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I. INTRODUCTION

One of the most difficult challenges faced in computational
physics is simulating the equilibrium states of disordered
systems with rough free-energy landscapes, such as spin
glasses [1,2]. Standard Markov-chain Monte Carlo methods
operating at a single temperature, such as the Metropolis
algorithm, equilibrate extremely slowly at low temperatures
due to trapping in metastable states. Algorithms that make
use of simulations at many temperatures partially solve this
problem and are now the methods of choice for equilibrium
simulations of disordered systems with frustration. Markov-
chain Monte Carlo methods in this general category include
parallel tempering Monte Carlo [3–7], simulated tempering
Monte Carlo [8], and the Wang-Landau algorithm [9,10].
Population annealing Monte Carlo [11–13], the topic of this
paper, is an alternative to these multicanonical algorithms.
Population annealing also employs many temperatures. How-
ever, it is not a Markov-chain Monte Carlo method. Instead,
population annealing is a sequential Monte Carlo method [14].
Population annealing was introduced by Hukushima and Iba
[11] and further developed in Refs. [12,13]. The algorithm was
independently discovered and called “sequential Monte Carlo
simulated annealing” in Ref. [15]. Sequential Monte Carlo
algorithms are not commonly used in computational physics.
However, the approach has been applied to some problems,
e.g., the diffusion Monte Carlo method for finding ground
states of many-body Schrodinger equations and Grassberger’s
“Go with Winners” method [16].

Population annealing has been successfully used in large-
scale simulations of Ising spin glasses by the present au-
thors [17,18]. One of the purposes of this paper is to give
additional details of the implementation and performance of
the population annealing algorithm as used in Refs. [17,18].
We have also successfully used population annealing as a
heuristic to find spin-glass ground states [19] and have shown
that population annealing is comparably efficient to parallel
tempering Monte Carlo while both are far more efficient

*wenlong@physics.umass.edu
†machta@physics.umass.edu

than simulated annealing [20]. The current state-of-the-art
algorithm for simulations of spin glasses and related systems
with rough free-energy landscapes is parallel tempering Monte
Carlo. Another purpose of this paper to argue that population
annealing is a useful alternative and potentially superior to
parallel tempering for large-scale studies of the equilibrium
properties of spin glasses and other disordered systems. We
carry out a detailed comparison of population annealing and
parallel tempering for simulating spin glasses and we find
that the two methods are comparably efficient for sampling
thermal states, although each method has advantages and
disadvantages. We also develop a theory that quantifies the
rate of convergence to equilibrium of population annealing
and compare the theoretical predictions to simulations.

The outline of the paper is as follows. In Sec. II, we
introduce both population annealing and parallel tempering
Monte Carlo, and in Sec. III we discuss several features
of population annealing. Section IV is concerned with the
systematic and statistical errors in population annealing and
the section concludes with a comparison of errors to those
in Markov chain Monte Carlo methods such as parallel
tempering. Section V introduces the Edwards-Anderson Ising
spin-glass model and gives details of the simulations and the
quantities that were measured. Section VI presents the results
of large-scale simulations using both population annealing
and parallel tempering with an emphasis on elucidating the
properties of population annealing and comparing them to
parallel tempering. The paper concludes with a discussion in
Sec. VII.

II. POPULATION ANNEALING AND PARALLEL
TEMPERING MONTE CARLO

A. Population annealing

Population annealing (PA) is closely related to simulated
annealing [20] (SA) except that it uses a population of
replicas and this population is resampled at each temperature
step. Like simulated annealing, PA involves lowering the
temperature of the system through a sequence of temperatures
from a high temperature where equilibration (also known as
thermalization) is easy to a low, target temperature T0 where
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equilibration is difficult. Unlike SA, PA is designed to simulate
the equilibrium Gibbs distribution at each temperature that is
traversed. The resampling step ensures that the population
stays close to the equilibrium ensemble. Just as in simulated
annealing, at each temperature, each replica is acted on by
a Markov-chain Monte Carlo (MCMC) procedure such as
the Metropolis algorithm. The annealing schedule consists
of a sequence {βNT −1, . . . ,β0} of NT inverse temperatures,
β = 1/T labeled in descending order in β so that βj+1 < βj .
In our studies, the inverse temperatures are equally spaced,
starting at infinite temperature βNT −1=0 and ending at β0=5.
The MCMC method is the Metropolis algorithm [21,22],
which is applied for NS sweeps at each temperature. The
initial population size is R and each replica is independently
initialized with random spins corresponding to an infinite
temperature ensemble. In our implementation the population
size fluctuates. In a given run at inverse temperature β the
population size is R̃β with a mean value of R.

The resampling step uses differential reproduction of
replicas with a number of copies depending on the replica’s
energy. Let Ej be the energy of replica j . Given an equilibrium
population at β, the goal is to resample the population so that
it is an equilibrium population at β ′ with β ′ > β. For a replica
j , with energy Ej the ratio of the statistical weights at β and
β ′ is exp[−(β ′ − β)Ej ]. Note that this is the reweighting used
in the histogram reweighting method [23].

Since the typical energy is large and negative, the reweight-
ing factor is much greater than unity so that a normalization is
needed to keep the population size close to R. The normalized
weights τj (β,β ′) are given by

τj (β,β ′) = R

R̃β

e−(β ′−β)Ej

Q(β,β ′)
, (1)

where Q(β,β ′) is the normalization

Q(β,β ′) = 1

R̃β

R̃β∑
j=1

e−(β ′−β)Ej . (2)

Note that the sum of τj (β,β ′) over j is R.
The new population at temperature β ′ is obtained by

resampling the old population such that the number of copies
nj of replica j is a random non-negative integer whose
mean is τj (β,β ′). There are many ways to choose nj to
satisfy this requirement [24]. Some of these methods such
as a multinomially distributed nj keep the population size
fixed while others allow the population size to fluctuate.
We choose a method that minimizes the variance of nj

and has
√

R fluctuations in the population size. Let nj be
�τj� with probability 1 − (τj − �τj�) or �τj� with probability
(τj − �τj�) where �τj� is the floor (greatest integer less than)
τj and �τj� is the ceiling (least integer greater than) τj . By
minimizing the variance of nj we reduce correlations in the
population while the fluctuating population size creates a small
overhead in memory usage.

Consider a single temperature step in PA. If the original,
higher temperature population is an equilibrium ensemble
representing the Gibbs distribution at inverse temperature
β, then the final, lower temperature population is also an
equilibrium ensemble at inverse temperature β ′. However,

the new population is correlated due to copying replicas in
the resampling step and, for finite R, the new population
represents a biased ensemble due to a lack of representation of
the low-energy tail of the β ′ Gibbs distribution. These errors
are partially corrected by the MCMC sweeps β ′. Statistical
and systematic errors are discussed in Sec. IV.

The full PA algorithm is a sequence of NT − 1 annealing
steps starting from infinite temperature. In each annealing
step, the population is resampled and then NS sweeps of the
Metropolis algorithm are carried out on each replica.

B. Parallel tempering

In this section, we briefly describe parallel tempering
(PT) Monte Carlo, the state-of-the-art Monte Carlo algorithm
for spin glasses and many other frustrated systems. Parallel
tempering is a Markov-chain Monte Carlo algorithm while
population annealing is a sequential Monte Carlo algorithm,
nonetheless, the two algorithms share many similarities. In
parallel tempering, a set of NT temperatures is used ranging
from a high temperature that is easy to equilibrate to a
low temperature of interest T0. There is a single replica of
the system at each of these temperatures and each of these
replicas is operated on by a MCMC method such as the
Metropolis algorithm at that temperature. After NS sweeps of
the replicas at their respective temperatures, replica exchange
moves are proposed. In a replica exchange move, replicas at
two temperatures are proposed for swapping. Typically, the
two temperatures are chosen to be neighboring temperatures
in the list of temperatures. Let these two inverse temperatures
be β and β ′ with β ′ > β and let E and E′ be the respective
energies of the replicas at these two temperatures. The swap is
accepted with probability min{1, exp[(β ′ − β)(E′ − E)]}. It
is easily shown that this swap probability satisfies detailed
balance [5] with respect to the product measure of Gibbs
distributions at the NT temperatures so that PT converges to
equilibrium at each temperature. Diffusion of replicas from
low temperature to high temperature and back, called “round
trips,” allows PT to surmount barriers in the free-energy
landscape [7,25].

III. FEATURES OF POPULATION ANNEALING

A. Free-energy estimator

The free-energy difference between the highest and lowest
temperature is easily measured using population annealing
[12]. If the highest temperature is infinity, as is the case in our
implementation of the algorithm, then the absolute free energy
can be measured. The key idea is that the normalization factor,
defined in Eq. (2), is the ratio of the partition functions at
the two inverse temperatures β to β ′. To see this, expand the
definition of Z(β ′) and replace the resulting average at β by
its population estimate

Z(β ′)
Z(β)

=
∑

γ e−β ′Eγ

Z(β)
=

∑
γ

e−(β ′−β)Eγ

[
e−βEγ

Z(β)

]

= 〈e−(β ′−β)Eγ 〉β ≈ 1

R̃β

R̃β∑
j=1

e−(β ′−β)Ej = Q(β,β ′). (3)
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The summation over γ in the first two lines in the above
expressions is over all possible spin configurations, while the
summation in the last line is over the population. Since F =
−T ln Z, the estimator of the free energy F̃ at each simulated
temperature is

−βkF̃ (βk) =
NT −1∑
�=k+1

ln Q(β�,β�−1) + ln �, (4)

where � is the number of microstates of the systems and
{β�} is the sequence of inverse temperatures in descending
order: βNT −1 = 0 and β0 = 1/T0 is the inverse of the target
temperature. For Ising systems, � = 2N where N is the num-
ber of spins. Since the number of temperatures in population
annealing is typically in the hundreds, it is straightforward
to accurately measure free energy, energy, and entropy as a
continuous function of temperature over the whole range of
temperatures from infinity to T0. It should be noted that the
same method can also be efficiently employed to measure
free-energy differences in PT [26].

B. Weighted averages

Many independent runs of PA for the same system may be
combined to reduce both systematic and statistical errors in the
measurement of an observable A. Suppose we have carried
out M independent runs and obtained estimates Ãm,m =
1, . . . ,M . Let F̃m(β) be the free energy estimated in run m

at the measurement temperature 1/β. If the different runs have
different population sizes, let Rm be the nominal population
size in run m. Then, the best estimator A for the thermal
average of the observable is

A =
∑M

m=1 ÃmRm exp[−βF̃m(β)]∑M
m=1 Rm exp[−βF̃m(β)]

. (5)

To justify this formula, consider an unnormalized variant of
population annealing in which the population is not kept under
control but is allowed to grow exponentially. In the resampling
step in the unnormalized version of PA, the expected number
of copies of replica j is simply the reweighting factor
exp[−(β ′ − β)Ej ]. Unnormalized PA is equivalent to standard
PA except that it requires exponential computer resources
and yields better statistics. Without the normalization factor
in the resampling step, each replica evolves independently
and combining separate runs of the unnormalized algorithm
requires no weighting factor other than the obvious weighting
by the population size Rm. Thermal averages in unnormalized
PA are obtained using simple averaging. The simple average in
unnormalized PA becomes a weighted average in standard PA
because the populations in different runs of standard PA have
been normalized differently. Specifically, the product of the
normalization factors Q [Eq. (2)] from the highest temperature
to the measurement temperature is the ratio of the population
size in unnormalized PA to the population size in standard PA.
But, this product is proportional to the exponential of the free
energy [see Eq. (4)], justifying the use of Rm exp[−βF̃m(β)]
as the weighting factor in standard PA. Note that observables
such as the spin and link overlap that involve more than
one independent copy of the system may also be estimated

using weighted averages from multiple independent runs as
discussed in Sec. V D.

Weighted averaging for the dimensionless free energy is
more complicated because the free energy involves measure-
ments at all temperatures, however, as shown in Ref. [12], the
final result is relatively simple:

−βF = ln

[∑M
m=1 Rm exp(−βF̃m)∑M

m=1 Rm

]
. (6)

This equation is obtained from Eq. (4) and the fact that
Q(β�,β�−1) is an observable for which weighted averaging
applies, but at inverse temperature β�. Thus,

−βkF (βk)

=
NT −1∑
�=k+1

ln

{∑M
m=1 Qm(β�,β�−1)Rm exp[−β�F̃m(β�)]∑M

m=1 Rm exp[−β�F̃m(β�)]

}

+ ln �. (7)

This complicated equation for the weighted average of the
dimensionless free energy collapses to Eq. (6) after using the
fact that

Qm(β�,β�−1) exp[−β�F̃m(β�)] = exp[−β�−1F̃m(β�−1)], (8)

and also noting that the weighting factor at β = 0 is simply
Rm and setting βk = β.

It is important to understand that combining multiple
independent runs with weighted averaging reduces both
statistical errors and systematic errors. By contrast, ordinary
averaging reduces only statistical errors. It is obvious that more
measurements should reduce statistical errors. Systematic
errors are reduced because the weighted average of multiple
runs is identical to simulating a larger population size and
systematic errors diminish with population size. Indeed, all
ensemble averaged quantities are exact in the limit of an infinite
population size or, equivalently, using weighted averaging in
the limit of an infinite number of runs with fixed population
size. If the variance in βF̃ (β) is much less than unity, there
is little difference between weighted averaging and simple
averaging. However, if the variance of the free energy is
large, the weighting factors, which depend exponentially on
the free energy, are broadly distributed, and the two averages
differ substantially. As we shall see in the next subsection, the
variance of the free-energy estimator is a fundamental quantity
in understanding systematic errors in PA.

Note that there is no method available for combining
independent runs of a MCMC algorithm to decrease systematic
errors. The most comparable procedure to weighted averaging
for MCMC algorithms is “checkpointing.” In checkpointing,
the complete state of the system is saved at the end of
the simulation. If results with smaller systematic errors are
required, the simulation can be restarted beginning with the
final state of the previous simulation so that averaging is
initiated after a longer initialization period. Compared to
weighted averaging, checkpointing requires substantially more
storage because the full configuration of the system must
be stored, instead of just the estimators for the observables
and the free energy. In addition, checkpointing must be done
sequentially while weighted averaging can be carried out using
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multiple parallel runs. It is a significant advantage of PA
that independent runs can be combined to improve systematic
errors (equilibration), which is not possible in PT.

C. Macroscopic degrees of freedom

Some problems in computational statistical mechanics
require averaging over a small discrete set of macroscopic
degrees of freedom in addition to a much larger number of
microscopic degrees of freedom. An example of this situation
is thermal boundary conditions for spin models [17]. For
thermal boundary conditions in d space dimensions, the 2d

combinations of periodic and antiperiodic boundary conditions
in the d directions are all included in the thermal ensemble.
Each combination of spin configuration and boundary condi-
tion appears in the ensemble with its Boltzmann weight. Since
differing boundary conditions will have energies that differ by
the surface area of the system, energy differences are much
greater than for single spin flips. Large energy differences
between different boundary conditions imply that Metropo-
lis moves to change boundary conditions will be strongly
suppressed except at very high temperature. Macroscopic
degrees of freedom such as the boundary conditions in thermal
boundary conditions can be easily handled by PA if the starting
temperature in the simulation is β = 0. At infinite temperature,
each macroscopic state appears with the same probability so
the initial population is set up with equal fractions in each
macroscopic state. For example, in three-dimensional (d = 3)
Ising spin-glass simulations with thermal boundary conditions,
1
8 of the population is initialized in each of the 23 = 8 boundary
conditions. No Monte Carlo moves are required to change
boundary conditions during the remainder of the simulation
because the resampling step correctly takes care of adjusting
the fraction of each boundary condition in the population. We
have successfully used this method to carry out large-scale
simulations of the Edwards-Anderson spin glass in thermal
boundary conditions [17,18]. A more accurate but also more
costly method is to simulate each macroscopic state separately
and then combine them with weights given by the exponentials
of their respective free energies. Macroscopic degrees of
freedom can also be efficiently simulated using PT [27].

IV. SYSTEMATIC AND STATISTICAL ERRORS

A. Systematic errors and the variance of the free energy

Systematic errors in PA reflect the fact that for finite pop-
ulation size R, the population is not an unbiased sample from
the Gibbs distribution. For PA, the algorithm “equilibrates” to
the Gibbs distribution as R increases. In this section, we study
the convergence in R to the equilibrium Gibbs distribution.
Consider the weighted average of M runs each with fixed
population size R. In what follows, a fixed value of R is
implicit in the notation. We argued in Sec. III B that the exact
Gibbs ensemble average 〈A〉 of observable A is obtained by
weighted averaging in the limit of infinitely many runs:

〈A〉 = lim
M→∞

∑M
m=1 Ãm exp[−βF̃m(β)]∑M

m=1 exp[−βF̃m(β)]
. (9)

Replacing the sum over runs by an integral over classes of runs
with similar values of Ã and F̃ , we obtain

〈A〉 =
∫∫

x pAF (x,y) exp(−βy)dx dy∫
pF (y) exp(−βy)dy

, (10)

where pF (·) is the probability density for free-energy estimator
F̃ and pAF (·,·) is the joint probability density of measuring
observable Ã and free-energy estimator F̃ . The average of the
estimator Ã in a single run of PA, 〈Ã〉, is

〈Ã〉 =
∫

x pA(x)dx. (11)

Note that the difference between the integrals for 〈A〉 and
〈Ã〉 is simply the weighting factor exp(−βF̃ ). The difference
�A = 〈Ã〉 − 〈A〉 is the systematic error in measuring A in a
single run of PA with population size R.

Systematic errors for the free energy present a simpler
situation. The cumulant generating function φ of pF is defined
as

φ(z) = ln

[∫
dy exp(zy) pF (y)

]
. (12)

But, φ(−β) is the integral expression for the weighted average
of the dimensionless free energy [see Eq. (6) with constant
Rm]. Thus, the equilibrium free energy F is related to the
distribution of the free-energy estimator via

F = −φ(−β)/β, (13)

while the expected value of the free-energy estimator from a
single run 〈F̃ 〉 is given by

〈F̃ 〉 = ∂

∂z
φ(z)

∣∣∣∣
z=0

= μF , (14)

where μF is the mean of pF . The systematic error in the free
energy is the difference between these expressions, �F =
〈F̃ 〉 − F . Since φ(z) is the cumulant generating function, we
see that

�F = 1

2
βσ 2

F +
∞∑

n=3

(−1)nβn−1

n!
Cn, (15)

where Cn is the nth cumulant of pF and σ 2
F = C2 is the variance

of pF .
For large population size (R  1) an argument based on

the central limit theorem suggests that pF should become a
Gaussian since F̃ is the sum of contributions from a large
number of nearly independent members of the population.
Thus, for large R we expect the simpler expression

�F = β

2
σ 2

F (16)

to become exact.
Similarly, for large R we expect the joint distribution pAF

in Eq. (10) to be a bivariate Gaussian defined by the means
and variances of Ã and F̃ , and their covariance cov(Ã,F̃ ).
Carrying out the Gaussian integrals for 〈A〉 in Eq. (10) we
obtain for the equilibrium value of the observable

〈A〉 = μA − β cov(Ã,F̃ ). (17)
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Thus, the systematic error �A = 〈Ã〉 − 〈A〉 in estimating the
observable A in a simulations with population size R is given
by

�A = β cov(Ã,F̃ ). (18)

We see that for large R, the systematic error in any observable
is proportional to the covariance of the observable with the
free-energy estimator. This expression for the systematic error
in A can be rewritten in a form that emphasizes the central
role of the variance of the free energy

�A = var(βF̃ )

[
cov(Ã,βF̃ )

var(βF̃ )

]
. (19)

It is expected that the quantity in the square brackets will be
nearly independent of R so that systematic errors in A are
proportional to the variance of dimensionless free energy, just
as is the case for the free energy itself.

A central limit theorem argument suggests that var(βF̃ )
decreases as 1/R so that the product R var(βF̃ ) should
approach a constant. Define the equilibration population size
ρf as

ρf = lim
R→∞

R var(βF̃ ). (20)

The population is in equilibrium when R is much larger than
ρf . Define δÃ/βδF̃ as the limit of the quantity in the square
brackets in Eq. (19):

δÃ
βδF̃

= lim
R→∞

cov(Ã,βF̃ )

var(βF̃ )
. (21)

Given these definitions, the asymptotic theoretical prediction
for systematic errors is that

�A ∼ ρf

R

δÃ
βδF̃

, (22)

for any observable A, except the free energy. For the free
energy, the simpler expression holds:

�F = ρf

2βR
. (23)

Note that δÃ/δF̃ can be interpreted as the slope of the
regression line through the joint distribution pAF . To see this,
let 〈x | y〉 be the conditional average of x given y. For a general
bivariate normal distribution, the conditional average is given
by

〈x | y〉 = μx + cov(x,y)

σ 2
y

(y − μy), (24)

from which one sees that cov(Ã,F̃ )/var(F̃ ) is the slope of
the linear dependence of Ã on F̃ . One should not, however,
consider Eq. (23) to be a special case of Eq. (22) by setting
δF̃ /δF̃ = 1 since the free-energy error equation has an extra
factor of 1

2 .
For weighted averages, we expect similar results for

systematic errors but with R replaced by MR0, where R0

is the size of the individual runs and M the number of
runs in the weighted average. The substitutions R → MR0

in Eqs. (22) and (23) should become exact for weighted
averages as R0/ρf → ∞ but for finite R0/ρf , where the joint

distribution is not close to a bivariate Gaussian, the dependence
on M may be more complicated.

B. Statistical errors

The statistical error δÃ of an observable A is the square
root of the variance of the estimator

δÃ ≡ [var(Ã)]1/2. (25)

Statistical errors scale inversely in the square root of the
number of independent observations. In the absence of
resampling, the number of independent measurements in PA
is the population size R. However, the resampling step makes
identical copies of replicas and thus correlates the population
so that the effective number of independent measurements
is less than R. On the other hand, MCMC sweeps at each
temperature decorrelate the replicas. Thus, if we consider only
the correlating effect of resampling, we obtain an upper bound
on the statistical errors.

Family trees can be constructed for each member of the
initial population. Call all the descendants of replica i in the
initial population a family and let ni be the fraction of the
population in family i. In a typical PA simulation starting at
infinite temperature and ending at a low temperature the great
majority of initial replicas have no descendants, ni = 0. To
obtain an upper bound that ignores the decorrelating effect of
the MCMC sweeps, assume that observable A takes a single
value Ãi for every member of family i. If the MCMC algorithm
applied at each temperature step were completely ineffectual,
this would be the case. Given this assumption, the estimator Ã
for the full simulation is

Ã =
∑

i

niÃi . (26)

Next, make the additional approximation, which leads to an
even weaker upper bound, that the variance of the value of
the observable in each family is var(A), the full variance of
the observable in the thermal ensemble. In particular, we are
ignoring the possibility that the observable is correlated with
the family size. For a given distribution of family sizes, we
obtain the variance of the estimator of the observable var(Ã):

var(Ã) � var(A)
∑

i

n2
i . (27)

Note that if every family contained one member and
there were R families then ni = 1/R from which we would
obtain the result for R independent measurements, that
δÃ = [var(A)/R]1/2. More generally, the statistical errors are
bounded by the second moment of the family size distribution.
Suppose this moment scales as 1/R and define the mean square
family size ρt :

ρt = lim
R→∞

R
∑

i

n2
i . (28)

In terms of ρt , the bound on the statistical error in δÃ is

δÃ �
√

var(A)ρt/R. (29)

The quantity R/ρt is an effective number of independent
measurements.
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A second measure of the effective number of families is
related to the entropy Sf of the family size distribution

Sf = −
∑

i

ni ln ni . (30)

The exponential eSf is an effective number of families.
Suppose R/eSf has a limit and define the entropic family size
ρs :

ρs = lim
R→∞

R/eSf . (31)

The quantity R/ρs is an alternative measure of the number of
independent measurements. If every family is a singleton, then
ρs = ρt = 1. If the family size distribution is exponential with
mean μ, then it is straightforward to show that ρt = 2μ and
ρs ≈ 1.53μ. As we shall see in Sec. VI B, these two measures
are always close to one another. All of the characteristic sizes
ρf , ρs , and ρt are defined as limits as R goes to infinity but,
in practice, we measure them at a fixed large R.

C. Comparison of errors in population annealing and
Markov-chain Monte Carlo algorithms

In the previous two subsections we have seen that system-
atic and statistical errors in PA both decrease with population
size R; systematic errors diminish as 1/R, while statistical
errors diminish as 1/

√
R. PA is a sequential Monte Carlo

method, while the great majority of simulation methods in
statistical physics are MCMC methods. For MCMC methods
observables are measured using time averages rather than
ensemble averages as is the case for PA, and the equivalent
quantity to population size is the length of the run T . Errors
are reduced by increasing the running time and are estimated
from the autocorrelation functions of observables. Systematic
errors in MCMC diminish as exp(−T /τexp) where τexp is
the “exponential autocorrelation time,” while statistical errors
in an observable A diminish as

√
2τA

int/T where τA
int is the

“integrated autocorrelation time” for A (see, for example,
Ref. [28] for a discussion of integrated and exponential
autocorrelation times).

In a loose sense we can equate the equilibration population
size ρf with the exponential autocorrelation time τexp and
either of the family size measures ρs or ρt with integrated
autocorrelation times. Naively, it would appear that even
if the measures τexp and ρf were comparable, a MCMC
method would have a considerable advantage over PA because
MCMC algorithms converge exponentially in the amount
of computational work rather than inversely. On further
reflection, one can see that the exponential advantage of
MCMC is mostly illusory because of statistical errors, which
decrease only as the inverse square root of the amount of
computational work for both MCMC and PA. For both types of
algorithms, the systematic errors are dwarfed by the statistical
errors for simulations of a single system.

However, for disordered systems, it is usually necessary
to carry out an additional average over many realizations of
the disorder. Statistical errors for disorder-averaged quantities
decrease with the number of disorder realizations n as 1/

√
n.

When n is large enough, there could be a regime where statisti-
cal errors in disorder averages are smaller than the systematic

errors of PA. To investigate this issue more quantitatively,
consider an observable A and its disorder average [〈A〉]d
where [. . .]d indicates a disorder average. Using Eq. (22) we
have the following expression for the systematic error in the
disorder average �[〈A〉]d :

�[〈A〉]d ≈
[
ρf

R

δÃ
βδF̃

]
d

. (32)

Let δ[〈A〉]d be the statistical error in [〈A〉]d and suppose that
the main contribution to this statistical error comes from the
variance with respect to disorder in 〈A〉 defined by

2
A = [〈A〉2

]
d

− [〈A〉]2
d . (33)

Systematic errors are negligible relative to statistical errors if
�[〈A〉]d � A/

√
n where n is the number of disorder real-

izations in the sample. Thus, systematic errors are negligible
if

√
n

A

[
ρf

R

δÃ
βδF̃

]
d

� 1, (34)

and for the free energy we have the simpler expression
√

n

F

[
ρf

2βR

]
d

� 1. (35)

In our L = 10 simulations of the Edwards-Anderson model,
discussed in the following, n = 5000 and F = 23.9 at β = 5.
Our equilibration criterion requires that ρs/R � 10−2 and, for
most instances, ρs/R � 10−2. As we shall see in Sec. VI B,
ρf is typically less than a factor of 2 larger than ρs . Thus, the
left-hand side of Eq. (35) for the disorder average of the free
energy is less than 10−2 and we are safely in the regime where
statistical errors greatly exceed systematic errors.

V. MODEL, SIMULATION DETAILS, AND OBSERVABLES

A. Edwards-Anderson model

We test the performance of PA and compare it to PT in
the context of the three-dimensional (3D) Edwards-Anderson
(EA) Ising spin-glass model [29], defined by the Hamiltonian

H = −
∑
〈i,j〉

JijSiSj , (36)

where Si ∈ {±1} are Ising spins and the sum is over nearest
neighbors on a cubic lattice of linear size L with periodic
boundary conditions. The random couplings Jij are chosen
from a Gaussian distribution with zero mean and unit variance.
A set of couplings J = {Jij } defines a disorder realization or
“instance.”

Sampling low-temperature equilibrium states of the 3D
EA model is computationally very difficult. It is known that
finding ground states of the 3D EA models is an NP-hard
computational problem [30] and it is believed that sampling
low-temperature equilibrium states is also exponentially hard
in the sense that the amount of computational work needed to
achieve a fixed accuracy in sampling grows exponentially in
the system size L. For MCMC algorithms, this intuition can
be made more precise as a statement about the L dependence
of autocorrelation times, while for PA it is a statement about
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quantities such as ρf , ρt , and ρs , introduced in Sec. IV, which
characterize population sizes required for equilibration.

There are large sample-to-sample variations in the difficulty
of sampling equilibrium states of the 3D EA model. It is
known that the distribution of integrated autocorrelation times
and other equilibration measures for PT is approximately
log-normal [31–33]. One of the important question studied
in Sec. VI is whether PA and PT both find the same spin-glass
instances to be either hard or easy.

There are two reasons why the 3D EA model is com-
putationally difficult that can be understood intuitively in
terms of the free-energy landscape. The first reason is that
the free-energy landscape is rough for typical instances with
several relevant local minima separated by high barriers. Both
PT and PA are designed to partially overcome this source of
computational hardness although it certainly plays a role [33].
The second reason is related to temperature chaos [18,34,35],
which is effectively a change in dominance between minima
in the free-energy landscape as a function of temperature. At
high temperatures, free-energy minima with large entropies
dominate while at lower temperatures free-energy minima
with low energies dominate, and finding these rare low-energy
states is difficult for both PA and PT.

Extensive numerical evidence supports the idea that the 3D
EA model undergoes a second-order phase transition from a
paramagnetic high-temperature phase to a spin-glass phase
at a temperature Tc ≈ 0.96 (see, for example, Ref. [31]).
Ordering in the spin-glass phase is detected using the overlap
distribution. The overlap q is defined as

q = 1

N

∑
i

S
(1)
i S

(2)
i , (37)

where N = L3 is the number of spins, and the superscripts
“(1)” and “(2)” refer to two statistically independent spin
configurations chosen from the Gibbs distribution with the
same disorder J . Let PJ (q) be the overlap distribution for
instance J . In the paramagnetic phase and for large systems,
PJ (q) is concentrated near q = 0, showing that independent
spin configurations chosen from the ensemble have little
correlation. The behavior of PJ (q) for large L in the spin-glass
phase is the subject of a longstanding controversy but it is
agreed that there are two peaks at ±qEA with qEA > 0 and
qEA → 1 as T → 0. The controversy concerns whether or
not PJ (q) simply consists of two delta functions at ±qEA
as predicted by the droplet picture [36–38] or whether there
is a forest of smaller δ functions between −qEA and +qEA
as predicted by the replica symmetry breaking (RSB) picture
[39,40]. The droplet picture asserts that the spin-glass phase
consists of two thermodynamic pure states related by a global
spin flip while the RSB picture asserts that there exists a
countable infinity of thermodynamic pure states. For finite sys-
tems, PJ (q) varies greatly from instance to instance with some
disorder realizations resembling the predictions of the droplet
picture and others the RSB picture. The weight of PJ (q) near
q = 0 has been used to distinguish the two competing theories
of the low-temperature phase of the EA model.

B. Simulation details

The large data sets used in this study were obtained in
previous studies of the low-temperature phase of spin glasses

TABLE I. Parameters of the main population annealing simula-
tions [17]. L is the system size, R is the standard number of replicas, T0

is the lowest temperature simulated, NT the number of temperatures
(evenly spaced in β) in the annealing schedule, and W = RNT NS is
the number of sweeps applied to a single disorder realization. n is
the number of disorder realizations and nhard is the number of hard
instances requiring more than R replicas to meet the equilibration
requirement. For L = 14 we used weighted averaging with M = 10
independent runs so W = MRNT NS for this case.

L R T0 NT W n nhard

4 5 × 104 0.20 101 5 × 107 4941 0
6 2 × 105 0.20 101 2 × 108 4959 0
8 5 × 105 0.20 201 109 5099 5
10 106 0.20 301 3 × 109 4945 286
12 106 0.333 301 3 × 109 5000 533
14 3 × 106 0.333 401 1.2 × 1010 1000 N/A

[17,41], the dynamics of PT [33], and a comparison of
PA and PT for finding ground states [19]. These data sets
involve roughly n ≈ 5000 disorder realizations for each of
five system sizes, L = 4, 6, 8, 10, and 12 (note that data for
L = 12 using PT have also been simulated, too, albeit at a
higher temperatures). The same set of disorder realizations
was simulated using both PA and PT to allow for a detailed
comparison between the two algorithms. In addition, we
carried out PA simulations for n = 1000 instances with L =
14. The parameters of the PA simulations are given in Table I.
In our implementation of PA, the annealing schedule has
temperatures that are evenly spaced in β = 1/T starting from
infinite temperature. In all PA simulations we used NS = 10
Metropolis sweeps per temperature. The number of Metropolis
sweeps per simulation W is given by W = RNSNT so that W
is a rough measure of the computational work expended per
spin in the simulation. For the L = 14 runs we used weighted
averaging with M = 10 independent runs per instance so that
here W = MRNSNT .

The equilibration criterion that we use is that R � 100ρs ,
which is equivalent to Sf � ln(100). It is worth mentioning
here that ρs converges rapidly as the population size grows (see
Fig. 10). In our simulations, we first choose a population size
for which most instances are equilibrated. A larger population
is used for hard samples and the process is iterated until all
samples meet the equilibration criterion or until it becomes
impractical to increase R. In the latter case, we either use
more temperatures or perform a weighted average. For M

independent runs, it is straightforward to show that the entropy
of the family size distribution is given by

Sf =
M∑
i=1

Sf,ipi −
M∑
i=1

pi ln(pi), (38)

where Sf,i is the entropy of the family size distribution for run
i and pi is the weight factor for run i, defined in Eq. (5). Note
that if the pi and Sf,i are both constants independent of i, then
from Eq. (31), ρs is the same whether it is estimated from a
single long run with population MR or M shorter runs, each
of length R.
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TABLE II. Parameters of the parallel tempering simulations
[33,41]. L is the linear system size, 2b is the standard number of Monte
Carlo sweeps. T0 is the lowest temperature used, NT is the number of
temperatures, andW = 2b+1NT NS is the number of sweeps applied to
a single disorder realization. n is the number of disorder realizations.

L b T0 NT W n

4 18 0.20 16 8 × 106 4941
6 24 0.20 16 5 × 108 4959
8 27 0.20 16 4 × 109 5099
10 27 0.20 16 4 × 109 4945

The population size for each system size is listed in the
column labeled R in Table I. This population size satisfies the
equilibration criterion for most disorder realizations. However,
for the hardest instances, runs were required with larger
population sizes. The number of hard instances nhard is listed
in the last column of the aforementioned table. The PA
simulations were carried out using OpenMP implemented on
eight cores where each core works on a different subset of
the population. In addition to the simulations described in
Table I, we carried out a detailed study of a single L = 8 and
a single L = 4 disorder realization in which we performed a
large number of independent runs for various population sizes
to check predictions concerning systematic errors.

The parameters of the PT simulations are given in Table II.
In the implementation of PT, the highest temperature is T = 2
and each PT sweep involves NS = 1 heat bath sweeps per
replica. Each simulation involves 2b+1 PT sweeps, 2b for
equilibration and 2b for data collection. The number of heat
bath sweeps per simulation and thus the computational work
per spin is W = 2b+1NSNT . In fact, for computing the overlap
q, twice this number of sweeps were used because two inde-
pendent simulations are needed to compute q in PT. Additional
details of the PT simulations can be found in Ref. [33].

C. Measured quantities

We measured standard spin-glass observables and also
quantities intrinsic to the PA algorithm. We measured the inter-
nal energy ẼJ , free energy F̃J , and spin overlap distribution
P̃J (q) for all disorder realizations. From P̃J (q) we obtained
its integral near the origin

ĨJ =
∫ 0.2

−0.2
P̃J (q). (39)

From ĨJ for the n instances we obtain the disorder average
I = [ĨJ ]d . Unless required to prevent confusion, we hence-
forth drop the subscript J indicating a particular instance.
Observables are obtained from population averages in contrast
to the situation for PT and other MCMC methods where
observables are obtained from time averages. Estimators of
observables obtained from population averages for a single
instance are indicated by a tilde.

We estimated the family-based characteristic sizes ρt and
ρs for each disorder realization. For the L = 14 and for the two
individual size L = 4 and L = 8 instances we also measured
the equilibration population size ρf , which requires multiple
runs. These quantities are defined as limits in R but are

estimated from the finite R simulations. Comparison data for
PT were obtained in previous studies [33,41]. For the same
set of disorder realizations, we have values of IJ and the
integrated autocorrelation time for the spin overlap τ

q

J ,int.

D. Spin overlap measurement

The spin overlap is an important quantity in spin-glass
studies and its integral near the origin IJ has been extensively
studied as a way of distinguishing competing pictures of
the low-temperature phase of spin glasses. The measurement
of the spin overlap distribution PJ (q) would appear to be
computationally twice as difficult as other observables because
it requires two independent spin configurations. Indeed, in
standard implementations of PT, two separate simulations are
run simultaneously and spin configurations from each are
combined to obtain values of q, so the work required to
measure P̃ (q) (and also the link overlap distribution [42])
is twice that for observables obtained from a single spin
configuration. In PA, however, it is possible to construct P̃ (q)
from a single run by taking advantage of the fact that replicas
from different families, i.e., descended from different initial
replicas, are independent. We use the following method to
estimate P̃ (q) at a given temperature β.

First, a random permutation of the population
(π1,π2, . . . ,πR̃β

) is constructed and used to make an initial
pairing of replicas in the population. A random permutation is
likely to include pairs chosen from the same family. If replica
k and replica πk are in the same family, they are potentially
correlated. This “incest” problem is corrected sequentially by
performing transpositions as needed. Suppose k is the least
integer such that replicas k and πk are in the same family.
Then, the successive replicas πk+1,πk+2 . . . are tested until the
first j (j > k) is found such that replica πj is in a different
family than replica k and also replica πk is in a different
family than replica j . The permutation is now modified by
transposing πj and πk . This process is continued until there
are no more incestuous pairs. Each pair then contributes one
value to the histogram for P̃ (q). Notice that in each step of the
procedure the number of incestuous pairs decreases by one.
So long as the maximum family size is less than R̃β/2, which
is required anyway for a well-equilibrated run, this procedure
will find an unbiased, nonincestuous pairing. Although the
worst-case complexity of the procedure is O(R2), in practice
the complexity is O(R).

Weighted averaging may also be used to combine results
for P J (q) from many runs with PJ (q) playing the role of
the observable A in Eq. (5). The justification for weighted
averaging based on unnormalized population annealing holds,
although the argument also requires the fact that each family
in unnormalized PA is independent and identically distributed.

VI. RESULTS

In this section, we present results for both PA and PT. This
section serves two purposes. The first purpose is to validate
population annealing and verify claims made in Sec. IV about
its statistical and systematic errors. The second purpose is to
compare the efficiency of PA and PT.
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FIG. 1. (Color online) Log-log (base 10) scatter plots of ĨJ . Each
point represents a disorder realization. The horizontal position of the
point is ĨJ measured in PA and the vertical position is the value of
ĨJ measured in PT, for sizes L = 4, 6, 8, and 10 at T = 0.2.

A. Spin overlap

Figure 1 shows a scatter plots for sizes L = 4, 6, 8, and
10 of ĨJ for both algorithms, with the vertical position of
each point the value of ĨJ for PT and the horizontal position
the value for PA. Disorder realizations with ĨJ = 0 for either
algorithm are not shown. This figure demonstrates reasonable
agreement between the two algorithms for each disorder
realization. Note that PT is capable of measuring smaller
values of ĨJ than PA because the number of measurements
2b for PT is larger than the number of measurements R for PA.

Next, we consider I = [ĨJ ]d , the disorder average of the
integral of the spin overlap in the range from −0.2 < q <

0.2. Table III gives results for both PA and PT for I . The
quoted errors are obtained from the sample variance divided
by the square root of the sample size

√
n so it is not surprising

that the difference between the PA and PT results is much
less than the error since both algorithms use the same set of
disorder realizations. It is comforting that the results are so
close. Because both algorithms are quite different and use
different criteria for equilibration it suggests that systematic
errors are minimal and cannot be detected in disorder averages
with a sample size of 5000.

TABLE III. Comparison of the disorder averaged overlap weight
near the origin I between PA and PT at T = 0.2 for the same set of
disorder realizations.

L 4 6 8 10

PA 0.0186(10) 0.0194(10) 0.0205(10) 0.0200(10)
PT 0.0185(9) 0.0196(9) 0.0205(10) 0.0198(10)
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FIG. 2. (Color online) Log-log scatter plot of ρs (entropic family
size for PA) vs τ

q
int (integrated autocorrelation time of the spin overlap

for PT). Each point represents a single disorder realization and there
are roughly 5000 disorder realizations each for sizes L = 6, 8, and
10 at T = 0.2.

B. Characteristic population sizes in PA and
correlation times in PT

Next, we consider quantities that are intrinsic to each
algorithm and that are related to errors. Figure 2 is a loga-
rithmic scatter plot of ρs , the entropic family size measured
in PA, and τ

q
int, the integrated autocorrelation time for the

spin overlap measured in PT. Each point represents a disorder
realization; the horizontal position of the point is log10 ρs

and vertical position is log10 τ
q
int. It is striking that these two

quantities are strongly correlated. Both ρs and τ
q
int are related to

statistical errors in their respective algorithms and large values
correspond to hard instances that require lots of computer
resources to simulate accurately. It is clear that the hardness
of an instance for PA and for PT is strongly correlated.

Figure 3 shows histograms of log10 ρs (left panel) and
log10 τ

q
int (right panel) for all 4945 disorder realizations of size

L = 10 at T = 0.2. Both distributions are very broad and both
are skewed toward hard disorder realizations although the ρs

distribution is more sharply peaked than the τ
q
int distribution.
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FIG. 3. (Color online) Histogram of log10 ρs (left panel) and
log10 τ

q
int (right panel) for all 4945 disorder realizations, size L = 10

at T = 0.2.
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FIG. 4. (Color online) Disorder averages [log10 ρs]d for PA and
[log10 τ

q
int]d vs L. Square symbols (blue) are for PT at T = 0.2,

circular symbols (red) for PA at T = 0.2, and triangular symbols
(green) for PA at T = 0.42. Straight lines are best linear fits to the data.
Note that the behavior of ρt is qualitatively similar to the behavior
of ρs .

Figure 4 is a log-linear plot of the disorder averages
[log10 ρs]d and [log10 τint]d vs system size L. Square symbols
(blue) are for PT at T = 0.2, circular symbols (red) for PA at
T = 0.2, and triangular symbols (green) for PA at T = 0.42.
The nearly linear behavior suggests that both algorithms suffer
exponential slowing with system size as expected. The fitted
slope is greater for PT than for PA, however, one should be
cautious in interpreting these fits as indicating better scaling
for PA relative to PT. There is some upward curvature for PA in
the data for both temperatures so the asymptotic scaling slope
may be significantly larger than the finite-L slope. In addition,
τint and ρs are not strictly comparable quantities and, finally,
neither algorithm has been carefully optimized. Nonetheless,
one can safely conclude that PA is at least comparable in
efficiency to PT for the sizes studied: system sizes that are of
current scientific interest across applications.

In Secs. IV A and IV B, we introduced three characteristic
population sizes ρs, ρt , and ρf . Both ρs [see Eq. (31)] and
ρt [see Eq. (28)] are obtained from the distribution of family
sizes and are related to statistical errors while ρf [see Eq. (20)]
is obtained from the variance of the free-energy estimator and
controls systematic errors. What is the relation between these
three quantities for spin glasses? Figure 5 is a scatter plot
of ρs vs ρt for system sizes L = 4, 6, 8, and 10. Each point
represents a single disorder realization. It is clear that these
two measures are strongly correlated with ρs serving as a
lower bound for ρt .

Figure 6 is a scatter plot of ρs vs ρf for the n =
1000 disorder realizations of size L = 14 where each point
represents a disorder realization. The value of ρf is estimated
for each disorder realization from 10 runs with R = 3 × 106

and ρf is estimated as R times the sample variance of βF̃

from the 10 runs. Since it is obtained from only 10 runs, ρf

has large statistical errors. The straight line is a best fit through
the data points. It is clear that ρs and ρf are strongly correlated
although ρf is on average a factor of 1.6 larger than ρs .
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FIG. 5. (Color online) Scatter plot of ρs , entropic family size, vs
ρt , the mean squared family size, for sizes L = 4, 6, 8, and 10 at
T = 0.2.

The strong correlation between ρs and ρf justifies using
R � 100ρs as an equilibration criterion. In principle, equili-
bration (systematic error) is controlled by ρf but measuring
ρf requires multiple runs whereas measuring ρs requires
only a single run. Thus, except for situations where weighted
averaging is used, it is more straightforward and reasonably
well justified to require that the population size is some factor
larger than ρs . Because ρt is just as easy to measure as ρs , and
ρt � ρs , and ρt is more directly related to statistical errors, it
may be preferable to use ρt rather than ρs as an equilibration
criterion in future simulations.
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FIG. 6. (Color online) Scatter plot of the entropic family size ρs

vs equilibration population size ρf for 1000 disorder realizations of
size L = 14 at T = 0.42. The straight line is a best fit through the
data.
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TABLE IV. Equilibrium values of observables at T = 0.2 for the
two disorder instances studied in detail, J4 and J8, of sizes L = 4 and
8, respectively.

ρf −βF −E δẼ/βδF̃ I δĨ /βδF̃

J4 33 584.138 116.541 0.0542 0.0929 0.0843
J8 9.0 × 103 4457.53 890.186 0.0355 0.00104 0.00105

C. Convergence to equilibrium

Since statistical errors are much larger than systematic er-
rors, in order to investigate systematic errors, i.e., convergence
to equilibrium, it is necessary to carry out a very large number
of independent simulations of the same disorder realization.
From these many runs, systematic errors can be studied as a
function of population size R. In this section, we examine
in detail the convergence to equilibrium for two disorder
realizations. One of these disorder realizations is the hardest
L = 8 sample as measured by ρs . This disorder instance was
also studied in detail in Refs. [19,26]. We call this disorder
realization “instance J8.” The second is an L = 4 disorder
realization that we call “instance J4.” Observables of the two
instances are shown in Table IV.

We first carefully examine, for instance J8, the convergence
to equilibrium as a function of R for the energy estimator Ẽ

and the dimensionless free-energy estimator βF̃ at temperature
T0 = 0.2. Figure 7 shows histograms of the deviation of the
dimensionless free-energy estimator from its equilibrium value
�βF̃ (top row), the deviation of the energy estimator from
its equilibrium value �Ẽ (middle row), and a scatter plot of
their joint distribution (bottom row) for population sizes R =
103, 104, 105, and 106 (from left to right, respectively). For
each population size we carried out M = 1000 independent
simulations of J8. The “exact” equilibrium values, listed in
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FIG. 7. (Color online) Histograms of �βF̃ (top row), histograms
of �Ẽ (middle row), and scatter plots representing the joint
distributions of �Ẽ and �βF̃ for instance J8 at T = 0.2 (bottom
row). Each column represents a given population size and, from left
to right, R = 103, 104, 105, and 106, respectively. The slope of the
regression line in the �Ẽ vs �βF̃ scatter plot for R = 106 (lower
right box) is the estimator of δẼ/βδF̃ .

Table IV, are obtained from a weighted average of the 1000
runs at the largest population size R = 106. For the two smaller
populations the distributions are highly non-Gaussian, but as R

increases the joint distribution approaches a bivariate Gaussian
distribution. The joint distribution initially consists of two
well-separated peaks representing the fact for small R most
or all of the population is frequently stuck in a metastable
state with both a higher free energy and higher energy. This
bimodal distribution is a feature of this particular disorder
realization and explains, in part, the computational hardness
of this sample. Since ρf ≈ 104, the R = 103 populations are
not equilibrated and the R = 104 populations are barely equi-
librated. Finally, for R = 106, the populations are reasonably
well equilibrated so that the Ẽ and βF̃ distributions are close
to Gaussian and the joint distribution is close to a bivariate
Gaussian. The slope of the regression line through the scatter
plot representing the R = 106 joint distribution is an estimator
of the quantity δẼ/βδF̃ , which controls the error in the energy
estimator [see Eq. (22)].

We can assess more quantitatively whether βF̃ and Ẽ

are described by a bivariate normal distribution. From the
M = 1000 runs, we measured the skewness and kurtosis of
both variables. For instance, for J8 and R = 106, the skewness
and (excess) kurtosis of the dimensionless free-energy runs
is 0.047 and 0.043, respectively. Both values are statistically
indistinguishable from values that would be obtained from a
sample of 1000 normal random variates. The corresponding
values of skewness and kurtosis for the energy are 0.121 and
0.152, respectively. Although larger, both values are consistent
with a sample of 1000 normal random variates. The joint
distribution is, however, only marginally consistent with a
bivariate Gaussian, as measured by the Mardia [43] combined
skewness and kurtosis test (p = 0.06). For instance, for J8
at R = 106, R/ρf ≈ 102. For J4 at population size R = 106

we have R/ρf ≈ 3 × 104 and from M = 5000 runs the joint
distribution cannot be distinguished from a bivariate Gaussian
by the Mardia combined test (p = 0.4).

Next, we study the convergence of the mean values of
observables to their equilibrium values as a function of R.
For each observable A we obtain the mean value for a single
run 〈Ã〉 from a simple average over all M runs for each
population size and we obtain the equilibrium value from a
weighted average over all runs at the largest size. Figure 8
shows 〈�βF̃ 〉, 〈�Ẽ〉, and 〈�Ĩ 〉, the deviation of the estimators
of the dimensionless free energy, energy, and overlap near the
origin from their respective equilibrium values, as a function
of population size R for instance J4. The straight lines are
theoretical curves from Eqs. (22) and (23) using the values of
ρf and δÃ/βδF̃ estimated at R = 106 and given in Table IV.
We see that there is reasonable quantitative agreement with
the predicted 1/R dependence of the systematic errors. The
R = 106 data point is not shown because statistical errors
in measuring the exact values 〈A〉 are comparable here to
systematic errors in 〈Ã〉. Probing the 1/R regime of systematic
errors proved quite difficult because of the much larger
statistical errors. For example, to sufficiently reduce statistical
errors for instance J4 we used M = 32 000 independent runs
to obtain the R = 105 averages 〈Ã〉 in Fig. 8 and M = 5000
independent runs at R0 = 106 to obtain “exact” equilibrium
values 〈A〉 from weighted averaging.
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FIG. 8. (Color online) Log-log plot showing the deviations from
equilibrium (systematic errors) in the dimensionless free energy
〈�βF̃ 〉 (red circles), energy 〈�Ẽ〉 (blue squares), and overlap near
the origin 〈�Ĩ 〉 (green triangles) as a function of population size R

for instance J4 at T = 0.2. The straight lines are theoretical curves
based on Eqs. (22) and (23).

Figure 9 shows similar results for the size 8 instance J8.
Since the joint distributions are far from bivariate Gaussians
for the smaller values of R for instance J8, the theoretical
predictions for 〈�Ẽ〉 and 〈�Ĩ 〉 are poor for the smaller
population sizes. The points for R = 106 in Fig. 9 are in
essentially perfect agreement with the theoretical predictions
of Eq. (22), however, since ρf and δÃ/βδF̃ are all measured
at R = 106 this agreement is really just a check that the joint
distribution is close to the assumed bivariate Gaussian form.

Next, we examine the convergence of the various charac-
teristic population sizes to their asymptotic values. Figure 10
shows the finite size estimators of ρf , ρs , and ρt versus the
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FIG. 9. (Color online) Log-log plot showing the deviations from
equilibrium (systematic errors) in the dimensionless free energy
〈�βF̃ 〉 (red circles), energy 〈�Ẽ〉 (blue squares), and overlap near
the origin 〈�Ĩ 〉 (green triangles) as a function of population size R

for instance J8 at T = 0.2. The straight lines are theoretical curves
based on Eqs. (22) and (23).
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FIG. 10. (Color online) Log-log plot showing estimators of the
equilibration sizes ρf (red circles), ρt (blue squares), and ρs

(green triangles) as a function of population size R at T = 0.2 for
instance J8.

population size R at which they are measured for instance
J8. For this instance, all of these quantities have values near
104 and their values are near their asymptotic values for the
two largest population sizes for which R � 10ρ. The rapid
convergence of ρf supports the hypothesis that equilibrium
is approached as 1/R. We do not show a similar graph for
instance J4 because all three ρ measures are already saturated
to their asymptotic values within statistical errors even for
smallest population sizes studied.

Finally, we can also gain some insights into weighted
averaging from the detailed study of a single instance. The
question we address is whether a single run is significantly
better than a weighted average with the same total population
size. We computed the systematic error in the weighted
average of the dimensionless free energy βF̃ of instance J8 for
R0 = 103 and M = 10 and compared it to the systematic error
for a single run with R = MR0 = 104. We used M = 1000
independent runs with R = 103 to compute the mean 〈βF 〉 and
standard error of the weighted average. To compute the mean,
we take M = 10 random values from the set of M = 1000
runs, compute the weighted average, and then take the mean
of that weighted average over many such experiments. We
used the blocking method to compute the standard error of
the mean. We used M = 1000 runs with R = 104 to obtain
〈βF̃ 〉 and its error. We found that 〈�βF 〉 = 0.75 ± 0.12,
while 〈�βF̃ 〉 = 0.63 ± 0.04. Thus, the weighted average
has roughly the same systematic errors as the single long
run. Note that in this example, R0 < ρf . We expect the
differences between weighted averaging and a single long
run to vanish as R0/ρf → ∞. Unfortunately, even with 1000
independent runs, we did not achieve sufficient statistical
power to distinguish the weighted average clearly from a single
long run although we expect the former to have somewhat
larger systematic errors. These considerations lead to the
following conjecture: Suppose one has available a fixed total
amount of work defined by a total population size R0M such
that R0 � ρf , then the weighted average obtained from M runs
each with population size R0 is statistically indistinguishable
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from a single long run with population R = R0M . However,
the discussion in Sec. IV C comparing PA and PT for disorder
averaging is relevant here as well. If a sufficiently large
disorder sample is simulated, the differences in systematic
errors between a weighted average and a single long run could
become relevant. While additional work to understand the
systematic errors in weighted averaging is needed, it seems
clear that weighted averaging is a useful tool for studying hard
problems requiring very large total populations.

VII. DISCUSSION

We have shown that population annealing is an effective and
efficient algorithm for simulating spin glasses. It is comparably
efficient to parallel tempering, the standard in the field, and it
has several advantages.

The first advantage is that it is naturally a massively parallel
algorithm. The convergence to equilibrium occurs as the
population size grows and each replica in the population can be
simulated independently. Since realistic spin-glass simulations
using population annealing require population sizes of the
order of 106 or more, there is a much greater scope for
parallelism than in parallel tempering where in spin-glass
simulations typically less than 100 replicas are simulated
in parallel. To put this difference in perspective, recall that
parallel tempering is a Markov-chain Monte Carlo algorithm
while population annealing is a sequential Monte Carlo
algorithm. From a computational complexity perspective,
when going from a Markov-chain Monte Carlo algorithm to
a sequential Monte Carlo algorithm, time is exchanged for
hardware so that long running times can be exchanged for
massive parallelism. The downside of exchanging time
for hardware is that population annealing has much larger
memory requirements than parallel tempering.

A second advantage of population annealing is access
to weighted averaging, which allows multiple independent
runs of PA to be combined to improve both statistical and
systematic errors. Weighted averaging opens the door to
distributed computing. It is potentially possible to quickly
simulate very difficult to equilibrate instances of spin glasses
or other hard statistical-mechanical models by distributing the
work over a large and inhomogeneous set of computational
resources. The only information that needs to be collected
and analyzed centrally from each run is the estimators of
observables together with the estimator of the free energy.

Apart from its large memory usage, the main disadvantage
of population annealing (and sequential Monte Carlo methods
in general) is that it converges to equilibrium inversely in
population size whereas parallel tempering (and Markov-chain
Monte Carlo methods in general) converges exponentially. In
most situations, this difference is moot because statistical er-

rors are much larger than systematic errors. However, for very
high precision disorder averages, it is possible that the expo-
nential convergence of parallel tempering would be an advan-
tage over the power law convergence of population annealing.

Thus far, the implementations of population annealing for
large-scale simulations have used a simple annealing schedule.
The temperature set is uniform in the inverse temperature and
there are a constant number of Metropolis sweeps at each
temperature. It is plausible that a more complicated annealing
schedule might be more efficient. It is perhaps possible that the
annealing schedule can be adaptively adjusted to the particular
problem instance in analogy to related proposals for parallel
tempering simulations [7,44]. It might also improve efficiency
to change the population size with temperature. In addition,
our implementation uses the Metropolis algorithm at every
temperature, however, at low temperatures kinetic Monte Carlo
might be preferable and, at intermediate temperatures cluster
moves might be useful [45].

Population annealing is a general method suitable for
simulating equilibrium states of systems with rough free-
energy landscapes. It can be applied to any system for which
there is a parameter, such as temperature, that takes the
equilibrium distribution from an easy to simulate region, e.g.,
at high temperature, to a hard to simulate region, e.g., at low
temperature. In addition to spin systems, population annealing
may prove useful in simulating the equilibrium states of dense
fluids or complex biomolecules.
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