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ABSTRACT
We consider a Bayesian framework for estimating a high-dimensional sparse precision matrix, in which
adaptive shrinkage and sparsity are induced by a mixture of Laplace priors. Besides discussing our for-
mulation from the Bayesian standpoint, we investigate the MAP (maximum a posteriori) estimator from a
penalized likelihood perspective that gives rise to a new nonconvex penalty approximating the �0 penalty.
Optimal error rates for estimation consistency in terms of various matrix norms along with selection con-
sistency for sparse structure recovery are shown for the unique MAP estimator under mild conditions. For
fast and efficient computation, an EM algorithm is proposed to compute theMAP estimator of the precision
matrix and (approximate) posterior probabilities on the edges of the underlying sparse structure. Through
extensive simulation studies and a real application to a call center data, we have demonstrated the fine per-
formance of our method compared with existing alternatives. Supplementary materials for this article are
available online.

1. Introduction

Covariance matrix and precision matrix (inverse of the covari-
ance matrix) are among the most fundamental quantities in
Statistics as they describe the dependence between different
variables (components) of a multivariate observation. Not sur-
prisingly, they play pivotal roles in many statistical prob-
lems including graphical models, classification, clustering, and
regression, which are used extensively inmany application areas
including biological, engineering, and finance. Take the Gaus-
sian graphical model (GGM) as an example. The precision
matrix provides great insight into the conditional dependence
structure in a graph, since the conditional independence of ith
and jth variables of an undirected Gaussian Markov random
field is equivalent to the (i, j)th entry of the precision matrix
being zero, see a recent review by Pourahmadi (2013). Such
results have helped researchers to identify complex network
structures in applications such as high-throughput biological
data, for example, in Wille et al. (2004).

Estimating the precision matrix, especially under the high-
dimensional settingwhere the variable dimension p can possibly
be larger than the sample size n, is a particularly challenging
problem. Given the current prevalence of high-dimensional
data and the wide utility of precision matrix, this problem has
received significant attention in recent literature. When the
sample covariance matrix is positive definite, its inverse is a
natural estimator for the precision matrix. However, the inverse
of sample covariance matrix as an estimator is demonstrated
to have poor performance in numerous studies (Johnstone
2001; Paul 2007; Pourahmadi 2013). Moreover, when p > n,
the precision matrix estimation problem is ill-posed without
further restricting assumptions. One of the most commonly
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used assumptions to remedy this issue is to assume that the
precision matrix is sparse, that is, a large majority of its entries
are zero (Dempster 1972), which turns out to be quite useful in
practice in the aforementioned GGM owing to its interpretabil-
ity. Another possibility is to assume a sparse structure on the
covariance matrix through, for example, a sparse factor model
(Carvalho et al. 2008; Fan, Fan, and Lv 2008; Fan, Liao, and
Mincheva 2011; Bühlmann and VanDe Geer 2011; Pourahmadi
2013; Ročková and George 2016a), to obtain a sparse covariance
matrix estimator, and invert it to estimate the precision matrix.
However, the precision matrix estimator obtained from this
strategy is not guaranteed to be sparse, which is important for
interpretability in our context.

Regularization provides a general framework for dealingwith
high-dimensional problems. There are two major approaches
that use regularization to estimate the precision matrix and its
sparse structure.

The first one is regression-based approach where a sparse
regression model is estimated separately for each column to
identify and estimate the nonzero elements of that column in
the precisionmatrix� (Meinshausen andBühlmann 2006; Peng
et al. 2009; Zhou, van de Geer, and Bühlmann 2009; Khare,
Oh, and Rajaratnam 2015). This approach focuses more on
the sparse selection of the entries, and the estimated precision
matrix is generally not positive definite.

The other is likelihood-based approach which aims to opti-
mize the negative log-likelihood function (1) together with an
element-wise penalty term on � (Yuan and Lin 2007; Baner-
jee, El Ghaoui, and d’Aspremont 2008; Friedman, Hastie, and
Tibshirani 2008; Fan, Feng, and Wu 2009). Among these
methods, graphical Lasso (GLasso; Friedman, Hastie, and
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Tibshirani 2008) is the most commonly used owing to its
scalability. GLasso estimator for the precision matrix is also not
guaranteed to be positive definite. Mazumder and Hastie (2012)
proposed algorithms that modify GLasso and ensure positive
definiteness of the estimated precision matrix. Apart from
these two general approaches, regularization can be applied
with other forms of loss functions, an example of which is the
CLIME estimator proposed by Cai, Liu, and Luo (2011).

Theoretical properties of the likelihood-based methods for
Gaussian graphicalmodels have been studied in the literature. In
Rothman et al. (2008), Lam and Fan (2009), and Loh andWain-
wright (2015), estimation error rates in Frobenius norm have
been established for likelihood-based estimators with Lasso and
SCAD penalties. For GLasso, stronger results in entrywise max-
imum norm are obtained by Ravikumar et al. (2011) under a
restrictive assumption on �, called the irrepresentable assump-
tion, when the multivariate distribution of the observations
has an exponential tail (such as sub-Gaussian distributions). A
slower rate is shown when the distribution has a polynomial
tail (such as t-distributions with sufficiently large degrees of
freedom). Similar results on estimation error rate in maximum
norm are shown by Loh and Wainwright (2017) for nonconvex
penalized estimators under sub-Gaussian distributions but their
results require beta-min conditions. Cai, Liu, and Luo (2011)
provided such results for CLIME estimator both under expo-
nential and polynomial tails with the assumption that all the
absolute column sums of � are bounded.

The precision matrix estimation problem is less studied
under the Bayesian framework possibly due to the high com-
putational cost associated with MCMC when p is large. Marlin
and Murphy (2009) proposed a Bayesian model and a varia-
tional Bayes algorithm for GGMs with a block structure. Wang
(2012) proposed a Bayesian version of GLasso and the asso-
ciated posterior computation algorithms. Carvalho and Scott
(2009), Dobra, Lenkoski, and Rodriguez (2011), Wang and Li
(2012), and Mohammadi et al. (2015) used G-Wishart priors
and proposed stochastic search methods for the computation.
Banerjee and Ghosal (2015) studied a Bayesian approach with
mixture prior distributions that have a point-mass and a Laplace
distribution. They provided posterior consistency results and a
computational approach using Laplace approximation.With the
exception of Banerjee and Ghosal (2015), theoretical properties
of Bayesian methods for sparse precision matrix estimation
have not been studied. The results of Banerjee and Ghosal
(2015) are on estimation error rate in Frobenius norm similar
to those of Rothman et al. (2008), but assume the underlying
distribution to be Gaussian.

In this article, we propose a new Bayesian approach for esti-
mation and structure recovery forGGMs. Specifically, to achieve
adaptive shrinkage, we model the off-diagonal elements of �

using a continuous spike-and-slab prior with a mixture of two
Laplace distributions, which is known as the spike-and-slab
Lasso prior in Ročková (2018), Ročková and George (2016a),
and Ročková and George (2016b). Continuous spike-and-slab
priors are commonly used for high-dimensional regression
(George andMcCulloch 1993; Ishwaran andRao 2005;Narisetty
and He 2014) and a Gibbs sampling algorithm is often used
for posterior computation. However, such a Gibbs sampler for
our problem has an extremely high computational burden and

instead we propose a novel EM algorithm for computation,
which is motivated by the EM algorithm for linear regression
from Ročková and George (2014) and the one for factor mod-
els fromRočková andGeorge (2016a). Our novel computational
and theoretical contributions in the article are summarized as
follows:

� We propose a new approach for precision matrix estima-
tion, named BAGUS, short for “Bayesian regularization for
Graphical models with Unequal Shrinkage.” The adaptive
(unequal) shrinkage is due to the nonconvex penalization
by our Bayesian formulation.

� Although the Gaussian likelihood is used in our Bayesian
formulation, our theoretical results hold beyond GGMs.
We have shown that our procedure enjoys the optimal esti-
mation error rate of Op(

√
log p
n ) in the entrywise maximum

norm and selection consistency under both exponential
and polynomial tail distributions with very mild condi-
tions. Our theoretical result is stronger than the best exist-
ing result byCai, Liu, and Luo (2011), as we assume bound-
edness of � in operator norm which is weaker than the
assumption of bounded absolute column sum of �.

� We propose a fast EM algorithm which produces a maxi-
mum a posteriori (MAP) estimate of the precision matrix
and (approximate) posterior probabilities on all edges that
can be used to learn the graph structure. The EMalgorithm
has computational complexity comparable to the state-of-
the-art GLasso algorithm (Mazumder and Hastie 2012).

� Our algorithm is guaranteed to produce a symmetric and
positive definite estimator unlike many existing estimators
including CLIME.

The remaining part of the article is organized as follows.
In Section 2, we present our model and prior set-up in the
Bayesian framework along with a discussion on its penalized
likelihood perspective. In Section 3, we provide our theoretical
consistency results followed by the details of the EM algorithm
in Section 4. Section 5 presents numerical results in extensive
simulation studies and a real application for predicting tele-
phone center call arrivals. Proofs, technical details, and R code
used for empirical results can be found in online supplementary
material.

Notation

For a p × q matrix A = [aij], we denote its Frobenius norm
by ‖A‖F =

√∑
(i, j) a2i j, the entrywise �� norm (i.e., maxi-

mum norm) ‖A‖� = max (i, j)|aij|, and its spectral norm by
‖A‖2 = sup{‖Ax‖ : x ∈ R

q, ‖x‖ ≤ 1} where ‖x‖ denotes the l2
norm of vector x. For a p × p square matrix A, let A− denote
the off-diagonal elements of A, A+ the diagonal elements
of A, and λmin (A) and λmax (A) the smallest and the largest
eigenvalues, respectively. For a square symmetric matrix A,
its spectral norm is equal to its maximum eigenvalue, that
is, ‖A‖2 = λmax (A), and its maximum absolute column sum
(i.e., the �1/�1 operator norm) is the same as its maximum
absolute row sum (i.e., the ��/�� operator norm), denoted by
|||A|||∞ = max1≤ j≤q

∑p
i=1 |ai j|.

Let �0 = [θ0
i j] and �0 = [σ 0

i j] denote the true precision
matrix and covariance matrix, respectively. Let S0 = {(i, j) :
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θ0
i j �= 0} denote the index set of all nonzero entries in �0 and
S0c is its complement. Define θ0

max = maxi j |θ0
i j| and M�0 =∣∣∣∣∣∣�0

∣∣∣∣∣∣
∞. Define � = �−1��−1 as the Hessian matrix of

g := − log det(�). �(j, k), (l, m) corresponds to the second par-
tial derivative ∂2g

∂θ jk∂θlm
, and for any two subsets T1 and T2 of {(i,

j): 1 � i, j � p}, we use �T1T2 to denote the matrix with rows
and columns of � indexed by T1 and T2, respectively. We fur-
ther denote M�0 =

∣∣∣∣∣∣∣∣∣�0−1
S0S0

∣∣∣∣∣∣∣∣∣
∞
= ∣∣∣∣∣∣(�0 ⊗�0)S0S0

∣∣∣∣∣∣
∞. Define

the column sparsity d = max
i=1,2,...,p

card{ j : θ0
i j �= 0} and the off-

diagonal sparsity s = card(S0) − p, where card denotes the car-
dinality of the set in its argument.

2. Bayesian Regularization for Graphical Models

Our data consist of a random sample of n observations Y1, . . . ,
Yn which are assumed to be iid p-variate random vectors fol-
lowing a multivariate distribution with mean zero and precision
matrix �. In short, we use the following notation:

Y1, . . . ,Yn
iid∼ N(0,�−1).

Our primary goal is to estimate � and identify the sparse struc-
ture in the elements of�. For the Bayesian framework, we work
with the Gaussian log -likelihood given by

�(�) = log f (Y1, . . . ,Yn|�) = n
2

(
log det(�)− tr(S�)

)
,

(1)
where S = [si j] = 1

n
∑

YiYt
i denotes the sample covariance

matrix of the data. We note that in spite of working with the
Gaussian likelihood, we allow the observations to have non-
Gaussian distributions including those with polynomial tails.

2.1. Bayesian Formulation

Next we describe our prior specification on the following two
groups of parameters: the diagonal entries {θ ii} and the off diag-
onal entries, where the latter is reduced to the upper triangular
entries {θ ij: i < j} due to symmetry.

On the upper triangular entries θ ij (i < j), we place the fol-
lowing spike-and-slab prior, known as the spike-and-slab Lasso
prior developed in a series of work by Ročková (2018), Ročková
and George (2016a), and Ročková and George (2016b):

π(θi j) = η

2v1
exp

{
− |θi j|

v1

}
+ 1− η

2v0
exp

{
− |θi j|

v0

}
, (2)

which is amixture of two Laplace distributions of different scales
v0 and v1 with v1 > v0 > 0. The mixture distribution (2) rep-
resents our prior on θ ij which could take values of relatively
large magnitude modeled by the Laplace distribution with scale
parameter v1 (i.e., the “slab” component), or which could take
values of very small magnitude modeled by the Laplace distri-
bution with scale parameter v0 (i.e., the “spike” component). In
the traditional spike-and-slab prior, the “spike” component is set
to be a point mass at zero, which corresponds to our setting with
v0 = 0. Here, we use a continuous version of the spike-and-slab
prior, in which v0 is set be nonzero but relatively small com-
pared with v1. Continuous spike-and-slab priors with normal

components were proposed byGeorge andMcCulloch (1993) in
the linear regression context and their high-dimensional shrink-
age properties were studied by Ishwaran and Rao (2005) and
Narisetty and He (2014). Ročková (2016) and Ročková and
George (2016b) considered the spike-and-slab Lasso prior given
by (2) for linear regression and studied the adaptive shrinkage
property of such priors as well as various asymptotic proper-
ties concerning the posteriormode. An advantage of continuous
spike-and-slab priors is that the continuous prior distributions
on θ ij allow the use of efficient algorithms that do not require
switching the active dimension of the parameter.

For the diagonal entries θ ii of the precision matrix, a weakly
informative Exponential prior is specified since θ ii do not need
to be shrunk to zero:

π(θii) = τ exp(−τθii)1(θii > 0).

Although � can be fully parameterized by these two groups
of parameters, they are not independent as the determinant of
� needs to be positive. Therefore, the support for the joint prior
distribution on elements of � is restricted such that � is posi-
tive definite, that is,��0. In addition, we constrain the spectral
norm of � to be upper bounded: ‖�‖2 � B. Such a constraint
is not very restrictive since it often appears in the assumptions
for theoretical studies of precision matrix estimation anyway: a
large spectral norm of � implies high correlation among vari-
ables, a setup in which most methods fail. An important conse-
quence of this constraint will be discussed in Section 2.3.

So our prior distribution on � is given by

π(�) =
∏
i< j

π(θi j)
∏
i

π(θii)1(� 	 0)1(‖�‖2 ≤ B). (3)

2.2. The Penalized Likelihood Perspective

If estimation of � is of main interest, then a natural choice is
the MAP estimator �̃ that maximizes the posterior distribution
π(�|Y1, . . . ,Yn). This is equivalent tominimizing the following
objective function under the constraint ‖�‖2 � B and ��0:

L(�) = − logπ(�|Y1, . . . ,Yn)
= −�(�)−

∑
i< j

logπ(θi j|η)−
∑
i

logπ(θii|τ )+ Const.

= n
2

(
tr(S�)− log det(�)

)
+
∑
i< j

penSS(θi j)

+
∑
i

pen1(θii)+ Const., (4)

where

penSS(θ ) = − log
[( η

2v1

)
e−
|θ |
v1 +

(1− η

2v0

)
e−
|θ |
v0

)]
(5)

and pen1(θ)= τ |θ |.
If viewed from the penalized likelihood perspective, the

objective function L(�) employs two penalty functions, induced
by our Bayesian formulation. The penalty function on the diago-
nal entries, pen1(θ), is the same as the Lasso penalty. The hyper-
parameter τ is suggested to be small, so the Lasso penaltymainly
shrinks the estimates of θ ii instead of truncating them to be zero.

L. GAN, N. N. NARISETTY, AND F. LIANG1220



Figure . Plot of different penalty functions. (a) Penalty induced from the spike-and-slab prior with a mixture of Laplace distributions; (b) penalty induced from the spike-
and-slab prior with a mixture of normal distributions; and (c) Lasso penalty.

More importantly, the penalty function on the off-diagonal
entries, penSS(θ), coming from the spike-and-slab prior has
an interesting shrinkage property. To highlight the difference
between this penalty and the Lasso penalty, we plotted them
in Figure 1. We also compare our spike-and-slab penalty with
the spike-and-slab penalty that arises by using a mixture of two
normal distributions (George and McCulloch 1997) instead of
Laplace distributions:

penNSS(θ ) = − log
[( η√

2πv1

)
e−

θ2
2v1 +

( 1− η√
2πv0

)
e−

θ2
2v0

)]
,

where “NSS” in the subscript stands for normal spike-and-slab
prior. In Figure 1, we set v0 = 0.1 and v1 = 10 for both penSS(θ)
and penNSS(θ). Also, we subtract their values at 0 so the corre-
sponding penalty at θ = 0 is zero. We can see that the penalty
function we use, penSS(θ), provides the best continuous approx-
imation of the L0 penalty among the three.

To gain more insight about the penalty functions, we plot the
derivatives/subgradient of the spike-and-slab penalty penSS(θ)
in Figure 2. A simple calculation reveals that

∂

∂|θ |penSS(θ ) = 1
v1

η

2v1
e−
|θ |
v1

π(θ )
+ 1

v0

1−η

2v1
e−
|θ |
v0

π(θ )

= w(θ )

v1
+ 1− w(θ )

v0
, (6)

which is aweighted average of 1/v1 and 1/v0with theweightw(θ)
being the conditional probability of θ belonging to the “slab”
component (Ročková andGeorge 2016b). Recall that the deriva-
tive of a penalty function should ideally have its maximum at
zero and then decay gradually to 0 (asymptotically), because a
nondecreasing derivative with respect to |θ | leads to a bias and
affects the performance in finite sample settings (Fan and Li
2001; Loh andWainwright 2017). This is the case with penSS(θ):

As |θ | becomes larger, the mixing weight w gets larger, which
leads to a smooth transition from a large penalty 1/v0 produced
from the “spike” component, to a smaller penalty 1/v1 from the
“slab” component. From Figure 2, we can see that penNSS(θ)
does not have this desired property, and neither does the Lasso
penalty.

2.3. PosteriorMaximization and Local Convexity

The nonconvexity of our spike-and-slab penalty penSS(θ) leads
to desired shrinkage and selection behavior, but it could bring
additional computation challenges as the posterior objective
function L(�) is no longer convex and may have multiple local
optima. However, this is not a problem in our case with the
upper bound on the spectral norm of � (3). More specifically,
the following theorem ensures that the optimization of L(�)
with the spectral norm constraint is a convex optimization prob-
lem, that is, locally within the spectral norm ball, we are dealing
with convex optimization resulting in a unique MAP estimate.
This result is motivated by Lemma 6 from Loh and Wainwright
(2017).

Theorem 1. If B < (2nv0)
1
2 , then min�	0,‖�‖2≤B L(�) is a

strictly convex problem.

Proof. Decompose L(�) as the sum of the following two terms:
−�(�)− 1

8v0
‖�‖2F and

∑
i< j penSS(θi j)+

∑
i pen1(θii)+

1
8v0
‖�‖2F . We prove the theorem by checking that the second-

order subgradient of each term in the decomposition of L(�)
is positive which would imply that both the terms are strictly
convex.

The second-order subgradient of the first term is given
by −∇2�(�)− 1

4v0
, where −∇2�(�) = n

2 (�⊗�)−1.

Figure . Plot of the derivative/subgradient of the penalty functions.
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The smallest eigenvalue of−�2�(�) can be bounded as

λmin
(−∇2�(�)

)− = n
2
λ−1max(�⊗�) = n

2
λ−2max(�) >

1
4v0

,

where the last inequality is because ‖�‖2 ≤ B ≤ (2nv0)
1
2

implies that λ2
max(�) ≤ 2nv0 and leads to n

2λ
−2
max(�) ≥ 1

4v0
.

Therefore,−∇2�(�)− 1
4v0

is strictly convex.
We now consider the second-order subgradient of

penSS(θ ij):

|penSS′′(θi j)| =
( 1

v0
− 1

v1
)

ηv0
(1−η)v1

e
θi j
v0
− θi j

v1

(
ηv0

(1−η)v1
e

θi j
v0
− θi j

v1 + 1)2

≤ 1
4

(
1
v0
− 1

v1

)
<

1
4v0

,

where the first inequality is because for any x, |x|
(1+|x|)2 ≤ 1

4 . This
implies that the second term in the decomposition of L(�) is
also strictly convex and the theorem is proved. �

2.4. Uncovering the Sparse Structure

In many applications, identifying the zero entries in � (referred
to as structure estimation or graph selection) is also of major
interest along with the estimation of �. Inference on the latent
sparse structure of � or equivalently the sparse structure of a
graph can be directly induced from our spike-and-slab prior.We
can reexpress the spike-and-slab prior (2) as the following two-
level hierarchical prior:{

θi j | ri j = 0 ∼ DE(0, v0)
θi j | ri j = 1 ∼ DE(0, v1),

(7)

where rij follows:

ri j | η ∼ Bern(η). (8)

Here DE(0, v ) denotes the double exponential (Laplace) distri-
bution with scale v and Bern(η) denotes the Bernoulli distribu-
tion with probability η .

We can view the binary variable rij as the indicator for the
sparsity pattern: rij = 1 implies θ ij being the “signal” (i.e., from
the slab component), and rij = 0 implies θ ij being the “noise”
(i.e., from the spike component). In the fully Bayesian approach,
the posterior inclusion probability for an edge connecting i and
j is given by

P(ri j = 1|Y1, . . . ,Yn) =
∫

P(ri j = 1|θi j)π(θi j|Y1, . . . ,Yn)dθi j,

which is the integrated probability of θ ij being from the slab
component (corresponding to γ ij = 1) with respect to the pos-
terior distribution of θ ij. In our analysis, we approximate this
probability by using the MAP estimator �̃ as follows:

pi j = P(ri j = 1|θ̃i j) =
(

η

2v1

)
e−
|θ̃i j |
v1(

η

2v1

)
e−
|θ̃i j |
v1 +

(
1−η

2v0

)
e−
|θ̃i j |
v0

. (9)

We can then threshold pij to identify the edges: if pij is greater
than a prespecified threshold such as 0.5, then the (i, j) pair is
identified as an edge.

Denote P(ri j = 1|θ̃i j = 0) by p�(0). The quantity
1

p�(0) − 1 = v1(1− η)/(v0η) represents the interplay of all
the parameters (v0, v1, η) and it plays an important role both
in our asymptotic analysis for precision matrix estimation that
will be presented in the next section, and also in the analy-
sis of Ročková and George (2016b) and Ročková (2018) for
high-dimensional linear regression.

3. Theoretical Results

Let �̃ denote the MAP estimator, the unique minimizer of the
loss function (4). In this section, we provide theoretical results
on the estimation accuracy of �̃. We also show that the struc-
ture selected based on thresholding the posterior probabilities
pij matches the true sparse structure with probability going to
one.

3.1. Conditions

... Tail Conditions on the Distribution of Y
In our analysis, we do not restrict to the situation where the true
distribution of Y is Gaussian. Instead, we provide analysis for
two cases according to the tail conditions on the true distribu-
tion of a p-variate random vector Y= (Y(1), Y(2), . . . , Y(p)).
(C1) Exponential tail condition: Suppose that there exists

some 0 < η1 < 1/4 such that log p
n < η1 and

EetY
( j)2 ≤ K for all |t| ≤ η1, for all j = 1, . . . , p,

(10)
where K is a bounded constant.

(C2) Polynomial tail condition: Suppose that for some γ , c1 >

0, p � c1nγ , and for some δ0 > 0,

E|Y ( j)|4γ+4+δ0 ≤ K, for all j = 1, . . . , p. (11)

Note that whenY follows aGaussian or a sub-Gaussian distri-
bution, condition (C1) is satisfied.When p=n, condition (C2) is
satisfied for t-distributions with degrees of freedom greater than
8. When p = n2, condition (C2) is satisfied for t-distributions
with degrees of freedom greater than 12. The same tail con-
ditions are also considered by Cai, Liu, and Luo (2011) and
Ravikumar et al. (2011).

... Conditions on�

Wemake the following assumption on the true precision matrix
�0 for studying estimation accuracy.
(A1) λmax (�0) � 1/k1 < � or equivalently 0 < k1 �

λmin (�0), where k1 is some constant greater than 0.
Note that because the largest eigenvalue of�0 is bounded, all

the elements of �0 are bounded, and cannot grow with p and n.
In addition, we make the minimum signal assumption below

for studying sparse structure recovery.
(A2) The minimal “signal” entry satisfies min

(i, j)∈S0
|θ0

i j| ≥

K0

√
log p
n , where K0 > 0 is a sufficiently large constant

not depending on n.
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Similar and in some cases stronger assumptions are imposed
in other theoretical analysis of precision matrix estimation and
sparse structure recovery (Rothman et al. 2008; Lam and Fan
2009; Ravikumar et al. 2011; Cai, Liu, and Luo 2011; Loh
and Wainwright 2017). For a comparison of various theoretical
results, see the discussion in Section 3.3.

3.2. Theoretical Results

The following theorem gives estimation accuracy under the
entrywise �� norm. In particular, the following theorem implies
that with an appropriate choice of (v0, v1, η, τ ) and B, we could
achieve the Op(

√
log p
n ) error rate for distributions with an expo-

nential or a polynomial tail.

Theorem 2 (Estimation accuracy in entrywise �� norm).
Assume condition (A1) holds. For any predefined con-

stants C3 > 0, τ 0 > 0, define C1 = η−11 (2+ τ0 + η−11 K2)

when the exponential tail condition (C1) holds, and
C1 =

√
(θ0

max + 1)(4+ τ0) when the polynomial tail condi-
tion (C2) holds. Assume that

(i) the prior hyperparameters v0, v1, η, and τ satisfy⎧⎨
⎩

1
nv1
= C3

√
log p
n (1− ε1),

1
nv0

> C4

√
log p
n

v21 (1−η)

v20η
≤ pε, and τ ≤ C3

n
2

√
log p
n

(12)

for some constants ε1 > 0, C4 > C3 and some sufficiently
small ε,

(ii) the spectral norm B satisfies 1
k1
+ 2d(C1 +C3)M�0√

log p
n <B<(2nv0 )

1
2 , and

(iii) the sample size n satisfies
√
n ≥ M

√
log p,

whereM = max{2d(C1 +C3)M�0 max(3M�0 , 3M�0M�0
3,

2
k21

), 2C3ε1
k21
}.

Then, the MAP estimator �̃ satisfies

‖�̃−�0‖∞ ≤ 2(C1 +C3)M�0

√
log p
n

(13)

with probability greater than 1 − δ1, where δ1 = 2p−τ0 when
condition (C1) holds, and δ1 = O(n−δ0/8 + p−τ0/2) when con-
dition (C2) holds.

Theorem 2 shows that the estimation error of our MAP esti-
mator �̃ can be controlled through an interplay between the
parameters (v0, v1, η, τ ) and B. To help readers understand this
result, we provide an explanation of the required conditions.

In our proof, the term 1
npen

′
SS(θ ), which decreases from

1/(nv0) to 1/(nv1) when |θ | increases from zero to infinity, serves
as an adaptive thresholding value. The conditions in (12) ensure
the following properties of this adaptive thresholding rule: (1) to
eliminate noise, 1/(nv0) is set to be bigger than

√
(log p)/n, the

typical noise level in high-dimensional analysis; (2) to reduce
bias due to thresholding, 1/(nv1) is set to be of a constant order
of
√

(log p)/n, or much smaller by varying ε1; (3) the threshold-
ing level should be close to 1/(nv1) when θ is of a certain order
bigger than the noise level

√
(log p)/n, which is ensured by the

upper bound on v21 (1−η)

v20η
.

The upper bound on B in condition (ii) is to ensure that our
objective function L(�) is strictly convex. However, B cannot
be too small, otherwise, even if L(�) is convex, the constrained
local mode cannot achieve the desired estimation accuracy
‖�̃−�0‖∞ = Op(

√
log p/n).

When M�0 ,M�0 remain constant as a function of (n, p, d),
Theorem 2 guarantees that with proper tuning, an estimation
error bound of O(

√
log p/n) in �� norm can be achieved for

the MAP estimator �̃ with high probability. Similar results can
be found in Ravikumar et al. (2011) and Loh and Wainwright
(2017) when M�0 ,M�0 are constants. If M�0 ,M�0 are of the
orderO(p), then we require the sample size n to grow faster than
the order O(p).

Theorem 2 follows from amore general result stated as Theo-
rem A in Appendix A from the online supporting material. The
specific definition for C4 and the one for ε are also provided in
Theorem A in Appendix A in the online supporting material.

We now present the following result on estimation accuracy
of �̃ in terms of Frobenius norm, spectral norm, and ��/��

operator norm. This result is based on Theorem 2 and Lemma
from Appendix A.

Theorem 3 (Estimation accuracy in other norms).
Under the same conditions of Theorem 2,
(i) if the exponential tail condition (C1) holds, then

‖�̃−�0‖F < 2
(
η−11 (2+ τ0 + η−11 K2)+C3

)

× M�0

√
(p+ s) log p

n
,∣∣∣∣∣∣∣∣∣�̃−�0

∣∣∣∣∣∣∣∣∣
∞

, ‖�̃−�0‖2 < 2
(
η−11 (2+ τ0 + η−11 K2)+C3

)

× M�0 min{d,
√
p+ s}

√
log p
n

,

(14)

with probability greater than 1− 2p−τ0 ;
(ii) if the polynomial tail condition (C2) holds, then

‖�̃−�0‖F < 2
(√

(θ0
max + 1)(4+ τ0)+C3

)

× M�0

√
(p+ s) log p

n
,∣∣∣∣∣∣∣∣∣�̃−�0

∣∣∣∣∣∣∣∣∣
∞

, ‖�̃−�0‖2 < 2
(√

(θ0
max + 1)(4+ τ0)+C3

)

× M�0 min{d,
√
p+ s}

√
log p
n

,

(15)

with probability greater than 1− O(n−δ0/8 + p−τ0/2).

Next, we discuss selection consistency for the sparse structure
before providing a comparison of our results with the existing
results in Section 3.3.

As discussed in Section 2.4, we propose to estimate S0, the
set of nonzero elements of �, by thresholding the inclusions
probability pij that is defined at (9). The following theorem
shows that Ŝ0 = {(i, j) : pi j ≥ T}, the set of edges with poste-
rior probability greater than T, is a consistent estimator of S0
for any 0 < T < 1.
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Theorem 4 (Selection consistency). Assume the same condi-
tions in Theorem 2 and condition (A2) with the following
restriction:

ε0 <
1

log p
log

(
v1(1− η)

v0η

)
< (C4 −C3)

(
K0 − 2(C1 +C3)M�0

)
(16)

for some arbitrary small constant ϵ0 > 0. Then, for any T such
that 0 < T < 1, we have

P(Ŝ0 = S0)→ 1.

A proof of Theorem 4 is provided in Appendix B.
In our model, sparsity is induced by an interplay between the

parameters v0, v1, and η through log (v1(1 − η)/(v0η)). When
log (v1(1− η)/(v0η)) falls in the gapmentioned in Equation (16),
the selection consistency can be achieved.

3.3. Comparisonwith Existing Results

We compare our results with those of GLasso (Ravikumar
et al. 2011), CLIME (Cai, Liu, and Luo 2011) and the non-
convex regularization based method by Loh and Wainwright
(2017).

In Ravikumar et al. (2011), the irrepresentable condition,∣∣∣∣∣∣�S0cS0�
−1
S0S0

∣∣∣∣∣∣
∞ ≤ 1− α, is needed to establish the rate of con-

vergence in entrywise �� norm. Such an assumption is quite
restrictive, and is not needed for our results. In addition, under
the polynomial tail condition, the rate of convergence estab-
lished in Ravikumar et al. (2011) isOp(

√
pc
n ), slower than our rate

Op(
√

log p
n ).

The theoretical results for CLIME (Cai, Liu, and Luo 2011)
are similar to ours in terms of estimation accuracy. However, the
main difference is the assumption on �0. We assume bounded-
ness of the largest eigenvalue of�0, which is strictly weaker than
the boundedness of

∣∣∣∣∣∣�0
∣∣∣∣∣∣
∞ (the ��/�� operator norm), the

assumption imposed for CLIME. The weakness of our assump-
tion follows from Hölder’s inequality. To illustrate the strict dif-
ference between these assumptions, we consider the following
precision matrix as an example:

θ0
ii = 1,∀i; θ0

1,i = θi,1 = 1√
p
, if i �= 1;

θ0
i j = 0 if i �= j and i �= 1. (17)

The precision matrix above has the so-called star structure,
which is frequently observed in networkswith a hub. In Figure 3,
we plot themaximum eigenvalue and themaximumof the abso-
lute row sum of this matrix with varying dimension p. We can
see that it is easy to satisfy the upper bound onmaximum eigen-
value, but not the upper bound on the ��/�� operator norm,
since the latter is diverging with p.

The major difference between our results and those from
Loh and Wainwright (2017) is also in the weakness of the
assumptions. The beta-min condition (minimal signal strength)
is needed for the rate of estimation accuracy established in Loh
and Wainwright (2017), while we do not require this assump-
tion for estimation consistency. In addition, their results are only
available for sub-Gaussian distributions, while we consider a

Figure . Plots of the maximum eigenvalue (solid line) and the ��/�� operator
norm (dashed line) for precision matrices with the star structure (). Our model
assumption corresponds to an upper bound on the solid line, while the one for
CLIME corresponds to an upper bound on the dashed line.

much broader class of distributions, that is, distributions with
exponential or polynomial tails.

4. ComputationWith EM Algorithm

Wenow describe how to compute theMAP estimate �̃.Directly
optimizing the negative log of the posterior distribution (4)
is not easy. One numerical complication comes from the
penalty term (5): it has a summation inside the logarithm
due to the mixture prior distribution on θ ij. The expectation-
maximization (EM) algorithm is a popular tool in handling
such a complication.

Recall the two-level hierarchical representation of the prior
on θ ij introduced in Section 2.4. Define R as the p × p matrix
with binary entries rij. Then the full posterior distribution π(�,
R|Y1, . . . , Yn) is proportional to

f (Y1, . . . ,Yn|�) ·
⎡
⎣∏

i< j

π(θi j|ri j)π(ri j|η)

⎤
⎦

·
[∏

i

π(θii|τ )

]
1(� 	 0)1(‖�‖2 ≤ B). (18)

We treat R as latent and derive an EM algorithm to obtain the
MAP estimate of � from the M-step and the posterior distribu-
tion of R from the E-step upon convergence. The E-step of our
algorithm is inspired by the EM algorithm for linear regression
from Ročková and George (2014) and the one for factor models
from Ročková and George (2016a), and the M-step of our algo-
rithm is inspired by the optimization procedure used by GLasso
(Banerjee, El Ghaoui, and d’Aspremont 2008; Friedman, Hastie,
and Tibshirani 2008; Mazumder and Hastie 2012).

4.1. The E-Step

At the E-step, we first compute the distribution of R given the
parameter value from the previous iteration �(t). Note that the
binary indicator rij does not appear in the likelihood function,
and only appears in (7) and (8) in the prior specification. It is
easy to show that rij��(t), Y1, . . . , Yn follows Bern(pi j) with

log
pi j

1− pi j
= log

v0

v1
+ log

η

1− η
−
|θ (t )

i j |
v1
+
|θ (t )

i j |
v0

. (19)
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Next we evaluate the expectation of logπ(�, R|Y1, . . . , Yn)
with respect to π(R|�(t), Y1, . . . , Yn), which gives rise to the
so-called Q function:

Q(�|�(t ) ) =
{
n
2
log det(�)− n

2
tr(S�)+

∑
i

(log τ − τθii)

+
∑
i< j

pi j
[
− log(2v1)−

|θi j|
v1
+ log η

]

+
∑
i< j

(1− pi j )
[
− log(2v0)−

|θi j|
v0
+ log(1− η)

]}

× 1(� 	 0)1(‖�‖2 ≤ B). (20)

4.2. TheM-Step

At the M-step of the (t + 1)th iteration, we sequentially update
� in a column by column fashion tomaximizeQ(�|�(t)).With-
out loss of generality, we describe the updating rule for the last
column of � while fixing the others.

For convenience, partition the covariance matrixW and the
precision matrix � as follows:

W =
[
W11 w12

wT
12 w22

]
� =

[
�11 θ12

θT
12 θ22

]
,

where W11 is the (p − 1) × (p − 1) submatrix, w12 is the
(p − 1) × 1 vector at the last column ofW, and w22 is the diag-
onal entry at the bottom-right corner. The sample covariance
matrix S, the binary indicator matrix R = [rij], and the condi-
tional probability matrix P = [pij] where pij is defined in (19)
are also partitioned similarly. We list the following equalities
fromW� = Ip which will be used in our algorithm:

[
W11 w12
· w22

]
=
⎡
⎣�−111 + �−111 θ12θ

T
12�
−1
11

θ22−θT
12�
−1
11 θ12

− �−111 θ12

θ22−θT
12�
−1
11 θ12

· 1
θ22−θT

12�
−1
11 θ12

⎤
⎦ .

(21)
Given �11, to update the last column (θ12, θ22), we set the

subgradient ofQwith respect to (θ12, θ22) to zero. First, take the
subgradient of Q with respect to θ22:

∂Q
∂θ22
= n

2
1

θ22 − θT
12�
−1
11 θ12

− n
2

(s22 + τ ) = 0. (22)

Due to Equations (21) and (22), we have

w22 = 1
θ22 − θT

12�
−1
11 θ12

= s22 + 2
n
τ,

which leads to the following update for θ22:

θ22← 1
w22
+ θT

12�
−1
11 θ12. (23)

Next take the subgradient of Q with respect to θ12:

∂Q
∂θ12
= n

2

( −2�−111 θ12

θ22 − θT
12�

−1
11 θ12

− 2s12
)
−
(
1
v1

p12 + 1
v0

(1− p12)
)

�sign(θ12)

= n
(−�−111 θ12w22 − s12

)− ( 1
v1

p12 + 1
v0

(1− p12)
)

�sign(θ12) = 0, (24)

where A	B denotes the element-wise multiplication of two
matrices. Here the second line of (24) is due to the identities in
(21). To update θ12, we then solve the following stationary equa-
tion for θ12 with coordinate descent, under the constraint ‖�‖2
� B:

ns12 + nw22�
−1
11 θ12 +

(
1
v1
P12 + 1

v0
(1− P12)

)
� sign(θ12) = 0.

(25)

The coordinate descent algorithm for updating θ12 is sum-
marized in Algorithm 1. Since only one column is changed,
checking the bound ‖�‖2 � B is computationally feasible (see
Appendix C in the supplementary material for more details). In
practice, we could also proxy the constraint on ‖�‖2 with a con-
straint on the largest absolute value of the elements in �. In our
empirical studies, this relaxation performs quite well.

Algorithm 1 Coordinate Descent for θ12

Initialize θ12 from the previous iteration as the starting point.
repeat

for j in 1 : (p− 1) do
Solve the following equation for θ12 j:

ns12 j + nw22�
−1
11 j,\ jθ12\ j + nw22�

−1
11 j, jθ12 j

+
[( 1

v1
P12 + 1

v0
(1− P12)

)
� sign(θ12)

]
j
= 0.

end for
until Converge or Max Iterations Reached.
If ‖�‖2 > B :Return θ12 from the previous iteration
Else: Return θ12

When updating (θ12, θ22), we need �−111 . Instead of directly
computing the inverse of �11, we compute it from

�−111 =W11 − w12w21/w22,

which is derived from (21). After the update of (θ12, θ22) is com-
pleted, we ensure thatW� = Ip holds by updatingW11 andw12
via identities from (21). Therefore, we always keep a copy of the
most updated covariance matrix W in our algorithm. Note we
do not update w22 here, only because the relationship related to
w22 withinW� = Ip is already ensured. That is, ifw22 is updated
using (21), it remains unchanged.

4.3. The Output

The entire algorithm, BAGUS, is summarized and displayed as
Algorithm 2. After convergence, we extract the following output
from our algorithm: the P matrix, the posterior probability on
the sparse structure, from the E-step and the MAP estimator �̃

from the M-step.
To obtain an estimate of the sparse structure in R, we thresh-

old the entries of P, namely:

r̂i j = 1, if Pi j ≥ 0.5; r̂i j = 0, otherwise.

As shown inTheorem4, thresholding entries ofPwith any num-
ber T such that 0< T< 1 could recover the true sparse structure
with probability converging to 1.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1225



Algorithm 2 BAGUS
InitializeW = �=I
repeat

Update P with each entry pi j updated as log pi j
1−pi j ←(

log v0
v1
+ log η

1−η
− |θ

(t )
i j |
v1
+ |θ

(t )
i j |
v0

)
.

for j in 1 : p do
Move the j-th column and j-th row to the end

(implicitly), namely �11 := �\ j\ j, θ12 := θ\ j j, θ22 := θ j j
Update w22 using w22← s22 + 2

nτ

Update θ12 by solving (25) with Coordinate Descent
for θ12.

Update θ22 using θ22← 1
w22
+ θT

12�
−1
11 θ12.

UpdateW11, w12 using (21)
end for

until Converge
Return �, P

For many existing algorithms, the positive definiteness of
the estimate of � is not guaranteed. For example, GLasso
(Friedman, Hastie, and Tibshirani 2008) can only ensure the
positive definiteness of the estimate of the covariance matrix
W, but not of the estimate of the precision matrix �, as shown
in Mazumder and Hastie (2012). The following theorem shows
that MAP estimate �̃ returned by our algorithm is ensured to
be symmetric and positive definite.

Theorem 5 (Symmetry and positive definite). The estimate of �
returned by BAGUS is always symmetric, and it is also positive
definite if the initial value �(0) is positive definite.

A proof is given in the supplementary material.

4.4. Remarks
� Computation cost. In BAGUS, the computation cost is
O(p2) for updating one column. There are p columns in �

to update, so the overall computational complexity of our
algorithm is O(p3), which matches the computation cost
for GLasso.

� Parameter tuning. BAGUS involves the following hyper-
parameters: η, τ , v0, and v1. We always set η = 0.5 and τ

= v0 so that there are only two parameters v0 and v1 to
be tuned. Parameter tuning has an empirical Bayes flavor.
In our simulations, we use the theoretical results to set
the rough range of the hyperparameters, and then use a
BIC-like criterion to tune the hyperparameters:

BIC = n(tr(S�̂)− log det(�̂))

+ log(n)× #{(i, j) : 1 ≤ i < j ≤ p, θ̂i j �= 0}. (26)

The same BIC criterion is used by Yuan and Lin (2007)
while a similar BIC criterion with a regression-based
working likelihood is used by Peng et al. (2009).

5. Empirical Results

In this section, we compare our method with the competitive
alternatives in both simulated and real datasets and study the
performance of our approach.

5.1. Twelve Simulation Settings

Following the simulation studies from related work (Yuan and
Lin 2007; Friedman, Hastie, and Tibshirani 2008; Peng et al.
2009; Cai, Liu, and Luo 2011), we generate data Y from a multi-
variate Gaussian distribution with mean 0 and precision matrix
�0 = (θ0

i j).
We consider four different models, that is, four different

forms of �0. The first three have been considered in Yuan and
Lin (2007) and the fourth one is similar to the set-up in Peng
et al. (2009).

1. Model 1 (star model): θ0
ii = 1, θ0

1i = θ0
i1 = 1√

p .
2. Model 2 (AR(2) model): θ0

ii = 1, θ0
i,i−1 = θ0

i−1,i = 0.5, and
θ0
i,i−2 = θ0

i−2,i = 0.25.
3. Model 3 (circle model): θ0

ii = 2, θ0
i,i−1 = θ0

i−1,i = 1, and
θ0
1p = θ0

p1=0.9.
4. Model 4 (random graph): The true precision matrix �0

is set as follows.
(a) Set θ0

ii = 1.
(b) Randomly select 1.5 × p of the off-diagonal entries

θ0
i j (i �= j) and set their values to be uniform from
[0.4, 1]
[− 1,−0.4]; set the remaining off-diagonal
entries to be zero.

(c) Calculate the sum of absolute values of the off-
diagonal entries for each column, and then divide
each off-diagonal entry by 1.1 fold of the corre-
sponding column sum. Average this rescaled matrix
with its transpose to obtain a symmetric and positive
definite matrix.

(d) Multiple each entry by σ 2, which is set to be 3.
For each model, we consider three cases with different values

for p:

(1) p = 50; (2) p = 100; (3) p = 200.

So, we consider a total of 12 simulation settings. In each setting,
n = 100 observations are generated, and results are aggregated
based on 50 replications.

For estimation accuracy of �0, we use Frobenius norm
(denoted as Fnorm). For selection accuracy, we consider three
criteria: sensitivity, specificity, and MCC (Matthews correlation
coefficient):

Specificity = TN
TN+FP

, Sensitivity = TP
TP+FN

, and

MCC = TP× TN-FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP (true positive), FP (false positive), TN (true nega-
tive), and FN (false negative) are based on detection of edges in
the graph corresponding to the true precision matrix �0. MCC
returns a value between −1 and +1, and the higher the MCC,
the better the structure recovery is. A coefficient of+1 in MCC
represents a perfect structure recovery, and we note that recov-
ering all the edges simultaneously is very challenging and none
of the existing methods are able to ensure that. In addition, we
note that it may not be meaningful to compare the results across
graphs with different values of p because the level of sparsity
changes with p which makes it difficult to assess the difficulty of
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Table . Model  star.

n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 1.053(0.107) .(.) .(.) 1.000(0.000)

n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 1.499(0.138) .(.) .(.) 1.000(0.000)

n = 100, p = 200

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) − .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 2.006(0.100) .(.) .(.) 1.000(0.001)

NOTE: The best results in terms of MCC and Fnorm are highlighted in boldface.

the setting based on p alone. For instance, for most models con-
sidered in our simulation study, the level of sparsity increases
along with p, because of which all the methods have their speci-
ficity increasing when p gets larger (see Tables 1–4). So we rec-
ommend against comparing the results as p changes and instead
to compare the results across different methods within the same
setting.

In the simulation study, we compare our method, denoted
as BAGUS, with the following alternatives: GLasso from Fried-
man, Hastie, and Tibshirani (2008), SPACE from Peng et al.
(2009), and CLIME from Cai, Liu, and Luo (2011). They are all
shown to have estimation consistency under various conditions
as discussed in Section 3.3. We also considered the regression-
based method from Meinshausen and Bühlmann (2006), but
the results are not presented here because tuning the parameters
as suggested in Meinshausen and Bühlmann (2006) gave us
“NA” for MCC in multiple scenarios considered here.

Table . Model : AR(2).

n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso 3.361(0.240) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS .(.) .(.) .(.) 0.707(0.025)

n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 5.330(0.369) .(.) .(.) 0.707(0.022)

n = 100, p = 200

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 8.214(0.548) .(.) .(.) 0.677(0.027)

NOTE: The best results in terms of MCC and Fnorm are highlighted in boldface.

Table . Model : Circle.

n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso 4.319(0.174) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 4.253(0.578) .(.) .(.) 0.903(0.049)

n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 6.012(0.513) .(.) .(.) 0.895(0.055)

n = 100, p = 200

Fnorm Specificity Sensitivity MCC
GLasso 7.664(0.209) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS .(.) .(.) .(.) 0.752(0.028)

NOTE: The best results in terms of MCC and Fnorm are highlighted in boldface.

For each simulated dataset, tuning for our model uses the
aforementioned BIC criterion with a parameter set of η = 0.5,
v0 = τ = (0.4, 2, 4, 20)×

√
1

n log p , and v1 ranges from v0 ×
(1.5, 3, 5, 10). The tuning parameters for GLasso are cho-
sen with 10-fold CV, the tuning parameters for SPACE are
chosen from the BIC-like criterion proposed in Peng et al.
(2009) and the tuning and estimation for CLIME estimator
is done using the R package flare (Li et al. 2015) as sug-
gested on the homepage (http://www-stat.wharton.upenn.
edu/tcai/article/html/Precision-Matrix.html) of Cai, Liu, and
Luo (2011). For cross-validation, the number of λ values is set
to be 40. Results for all the simulated cases are summarized in
Tables 1–4.

In almost all the settings considered, our method BAGUS
performs the best in terms of both selection accuracy, that is,
MCC, and estimation accuracy, that is, Fnorm. We believe that

Table . Model : Random graph.

n = 100, p = 50

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 5.811(0.357) .(.) .(.) 0.637(0.027)

n = 100, p = 100

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 8.754(0.366) .(.) .(.) 0.598(0.022)

n = 100, p = 200

Fnorm Specificity Sensitivity MCC
GLasso .(.) .(.) .(.) .(.)
CLIME .(.) .(.) .(.) .(.)
SPACE .(.) .(.) .(.) .(.)
BAGUS 13.096(0.522) .(.) .(.) 0.565(0.032)

NOTE: The best results in terms of MCC and Fnorm are highlighted in boldface.
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Figure . Average of the estimated precision matrices for the model with the star structure.

Figure . Average of the estimated precision matrices for the model with the AR() structure.

it is due to the adaptive nature of the Bayesian penalization
and the weaker conditions under which the consistency results
hold true for BAGUS. Other than BAGUS, SPACE usually
performs well in terms of sparse selection and GLasso performs
well in terms of estimation accuracy. However, SPACE has a
large estimation error in most cases and GLasso tends to have
smaller MCC. In our simulation study, CLIME estimator did
not perform very well. It is particularly worth noting that for the
star graph, where the assumption for CLIME fails (see discus-
sion in Section 3.3), the performance of CLIME is particularly
worse.

In Figure 4, we plot the receiver operating characteristic
(ROC) curves for all the methods considered under different
models by varying hyper (tuning) parameters for the case with
p = 50. This is to see the performance of different methods by
removing the effect of tuning. Our method BAGUS remains at
the top in all the settings considered in terms of area under the
ROC curve (AUC). This plot suggests that except for the star
graph, performance of CLIME is not as poor as indicated by the
selected graph, which suggests that the performance of CLIME
could be improved by better tuning. However, for the star graph,
CLIME is still observed to be particularly worse even in view of
the ROC curve.

We also recorded the average of the estimated structures from
the 50 replicates and compare it with the truth to get a visual
understanding of the performance of different methods, shown
in Figures 5–8. It is noticeable that GLasso and CLIME provide
noisier estimates than BAGUS by includingmany zero entries in
the selection; BAGUS and SPACE are sparser and appear closer
to the true precision matrix. However, SPACE usually produces
noisier estimates than BAGUS (for Models 1–3) and misses a
lot of true signals for Model 4. In summary, BAGUS provides a
highly competitive performance across the models considered.

5.2. Real Application: Telephone Call Center Data

We now apply our method to the analysis of data from a
telephone call center in a major U.S. northeastern financial
organization. The data consist of the arrival time of each phone
call in 2002 every day from 7 am till midnight, except for 6 days
when the data collecting machine is out of order. More details
about this data can be found in Shen and Huang (2005).

Following the preprocessing as suggested by Huang et al.
(2006) and Fan, Feng, andWu (2009) for this dataset, we divide
each day into 102 10-min intervals and count the number of call
arrivals for each interval, denoted as Nit where t = 1: 102 and

Figure . Average of the estimated precision matrices for the model with the circle structure.

Figure . Average of the estimated precision matrices for the model with the random structure.

L. GAN, N. N. NARISETTY, AND F. LIANG1228



Figure . ROC curves for different methods and different data-generating models with p= .

i = 1: 239. Only 239 days of data are considered here, after we
remove holidays and days when the data collectingmachine was
faulty. Represent the observations on the ith day as Yi = (Yi1,
Yi2, …)T, a 102× 1 vector withYit =√Nit+ 1

4 , a variance stabiliz-
ing transformation of the number of calls. Let μ and � denote
the mean vector and precision matrix of the 102-dimensional
vector Y.

We apply all the methods considered on the first 205 days of
data to estimate�, as well asμ, and use the remaining 34 days of
data to evaluate the performance. The performance evaluation
is carried out as follows. First, divide the 102 observations for
each day into two parts (Zi1 and Zi2), where Zi1 is a 51× 1 vector
containing data from the first 51 intervals on the ith day and Zi2
is also a 51× 1 vector containing the remaining 51 observations,
then partition the mean vector μ and the precision matrix �

accordingly. Under the multivariate Gaussian assumption, the
best mean squared error forecast of Zi2 given Zi1 is given by

E(Zi2|Zi1) = u2 −�−122 �21(Zi1 − u1), (27)

which is also the best linear unbiased predictor for non-
Gaussian data. So plugging the estimates of μ and � based on
the first 205 days into (27), we evaluate the prediction accuracy
for Zi2 for the remaining 34 days. We adopt the same criterion
used by Fan, Feng, andWu (2009), the average absolute forecast
error (AAFE), to measure the prediction performance:

AAFEt = 1
34

239∑
i=206
|Ŷit −Yit |, (28)

where Ŷit and Yit denote the predicted and observed values,
respectively.

We compare the prediction performance based on estimates
from our method BAGUS, the inverse of the sample covariance
matrix (denoted as “Sample”), GLasso and CLIME. The predic-
tion errors for these methods at all 51 time points are shown in
Figure 9. Their average AAFE values are displayed in Table 5,
along with the average AAFE values for Adaptive Lasso and
SCAD taken from Fan, Feng, and Wu (2009).

From the results, we see that BAGUS and CLIME have a sig-
nificantly improved performance in prediction accuracy when
compared with the other methods. To look further into the esti-
mates provided by these methods, we present the sparsity struc-
tures estimated fromGLasso, CLIME, and BAGUS in Figure 10.
In this figure, yellow points (appear in light tone when con-
verted to grayscale) indicate signals and blue points (dark tone in
grayscale) indicate noise. In the Gaussian graphical model con-
text, a yellow point suggests that the call arrivals in the corre-
sponding two time intervals are conditionally dependent. It is
interesting to find that a strong autoregressive type of depen-
dence structure is present in estimators from all methods. How-
ever, the methods differ in terms of the degree of autoregres-
sion suggested by their corresponding estimates. The estimated
structure from BAGUS is the most sparse one and suggests a
small degree of autoregression compared to those of GLasso and

Table . Average prediction error for different methods.

Sample GLasso Adaptive Lasso SCAD CLIME BAGUS
Average AAFE . . . . . 1.00

NOTE: The best results in terms of prediction error are highlighted in boldface.
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Figure . Prediction error for the call center data: AAFEt on Y axis and t on X axis.

Figure . Sparsity structures estimated for different methods for the call center data.

CLIME. That is, BAGUS indicates that the telephone call arrivals
majorly depend only on recent history, while others indicate
dependence over a long history. Based on the prediction accu-
racies of different methods, the sparser dependence structure
suggested by BAGUS seems sufficient to provide good predic-
tion although it is difficult to know which structure, in reality, is
closer to the underlying precision matrix. In terms of practical
utility, this provides support in favor of storing and managing
less amount of historical data that could potentially reduce cost
of data management.

6. Conclusion

In high-dimensional data analysis, there is a large literature
on penalization from a frequentist viewpoint majorly focus-
ing on Lasso-based convex penalties and some nonconvex
penalties such as SCAD. On the other hand, in the Bayesian
framework, a variety of shrinkage and sparsity inducing prior
distributions have been proposed. In the context of graphical
models, our work demonstrates that spike-and-slab priors
with Laplace distributions provide adaptive penalization that
leads to better theoretical and empirical performance com-
pared to state-of-the-art methods. Since some recent articles
(Ročková and George 2016a; Deshpande, Ročková, and George
2017) have also found spike-and-slab Lasso priors to be use-
ful in other high-dimensional contexts, we believe that our
strategy of Bayesian regularization will be advantageous in a
broad range of high-dimensional problems and that its success
demonstrated in our work will motivate further interest in this
direction.

SupplementaryMaterials
Supplementarymaterial contains technical proofs for all the theorems from
the main article.
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