
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 1991

Fast Algorithms For Generating Discrete

Random Variates With Changing

Distributions

Sanguthevar Rajasekaran Keith W. Ross
University of Pennsylvania University of Pennsylvania

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/cis reports/142

Fast Algorithms For Generating Discrete
Random Variates With Changing Distributions

MS-CIS-91-52
GRASP LAB 271

Sanguthevar Rajasekaran
Keith Ross

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

July 1991

Fast Algorithms for Generating Discrete

Random Variat es with Changing Distributions

Sangut hevar Rajasekaran
Dept. of Computer and Information Science

Univ. of Pennsylvania, Philadelphia, PA 19104

Keith W. Ross1
Dept. of Systems

Univ. of Pennsylvania, Philadelphia, PA 19104

June 25, 1991

ABSTRACT

One of the most fundamental and frequently used operations in the process of

simulating a stochastic discrete event system is the generation of a nonuniform

discrete random variate. The simplest form of this operation can be stated as

follows: Generate a random variable which is distributed over the integers

1,2, . . . , n such that P(X = i) = pi. A more difficult problem is to generate X
when the pi's change with time. For this case, there is a well-known algorithm

which takes O(1og n) time to generate each variate. Recently Fox [4] presented

an algorithm that takes an expected o(1og n) time to generate each variate under

: assumptions restricting the way the pi's can change.

In this paper we present algorithms for discrete random variate generation that

take an expected O(1) time to generate each variate. Furthermore, our assump-
tions on how the pa's change are less restrictive than those of Fox. The algorithms

are quite simple and can be fine-tuned to suit a wide variety of applications. The

application to the simulation of queueing networks is discussed in some detail.

Key Words: Simulation, Queueing Networks, Randomized Algorithms.

'The work of this author has been partially supported by NSF grant DDM 5-22863.

1 Introduction

The problem of generating a nonuniform discrete random variate is fundamental to simu-

lation of any discrete event stochastic system. The simplest version of this problem is to

generate a random variable X which takes on values in {1,2,. . . , n) such that P (X = i) = p;,

given that the p;'s do not change with time. The well-known 'alias algorithm7 [2] [pp. 147-

1481 takes O(n) preprocessing time, after which it can generate a variate in O(1) time. In

this paper we are interested in developing efficient algorithms for the case of the p;'s chang-

ing with time. Such a procedure is desirable in the simulation of multi-dimensional Markov

processes, such as those used to model queueing and telephone networks.

A precise definition of the problem is as follows. Suppose we are given n real numbers

al , a2, . . . ,a,. The problem is to generate a random variable X distributed over (1,. . . , n)
such that P (X = i) = pi, where p; := ai/(al + - - - + a,). Call a; the ith rate of X. In
the static version of this problem, the ai's do not change with time. In the dynamic version,

zero or more of the ai7s change after each call to the generation of X.
In the context of simulation of discrete-event stochastic systems, the future-event schedule

can be organized as a heap [2] so that variates with changing distributions can be generated

with O(n) preprocessing time and O(1og n) time per variate. Fox [4] recently showed that a

random variate can be generated in an expected o(1og n) time per variate, with preprocessing

time being O(n) (see also [5] for related work). However, Fox assumes that the a,'s change in

a 'restricted7 manner. Roughly speaking, Fox requires that the a;'s deviate infrequently from

a vector of nominal values. This assumption is applicable to queueing networks operating

under globally heavy traffic, in which case the service rates a t the various queues rarely differ

from their maximum values.

In this paper we present algorithms for dynamic random variate generation that run in an

expected O(1) time (after O(n) time of preprocessing). The data structures and algorithms

we propose are quite simple, in contrast to those for the future-event schedule or for the

method of Fox. Updating the data structure to reflect the change in one a; takes just one

unit of time. Even though we also assume that the ai7s change in a restricted manner, our

restrictions are substantially less severe than those of Fox. Specifically, we assume that:

(Al) The ai7s are uniformly bounded above, i.e., there is an Zi such that a; 5 Si for all i.

(A2) There exist lower bounds ai > 0 for each a; (i.e., a; 2 a; for all i) and an cy > 0

such that

(In words, the average of the lower bounds is bounded from below by a positive number.)

(A3) h := is a constant (independent of n).

(A4) The number of ai's that change after each call to the generation of X is O(1).

In the context of a queueing network, our assumptions not only hold for the case of globally

heavy traffic, but also hold when the traffic is substantially lighter. Moreover in many

applications, both and a are independent of n, thus naturally satisfying (A3).

In the paragraph that follows we collect a few results from the literature that will be

of use in this paper. In Section 2 we give our most basic algorithm for generating variates
in O(1) expected time. However, the constant associated with this algorithm can be quite

large for many interesting applications. In Section 3 we develop a generalized version of the

algorithm that can significantly reduce the magnitude of the constant. We also derive an

explicit expression characterizing the magnitude of the constant. In Section 4 we discuss the

application of the generalized algorithm to the simulation of queueing networks. We obtain

explicit expressions for the constant associated with the algorithm in terms of the service

rates and utilizations at each of the queues. In Section 5 we discuss three modifications of
the generalized algorithm which have the potential of offering additional improvements in

performance.

1.1 Some Preliminaries

Let Y = Ez1 qi where q;'s are independent and identically distributed geometric random

variables with parameter p. (Y can be thought of as the number of times a coin has to be

flipped before a head appears for the mth time, p being the probability that a head appears

in a single flip).

Chernoff bounds (see e.g., [6] [pp. 388-3931) can be used to obtain tight bounds on

probabilities in the tail ends of Y. In particular we can show the following:

for any fixed E << 1 (see [lo])

Also, if q is a binomial random variable B(n,p), then the probabilities in the tail ends of
q can be bounded using Chernoff bounds. The following facts can be proven (e.g., see [l] or

for any 0 < c < 1. We will make use of these bounds in our analysis.
Just like the 0() function is used to specify the asymptotic resource bounds of determin-

istic algorithms, a() is used to specify resource (like time, space etc.) bounds of randomized

algorithms. d() is defined as follows.

Definition. [lo] We say a function f(.) is &J(.)) if there exists a constant c such that

f (n) 5 cag(n) with probability 2 (1 - n-") on any input of size n, for any a > 0 and any

n 2 no (no being a constant).

2 A Simple Algorithm

In this section we present a simple algorithm for generating variates with changing distribu-

tions. Suppose we need to generate a variate for X, where P(X = i) = ai/(al + . . -+a,). Our

algorithm makes use of n buckets, i.e., an array B of size n. Each bucket has a 'capacity' of

1. For each bucket i we initially set B[i] = a;/7i. This completes preprocessing. Clearly this

processing can be completed in O(n) time. Notice that the initial contents of each bucket

does not exceed unity. Here is an algorithm to generate a variate for X: (Here after let U
stand for the uniform random variable in the interval (0 , l) .)

Algorithm Generate1

Step 1. Generate U, and compute I = mU1.

Step 2. Let R = I - n u .

Step 3. If R 5 B[I], accept and output I and quit;

Else go to Step 1.

Observe that Generate1 picks a bucket at random (uniformly). If I is the bucket chosen,

then I is output with probability B[I] . (Notice that R is a uniform variable in the interval

(0 , l) and is independent of I.)
The algorithm Generate1 can be thought of as the rejection algorithm (e.g., see [2] [pp.

140-1411) for generating discrete random variates with fixed distributions. (The rejection

algorithm is typically discussed in the context of continuous random variables.) The output

of the algorithm Generate1 has the same distribution as that of X.
The key observation we make here is that the rejection algorithm can also be used to

generate variates with changing distributions. If an ai changes to a:, then we simply reset

B [i] = a:/& The procedure is valid since, by Assumption (Al), the contents of each bucket

never exceeds unity.

In order to characterize the performance of Generatel, let "acceptance" be the event that

R 5 B[I] the first time Step 3 is reached. We refer to P("acceptanceV) as the acceptance

probability. Note that the expected number of uniform random variables U needed to generate

a variate for X by the algorithm Generate1 is equal to the reciprocal of the acceptance

probability. Let a := C;==, ai. Then, we have the following

Theorem 2.1 The acceptance probability for Generate1 is given by

Furthermore, expected O(1) time per vam'ate is guaranteed by the algorithm Generate1 in

order to generate variates for A' with changing distributions.

Proof: We have

establishing the first claim. It follows from (1) and assumption (A2) that P("acceptancen) 2
a / a . This fact along with assumptions (A3) and (A4) establishes the second claim. -

Even though Generate1 (and Generate2 given in the next section) only has an expected

O(1) time bound, if it is invoked many times (which is typically the case in any stochastic

discrete event simulation), the total amount of time spent will deviate from the expected

value only by a small amount with high probability, as proven in the following theorems.

Theorem 2.2 Let h be a lower bound on the acceptance probability of Generate2 If Gener-

ate2 is called m times, then the total number of U ' s generated by Generate2 is no more than

(1 + e): with probability 2 1 - e[-L2m/(1-h)] for any fixed e << 1.

Proof. Follows immediately from the remarks made in Section 1.1, and the observation that

the number of U's generated by Generate2 to obtain a variate for X is upper bounded by a

geometric random variable with parameter lz.

Corollary 2.1 I f m = w(1og n) , the number of U 's generated is no more than (1 + e)? with

probability 2 (1 - $) for any constant r << 1 and any jxed a 2 1. Thus the number of

U 7 s generated is d(p).

2.1 Probabilistic Structure for the Rates

The assumption (A2) can be made weaker if we assume that a probabilistic structure is avail-
able for the a;'s. Consider generating a sequence of variates X(l) , X(2), . . . from Generatel.

Let A(s) := (Al(s), . . . , A,(s)) be the vector of rates used to generate X(s). Let us assume

that A(1), A(2), . . . are random variables and are supported on a known probability space.

We shall continue to make the assumption (Al) so that 0 < A;(s) < a for all i and s. But

we now replace the assumption (A2) with the following assumption:

(A29 There is an a > 0 such that

1 "
-xE[A;(s)] > for all s = 1,2, ...

i=l

Note that this assunlption allows for the possibility of a; = 0 for all i.
Let "acceptance at time s" be the event that R < B (I) the first time Step 3 is reached

when generating X,. From Theorem 2.1 we have

1

P("acceptance at time s" (A(s)) =
, EL1 A;(s)

- a

Taking the expectation of both sides of this expression and mimicking the proof of Theorem

2.1 gives the following result.

Theorem 2.3 We have

P("acceptance at time s") =
t C:=1 E[A; (J)]

- a

Furthermore, under assumptions (A l) , (A$), (A3), and (A4), expected O(1) time per variate

is ensured by the algorithm Generate1 in order to generate variates for X with changing

distributions.

3 Increasing the Acceptance Probability

Although the algorithm Generate1 produces variates in expected O(1) time, its performance
could be poor in applications for which the average of the a;'s is significantly less than

the uniform upper bound for the a;'s. However, in many applications (see Section 4 where

queueing networks are discussed) we may be able to specify an upper bound, a; , for each of

the ai's individually, and we may also have Z; << Si for many of the ai's. In this section we

give an algorithm that exploits this special structure.

In Generate1 one bucket is assigned to each outcome i, i = 1,. . . , n. The idea behind

our modified algorithm is to assign one or more buckets to any outcome i. The number of

buckets assigned to i is proportional to the upper bound of the ith rate. Specifically, let d
be a positive number and let the number of buckets assigned to outcome i , denoted by li, be

given by

Also let I = II + - - + 1, be the total number of buckets and let 5 be the average of the upper

bounds, i.e., 6 := l / n Cy="=,;, Note that we have the following bounds on the total number

of buckets:

Thus if d = 6 , then n 5 1 5 2n.

In the modified algorithm, the number of buckets assigned to any i is held fixed even
when the a,'s change. Once having chosen a.t random one of the I buckets, if that bucket is

assigned to i, then we will output i with a certain probability. This probability, however,

will change as the ai's change.

To be more precise, we make use of two arrays B and C of size I and n, respectively. For

C we set

We set B[j] equal to the outcome i assigned to bucket j (for 1 5 j 5 I).

Preprocessing

Step 1. For each outcome i compute I ; .
Step 2. Compute the prefix sums of (11, 12, . . . ,1 ,) . Let the sums be

(ml ,m2, . - . ,mn)-
Step 3. Initialize B as follows: Fill cells 1 through ml with 1, cells

ml + 1 through m2 with 2, and so on.

Step 4. Set C[i] = $ for 1 5 i < 12.

Next we present the procedure for generating a variate for X

Algorithm Generate2

S t e p 1. Generate U and compute J = rlU1.
S t e p 2. Let R = J - IU.
S t e p 3. Let I = B [J] . If R 5 C[I], output I and quit;

Else go to Step 1.

After having generated a variate for X , if an a; changes to a: we simply reset C[i] = a:/dli.

Note that, by assumption (Al), C[i] never exceeds unity. Also note that we can always set
a; = a, i = 1,. . . , n, and d = iZ, in which case Generate2 reduces to Generatel. In a manner

entirely analogous to that for Generatel, we can also define the event "acceptance" for the

algorithm Generate2.

Theorem 3.1 The output of Generate2 has the same distribution as that of X . Moreover,

for Generate2 we have

P("acceptance") = Z=l$

C? '
I=*

Proof: We have

from which (3) follows. Also note that

1; P (I = i, "acceptance") = -C[i].
1

The two above expressions together give P(I = ilUacceptance") = a;/(al + . . + a,), which

completes the proof.

Theorem 3.1 directly gives the following result.

Corollary 3.1 We have the following bounds on the acceptance probability for Generate2:

Furthermore, if d is a divisor of Si;, i = 1,. . . , n., then P("acceptance") = a/&.

Since 5 can be significantly less than a, the algorithm Generate2 can give a much higher
acceptance probability as compared with Generatel. The cost of Generate2 is the additional

memory that it requires. Corollary 3.1 implies the following.

Corollary 3.2 Suppose the rates of X never change. Then the acceptance probability for

Generate2 can be made arbitrarily close to unity by decreasing d . Furthermore, i f d is a

divisor of ii;, i = 1, . . . , n, then the acceptance probability equals unity.

Note that under the conditions of Corollary 3.2, with d being a divisor of S i ; , i = 1,. . . , n,

Generate2 can be simplified because C[i] = 1 for all i. In particular, each variate for X
would only require the generation of one uniform variate, one multiplication, one 'upper floor'

operation, and one memory reference. This compares favorably with the Alias algorithm,

which requires one of each of the above operations (sometimes two memory references) in
addition to a subtraction and a comparison. We also note that this simplified algorithm is

similar, but not identical, to the algorithm given in [2] [pp. 141-1431.

Before concluding this section we remark that if the rates can be viewed as random

variables, as in Section 2.1, then the acceptance probability for Generate2 becomes:

E[A,(sU c:="=, P("acceptance at time s") = c'! .pi1 .
a=t

Suppose that in this probabilistic setting for the rates we further invoke the following as-

sumption:

(A5) The following limit exists for all i = 1, . . . , n:

lim E [Ai (s)] := E [A;].
S 4 0 0

iFrom (4) we have the following.

Lemma 3.1 Under assumption (A5) we have

lim P("acceptance at time s") = L i = l d
S'00 .[?I -

t = t

This result will be of use in the subsequent sections.

4 Application to Queueing Networks

Queueing networks are used extensively in the modeling and analysis of computer systems

and networks (e.g., see 171). TO illustrate our ideas for variate generation, consider the open

Jackson network (e.g., see [ll]), one of the most fundamental queueing networks. There are n

single-server queues. Customers arrive from the outside according to a Poisson process with

rate X and are routed to queue i with probability roi, i = 1,. . . , n. Service times at queue i

are exponentially distributed with parameter pi, i = 1,. . . , n. When a customer completes

service at queue i, it is routed to queue j with probability r;j; it leaves the network with

probability ria := 1 - xjZi r;j. Service times are assumed to be independent of each other

and of the arrival process.

Now consider simulating the Markov process associated with this queueing network. Note

that the rate, a;, associated with queue i is either or 0 depending on whether queue i is

occupied or empty. Note that the rate associated with external arrivals is a0 := A. Given that

the current rates are ao,. . . , a,, the elapsed time (the inter-event time) until the next arrival

or service-completion event is exponentially distributed with parameter a := a. + - - . + a,.

This event is a service completion at queue i with probability a;/a, i = 1,. . . , n, and an

arrival with probability ao/a. After having determined the elapsed time and event type, the

alias algorithm (see [4]) can be used to determine, in O(1) time, the queue to which the

customer is to be routed (including the possibility of being routed to the outside). A new

iteration then begins, where we determine the next inter-event time, the next event-type,

and the the next queue to which the customer is routed. Note that at most two a;'s change

from iteration to iteration, so that the assumption (A4) is satisfied.

Consider the central component of the above simulation procedure: determining the

event type according to the probabilities a;/a, i = 0,. . . ,n . Clearly, either Generate1 or

Generate2 can be applied. Let us now characterize the performance of Generate2. We shall

do this in the setting of the rates being random, as discussed in Secton 2.1. Note that in

this application we have a, = pi, i = 1, . . . , n, and Sio = A. Also note that, in the context

of queueing networks, Assumption (A5) is tantamount to assuming that the following limit

exists for all i = 1,. . . , n:

y; := lim P(" queue i is occupied
3 4 -

at time s").

We shall obtain an explicit expression for the long-run acceptance probability under the

following assumption.

(A6) There exists a nonnegative solution (A1, . . . , A,) to the 'traffic equations',

such that pi := A;/p; < 1 for all i = 1, . . . , ? I .

Theorem 4.1 Suppose that d is a divisor for pi, i = 1, . . . , n, and for A. Then under

assumption (A6), the long-run acceptance probability for Generate2 for the Jackson network

is given b y

lim P ("acceptance at time s") = + Cy=l PiYi
5--too A + c:."=,i - (6)

Moreover, we have
A+C. . A .

T i = l - (l - p i) (X + = f ' X j J) .
J=l

Consequently,

lim P("acceptance at time s") 2 + =:="=,xi
S'ca A + c:="=,i '

Proof: Under (A6) the associated Markov process for the Jackson network is irreducible,

positive recurrent, and aperiodic. Hence, the limit in (5) exists so that (A5) holds true. Thus,

(6) follows from Lemma 3.1 and the facts: E[Ai(s)] = piP("queue i is occupied at time s"),

i = 1,. . . ,n, EIAo(s)] = A.
It remains to determine y;, the limit of the queue occupancy probability at event times.

(Note that this does not necessarily equal the queue occupancy averaged over time.) To this

end, let L; denote the random variable for the number of customers present at queue i in

steady state. It is well known that

It follows from Theorem 2.10.6 of [ll] and (9) that the total rate at which events occur is

and that

Equation (7) directly follows. 0

We see from (8) that if the time average utilization, pi, at each queue i is at least 112 (as is

the case in most applications of practical interest), then the long-run acceptance probability

is greater than 112. Therefore, under these traffic conditions, the algorithm Generate2 should

be faster than the future event schedule for networks of even moderate size. As compared

with the algorithm in [4], Generate2 has about the same performance in the case of globally

heavy traffic (i.e., p; = 1 for all i = 1,. . . , n), but significantly better performance in lighter

traffic. Equation (8) also tells us that it is particularly desirable to have high values of p; for

those queues i with high service rates.
Let us now attempt to characterize the performance for some other classes of queueing

networks. First consider the case of multiple classes, where each class c, c = 1,. . . , C, has

exogenous arrival rate XC and has routing probabilites rij, 0 5 i, j 5 n. Suppose that the

service rate at each queue is given by pi and does not depend on the class. Also suppose

that the service discipline a t each queue is First-Come-First-Serve (FCFS). There are now

C sets of traffic equations; suppose each equation has a nonnegative solution (Xi,. . . , A:).
Let Xi := X i + . . - + A:, and X := X1 + . . . + XC, and suppose that p; := Ailpi < 1 for all

i = 1, . . . , n. With these modified definitions and assumptions, it is well known that (9)
continues to hold true for this multiclass network. Hence, Theorem 4.1 holds unchanged for

this multiclass network.
Second consider the multiclass network described above, but with s; servers a t queue i.

Now suppose that p; = Ai/pi < s;. Under these conditions, the associated Markov process is
again irreducible, positive recurrent, and aperiodic. Therefore, the following limit exits for

all i = 1, ..., n:

y; := lim E[# of busy servers at queue i at time s].
8-00

Note that, with this new definition of yi, we have 0 < y; < s;. It is easily seen that

lim P("acceptance at time s") = X + Cy=+i~i
s + m X + Cy=+si~i '

As in (7), y; can be expressed in terms of the defining parameters of the network. The
derivation of this complicated expression is left to the reader.

Third consider the multiclass, multiserver network discussed above, but now suppose
that it is closed, i.e., customers neither enter nor leave the network, so that the population

size in the network is fixed for each class. The finite-state Markov process associated with

this network is irreducible and aperiodic. Thus assumption (A5) holds and the long-run

acceptance probability is given by

lim P("acceptance at time s") = Z'=I Pi7i
8'00 CZ1 sip;

with 7; defined as in (10). In this case yi can be expressed in terms of the defining parameters

through 'normalization constants'.

The networks discussed above are 'product-form' queueing networks. Let us now con-

sider a non-product-form network. In particular, consider the closed, multiclass, multi-

server network discussed in the paragraph above, but now suppose that the service rate

for class c customers at queue i is p: (i.e., the service rates now depend on the class as

well as the queue). The maximum service rate at queue i is now given by .sipi where
-
pi := max{& : c = 1,. . . , C). Let

7: := lim E[# of servers busy with class c customers at queue i at time s].
s+00

Assumption (A5) again holds and we have

lim P("acceptance at time s") = C~="=lf=~ ~Frl
s + m C?=l sip;

However, the current tools of queueing theory do not offer a means for expressing 7;" in terms

of the defining parameters for this non-product-form network.

We conlcude this section by mentioning that the methods discussed above, and the

method of Fox [4], are based on simulating the transitions of the Markov process, which

is different from the more traditional method based on a future event schedule. However,

as Fox points out, many of the features of the traditional method are also available for the

'Markov process' method. For example, we can estimate sojourn time distribtions by keeping

an ordered list for each queue and moving customers from queue to queue at event times.

5 Improving Performance

Although the algorithm Generate2 should be useful for many applications, there are sit-

uations for which its performance will be less than satisfactory. In particular, this will
occur when the expected rates are far from their respective upper bounds, i.e., when

C;="=,[A;] << CE, ai (see Lemma 3.1). In this section we discuss three modifications

of Generate2 which are designed to allevia.te or even overcome this problem. In a subsequent

paper ([9]) we will discuss how some of these modifications can be employed in the efficient
simulation of large-scale telephone networks.

Before discussing these modifications, it will be beneficial to introduce yet another algo-

rithm for generating variates with changing distributions. To our knowledge, this algorithm

cannot be found in the simulation literature. However a similar algorithm has been given in

[8] [Ex. 4.27 and page 4221 in a different context. An informal description of the algorithm

is as follows. (For the sake of convenience, suppose that log, n is an integer in this discus-

sion.) The algorithm is based on a binary tree with 1 + log, n levels and n leaf nodes at the

bottom level. The value associated with the ith leaf node is a;. The value associated with

any other node is the sum of the values associated with the two sons of that node. Thus,
the value of the node at the root of the binary tree will be a := al + . . . + a,. Note that

O(n) preprocessing time is needed to set up the binary tree. Now to generate a variate for

X, we first generate a uniform number over (0, a). We then compare this number with the

value associated with the left son of the root. If it is less, we know that the variate is in

{1,2,. . . ,n/2), so we proceed with the algorithm on the left side of the binary tree. If it is
more, we proceed on the right side of the tree. Note that the number of comparisons needed
to generate a variate for X is log, n. If an ai changes to a: after generating a variate for X ,
we can update the binary tree with O(1og n) operations as follows. We first reset the value
associated with leaf node i to a:. We then move up the path between this node and the root
and reset the sums accordingly.

In summary, the above 'binary-tree algorithm' requires O(n) preprocessing time and

O(1ogn) time per variate to generate variates for X with changing distributions (with as-
sumption (A4) still in force). The advantage of this algorithm, as compared to Genearte2,

is that its performance does not depend on how close the ails are to their upper bounds. Its

disadvantage is that it can take significantly more time to generate a variate for X when n

is large and the acceptance probability for Generate2 is not small.

5.1 Method I: Partitioning

For any subset S of (1, . . . , n}, let

and

Now suppose there exists a partition (S1, S2) of (1, . . . , n) with the following properties: (i)

h(Sl) is not 'small'; (ii) h(S2) is 'small'; (iii) ii(Sl) is in the 'vicinity of' or larger than &(Sz).
Under the above conditions, the following scheme makes sense. First draw a uniform

random variate U . If U < a(Sl)/[a(Sl)+a(S2)] then we declare that the variate for X belongs

to Sl and we use Generate2 (across Sl) to determine it. If U 2 a(Sl)/[a(S1) + a(S2)], then

we declare that the variate for X belongs to S2 and we use the binary-tree method (across

S2) to find it. Of course, in order to utilize this method, we need to get a handle on E[A;],

i = 1,. . . , n. This can perhaps be done with analytical analysis or with pilot runs.

In the context of queueing networks, the above method may be suitable when a fraction

of the queues are in heavy traffic and the remaining queues are in light traffic.

5.2 Method 11: Pseudo Upper Bounds

Here, for those indices i such that E[A;] << Si;, we replace 7i; with a smaller value, perhaps

with E[A;]+3a(A;) where a(A;) is the long-run standard deviation of Ai(s). (This, of course,

assumes that one can get a handle on a(Ai) as well as on E[Ai]). Now we may have a; > ai
for some indices i. When this occurs, the algorithm Generate2 is no longer correct since we
may have C[i] > 1 for some i. In order to rectify the algorithm, we keep track of the set

@ := {i : a; > a;) and of the counter 6 := max{a;/Si; : i E @). (If @ is empty, set 6 = 1.)

Then in Step 3 of Generate2 we replace the test 'R 5 C[I]' with the test 'R 5 C[I]/6'. We

leave it to the reader to verify the correctness of the procedure.

But when is it necessary to update and 6, and how much effort is required for each

update? Suppose that an a; changes to an a:. It is only necessary to perform an update

in the following circumstances: (i) a;/a; 5 1 and a:/?i; > 1; (ii) a;/Si; > 1 and a{/Sii > 6;

(iii)a;/&; = 6 and a{/@ < 6 ; (iv) ai/7ii > 1 and a:/Sii 5 1. In order to minimize the effort

to update @ and 6, can be implemented as a priority queue. With such a data structure,
for any one of the four events occurs, O(1og 1@1) operations are sufficient for the update.

The pseudo upper bounds should be chosen large enough so that and 6 are typically
small. However, they should not be chosen so small that the acceptance probability becomes

undesirably low.

5.3 Method 111: Global Updates

For Method I1 it may not be possible to determine, a priori, good pseudo upper bounds a;, i =

1,. . . , n. Or it may be the case that the appropriate choice of psuedo upper bounds changes

with the evolution of the underlying process that we are simulating. In these cases we may
want to consider occasional global updates of our pseudo upper bounds and reinitializations

of the arrays B and C. The reinitialization will make sure that all the entries in C are close

to 1. Of course, the process of global update is very costly (requiring R(n) time). But if this

has to be done very rarely, it may be advantageous.
For illustration, suppose cr is small when compared to ii (the average of our pseudo upper

bounds). It may be worthwhile to perform a global update. But how do we detect at any

given time if a is low or not? When a is small, many entries in the array C will be much less

than 1. We can make use of the following sampling process: We pick say 10 log n random
outcomes. If a major fraction of these outcomes have an entry much less than (say) $ in the

C array, we perform a global update. Using Chernoff bounds we can show that if a major

fraction in the sample has a low CU value, then a major fraction of all the C[] values will be

low with high probability. Also, we perform this checking only every 20 log n samples (thus

making sure that the total additional cost per sample due to this checking is no more than

a fraction).

6 Conclusions

In this paper we have presented O(1) expected time algorithms for generating a nonuniform

discrete random variate (when the distribution changes). Though these algorithms have

the potential of finding many applications, an important open question is if there exists a

constant time algorithm for discrete random variate generation which does not make any

assumptions on the way the rates of X change.

References

[I] Angluin, D., and Valiant, L., 'Fast Probabilistic Algorithms for Hamiltonian Circuits
and Matchings,' Journal of Con~puter Systems and Science 18(2), 1979, pp. 155-193.

[2] Bratley, P., Fox, B.L., and Schrage, L.E., A Guide to Simulation, Springer-Verlag Pub-

lications, 1983.

[3] Chernoff, H., 'A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on
the Sum of Observations,' Annals of Mathematical Statistics 23, 1952, pp. 493-507.

[4] Fox, B.L., 'Generating Markov-Chain Transitions Quickly: I,' Operations Research So-
ciety of America Journal on Computing, vol. 2, no. 2, Spring 1990, pp. 126-135.

[5] Fox, B.L., and Young, A.R., 'Generating Markov-Chain Transitions Quickly: 11,' Oper-
ations Research Society of America Journal on Computing, vol. 2, no. 1, Winter 1991,
pp. 3-11.

[6] Kleinrock, L., Queueing Systems, Volume 1: Theory, John-Wiley and Sons Publishers,
1975.

[7] Heidelberger, P., and Lavenberg, S.S., 'Computer Performance Evaluation Methodol-
ogy,' IEEE Transactions on Computers 33, 1984, pp. 1195-1220.

[8] Manber, U., Introduction to Algorithms: A Creative Approach, Addison-Wesley Pub-
lishing Company, 1989.

[9] Prindiville, M., Rajasekaran, S., and Ross, K.W., 'Efficient Simulation of Large-Scale
Loss Networks,' in preparation.

[lo] Rajasekaran, S., and Reif, J.H., 'Derivation of Randomized Sorting and Selection Algo-
rithms,' Technical Report, Aiken Computing Lab, Harvard University, March 1987.

[ll] Walrand, J., An Introduction to Queueing Networks, Prentice Hall, 1988.

