thus, 
strategies that tend to add more ties (and thus paths between actors), 
like symmetric imputation, perform worse when the network is very 
centralized. Thus, the best option for decentralized networks is not an 
ideal choice for centralized ones. 

In sum, the story is simple with undirected networks. All imputation 
methods are better than listwise deletion, with simple imputation 

methods being particularly attractive due to their ease of use. The case of 
directed networks is harder, as the ideal choice depends on the measure, 
the type of missing data and the type of network. In general, when there 
are contingent choices, the model-based approach performs compara
tively well when the network is decentralized and/or the non- 
respondents have high degree. 

Topology 

We end the results section with a discussion of the topology mea
sures, again starting with the undirected networks. The results are pre
sented in Fig. 9 and Table A9. See Table 4 for an overall picture of the 
best imputation methods. Looking at Fig. 9, we can see that all impu
tation methods fare better than listwise deletion for component size, 
bicomponent size and distance, and that there are large returns to 
imputation. We also see that the ideal choice of imputation method 
depends on the type of missing data. When high centrality nodes are 
more likely to be non-respondents, the best choice is the model-based 
approach (simple or complex). For example, the expected bias for 
bicomponent size when the network is large, moderately centralized, 
and missing 30 % of the data (in Fig. 9) is .57 when listwise deletion is 
applied, .20 for the symmetric strategy, and .07 for the complex model- 
based strategy. The analogous values when low centrality nodes are non- 
respondents are: .23 (listwise deletion), .06 (symmetric), and .11 
(model-based) suggesting that the symmetric approach is actually 
favored when missing less central nodes, although the model-based 
approach remains a good option. 

The transitivity results show a different kind of pattern, where the 
best choice depends on the network being analyzed. When the network 
is decentralized, the simple model-based approach is the best option, 
followed by symmetric imputation (in most cases).18 The results are very 
different for the centralized networks, however. Here, all of the impu
tation methods perform poorly and listwise deletion is the most viable 
option. For example, looking at Table A9, we see negative values for the 
bias reduction in the HIV network and the Co-citation network (two 
highly centralized networks), meaning the imputation methods perform 
worse than listwise deletion. The imputation methods perform poorly in 

Table 4 
Summary of Best Imputation Options for Topology Measures.  

Measure Directed or Undirected Non-response Type Size and Centralization Best Imputation Option 

Component 
Bicomponent 
Distance 

Undirected Central Nodes Any Model-baseda 

Component 
Bicomponent 

Undirected Less Central Any Symmetric 

Distance Undirected Less Central Any Any strategy except Listwise Deletion 
Transitivity Undirected Any Decentralized Model-based (simple) 
Transitivity Undirected Any Centralized Listwise Deletion 
Tau Undirected Any Any Model-based 
CONCOR Undirected Central Nodes Any Any strategy except Listwise Deletion 
CONCOR Undirected Less Central Any Symmetric 
Component 

Bicomponent 
Directed Any Any Model-based 

Distance Directed Central Nodes Any Model-based or Symmetric 
Distance Directed Less Central Any Probabilistic or Symmetric 
Transitivity Directed Any Any Asymmetric or Listwise Deletion 
Tau Directed Any Any Probabilistic 
CONCOR Directed Any Any Any strategy, including Listwise Deletion 

Notes. 
a: The model-based approach is assumed to correspond to complex or simple unless explicitly noted. 

18 Note that the complex model-based approach performs poorly with transi
tivity, suggesting that the fitted model is predicting more transitive relations 
than found in the actual data. 

J.A. Smith et al.                                                                                                                                                                                                                                 



Social Networks 68 (2022) 148–178

163

Fig. 9. Predicted Bias for Topology Measures for a Large, Undirected, Moderately Centralized Network.  

Fig. 10. Predicted Bias for Topology Measures for a Large, Directed, Moderately Centralized Network.  
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the centralized networks because transitivity tends to be unevenly 
distributed across the network (i.e., we may have lower levels with the 
most centralized actors), making imputation difficult for methods that 
do explicitly account for such variation. 

Finally, looking at the CONCOR results, we see that the bias is quite 
low overall and the returns to imputation are small. For example, for the 
Co-authorship network, the median bias at 50 % missing is only .25 for 
listwise deletion and .20 for any of the imputation methods. 

The results for the directed networks are presented in Fig. 10 and 
Table A11. Component and bicomponent size are similar to what we saw 
in the undirected case, but here the model-based approaches (simple or 
complex) are more uniformly the best option, followed by the simple 
imputation approaches.19 For example, for bicomponent size, the drop 
in total bias (compared with listwise deletion) under the model-based 
approach is 95 % for the Prosper network under random missing data; 
compare this to only 39 % using simple imputation. Or, looking at 
Fig. 10, the expected bias is almost 0 under the model-based approaches, 
outperforming the simpler options in all cases (but especially so when 
high degree nodes are more likely to be non-respondents). 

The distance results are much more sensitive to the type of missing 
data. For example, for the Prosper network under missing high degree 
nodes, the decrease in total bias is 81 % for the model-based approach, 
73 % for the symmetric approach and 33 % for the probabilistic 
approach.20 When low centrality nodes are non-respondents, the model- 
based approach actually yields 7 % more bias than listwise deletion 
while the symmetric approach has a slight improvement over listwise 
deletion, with a 15 % decrease in total bias. The probabilistic approach 
offers the best option in this case, with a decrease of 35 %. The sym
metric and probabilistic strategies are both relatively information light 

methods (assuming either full reciprocation or reciprocation based on 
the observed reciprocity rate), and thus tend to perform comparatively 
better when there is little information about the non-respondents, as is 
true when trying to impute ties for peripheral nodes. Note that the 
asymmetric option performs quite poorly in these cases, offering worse 
or similar estimates as listwise deletion. 

The transitivity results are straightforward in the directed case. The 
only consistently viable option that performs better than listwise dele
tion is the asymmetric imputation approach. Thus, the worse option for 
distance is the best option for transitivity. For example, looking at 
Fig. 10, the expected bias for our directed, moderately centralized 
network is .03 under the asymmetric approach, .053 under listwise 
deletion, .11 under the model-based approach, .145 under the proba
bilistic approach, and .18 under the symmetric approach (assuming 30 
% missing random data). These results indicate that imputation that 
attempts to go beyond the raw data alters the underlying transitivity 
estimate in a way that is worse than listwise deletion, which has low bias 
in itself. See Fig. 10 and Table A11 for tau statistic and CONCOR results. 

Fig. 11 offers a different kind of comparison, presenting the pre
dicted bias for four example networks with different combinations of 
size and centralization. The figure is limited to three measures, 
component size, distance and transitivity. Overall, looking at Fig. 11, the 
best imputation method does not strongly depend on the features of the 
network. The best choice for large decentralized networks tends to be 
the best choice for small centralized networks (making the choice easier 
from the point of view of the researcher). There are, however, differ
ential returns to different methods, depending on the features of the 
network and the measure of interest. For example, for distance, the 
returns to symmetric imputation (in terms of how much is gained rela
tive to listwise deletion) is highest in decentralized net
works—especially large decentralized networks where the bias is high if 
listwise deletion is applied. For transitivity, we see that the asymmetric 
approach is consistently the best, but that the model-based and proba
bilistic approaches fare relatively better in the decentralized networks. 

Overall, the topology results suggest that the best imputation choice 
depends on the type of missing data, the type of network and the mea
sure of interest. For example, we see measures that capture large 
structural features, like component size or distance, are best imputed 

Fig. 11. Predicted Bias for Topology Measures for Four Network Types.  

19 Note that in this case the asymmetric probabilistic and symmetric options 
all offer the same levels of bias as the measures of interest are based on the 
symmetrized version of the (imputed) network.  
20 Note that for the highly centralized RC elite network only the probabilistic 

option is better than listwise deletion, with the model-based approaches and 
symmetric options not performing well. Thus, the model-based approach and 
the symmetric option (which symmetrizes ties to the central actor) does not 
work so well when one or two actors dominate the network. 
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based on the model-based or symmetric options. Other measures that are 
more local, like transitivity, are harder to impute and often listwise 
deletion is the best option. The type of missing data also matters greatly 
here, as the model-based approaches tend to perform better when more 
central nodes are missing, with this being true in both the directed and 

undirected cases. 

Conclusion 

Missing data is a difficult problem faced by network researchers. 

Fig. 12. Summary Figure of Best Imputation Approach by Network Type, Measure, and Missing Data Condition.  
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Traditional measures assume a full census of a bounded population 
(Laumann et al., 1983; Wasserman and Faust, 1994). In practice, a full 
census is often difficult to come by, as nodes and/or edges may be 
missing, offering an incomplete picture of the full network structure. It is 
thus important to understand how much bias results from missing data 
and how successful different imputation methods are under different 
conditions. This can be difficult to gauge, however, as there are few 
general, practical guidelines on how to address missing network data. 
This paper takes up this problem directly, showing how different 
imputation methods fare across a range of circumstances, including 
different networks, missing data types and measures of interest. We also 
consider a number of different imputation methods, ranging from simple 
network imputation to more complicated model-based approaches. The 
hope is that our results will make it easier for a researcher to choose an 
imputation method, given the particular features of their study. 

Overall, we find that doing listwise deletion is almost always the 
worst option. Which imputation method performs best, however, is 
quite contingent, depending on the type of missing data, the type of 
network and the measure of interest. In this way, it is an easy choice to 
impute, but a harder choice to decide which method to employ. For 
example, for degree-based measures of centrality (on directed net
works), we see that very simple approaches, including the asymmetric 
option, fare well. On the other hand, path-based measures (like closeness 
and betweenness) tend to require more complicated options, either 
probabilistic imputation or a model-based approach. In a similar way, 
we find that model-based approaches are particularly effective for 
structural measures, like bicomponent size or distance, but fare less well 
when estimating more local measures, like transitivity. The results also 
suggest that the type of network and missing data affect the performance 
of the imputation methods (Žnidaršič et al., 2018; Krause et al., 2020). 
For example, the model-based approaches are comparatively more 
effective when the network is decentralized and non-respondents have 
high degree. 

How to choose an imputation strategy 

In short, different imputation methods are appropriate in different 
research settings, depending on the particular combination of missing 
data type, network and measure. Thus, a researcher must navigate a set 
of complex dependencies when making imputation decisions, especially 
since the size and type of network (e.g., large bipartite graphs) can make 
model-based imputation approaches intractable. To make this task 
easier, we have summarized our results in a simplified format in Fig. 12. 

The goal of Fig. 12 is to provide a user-friendly guide to imputation 
decisions. The figure is organized around a number of key factors, such 
as network type (directed/undirected; centralized/decentralized) and 
measure of interest.21 The figure is presented as a kind of branching 
structure, or decision tree, with the final branch showing the optimal 
choice of imputation method, given the features along the path. In 
selecting the optimal imputation strategy, we have tried to balance the 
best performing method with the difficulty of implementation. A 
researcher would simply follow the relevant path for their research 
setting and choose the best imputation method (noting that other 
imputation strategies may also offer reasonable results). For example, a 
researcher with a directed, decentralized network measuring between
ness or closeness centralization would do well using a symmetric 
imputation approach. The same researcher with a centralized network 
would do better using a probabilistic option. Such contingent decisions 

are hard to make without a guide, showing the clear utility of Fig. 12, as 
well as the more detailed summary tables presented earlier in the text. 

It is important to note that Fig. 12 focuses on the optimal imputation 
method, but there are other factors that should be considered when 
making an imputation choice. First, a researcher must balance the per
formance of a method with the difficulty of implementing it. For 
example, a model-based approach can be difficult and expensive (time- 
wise) to implement. A researcher must already have a working knowl
edge of statistical network models, decide on the specific model to es
timate, estimate the model, and so on. This is quite burdensome 
compared to the simple imputation options, which in many cases offer 
similar results. Thus, it is conceivable that a researcher would opt for 
simple imputation even when the model-based approach offers strictly 
lower bias. Of course, even with simple imputation options, a researcher 
must do a considerable amount of careful consideration, picking the 
right option for their particular scenario. In a similar way, a researcher 
may opt for a ‘safe’ choice that performs well across many settings, even 
if it is not necessarily the best (predicted) option in their particular case. 
Our results suggest that the probabilistic approach to network imputa
tion is robust to different measures and networks, making it a good 
option overall. Finally, we note that a model-based approach may fare 
better under different specifications (e.g., Bayesian), as a better- 
specified model (i.e., one that captures the true tie formation pro
cesses) will offer improved estimates. 

Limitations and considerations 

Our analysis rests on a number of assumptions that must be consid
ered when interpreting the results. For example, we assumed that the 
non-respondents are identifiable, so that respondents could still nomi
nate them. This implicitly assumes a well-bounded, clearly defined 
population. Such conditions will not hold in all research settings, how
ever, with important implications for the viability of different imputa
tion strategies. Most clearly, the simple imputation approaches cannot 
be applied when missing nodes are unable to be identified (as there is no 
information to reconstruct the network). Model-based approaches 
could, in theory, still be used, as long as the size of the population was 
known, but their effectiveness will likely be reduced. There is no edge 
information on the missing nodes, making it difficult to predict how the 
missing nodes fit into the larger network. Listwise deletion could, of 
course, still be applied without complication. 

Our analysis also assumes that the observed network is recorded 
without error. This assumption is unlikely to strictly hold in practice. 
Actors may forget to nominate people they should have (Brewer, 2000; 
Bell et al., 2007), while potentially nominating those they should not; 
for example, nominating an aspirational friend who is, in fact, not 
actually a friend (Almaatouq et al., 2016). Finally, there could be con
flicting reports about the nature of the relationship (An and Schramski, 
2015). Any measurement error in the observed data will end up being 
factored into the imputation process, and thus may lead to somewhat 
poorer results than reported in our own analysis. This may be particu
larly deleterious to the simple imputation approaches. If a researcher 
imputes a tie from j→i because i nominates j, then it is problematic if i→j 
does not really exist and is simply measurement error; as one imputes 
based on a false premise. Model-based approaches may fare better, as 
the model imputes probabilistically, based on general tendencies 
observed throughout the whole network, thus minimizing the effect of 

21 Note that we have collapsed some of the measures into broader classes (e.g. 
closeness and betweenness are placed together as path-based). 
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particular mistakes in the data.22 Ultimately, these are open questions 
deserving of more concerted work in the future. 

Final thoughts 

This set of papers began with a simple goal — to describe the con
sequences of missing data for typically used network measures (Smith 
and Moody, 2013). Overall, we have shown that the effect of missing 
data is highly contingent, depending on the circumstances of the study, 
as well as the actions of the researcher. Here, we emphasize the role of 
the researcher in reducing bias. Our results suggest that a researcher 
choosing an effective imputation method for their setting can greatly 
reduce the bias due to missing data, even in cases with difficult condi
tions (i.e., non-respondents tend to be central to the network). A study 
with over 50 % non-respondents can, potentially, still yield valid esti
mates. In the end, the hope is that our results can be used as a practical 
guide for researchers choosing an imputation strategy, and, more 
generally, dealing with the difficult problem of missing network data. 

Acknowledgements 

This work was supported by the National Institute of General Med
ical Sciences of the National Institutes of Health (Grant No. P20 
GM130461) and the Rural Drug Addiction Research Center at the Uni
versity of Nebraska-Lincoln. 

We would like to thank Jake Fisher and Robin Gauthier for helpful 
comments on earlier versions of this article. We would like to thank the 
Prosper Peers project, Mark Mizruchi, Walter Powell, Lisa Keister, and 
Scott Gest for sharing network data files. The Prosper project is funded 
by NSF/HSD: 0624158, W. T. Grant Foundation 8316 & NIDA 
1R01DA018225-01. The Colorado Springs HIV network was made 
available through: NIH R01 DA 12831 (PI Morris) Modeling HIV and 
STD in Drug User and Social Networks. This research uses data from Add 
Health, a program project designed by J. Richard Udry, Peter S. Bear
man, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 
from the Eunice Kennedy Shriver National Institute of Child Health and 
Human Development, with cooperative funding from 17 other agencies. 
Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle 
for assistance in the original design. Persons interested in obtaining data 
files from Add Health should contact Add Health, Carolina Population 
Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealt 
h@unc.edu). No direct support was received from grant P01-HD31921 
for this analysis. 

Appendix A  

Ta
bl

e 
A

1 
Pe

rc
en

t D
ec

re
as

e 
in

 T
ot

al
 B

ia
s 

un
de

r 
D

iff
er

en
t I

m
pu

ta
tio

n 
St

ra
te

gi
es

: C
en

tr
al

ity
 M

ea
su

re
s 

fo
r 

U
nd

ir
ec

te
d 

N
et

w
or

ks
.  

M
ea

su
re

 
Im

pu
ta

tio
n 

In
te

rl
oc

k 
Co

au
th

or
 

Co
-c

ita
tio

n 
Bi

ot
ec

h 
H

IV
   

Co
rr

el
at

io
n 

w
ith

 C
en

tr
al

ity
 

Co
rr

el
at

io
n 

w
ith

 C
en

tr
al

ity
 

Co
rr

el
at

io
n 

w
ith

 C
en

tr
al

ity
 

Co
rr

el
at

io
n 

w
ith

 C
en

tr
al

ity
 

Co
rr

el
at

io
n 

w
ith

 C
en

tr
al

ity
   

−
.7

5 
0 

.7
5 

−
.7

5 
0 

.7
5 

−
.7

5 
0 

.7
5 

−
.7

5 
0 

.7
5 

−
.7

5 
0 

.7
5 

D
eg

re
e 

Sy
m

m
et

ri
c 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

 
M

od
el

-b
as

ed
 S

im
pl

e 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
 

M
od

el
-b

as
ed

 C
om

pl
ex

 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
 

Bo
n 

Po
w

er
 

Sy
m

m
et

ri
c 

96
 

93
 

91
 

96
 

95
 

89
 

95
 

94
 

93
 

95
 

92
 

92
 

90
 

88
 

86
  

M
od

el
-b

as
ed

 S
im

pl
e 

95
 

95
 

94
 

98
 

97
 

91
 

97
 

96
 

96
 

96
 

93
 

93
 

91
 

90
 

89
  

M
od

el
-b

as
ed

 C
om

pl
ex

 
93

 
94

 
94

 
98

 
96

 
91

 
98

 
97

 
97

 
96

 
94

 
93

 
93

 
92

 
92

  

Cl
os

en
es

s 
Sy

m
m

et
ri

c 
91

 
85

 
80

 
89

 
82

 
75

 
92

 
90

 
86

 
85

 
83

 
78

 
88

 
86

 
82

  
M

od
el

-b
as

ed
 S

im
pl

e 
93

 
91

 
87

 
90

 
86

 
80

 
94

 
94

 
92

 
91

 
89

 
84

 
91

 
90

 
85

  
M

od
el

-b
as

ed
 C

om
pl

ex
 

93
 

91
 

86
 

91
 

85
 

77
 

93
 

93
 

91
 

90
 

88
 

83
 

91
 

89
 

84
  

Be
tw

ee
nn

es
s 

Sy
m

m
et

ri
c 

86
 

79
 

67
 

86
 

78
 

56
 

83
 

74
 

49
 

90
 

88
 

79
 

87
 

82
 

62
  

M
od

el
-b

as
ed

 S
im

pl
e 

87
 

86
 

77
 

74
 

81
 

68
 

79
 

74
 

60
 

88
 

88
 

84
 

65
 

75
 

70
  

M
od

el
-b

as
ed

 C
om

pl
ex

 
86

 
84

 
76

 
83

 
82

 
64

 
78

 
73

 
62

 
88

 
88

 
81

 
79

 
82

 
73

  

22 Fixed choice designs (where actors are restricted in the number of people 
they can nominate) offer similar kinds of problems, as edges that should exist in 
the network are not recorded (adams 2019). A researcher imputing under a 
fixed choice design could follow the basic model-based approach used here, but 
with the (potential) addition of setting all uncertain edges as missing. Thus, for 
any node that reached their maximum allowed outdegree, all other values in 
their row of the matrix would be set as missing, as we do not know if they 
would have nominated that person, had they had the opportunity. 
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Table A2 
Centrality Bias Slope Regressions: Undirected Networks.   

Model 1 Model 2 Model 3 Model 4 
Variables Degree Bon. Power Closeness Betweeness 

Intercept − 1.925*** − 2.572 − 2.834** − 1.802  
(0.46) (1.7) (0.94) (1.33) 

Correlation with Centrality 0.92*** 1.199*** 0.626*** 0.517***  
(0.15) (0.11) (0.05) (0.07) 

In-degree Std. Dev. − 0.166*** − 0.174 − 0.075 − 0.041  
(0.03) (0.13) (0.07) (0.1) 

Log of Size − 0.166 0.016 0.035 − 0.206  
(0.09) (0.35) (0.19) (0.27) 

Symmetric Imputation − 40.255*** − 3.407** − 2.313** − 0.397  
(0.6) (1.06) (0.89) (0.63) 

Simple Model-Based Imputation − 39.492*** − 3.772*** − 2.771* − 1.214  
(1.22) (1.1) (1.21) (0.87) 

Complex Model-Based Imputation − 39.492*** − 3.31** − 2.712* − 0.703  
(1.59) (1.09) (1.1) (0.58) 

Correlation with Centrality* Symmetric Imputation − 0.871*** 0.292 0.261*** 0.68***  
(0.21) (0.16) (0.08) (0.1) 

Correlation with Centrality* Simple Model-Based Imputation − 0.718*** 0.225 0.267*** 0.234*  
(0.21) (0.16) (0.08) (0.1) 

Correlation with Centrality* Complex Model-Based Imputation − 0.718*** 0.232 0.291*** 0.34***  
(0.21) (0.16) (0.08) (0.1) 

In-degree Std. Dev.* Symmetric Imputation 0.146** − 0.03 − 0.064 0.085  
(0.04) (0.08) (0.07) (0.05) 

In-degree Std. Dev.* Simple Model-Based Imputation 0.198* − 0.071 − 0.054 0.116  
(0.09) (0.08) (0.09) (0.07) 

In-degree Std. Dev.* Complex Model-Based Imputation 0.198 − 0.111 − 0.045 0.113*  
(0.12) (0.08) (0.08) (0.04) 

Log of Size* Symmetric Imputation 0.211 0.224 0.337 − 0.257*  
(0.12) (0.22) (0.18) (0.13) 

Log of Size *Simple Model-Based Imputation 0.029 0.294 0.345 − 0.15  
(0.25) (0.23) (0.25) (0.18) 

Log of Size* Complex Model-Based Imputation 0.029 0.241 0.333 − 0.242*  
(0.33) (0.22) (0.23) (0.12) 

N 180 180 180 180 
Networks 5 5 5 5 

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop in correlation (between the empirical and the observed) for a 10 % increase in the amount of 
missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75. 
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Table A3 
Percent Decrease in Total Bias under Different Imputation Strategies: Centrality Measures for Directed Networks.  

Measure 

Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24  

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality  

− .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 

Indegree Probabilistic 4 5 6 6 14 20 − 6 − 2 2 2 3 3 − 1 − 1 − 1 6 7 9 10 12 15  
Symmetric − 31 − 25 − 27 − 24 − 7 5 − 103 − 92 − 71 − 54 − 51 − 50 − 226 − 238 − 277 − 42 − 41 − 41 − 29 − 25 − 21  
Asymmetric 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Model-based Simple − 52 − 44 − 42 − 44 − 29 − 15 − 68 − 59 − 46 − 78 − 63 − 52 − 218 − 254 − 262 − 71 − 64 − 57 − 59 − 51 − 40  
Model-based Complex − 43 − 37 − 34 − 35 − 20 − 9 − 63 − 52 − 37 − 65 − 51 − 41 − 168 − 190 − 210 − 50 − 44 − 34 − 42 − 33 − 22  

Total Degree Probabilistic 60 63 68 69 74 77 52 55 61 61 63 67 0 6 47 57 60 67 63 66 71  
Symmetric 51 56 63 64 71 76 34 40 52 49 53 60 − 120 − 108 − 15 44 48 57 53 58 66  
Asymmetric 60 62 67 67 71 74 57 58 63 62 63 67 1 7 48 59 62 67 64 66 71  
Model-based Simple 40 47 53 52 60 67 39 43 51 37 43 51 − 79 − 79 − 10 35 41 50 43 48 57  
Model-based Complex 43 48 55 55 62 68 43 47 55 41 47 55 − 45 − 44 7 42 47 57 48 53 62  

Bon Power Probabilistic 55 57 62 56 60 64 57 58 60 57 57 61 66 73 87 63 66 73 64 67 70  
Symmetric 55 57 62 56 60 64 57 58 60 57 57 61 66 73 87 63 66 73 64 67 70  
Asymmetric 55 57 62 56 60 64 57 58 60 57 57 61 66 73 87 63 66 73 64 67 70  
Model-based Simple 40 49 57 38 48 57 42 49 57 29 37 49 53 60 80 31 41 53 37 45 56  
Model-based Complex 39 49 57 36 47 56 47 53 61 32 40 52 57 63 80 43 51 63 44 52 62  

Closeness Probabilistic 49 56 62 55 59 64 79 84 88 51 56 61 48 49 51 62 66 70 67 72 75  
Symmetric 36 51 62 42 48 54 83 90 93 58 64 67 − 77 − 58 − 46 78 83 86 78 83 87  
Asymmetric 33 39 46 40 47 54 32 32 34 21 28 35 49 49 53 8 9 12 7 9 13  
Model-based Simple 49 65 73 33 52 61 87 94 95 66 76 80 0 15 18 79 85 88 84 89 91  
Model-based Complex 49 63 71 37 52 59 88 94 96 67 76 79 10 24 23 81 86 89 85 89 91  

Betweenness Probabilistic 30 32 32 22 21 22 29 35 34 28 29 28 23 21 13 37 37 34 46 46 45  
Symmetric 3 13 20 4 4 6 − 18 − 3 4 1 14 16 − 151 − 136 − 95 10 12 11 25 28 29  
Asymmetric 24 24 24 13 13 13 19 15 13 11 10 10 51 46 38 9 8 7 10 9 8  
Model-based Simple − 22 − 3 9 − 8 − 2 3 − 4 6 8 − 10 6 11 − 145 − 144 − 110 − 6 0 1 10 15 19  
Model-based Complex − 15 1 11 − 1 4 6 7 16 15 − 1 12 14 − 120 − 109 − 80 7 12 12 19 23 27  
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Table A4 
Centrality Bias Slope Regressions: Directed Networks.  

Variables 
Model 1 Model 2 Model 3 Model 4 Model 5 
Indegree Total Degree Bon. Power Closeness Betweeness 

Intercept − 2.598*** − 2.476*** − 2.198*** − 2.973* − 2.652***  
(0.7) (0.6) (0.23) (1.37) (0.19) 

Correlation with Centrality 0.309*** 0.31*** 0.411*** 0.197*** 0.202***  
(0.04) (0.03) (0.03) (0.05) (0.02) 

In-degree Std. Dev. − 0.356*** − 0.273*** − 0.138*** − 0.058 − 0.114***  
(0.06) (0.06) (0.02) (0.13) (0.02) 

Log of Size 0.107 0.073 − 0.037 0.094 0.103**  
(0.15) (0.13) (0.05) (0.29) (0.04) 

Asymmetric Imputation 0.019 − 0.845 − 0.286 − 2.184*** − 0.822  
(0.2) (0.57) (0.35) (0.57) (0.44) 

Simple Model-Based Imputation 0.448 − 0.506 − 0.868* 0.723 0.466  
(0.57) (0.92) (0.44) (1.97) (0.42) 

Complex Model-Based Imputation 0.544 − 0.483 − 0.491 0.938 0.556  
(0.5) (0.81) (0.34) (2.15) (0.45) 

Probabilistic Imputation 0.145 − 0.915 − 0.286 − 0.909 0.046  
(0.24) (0.51) (0.34) (2.26) (0.35) 

Symmetric Imputation 0.544 − 0.811 − 0.286 0.358 0.262  
(0.42) (0.97) (0.32) (1.5) (0.32) 

Correlation with Centrality* Asymmetric Imputation 0.01 − 0.196*** − 0.193*** − 0.158* 0.035  
(0.06) (0.04) (0.04) (0.07) (0.03) 

Correlation with Centrality* Simple Model-Based Imputation − 0.075 − 0.224*** − 0.286*** − 0.475*** − 0.098**  
(0.06) (0.04) (0.04) (0.07) (0.03) 

Correlation with Centrality* Complex Model-Based Imputation − 0.077 − 0.215*** − 0.292*** − 0.431*** − 0.077*  
(0.06) (0.04) (0.04) (0.07) (0.03) 

Correlation with Centrality* Probabilistic Imputation − 0.033 − 0.219*** − 0.193*** − 0.192** 0.009  
(0.06) (0.04) (0.04) (0.07) (0.03) 

Correlation with Centrality* Symmetric Imputation − 0.064 − 0.284*** − 0.193*** − 0.32*** − 0.074*  
(0.06) (0.04) (0.04) (0.07) (0.03) 

In-degree Std. Dev.* Asymmetric Imputation 0.003 0.207*** − 0.046 − 0.055 − 0.102*  
(0.02) (0.05) (0.03) (0.05) (0.04) 

In-degree Std. Dev.*Simple Model-Based Imputation 0.168** 0.229** − 0.069 0.108 0.088*  
(0.05) (0.09) (0.04) (0.18) (0.04) 

In-degree Std. Dev.*Complex Model-Based Imputation 0.154*** 0.205** − 0.064* 0.109 0.105*  
(0.05) (0.07) (0.03) (0.2) (0.04) 

In-degree Std. Dev.* Probabilistic Imputation 0.029 0.21*** − 0.046 − 0.041 − 0.017  
(0.02) (0.05) (0.03) (0.21) (0.03) 

In-degree Std. Dev.* Symmetric Imputation 0.218*** 0.318*** − 0.046 0.059 0.059*  
(0.04) (0.09) (0.03) (0.14) (0.03) 

Log of Size* Asymmetric Imputation − 0.005 − 0.163 − 0.087 0.358** 0.187*  
(0.04) (0.12) (0.08) (0.12) (0.09) 

Log of Size *Simple Model-Based Imputation − 0.111 − 0.169 0.111 − 0.553 − 0.2*  
(0.12) (0.2) (0.09) (0.42) (0.09) 

Log of Size* Complex Model-Based Imputation − 0.138 − 0.171 0.019 − 0.584 − 0.227*  
(0.11) (0.17) (0.07) (0.46) (0.1) 

Log of Size * Probabilistic Imputation − 0.055 − 0.145 − 0.087 0.002 − 0.085  
(0.05) (0.11) (0.07) (0.48) (0.07) 

Log of Size* Symmetric Imputation − 0.175 − 0.201 − 0.087 − 0.359 − 0.163*  
(0.09) (0.21) (0.07) (0.32) (0.07) 

N 378 378 378 378 378 
Networks 7 7 7 7 7 

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop in correlation (between the empirical and the 
observed) for a 10 % increase in the amount of missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: 
− .75, − .25, .25, and .75. 

Table A5 
Percent Decrease in Total Bias under Different Imputation Strategies: Centralization Measures for Undirected Networks.  

Measure Imputation Interlock Coauthor Cocitation Biotech HIV   

− .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 

Degree Symmetric 64 76 64 62 83 67 52 84 64 54 79 56 58 85 62  
Model-based Simple 63 76 64 63 83 68 52 84 64 54 79 55 58 84 62  
Model-based Complex 63 76 64 63 83 68 52 84 64 54 79 55 58 84 62  

Bon Power Symmetric − 9 15 43 − 313 − 251 − 89 − 374 − 583 − 158 − 588 − 249 − 82 − 815 − 411 − 130  
Model-based Simple 28 54 63 − 229 − 107 − 61 − 391 − 492 − 70 − 701 − 300 − 95 − 922 − 509 − 176  
Model-based Complex 25 54 61 − 175 − 76 − 131 − 308 − 226 − 100 − 689 − 292 − 134 − 855 − 413 − 127  

Closeness Symmetric 78 66 61 82 73 65 79 80 77 80 77 76 86 83 84  
Model-based Simple 86 82 77 89 86 78 87 87 78 93 93 91 96 95 91  
Model-based Complex 85 81 77 90 85 76 88 88 78 93 93 90 95 94 92  

Betweenness Symmetric 81 74 62 80 83 76 76 64 44 78 78 67 83 89 86  
Model-based Simple 78 79 76 69 58 50 88 85 77 66 72 69 88 81 69  
Model-based Complex 77 78 75 79 66 54 87 78 66 67 73 67 90 83 68  
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Table A6 
Centralization Bias Slope Regressions: Undirected Networks.   

Model 1 Model 2 Model 3 Model 4 
Variables Degree Bon. Power Closeness Betweeness 

Intercept − 2.723*** − 2.284 − 2.387 − 1.912***  
(0.35) (1.35) (1.22) (0.21) 

Correlation with Centrality 0.39** 0.423*** − 1.254*** 0.097  
(0.13) (0.1) (0.06) (0.07) 

In-degree Std. Dev. 0.016 − 0.147 0.042 − 0.011  
(0.03) (0.1) (0.09) (0.02) 

Log of Size 0.038 − 0.265 − 0.123 0.003  
(0.07) (0.27) (0.25) (0.04) 

Symmetric Imputation − 1.378* − 0.881 − 0.749 0.107  
(0.61) (1.37) (0.99) (0.82) 

Simple Model-Based Imputation − 1.324* − 3.054** 0.096 − 0.942  
(0.65) (0.94) (1.43) (1.46) 

Complex Model-Based Imputation − 1.324 − 3.16** − 0.211 − 0.878  
(1.1) (1.02) (1.63) (1.09) 

Correlation with Centrality* Symmetric Imputation − 0.036 − 0.784*** 1.18*** 0.271**  
(0.18) (0.15) (0.09) (0.1) 

Correlation with Centrality* Simple Model-Based Imputation − 0.044 − 0.909*** 1.265*** 0.111  
(0.18) (0.15) (0.09) (0.1) 

Correlation with Centrality* Complex Model-Based Imputation − 0.044 − 0.788*** 1.291*** 0.311**  
(0.18) (0.15) (0.09) (0.1) 

In-degree Std. Dev.* Symmetric Imputation − 0.01 0.184 − 0.132 0.098  
(0.05) (0.1) (0.07) (0.06) 

In-degree Std. Dev.* Simple Model-Based Imputation − 0.011 0.178* − 0.05 − 0.081  
(0.05) (0.07) (0.11) (0.11) 

In-degree Std. Dev.* Complex Model-Based Imputation − 0.011 0.099 − 0.063 − 0.025  
(0.08) (0.08) (0.12) (0.08) 

Log of Size* Symmetric Imputation 0.022 0.189 0.277 − 0.413*  
(0.13) (0.28) (0.2) (0.17) 

Log of Size *Simple Model-Based Imputation 0.014 0.555** − 0.158 − 0.003  
(0.13) (0.19) (0.29) (0.3) 

Log of Size* Complex Model-Based Imputation 0.014 0.638** − 0.075 − 0.056  
(0.22) (0.21) (0.33) (0.22) 

N 180 180 180 180 
Networks 5 5 5 5 

Note: The regression uses the beta slopes from each line as the dependent variable. The direction of the bias is ignored when calculating the regressions. The betas represent the expected increase in bias for a 10 % increase 
in the amount of missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75. 
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Table A7 
Percent Decrease in Total Bias under Different Imputation Strategies: Centralization Measures for Directed Networks.  

Measure Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24   

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with Centrality Correlation with 
Centrality 

Correlation with 
Centrality   

− .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 

Indegree Probabilistic 4 5 5 14 15 16 7 7 8 6 6 5 0 0 0 6 6 7 9 10 10  
Symmetric 43 44 44 58 66 70 49 50 55 51 50 51 6 6 8 36 40 44 46 51 54  
Asymmetric 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Model-based Simple 54 50 45 54 60 60 42 37 32 55 50 44 6 4 6 36 35 33 43 42 39  
Model-based Complex 56 62 58 36 62 68 77 70 61 66 73 65 27 20 17 72 67 60 79 74 66  

Total Degree Probabilistic 43 42 39 60 66 67 60 61 63 58 59 57 7 7 8 39 43 46 48 52 54  
Symmetric 52 66 72 40 58 66 78 79 80 70 77 81 20 19 22 76 82 87 87 92 93  
Asymmetric 25 25 23 38 42 42 43 45 48 38 40 40 7 6 8 26 30 33 31 35 37  
Model-based Simple 57 64 61 56 69 76 72 72 72 76 79 77 13 10 13 57 60 61 66 69 70  
Model-based Complex 45 61 67 33 61 71 80 82 82 62 76 82 33 26 23 83 83 80 87 89 85  

Bon Power Probabilistic 1 10 19 − 13 − 7 1 − 86 − 79 − 62 − 58 − 43 − 25 − 213 − 192 − 203 − 74 − 69 − 55 − 82 − 82 − 63  
Symmetric 1 10 19 − 13 − 7 1 − 86 − 79 − 62 − 58 − 43 − 25 − 213 − 192 − 203 − 74 − 69 − 55 − 82 − 82 − 63  
Asymmetric 1 10 19 − 13 − 7 1 − 86 − 79 − 62 − 58 − 43 − 25 − 213 − 192 − 203 − 74 − 69 − 55 − 82 − 82 − 63  
Model-based Simple 47 58 58 53 66 67 25 40 44 26 33 32 − 361 − 200 − 186 21 28 10 16 10 − 4  
Model-based Complex 46 57 59 56 64 66 40 56 52 35 46 39 − 391 − 227 − 233 45 51 30 46 46 25  

Closeness Probabilistic 7 23 28 24 33 36 − 18 20 25 19 45 43 − 106 − 48 34 − 4 53 57 − 8 59 71  
Symmetric − 14 14 37 26 47 56 − 12 19 − 18 34 68 72 − 1824 − 2102 − 1381 − 19 12 − 3 5 48 35  
Asymmetric − 3 − 8 − 4 − 13 − 5 1 − 12 − 3 15 − 11 2 6 − 80 − 26 44 3 3 5 5 15 17  
Model-based Simple − 27 25 46 9 36 50 − 10 7 − 47 4 50 54 − 566 − 540 − 317 − 32 − 7 − 26 − 9 11 − 4  
Model-based Complex − 33 28 52 23 53 63 − 12 16 − 25 15 70 75 − 264 − 223 − 127 − 36 35 17 − 9 52 33  

Betweenness Probabilistic 46 40 36 48 42 39 35 30 25 62 56 50 35 30 27 65 58 51 50 36 25  
Symmetric 72 72 68 71 69 64 7 − 2 − 16 67 64 62 − 771 − 675 − 556 43 33 19 45 30 14  
Asymmetric 15 11 8 10 7 5 58 44 25 26 16 11 24 19 16 35 12 − 20 40 7 − 33  
Model-based Simple 67 67 67 58 61 62 0 − 3 − 2 25 34 38 − 1231 − 1073 − 886 9 12 11 − 22 − 25 − 21  
Model-based Complex 69 68 66 63 65 63 34 32 27 42 50 53 − 939 − 724 − 526 42 43 39 21 18 19  
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Table A8 
Centralization Bias Slope Regressions: Directed Networks.   

Model 1 Model 2 Model 3 Model 4 Model 5 
Variables Indegree Total Degree Bon. Power Closeness Betweeness 

Intercept − 2.877*** − 3.012*** − 2.12*** − 3.022*** − 1.443  
(0.15) (0.14) (0.62) (0.9) (0.79) 

Correlation with Centrality 0.21*** 0.234*** 0.28*** 0.556*** 0.072  
(0.03) (0.04) (0.05) (0.1) (0.04) 

In-degree Std. Dev. 0.06*** 0.074*** − 0.228*** − 0.278 − 0.103  
(0.01) (0.01) (0.06) (0.15) (0.13) 

Log of Size 0.027 0.029 − 0.085 0.148 − 0.066  
(0.03) (0.03) (0.13) (0.22) (0.19) 

Asymmetric Imputation 0 − 0.611 − 0.658* 0.751 − 0.02  
(0.15) (0.47) (0.29) (0.69) (0.24) 

Simple Model-Based Imputation − 1.808*** − 1.489 − 2.423** − 0.973 − 1.321  
(0.42) (0.92) (0.82) (0.81) (1.2) 

Complex Model-Based Imputation 0.346 1.953 − 1.173 − 0.567 − 0.969  
(1.16) (1.03) (1.1) (0.97) (1.06) 

Probabilistic Imputation − 0.176 − 1.426 − 0.658 1.792* 0.844  
(0.28) (0.82) (0.42) (0.91) (0.79) 

Symmetric Imputation − 1.773 2.302* − 0.658 0.209 − 1.055  
(1.03) (1.03) (0.74) (1.39) (1.1) 

Correlation with Centrality* Asymmetric Imputation 0 − 0.048 − 0.133 − 0.13 0.21***  
(0.04) (0.06) (0.07) (0.14) (0.05) 

Correlation with Centrality* Simple Model-Based Imputation 0.101* − 0.085 − 0.302*** − 0.487*** − 0.283***  
(0.04) (0.06) (0.07) (0.14) (0.05) 

Correlation with Centrality* Complex Model-Based Imputation 0.159*** − 0.19*** − 0.219** − 0.659*** − 0.134*  
(0.04) (0.06) (0.07) (0.14) (0.05) 

Correlation with Centrality* Probabilistic Imputation 0.005 − 0.047 − 0.133 − 0.46** 0.177**  
(0.04) (0.06) (0.07) (0.14) (0.05) 

Correlation with Centrality* Symmetric Imputation − 0.094* − 0.319*** − 0.133 − 0.572*** 0.28***  
(0.04) (0.06) (0.07) (0.14) (0.05) 

In-degree Std. Dev.* Asymmetric Imputation 0 0.054 0.094*** − 0.008 − 0.257***  
(0.01) (0.04) (0.03) (0.11) (0.04) 

In-degree Std. Dev.*Simple Model-Based Imputation 0.173*** 0.223** 0.231** 0.32* − 0.083  
(0.04) (0.09) (0.08) (0.13) (0.2) 

In-degree Std. Dev.*Complex Model-Based Imputation 0.223* 0.249** 0.32** 0.388* − 0.116  
(0.11) (0.1) (0.1) (0.16) (0.17) 

In-degree Std. Dev.* Probabilistic Imputation 0.024 0.129 0.094* 0.135 0.046  
(0.03) (0.08) (0.04) (0.15) (0.13) 

In-degree Std. Dev.*Symmetric Imputation 0.159 0.308** 0.094 0.384 0.376*  
(0.1) (0.1) (0.07) (0.23) (0.18) 

Log of Size* Asymmetric Imputation 0 − 0.008 0.153* − 0.135 0.119*  
(0.03) (0.1) (0.06) (0.17) (0.06) 

Log of Size *Simple Model-Based Imputation 0.07 − 0.119 0.193 − 0.126 0.079  
(0.09) (0.2) (0.18) (0.19) (0.29) 

Log of Size* Complex Model-Based Imputation − 0.477 − 0.86*** − 0.137 − 0.288 0.016  
(0.25) (0.22) (0.23) (0.23) (0.25) 

Log of Size * Probabilistic Imputation − 0.002 0.025 0.153 − 0.546* − 0.283  
(0.06) (0.17) (0.09) (0.22) (0.19) 

Log of Size*Symmetric Imputation 0.055 − 0.958*** 0.153 − 0.459 − 0.202  
(0.22) (0.22) (0.16) (0.34) (0.27) 

N 378 378 378 324 324 
Networks 7 7 7 7 7 

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop in correlation (between the empirical and the observed) for a 10 % increase in the amount of 
missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75. 
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Table A9 
Percent Decrease in Total Bias under Different Imputation Strategies: Topology Measures for Undirected Networks.  

Measure Imputation Interlock Co-author Co-citation Biotech HIV   

− .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 

Component Symmetric 89 86 74 95 92 83 94 94 93 94 94 91 96 96 96  
Model-based Simple 81 89 86 95 96 96 86 92 97 85 88 91 91 93 94  
Model-based Complex 79 88 85 86 90 91 75 87 93 84 87 90 82 87 90  

Bicomponent Symmetric 68 67 55 81 82 73 76 85 82 77 79 77 87 89 85  
Model-based Simple 41 79 80 − 100 − 1 42 − 28 49 83 63 80 92 17 50 74  
Model-based Complex 44 80 79 − 22 38 66 16 62 89 68 83 93 45 68 85  

Distance Symmetric 30 72 59 70 83 68 14 81 68 92 90 78 89 91 81  
Model-based Simple 38 80 70 67 92 88 18 84 76 93 93 84 83 97 91  
Model-based Complex 39 80 70 72 91 85 19 84 77 93 93 85 87 97 90  

Transitivity Symmetric 75 70 72 − 8 − 31 − 51 30 − 101 − 58 74 47 33 − 140 − 92 − 45  
Model-based Simple 76 79 82 − 42 − 56 − 64 5 − 123 − 55 79 61 48 − 217 − 159 − 97  
Model-based Complex 39 50 67 22 3 − 7 35 − 52 − 2 45 31 4 − 112 − 69 − 27  

Tau Symmetric 39 53 20 − 27 − 16 − 12 57 49 63 86 68 46 72 82 64  
Model-based Simple 40 42 28 13 7 − 3 79 72 74 71 60 48 88 82 66  
Model-based Complex 13 16 13 47 28 12 75 53 61 72 61 50 89 85 70  

CONCOR Symmetric 44 42 46 50 49 52 54 42 38 39 36 40 47 43 44  
Model-based Simple 21 30 42 22 31 44 38 30 33 30 31 38 37 37 41  
Model-based Complex 21 29 42 36 41 51 39 32 37 29 31 37 44 43 46  

Table A10 
Topology Bias Slope Regressions: Undirected Networks.   

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Variables Component Size Bicomponent Size Distance Transitivity Tau RC CONCOR 

Intercept − 2.752*** − 2.78*** − 3.262*** − 0.538 − 1.648 − 3.82***  
(0.44) (0.45) (0.42) (1.68) (0.84) (0.24) 

Correlation with Centrality 0.685*** 0.619*** 0.742*** 0.53*** 0.132 0.56***  
(0.07) (0.06) (0.13) (0.05) (0.08) (0.02) 

In-degree Std. Dev. − 0.061 − 0.08* − 0.086** − 0.236 − 0.005 − 0.034  
(0.03) (0.03) (0.03) (0.13) (0.06) (0.02) 

Log of Size 0.106 0.168 0.24** − 0.184 − 0.07 0.07  
(0.09) (0.09) (0.08) (0.34) (0.17) (0.05) 

Symmetric Imputation − 0.326 0.125 1.064* − 2.167 2.207* − 0.272  
(0.46) (0.26) (0.52) (1.75) (1.1) (0.36) 

Simple Model-Based Imputation − 1.659 − 0.327 0.914 − 2.951 1.553 − 0.128  
(1.26) (1.67) (0.67) (2.08) (1.11) (0.31) 

Complex Model-Based Imputation − 1.605*** − 0.077 1.052 − 1.784 2.683 − 0.145  
(0.42) (1.53) (1.15) (1.53) (1.38) (0.24) 

Correlation with Centrality* Symmetric Imputation 0.481*** 0.231** 0.179 0.117 0.161 − 0.341***  
(0.1) (0.09) (0.18) (0.08) (0.12) (0.03) 

Correlation with Centrality* Simple Model-Based Imputation − 0.326** − 0.896*** − 0.332 0.02 0.322** − 0.458***  
(0.1) (0.09) (0.18) (0.08) (0.12) (0.03) 

Correlation with Centrality* Complex Model-Based Imputation − 0.404*** − 0.951*** − 0.2 − 0.051 0.378** − 0.446***  
(0.1) (0.09) (0.18) (0.08) (0.12) (0.03) 

In-degree Std. Dev.* Symmetric Imputation − 0.078* − 0.096*** 0.045 0.227 − 0.001 0.02  
(0.03) (0.02) (0.04) (0.13) (0.08) (0.03) 

In-degree Std. Dev.* Simple Model-Based Imputation − 0.078 0.085 0.067 0.308* − 0.126 0.021  
(0.09) (0.13) (0.05) (0.16) (0.08) (0.02) 

In-degree Std. Dev.* Complex Model-Based Imputation − 0.026 0.07 0.062 0.1 − 0.066 0.018  
(0.03) (0.12) (0.09) (0.11) (0.1) (0.02) 

Log of Size* Symmetric Imputation − 0.277** − 0.132* − 0.497*** 0.164 − 0.465* 0.021  
(0.09) (0.05) (0.11) (0.36) (0.22) (0.07) 

Log of Size *Simple Model-Based Imputation − 0.051 − 0.193 − 0.59*** 0.2 − 0.233 0.012  
(0.26) (0.34) (0.14) (0.42) (0.23) (0.06) 

Log of Size* Complex Model-Based Imputation − 0.03 − 0.265 − 0.61** 0.257 − 0.49 0.013  
(0.09) (0.31) (0.23) (0.31) (0.28) (0.05) 

N 180 180 180 180 180 180 
Networks 5 5 5 5 5 5 

Note: The regression uses the beta slopes from each line as the dependent variable. The direction of the bias is ignored when calculating the regressions. The betas 
represent the expected increase in bias for a 10 % increase in the amount of missing data. Larger numbers mean larger bias with more missing data. The correlation with 
centrality takes four values: -.75, -.25, .25, and .75. 
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Table A11 
Percent Decrease in Total Bias under Different Imputation Strategies: Topology Measures for Directed Networks.  

Measure Imputation Prison Sorority 6th Grade Prosper RC Elite HS 13 HS 24   

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with 
Centrality 

Correlation with Centrality Correlation with 
Centrality 

Correlation with 
Centrality   

− .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 − .75 0 .75 

Component Probabilistic 69 69 68 61 62 59 77 76 77 73 76 76 85 86 91 82 82 86 80 81 84  
Symmetric 69 69 68 61 62 59 77 76 77 73 76 76 85 86 91 82 82 86 80 81 84  
Asymmetric 69 69 68 61 62 59 77 76 77 73 76 76 85 86 91 82 82 86 80 81 84  
Model-based Simple 83 89 93 89 92 91 97 98 98 85 91 93 84 87 92 94 95 97 90 92 94  
Model-based 
Complex 

79 86 91 84 88 87 90 89 92 81 88 91 78 81 89 86 88 92 85 88 91  

Bicomponent Probabilistic 30 36 39 30 33 33 − 101 − 36 19 30 39 43 74 73 79 − 10 11 38 − 1 20 43  
Symmetric 30 36 39 30 33 33 − 101 − 36 19 30 39 43 74 73 79 − 10 11 38 − 1 20 43  
Asymmetric 30 36 39 30 33 33 − 101 − 36 19 30 39 43 74 73 79 − 10 11 38 − 1 20 43  
Model-based Simple 86 88 89 74 84 87 47 69 84 93 95 95 66 77 84 85 90 94 90 94 96  
Model-based 
Complex 

83 86 87 80 87 87 59 78 89 92 93 93 81 88 91 92 95 96 93 96 96  

Distance Probabilistic 36 33 27 24 38 33 27 40 36 35 38 33 8 16 19 64 57 52 68 59 51  
Symmetric − 19 49 63 − 35 41 51 − 47 47 73 15 74 73 − 2616 − 2138 − 1463 55 75 82 59 81 85  
Asymmetric − 22 − 13 − 8 − 26 − 15 − 9 − 42 − 83 − 40 − 22 − 11 − 7 − 3 − 6 − 3 − 23 − 16 − 10 − 23 − 14 − 9  
Model-based Simple − 35 46 71 − 127 2 46 − 54 42 78 − 40 47 72 − 1075 − 662 − 392 32 58 76 22 56 76  
Model-based 
Complex 

− 10 59 74 − 74 32 59 − 27 59 76 − 7 67 81 − 663 − 353 − 202 60 80 93 50 78 92  

Transitivity Probabilistic 16 35 45 12 4 8 − 131 − 135 − 121 − 53 − 26 − 8 48 51 64 − 109 − 141 − 107 − 94 − 135 − 101  
Symmetric 8 26 34 4 − 2 0 − 196 − 207 − 197 − 85 − 68 − 52 − 222 − 195 − 82 − 162 − 204 − 162 − 125 − 171 − 134  
Asymmetric 34 41 45 45 50 53 35 35 39 29 40 44 53 55 71 41 42 47 40 40 44  
Model-based Simple − 82 − 48 − 20 − 142 − 112 − 74 − 379 − 365 − 301 − 282 − 235 − 171 − 190 − 147 − 46 − 538 − 583 − 396 − 490 − 534 − 355  
Model-based 
Complex 

8 31 41 16 24 32 − 154 − 149 − 115 − 49 − 22 5 6 25 54 − 128 − 130 − 55 − 85 − 79 − 17  

Tau Probabilistic 36 36 36 32 31 28 62 65 67 68 71 71 0 6 21 89 89 87 89 88 85  
Symmetric − 132 − 69 − 15 21 24 20 − 4 3 6 − 27 3 19 − 16 − 23 − 36 6 18 32 9 22 31  
Asymmetric 11 15 22 − 7 6 12 43 45 45 55 65 70 1 7 22 78 80 81 76 79 80  
Model-based Simple 15 20 24 8 10 6 − 16 − 15 − 12 0 7 10 − 19 − 11 6 − 10 − 5 4 − 15 − 8 − 3  
Model-based 
Complex 

22 27 37 42 42 38 12 14 16 35 39 40 − 1 6 23 22 26 32 14 20 25  

CONCOR Probabilistic 6 12 19 12 17 21 9 8 7 21 23 29 11 20 39 17 20 25 21 23 26  
Reciprocated 7 12 19 10 16 21 8 7 6 22 24 29 4 14 32 17 20 25 22 24 27  
Directed 5 11 18 13 17 21 6 5 4 20 22 28 11 20 39 17 20 25 21 23 26  
Model-based Simple − 13 − 3 8 − 9 2 11 − 7 − 6 − 3 − 4 2 11 − 15 − 3 21 − 5 − 1 6 3 7 14  
Model-based 
Complex 

− 10 0 11 − 4 6 15 − 7 − 4 − 2 − 2 4 14 − 14 − 3 22 0 4 11 7 10 17  
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Table A12 
Topology Bias Slope Regressions: Directed Networks.   

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Variables Component Size Bicomponent Size Distance Transitivity Tau RC CONCOR 

Intercept − 0.553 − 0.979 − 4.062*** − 0.957* − 2.251*** − 3.754***  
(3.77) (1.45) (0.37) (0.46) (0.11) (0.41) 

Correlation with Centrality 0.537 0.383*** 0.521*** 0.348*** 0.081** 0.224***  
(0.66) (0.04) (0.07) (0.03) (0.03) (0.01) 

In-degree Std. Dev. − 0.089 − 0.084 − 0.333*** − 0.303*** 0.014 0.045  
(0.35) (0.13) (0.06) (0.08) (0.01) (0.04) 

Log of Size − 0.471 − 0.262 0.496*** − 0.274* 0.013 − 0.046  
(0.81) (0.31) (0.09) (0.11) (0.02) (0.09) 

Asymmetric Imputation 0.696 − 0.141 0.71* − 0.84** 1.884 − 0.117  
(7.31) (0.97) (0.35) (0.26) (1.37) (0.33) 

Simple Model-Based Imputation − 14.491 − 0.026 1.411* − 1.834*** − 0.588 − 0.392***  
(41.66) (1.17) (0.68) (0.39) (0.62) (0.11) 

Complex Model-Based Imputation − 3.342 1.705*** 2.204** − 1.509** − 0.981* − 0.506***  
(7.28) (0.44) (0.69) (0.48) (0.49) (0.14) 

Probabilistic Imputation 0.696 − 0.141 0.925 − 1.934*** 4.558*** − 0.212  
(4.26) (1.01) (0.72) (0.48) (1.1) (0.3) 

Symmetric Imputation 0.696 − 0.141 4.024*** − 1.784*** − 0.78 − 0.262  
(6.8) (0.98) (0.59) (0.49) (1.15) (0.31) 

Correlation with Centrality* Asymmetric Imputation 0.056 − 0.194** − 0.142 − 0.112* − 0.007 − 0.172***  
(0.93) (0.06) (0.11) (0.05) (0.04) (0.02) 

Correlation with Centrality* Simple Model-Based Imputation 2.348* − 0.443*** − 1.288*** − 0.28*** − 0.024 − 0.209***  
(0.93) (0.06) (0.11) (0.05) (0.04) (0.02) 

Correlation with Centrality* Complex Model-Based Imputation 1.109 − 0.346*** − 1.31*** − 0.301*** − 0.005 − 0.211***  
(0.93) (0.06) (0.11) (0.05) (0.04) (0.02) 

Correlation with Centrality* Probabilistic Imputation 0.056 − 0.194** 0.176 − 0.149** − 0.005 − 0.169***  
(0.93) (0.06) (0.11) (0.05) (0.04) (0.02) 

Correlation with Centrality* Symmetric Imputation 0.056 − 0.194** − 0.82*** − 0.106* 0.168*** − 0.176***  
(0.93) (0.06) (0.11) (0.05) (0.04) (0.02) 

In-degree Std. Dev.* Asymmetric Imputation − 0.107 − 0.119 0.131* 0.05 0.346** − 0.018  
(0.68) (0.09) (0.06) (0.04) (0.13) (0.03) 

In-degree Std. Dev.*Simple Model-Based Imputation − 2.292 0.319** − 0.145 0.175** 0.053 − 0.016  
(3.86) (0.11) (0.11) (0.06) (0.06) (0.01) 

In-degree Std. Dev.*Complex Model-Based Imputation − 0.261 0.236*** − 0.056 0.361*** 0.117* − 0.002  
(0.67) (0.04) (0.11) (0.08) (0.05) (0.01) 

In-degree Std. Dev.* Probabilistic Imputation − 0.107 − 0.119 − 0.083 0.29*** 0.423*** − 0.019  
(0.39) (0.09) (0.12) (0.08) (0.1) (0.03) 

In-degree Std. Dev.* Symmetric Imputation − 0.107 − 0.119 0.098 0.323*** 0.218* − 0.009  
(0.63) (0.09) (0.1) (0.08) (0.11) (0.03) 

Log of Size* Asymmetric Imputation − 0.377 0.038 − 0.185* − 0.002 − 0.811** 0.013  
(1.56) (0.21) (0.09) (0.06) (0.29) (0.07) 

Log of Size *Simple Model-Based Imputation 2.96 − 0.774** − 0.364* 0.452*** 0.05 0.091***  
(8.9) (0.25) (0.16) (0.09) (0.13) (0.02) 

Log of Size* Complex Model-Based Imputation 0.209 − 1.084*** − 0.629*** 0.098 0.013 0.098***  
(1.56) (0.09) (0.17) (0.12) (0.1) (0.03) 

Log of Size * Probabilistic Imputation − 0.377 0.038 − 0.229 0.262* − 1.461*** 0.028  
(0.91) (0.21) (0.17) (0.11) (0.23) (0.06) 

Log of Size* Symmetric Imputation − 0.377 0.038 − 1.14*** 0.254* − 0.137 0.024  
(1.45) (0.21) (0.14) (0.12) (0.25) (0.07) 

N 378 378 324 324 378 378 
Networks 7 7 7 7 7 7 

Note: The regression uses the betas slopes from each line as the dependent variable. The betas represent the expected drop in correlation (between the empirical and the observed) for a 10 % increase in the amount of 
missing data. Larger numbers mean larger bias with more missing data. The correlation with centrality takes four values: − .75, − .25, .25, and .75. 
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Table A13 
Maximum percent missing to retain target correlation of .9 with true score.  

Network Imputation Type In-Degree Out-Degree Total Degree Bonacich Power Closeness Betweenness   

Non-respondents 
in Correlation 

Non-respondents 
in Correlation 

Non-respondents 
in Correlation 

Non-respondents 
in Correlation 

Non-respondents 
in Correlation 

Non-respondents 
in Correlation   

No Yes No Yes No Yes No Yes No Yes No Yes 

Undirected 
Networksa 

Listwise Deletion 55.8 NAb 55.8 NA 55.8 NA 47.6 NA 5 NA 30.2 NA  

Symmetric 70c 46.8 70 46.8 70 46.8 70 52.6 56.8 39.2 65.6 44.8  
Model-Based Simple 70 56.4 70 56.4 70 56.4 70 58.2 64.8 28.8 69.4 45.2  
Model-Based Complex 70 58.4 70 58.4 70 58.4 70 59.4 64.4 24.4 67.8 48.2 

Directed Networksa Listwise Deletion 39 NA 25.6 NA 33.7 NA 26.3 NA 21.6 NA 15.4 NA  
Probabilistic 40.9 39 70 9.6 58.6 24.4 51.1 23.9 42.3 9 20.4 11.1  
Symmetric 30.9 30.6 70 12.4 50.1 29.1 51.1 23.9 43.3 12.3 9.7 5.4  
Asymmetric 39 38.4 70 6.7 59.4 20.7 51.1 23.9 26.3 3.9 19.3 7.7  
Model-Based Simple 27.7 28.4 70 13.3 45.7 25.3 42 24 49.9 11.4 9.1 4.7  
Model-Based Complex 30 31.3 70 12.6 48.7 27.3 44 24.9 50.4 10.7 11.4 6.9 

The maximum percent missing was calculated based on a quadratic fit to the data. 
a Values represent the means (for the maximum percent missing to retain target correlation) taken over all directed or undirected networks.  

b Listwise deletion has no value for the case of non-respondents being kept in the correlation calculation.  

c Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means.  
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