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1. Introduction  

A common justification for network research is that, unlike 
traditional statistical approaches, we do not pretend our respon-
dents are independent. As Freeman (2004) points out in a quote 
from Barton (1968): 

 
“For the last thirty years, empirical social research has 
been dominated by the sample survey. But as usually 
practiced, …, the survey is a sociological meat grinder, 
tearing the individual from his social context and guar-
anteeing that nobody in the study interacts with any-
one else in it.” 

Social network researchers often make this point a little 
smugly – after all, social life is connected, so why pretend other-
wise? We are, however, less likely to tout the tradeoff  needed to 
capture network effects: in giving up independence, we also (usu-
ally) give up sampling. As typically practiced,1 network measures 

assume a census of  the relevant respondents and their relations ( 
Wasserman and Faust, 1994; Laumann et al., 1983). This raises 
an obvious question: how robust are network measures when our ob-
served sample is incomplete? 

This question is critically important for medium-sized set-
tings where network measures are used for building policy, such 
as within schools (Valente et al., 2003; Steglich et al., 2012) or or-
ganizations (Moore et al., 2004). In these settings, the network 
is too large for an expert informant to reliably describe and too 
small to make effective use of  the sorts of  macro-structure regu-
larities featured in extremely large networks (Albert and Barabasi, 
2002; Newman et al., 2002). In such cases, respondents may be 
absent the day of  survey administration or have opted-out of  the 
survey for privacy reasons, leading to potentially significant cov-
erage error (Butts, 2003). Every network has some level of  this 
error, but we are just beginning to get estimates of  the bias these 
coverage errors introduce (Wang et al., 2012; Huisman, 2009; 
Borgatti et al., 2006; Kossinets, 2006; Costenbader and Valente, 
2003; Galaskiewicz, 1991). 
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1. There is, thankfully, a growing body of  work on ways to sample networks and model sampled networks statistically. But, the vast majority of  practical 
work on network measurement still assumes population data.
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Our goal with this set of  studies is to extend network sample 
coverage research to help provide simple, practical guidance for 
data collection and analysis.2 The more specific goals are three-
fold: first, to describe the maximum level of  missing data that will 
yield an acceptable level of  bias; second, to explain why some 
networks are more or less robust to missing data than others; and 
third, to extend past work that has generally focused on a single 
data type and/or measure. To that end, we will describe the ef-
fects of  missingness on more measures and across more diverse 
networks than previously studied. This will provide research-
ers with a clear, sensible and interpretable guide to the effects of  
missing data across a wide range of  data types and measures. 

Ultimately, we hope to identify the effects of  different types of  
missingness and the effectiveness of  simple correction strategies 
over a diverse range of  network structures to provide practical re-
search guidance to network researchers. Since this goal requires 
work beyond the scope of  a single paper, we approach the proj-
ect in three parts. In this first study, we examine measurement er-
ror under simple random missingness. There are multiple ways in 
which missingness can be biased, but missing-at-random is a rea-
sonable starting point commonly used in other work (Borgatti et 
al., 2006; Kossinets, 2006; Costenbader and Valente, 2003). Miss-
ing-at-random also provides a comparison for the non-random 
missingness we explore in Part II and matches recent advances in 
this line of  work (Huisman, 2009; Moody and Smith, 2013a). Fi-
nally, after laying the groundwork on the effects of  missingness, 
we explore simple imputation procedures designed to correct for 
missing data (Part III-Moody and Smith, 2013b), focusing on 
models that fill in information from sampled respondents. 

We begin this paper by describing past work on missing net-
work data. We then describe the networks used in the simulation, 
the measures of  interest, and the sampling scheme used to mea-
sure the effect of  missing data. The second half  of  the paper sum-
marizes our results and is divided into four sections: one for cen-
trality, centralization, topology and homophily. 

1.1. Background and prior work 

This project fits nicely in a small, growing tradition of  simu-
lating network errors from observed data to evaluate bias (Huis-
man, 2009; Borgatti et al., 2006; Kossinets, 2006; Costenbader 
and Valente, 2003; Galaskiewicz, 1991). Monte-Carlo simula-
tions of  the effects of  data error on network measurement are 
a natural way to gauge robustness, particularly since the mathe-
matics of  sampling networks are daunting (Frank, 1971; Frank, 
1978; Granovetter, 1976) and test-retest designs are subject to real 
change in the underlying network (Zemljic and Hlebec, 2005). 
The simulation approach parallels work done on non-network 
survey data problems, where researchers use simulation to cap-
ture the effect of  missing data on various model parameters – 
such as correlation and regression coefficients (see for example, 
Kim and Curry, 1977; Kaufman, 1985; Jinn and Sedransk, 1989; 
Yuan and Bentler, 2000; Akritas et al., 2002). 

In the absence of  clear analytic solutions for most network 
measures, simulation is a straightforward, analytically tracta-
ble approach. The basic procedure emerging in this literature is 
to: (1) identify (or construct) a population of  networks, (2) calcu-
late known measures on those networks, (3) sample from them in 
various ways that represents missingness, (4) re-compute the sub-
stantive measures on the now distorted networks and (5) compare 

the results. Prior work has examined small Erdös random graphs 
of  varying density (Borgatti et al., 2006), as well as collections of  
empirical networks that range from small (less than 200 nodes) 
face-to-face networks (Huisman, 2009; Costenbader and Valente, 
2003; Galaskiewicz, 1991) to large (16,000 node) 2-mode net-
works (Kossinets, 2006) to even larger online networks (Wang et 
al., 2012). This work has shown a dependency in the resulting mea-
surement bias as a function of  network density, size and assorta-
tive mixing. Looking across papers, this work also suggests that the 
scale of  node-missingness effects is contingent on the underlying 
structure of  the graph. It is not entirely clear, however, which fea-
tures matter most and whether this varies by network measure. As 
such, we will closely examine a small number of  widely varying 
structures to provide variation for substantive exploration. 

Most prior work has examined the robustness of  centrality 
scores (Johnson et al., 1989; Galaskiewicz, 1991; Costenbader 
and Valente, 2003; Borgatti et al., 2006), suggesting that many 
centrality scores are robust in the face of  modest node missing-
ness. For example, Costenbader and Valente (2003) show that in-
degree is remarkably stable; with correlations remaining in the 
0.9 range even with 50% missing (see also Galaskiewicz, 1991). 
More system-dependent measures, such as betweenness central-
ity, showed lower correlations, averaging 0.5 at 50% coverage, 
though Borgatti et al. (2006) show correlations in the 0.7 range 
for 50% missingness in Erdos graphs, even for system-dependent 
measures such as betweenness and closeness centralities. These 
studies all show a consistent and smooth decline in accuracy as 
missingness increases. 

Kossinets (2006) is among the few studies to look at features 
other than centrality,3 focusing instead on indicators of  global 
network structure. Examining small world statistics (clustering 
and path length, Watts and Strogatz, 1998), fractional size of  the 
largest component and degree assortative mixing, his results sim-
ilarly suggest a smoothly increasing bias as missing data levels in-
crease. He finds widely ranging levels of  tolerable differences, de-
pendent on both the measure of  interest and the type of  missing 
data. Huisman (2009) similarly considered non-centrality mea-
sures, focusing on degree, reciprocity, clustering, assortative mix-
ing (on degree) and distance. He considered different missing 
mechanisms as well as directed/undirected versions of  the same 
data, finding the effect of  missingness to be fairly similar across 
analyses. The directed network did, however, have larger bias for 
clustering while the undirected network had larger bias for degree 
and distance. 

Most of  this work demonstrates clearly that network esti-
mates are degraded with lower sample coverage, but that there 
is a wide variability in these effects across measures. For practi-
cal purposes, researchers want to know how much damage has 
been done when survey response rates are less than perfect, and 
typically need this information for multiple network measures. 
Thus, while Kossinets (2006) and Huisman (2009) explore many 
network features, their limitation to a single network form makes 
generalization difficult. Similarly, centrality studies provide infor-
mation across a wide-ranging set of  networks, but focus on a sin-
gle dimension of  network structure. More recently, Wang et al. 
(2012) focus on different types of  measurement error, consider-
ing coding problems that are likely to emerge in large, automati-
cally collected data sources. Wang et al. (2012) thus capture a va-
riety of  error processes but explore a limited number of  networks 
and network measures. 

2. Of  course, good theoretical models exist for estimating bias and even correcting it in some cases, once the data have been collected (Butts, 2003; Koski-
nen et al., 2010;Robins et al., 2004; Handcock and Gile, 2010). But one wants to know how much damage has been done before embarking on such 
corrections. Our goal is to provide everyday users with simple guidelines aimed at helping plan a good study in the first place and assessing the poten-
tial damage done when data are missing.

3. Although the number of  studies including multiple measures and networks has increased over time.
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We thus build on this important prior work by extending anal-
yses to a wide set of  networks that cover a variety of  underlying 
features. Importantly, we assess both estimate bias (mean differ-
ence from true) and precision (variability around the mean) for 
measures related to centrality, centralization, global network to-
pology and homophily. 

2. Data and methods 

2.1. Network samples 

We want a set of  networks that researchers from multiple sub-
stantive fields could use as analogs to their own work. We limit 
our study to relatively small (<1000 nodes) networks for both 
practical and theoretical reasons. Practically, many of  the net-
work structure statistics we calculate are time-intensive and com-
putation time often increases non-linearly with network size, so 
this limitation eases the computational burden of  the analysis. 
Theoretically, mid-sized networks are likely the least amenable 
to large-scale random-graph summaries and perhaps most sensi-
tive to small levels of  missingness due to key players. These set-
tings, typically within organizations, are also more likely the fo-
cus of  intensive management efforts. Figure 1a and b presents 
sociograms and simple descriptive statistics for each of  the 12 net-
works we study.   

Figure 1. Networks Used for Sampling Simulation.   

The sampled networks range in size from 43 to 908 nodes, 
covering many of  the contexts commonly studied in social net-
works research.4 These include data on elites (corporate inter-
locks: “Mizruchi Interlock” and “River City Elite”), young 
youth networks (“Gest 6th graders”, “Prosper s220”),5 adoles-
cent and young adult networks (“Sorority Friendship”, “High 
School (p. 13 and p. 24)”, the Gagnon prison network (MacRae, 
1960), science networks (a portion of  the sociological abstracts 
collaboration graph and the Social Networks article co-citation 
graph, the biotechnology exchange network) and epidemiolog-
ical networks (Colorado Springs HIV risk network – Morris and 
Rothenberg, 2011).6 For each figure, we include the observed 
values for size (n), density (Δ), average path length (L), transi-
tivity (Tr), degree centralization (Cd) and closeness centraliza-
tion (Cc). Nodes are colored by the relative closeness centrality. 
Directed edges are represented by an arc while undirected edges 
are not. The substantive variability in these networks should 
help us determine how much sampling bias is contingent on net-
work structure. 

2.2. Network position measures 

We focus on four classes of  measures: centrality, centraliza-
tion, topology and homophily. For centrality, we measure degree, 
closeness, betweenness, and Bonacich power scores. For directed 
networks, we distinguish between in and out degree but treat the 
network as undirected for the other three scores. For Bonacich 
power centrality, we choose   as 0.75 times the largest Eigenvalue. 
Since centrality is an individual-level score, we measure system 
reliability as the Pearson’s correlation coefficient between the true 
and observed scores. 

2.3. Network structure measures 

All other scores are measured at the graph level and we calcu-
late a simple relative bias score as:

bias = Observed – True 
  True                                       (1)

This score tells us the percentage difference of  the observed value 
under sampling relative to the true value observed in the complete 
network. Positive values indicate that node-sampling inflates the 
score. Negative values indicate that the score is deflated. In ad-
dition to overall bias, we are also interested in the variability of  
the score as a function of  sampling. Thus all figures include the 
mean, inner-quartile range and 10th/90th percentiles. 

2.3.1. Centralization 
We calculate network centralization scores for each individ-

ual centrality measure using Freeman’s standard (1979) formula. 
These capture the dispersion in centrality – the extent to which 
the network is “star-like”, with high values indicating highly un-
equal distributions and low values indicating fairly equal distri-
butions. Centralization scores are strongly affected by density, so 
comparisons across networks are difficult, though trends within 
networks should be informative. As we discuss in the results sec-
tions, other indicators for distribution inequality may be more ro-
bust to sampling errors. 

2.3.2. Topology 
We focus on six measures of  network topology. The first mea-

sures capture connectivity, focusing on the fraction of  the popu-
lation in the largest component and bicomponent, key indicators 
of  structural cohesion (Moody and White, 2003). A component 
of  a network is a maximal set of  nodes reachable through at least 
a single path.7 The largest component thus marks the limiting ex-
tent of  people reachable through the network. By definition, a 
component may be disconnected by the removal of  a single node. 
Bicomponents, in contrast, are maximal sets that can only be dis-
connected by removing 2 or more nodes, and each pair of  nodes 
is linked through at least two node-independent paths. As such, 
bicomponents offer a potentially more robust structure for diffu-
sion than components (Moody and White, 2003). 

The third topological measure is the average path distance be-
tween nodes. A path in a network is a sequence of  adjacent edges 
linked by nodes, and the shortest path connecting two nodes is 
the geodesic; if  two nodes are unreachable the distance between 
them is infinite. While average distance is an easily interpretable 
statistic within a connected network, infinite values due to uncon-
nected pairs make calculating a simple summary score such as 
the mean impossible. As such, we use ‘closeness’ instead of  dis-
tance, calculated as 1/distance. Since the lim(dist → inf) of  1/dist 
is zero, we score unconnected pairs as zero. High average close-
ness values indicate that the network is compact, with many pairs 
separated by small distances. 

The extent to which triples are closed in a network captures 
local clustering, or the likelihood that “a friend of  a friend is a 
friend.” We measure local clustering with the transitivity ratio 
– the proportion of  all two-step paths that are also 1-step paths. 
Networks with high transitivity are locally clustered. 

While transitivity captures the extent of  locally closed triads, 
the full triad census summarizes much more of  the topological 

4. Thanks to the authors of  these studies for use of  the data: Mark Mizruchi for the Interlock network; Scott Gest for the 6th grade data; Lisa Keister for 
the River City Elite data; Walter Powell for the Biotechnology exchange data.

5. The Prosper project is funded by NSF/HSD: 0624158, W.T. Grant Foundation8316 & NIDA 1R01DA018225-01.
6. The Colorado Springs HIV network was made available through the following grant: NIH R01 DA 12831 (PI Morris) Modeling HIV and STD in Drug 

User and Social Networks, NIDA.
7. In the case of  directed networks, we calculate the weakly connected component, ignoring the direction of  the edges.
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information in a network (Wasserman and Faust, 1994). Hol-
land and Leinhardt (1976) and Wasserman (1977) provide scor-
ing to test for the shape of  the network macro structure based on 
tau statistics, conditional on the distribution of  dyads. Johnsen, 
1985 and Johnsen, 1986 provides a number of  models that cap-
ture clustering and hierarchy in networks. Here we calculate tau 
statistics based on a ranked cluster (RC) model. For directed net-
works,8 the ranked-cluster model describes settings where ordered 
sets of  m-cliques are arranged in a hierarchy. For our purposes, 
we are less interested in the actual level of  hierarchy than in the 
stability of  the distribution given missing data. 

Perhaps the most general treatment of  a network’s topology 
is a block-model (White et al., 1976). A blockmodel ideally re-
duces a complex network to a manageable number of  equivalent 
positions that capture the underlying network structure. Unfortu-
nately, there is no single-indicator summary for a block-model, 
making it difficult to contrast the “true” partition with the par-
tition identified in the missing-data perturbed network. We can, 

however, ask how similar any two arbitrary network partitions are 
with the rand statistic. The rand statistic ( Rand, 1971) tells us the 
proportion of  pairs in one partition that are similarly grouped (to-
gether or apart) in a second partition.9 Thus, to capture the ro-
bustness of  the global network structure, we first partition the 
network with CONCOR (arbitrarily set to depth 3), then com-
pare the partition observed in each sampled network to that ob-
served in the full network (for all pairs remaining in both net-
works). We are not claiming that each of  these networks is best fit 
by a depth = 3 CONCOR partition. Rather, we simply want a 
way to capture the overall robustness of  the role structure to sam-
pling, and the CONCOR partition provides a simple mechanism 
for doing so using a well-known and commonly used technique.10 
In principle, high rand statistics at low sampling levels should in-
dicate that one can effectively enumerate summary network po-
sitions with the sampled data, regardless of  the topological com-
plexity of  the network. 

8. For undirected networks, the RC model is identical to the multiple clusters model, since only triads without asymmetric arcs are allowed.
9. We have chosen to use the unadjusted rand. The unadjusted rand does not adjust for random expectations, or the fact that some of  the correct pairings 

would have arisen simply by chance. Practically, a researcher will want to know if  person A and person B are grouped in the same manner as the level 
of  missing data increases. Fora researcher’s purpose, a partition is no less good just because a random partition would also have explained some of  the 
similar pairings. In that sense, the adjusted and makes it harder to answer the basic question: are people still placed in the same groups if  there is miss-
ing data?

10. Similarly, there are many other algorithms for blockmodeling a network(Anderson et al., 1992; Batagelj et al., 1992), and we are not claiming that 
CON-COR is the optimal choice. It is, however, well-known in the literature having been used in some of  the most cited social network work, fairly 
quick to calculate, and can be implemented to run uniformly across many networks. We have also run the CONCOR analysis with varying depths. 
Here, we found the best fitting depth for each network and used that value when calculating the effect of  missing data on the estimates. The results for 
this alternative analysis are quite similar to the fixed depth results, and we only report the fixed depth results here.

Figure 1. Networks Used for Sampling Simulation.
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2.3.3. Homophily 
The measures described above focus purely on network struc-

ture, but many researchers are interested in the intersection of  net-
work structure with behavior (e.g. Cohen, 1983; Haynie, 2001; Bra-
moulle et al., 2009; Steglich et al., 2010). In most cases, researchers 
ask how similar connected nodes are to each other with respect to 
a given attribute. We focus on two sorts of  homophily here. First, 
homophily with respect to structure is best captured with network 
degree homophily, also known as the level of  assortative mixing. We 
calculate assortative degree mixing as the edgewise correlation on 
degree. High positive values indicate that nodes with many ties 
are connected to others with many ties and those with few to oth-
ers with few. Strong negative values indicate disassortative mixing, 
where people with many ties are connected to those with few. 

The challenge to measuring attribute homophily on a diverse 
sample of networks is finding an attribute sufficiently consistent 
across networks to provide comparison. Since no such attribute ex-
ists naturally in these data, we assign attributes to nodes in each 
network in a way that creates a known level of homophily. To do 
so, we first randomly “seed” the network with values of a uniform 
random variable. We then apply a peer-influence model (Friedkin, 
1990) to adjust the values of the variable across nodes until a mini-
mum level of homophily is achieved. These attributes are then fixed 
for the nodes across all runs. Here we use two levels of homophily 
to test for strength effects, where high homophily measures may be 
more (or less) robust to missing data. We again measure homophily 
as edgewise correlation, using values of 0.35 and 0.75. 

Table 1 summarizes the measures and provides the known val-
ues for each of  the networks studied.    

2.4. Network sampling setup 

For each network, we randomly select a proportion of  nodes 
to remove, reconstruct the network without these nodes or any 
of  their contributing edges, and compute the scores of  interest. 
These are then recorded for comparison to the known values. We 
repeat this process 1000 times for each level of  missingness, eval-
uated at 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, and 70 percent. 
We use a simple “listwise” procedure to reconstruct the network. 
Only those nodes sampled are included in the reconstructed net-
work. This is the standard method used in prior work (Galaskie-
wicz, 1991; Costenbader and Valente, 2003; Borgatti et al., 2006) 
and reflects a common idea that unsampled nodes are also un-
known.11 Practically, we ignore any nominations from a sampled 
node to a non-sampled node.

 
2.5. Analysis strategy 

The amount of  information generated by this research design 
presents a formidable data-summary challenge: we have mean 
and variability scores for 12 networks across 12 levels of  miss-
ingness over 22 network measures. Our strategy is to first provide 
graphical summaries for each network to provide a qualitative 
portrait of  the missingness effect. We then summarize over all 
of  the networks using marginal distributions or regression mod-
els. We refer to the graphical summaries as mosaic plots. Figure 
2 presents a simple example of  one network and one measure to 
guide the interpretation of  the remaining summary figures. Here 

we examine the robustness of  in-degree for the River City elite 
network. The first panel shows the scatter plot of  observed in-de-
gree after sampling (y-axis) by the true in-degree (x-axis), for one 
draw at 5 missingness levels. As we can see, the slope of  each line 
drops as missingness increases. Thus, as missing data levels in-
crease, there is lower fidelity to the true value, or a lower corre-
lation between true and observed in-degree. The second panel 
summarizes this result over 1000 iterations, plotting the mean 
level as a dark line, the inner-quartile range as dark gray and the 
10th/90th percentile as light gray.    

We can see that the overall slope of  the mean line in panel 
two is flat, indicating that in-degree is quite robust in this net-
work. Fitting a linear term to this line yields a –0.006 slope (on 
10% units); we can then expect a correlation of  0.982 between 
the true and observed score if  we were to sample only 70% of  the 
nodes in this network. Moreover, the variation around the line is 
quite small. We calculate a total deviation score (υ) to measure 
this variability. Total deviation is equal to the square root of  the 
total sum of  squares of  the observed minus the mean divided by 
n. As deviation increases, the total uncertainty in our estimate in-
creases. This effectively captures the relative size of  the shaded re-
gion in each panel. The total deviation here is 0.0005, which is 
among the smallest we will observe.12  

3. Results 

3.1. Network position scores 

Figure 3 presents the summary results for the 6 central-
ity scores. Since in- and out-degree are the same as total degree 
for the undirected networks, we have shaded those columns for 
ease of  reference. Looking across the rows lets us compare net-
works with respect to their sensitivity to missingness, while look-
ing down the columns lets us compare the relative effects within 
networks of  different centrality scores. The generally declin-
ing slopes tell the obvious story that accuracy is lower as less of  
the network is sampled. The range of  these effects is quite large, 
however. For the co-citation network, for example, sampling only 
50% of  the nodes would leave us with expected degree scores that 
correlate at about 0.95 with the true value [1 – 5 * (0.01) = 95], 
dropping to a correlation of  0.93 if  we sampled only 30%. On 
the other hand, a 50% sample from the Gangon prison network 
would leave us with a total degree score that correlates at 0.66 
with the true score, dropping to 0.54 at a 30% sample, and the re-
sults would be much worse for betweenness centrality.    

In the directed networks, we see that in-degree is usually more 
robust to sampling than out-degree, though that effect may be 
strongest for the highly-centralized (in-degree) networks, such as 
the River City Elites. For the four measures based largely on de-
gree (Bonacich power being a degree-weighted score), we see gen-
erally higher total variation among the smaller networks (even 
though these are based on percent of  nodes removed, not abso-
lute number), with the exception of  the 6th-grade Prosper net-
work. This may be due, in part, to the strong sex-segregation here 
– effectively giving us two small networks weakly linked rather 
than one larger network. The River-City elite network has a very 
robust in-degree profile, but a weak out-degree profile. Since this 
is a “who do you think is influential” network, there is strong 

11. This listwise procedure is not necessary, however, since in practice people may name nodes that themselves are not sampled, as when children nom-
inate friends who are absent from school the day of  the survey. In such cases, we have some information from each respondent about ties to an alter, 
though no information about ties from/among missing alters. One of  the simplest “imputation” methods available is to include those nodes in the net-
work. We explore this strategy in the companion imputation paper.

12. In the summary tables, we also include the R2 for the regression of  the observed score against percent missing. While intuitive, this conflates the slope 
of  the line with the variability around the line – a nearly flat relation between missingness and the observed score is good, indicating the score is robust 
to missing data. Such a relation will generate a low R2, but you can get the same R2 if  you have a steep line but high variability, so R2 alone is insuffi-
cient to account for certainty.
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agreement on the most important players in the setting and thus 
in-degree is robust. The two high-school networks have a fairly 
strong negative slope (–0.05; → a correlation of  0.75 at 50% sam-
pling), but this is also very narrowly distributed. 

The more dependent a score is on system features, the greater 
effect missing data has on the resulting bias, and often so in a non-
linear way. Closeness centrality, for example, often shows a sharp 
decline in fit for small amounts of  missingness that later levels off. 
In general, closeness centrality is quite sensitive to moderate lev-
els of  missing data. So, while the average linear slope is –0.037 for 
the Coauthorship network, the effect of  missingness levels out after 
10% missing at a correlation of  about 0.7. Betweenness centrality 

has a more linear response to missingness, but the slope is gener-
ally quite steep, and the effect is evident for both small and large 
networks. Table 2 summarizes these curves by giving the propor-
tion missing data that would produce a target correlation between 
the true and observed score, based on a quadratic model fit to our 
simulation results (to better capture the curves evident in Figure 3). 
Thus, we see that in the interlock network, you would achieve a 
correlation with the true degree score of  0.9 or greater if  you had 
up to 23% missing node data, while having between 23% and 40% 
will likely yield a correlation of  at least 0.8.     

As a simple summary of  the effect of  network structural fea-
tures on the centrality score sensitivity to missingness, Table 3 

Figure 3. Centrality score robustness, by network, centrality score and missingness level. Each subgraph plots the distribution of  the correlation be-
tween the true centrality score and the score computed on the network with nodes removed at random. The dark line represents the mean, inner-quar-
tile range with dark gray and 10th/90th percentiles with light gray.   is the regression coefficient of  correlation regressed against percent missing (di-
vided by 10), and thus represents the expected drop in correlation for each 10% decline in sample coverage. For example, if  we sampled 80% of  the 
Sorority population, we would expect a correlation for closeness centrality of  [1 – 2 * (0.068)] = 0.86. υ represents the average observed deviation 
(square-root of  total sum of  squares divided by n) and R2 is the proportion of  the variance explainable with the linear regression term. Shaded col-
umns indicate undirected networks.   

Figure 2. Missingness comparison example, River City Elites and in-degree.   
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presents the correlation between measures of  network structure 
and the beta slope coefficients from Figure 3.13,14     

While regressions with 12 cases have limited statistical power, 

the only measure that is consistently significant is the dispersion 
of  degree, particularly in-degree.15 The more unequal the de-
gree distribution, the more robust the centrality scores will be to 

13. The measures of  network structure include: size, density, indegree standard deviation, outdegree standard deviation, degree standard deviation, mean 
of  the true score, directed network, limited degree, and percent in the largest bicomponent. The mean of  the true score is the mean of  the actual mea-
sure of  interest for that network. In the case of  centrality scores, we take the mean of  the centrality score over all individuals in the network. In the case 
of  single measure scores, such as the tau statistic, the mean of  the true score is simply the measure for that network. Directed network is a 0/1 binary 
variable indicating whether the network is symmetric or not. Limited degree is a 0/1 binary variable indicating whether the network has a degree distri-
bution truncated by the survey collection process – for example, only allowing one to name a maximum of  7 friends.

14. We have also run HLMs to characterize the relationship between network properties and the beta slope coefficients. Here, we take all bias values 
across all networks and model it simultaneously using an HLM. The main predictor of  bias is the level of  missing data. We allow the coefficient on per-
cent missing to vary across networks. We then model that coefficient at the second level (the network) as a function of  different network properties. We 
run separate models for each predictor at the second level. The second level interaction is analogous to the correlations reported in Table 3. The results, 
on the whole, closely track the tables reported here, and we opt for the correlational measure for the sake of  simplicity.

15. For undirected graphs, of  course, direction must be irrelevant. Our guess is that the distinguishing power of  in-degree is a joint effect of  the real dis-
persion of  degree and the limitations affected by limited-degree survey designs on out-degree. However, when regressing the sensitivity score against 
both degree dispersion and a marker for limited out-degree, the dispersion score was uniformly the best predictor.

Table 2. Maximum percent missing to retain target correlation with true score.

Network Target correlation In-degree Out-degree Total degree Bonacich power Closeness Betweenness

Interlock 0.90 – – 23 20 8 12 
 0.80 – – 40 36 19 25

Prison 0.90 27 17 19 15 10 21 
 0.80 45 31 35 29 21 24

Sorority 0.90 20 23 18 13 16 5 
 0.80 37 40 34 26 31 13

6th Graders 0.90 43 38 38 29 46 22 
 0.80 64 58 58 48 60 38

Coauthor 0.90 – – 58 54 3 24 
 0.80 – – a a 12 47

Prosper 0.90 31 26 25 22 18 10 
 0.80 51 45 43 39 33 21

Co-citation 0.90 – – a a 12 33 
 0.80 – – a a 36 60

Elites 0.90 a 23 a 45 15 25 
 0.80 a 40 a 67 30 45

HS 13 0.90 43 25 34 30 21 17 
 0.80 64 44 54 49 36 30

BioTech 0.90 – – 58 47 0 44 
 0.80 – – a 70 8 62

HS 24 0.90 39 27 32 30 25 17 
 0.80 60 46 52 48 39 31

CSprings 0.90 – – a 47 0 38 
 0.80 – – a a 7 62

Mean (Std. Dev.) 0.90 39 (16.1) 25.6 (6.4) 42.9 (20.9) 35.2 (17.4) 14.5 (12.7) 22.3 (11.5) 
 0.80 55.9 (11.9) 43.4 (8.2) 55.5 (14.6) 51.8 (17.0) 27.7 (15.2) 38.2 (16.9)

a. Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. The maximum percent missing 
was calculated based on a quadratic fit to the data.

Table 3. Correlation of  missingness robustness scores and network structure: centrality.

        In degree     Out degree               Degree     Bon power               Closeness             Betweenness

 Slope β Var υ Slope β  Var υ Slope β  Var υ Slope  β Var υ Slope β  Var υ Slope β  Var υ

Size   0.48 –0.56+   0.41 –0.50+   0.46 –0.55+   0.41 –0.61*   0.08 –0.16   0.34 –0.52+

Density, undirected –0.55+   0.55+ –0.31   0.37 –0.54+   0.57* –0.52+   0.60*   0.05 –0.00 –0.40   0.47
Indegree Std. Dev.   0.92** –0.84**   0.75** –0.70**   0.93** –0.86**   0.93** –0.88**   0.66* –0.66*   0.83** –0.85**

Outdegree Std. Dev.   0.66* –0.61*   0.93** –0.84**   0.73** –0.67*   0.80** –0.72**   0.85** –0.77**   0.77** –0.77**

Degree Std. Dev.   0.87** –0.85**   0.67* –0.69*   0.84** –0.85**   0.84** –0.86**   0.61* –0.72**   0.67* –0.77**

Mean of  true score   0.47 –0.54   0.66* –0.70*   0.01 –0.20 –0.85** –0.71**   0.72** –0.56+ –0.08 –0.17
Directed network –0.38   0.24 –0.74**   0.58* –0.53+   0.40 –0.59*   0.43 –0.70*   0.39 –0.74**   0.64*

Limited degree –0.01 –0.17 –0.50+   0.29 –0.17 –0.02 –0.23   0.03 –0.47   0.14 –0.46   0.22
% in largest bicomponent –0.37   0.19 –0.61*   0.44 –0.52+   0.36 –0.53+   0.34 –0.55+   0.21 –0.72**   0.53*

Positive correlations mean that networks with higher values of  that measure (e.g. size) are more robust to measurement error.
+ P ≤ 0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01.
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random missingness. These correlations are extremely strong, of-
ten in the range of  0.9. Since the dispersion of  degree is a form 
of  network centralization (centralization scores correlate at about 
0.7 with the standard deviation scores in this sample of  net-
works), these results suggest that when the network is highly cen-
tralized, random missingness will have only a minor effect on the 
reliability of  the centrality scores. This is exactly what we expect 
given the literature on network robustness coming out of  the pref-
erential attachment literature (Albert et al., 2000); when networks 
are highly centralized they tend to be robust to random missing-
ness (but may be at greater risk to targeted missingness, see Part 
II). It is important to note, however, that there is a non-linear re-
lationship between the effect of  missing data and centralization. 
As indegree standard deviation grows larger so too does the bias 
slope (so lower bias), but this rate of  increase decreases at higher 
levels of  centralization. Figure 4 summarizes this (non-linear) ef-
fect of  in-degree centralization for robustness. Inversely, more co-
hesive networks tend to be less robust to missing data.16    

The effects are qualitatively similar for variability in the cen-
trality correlations, with the overall network degree centralization 
having a pronounced effect. When in-degree is highly dispersed, 
there is lower variability in the response to missingness, suggest-
ing, again, that the networks are more robust to random missing-
ness when they are centralized. In addition, there are consistent 
effects for size, such that larger networks have lower variability 
and higher correlations with the true scores, though these effects 
do not hold controlling for centralization. 

3.2. Network structure 

As we turn our attention to the network structure measures, 
we move from a simple node-level correlation to a bias coeffi-
cient. We calculate bias as the percent difference from the true 
score, so a value of  0.5 would mean that the observed score is 
50% larger than the true score, while a value of  1 is double that 
observed. For reference in the mosaic plots, we have added lines 
at –0.5 and 0.5. A flat mean line suggests that the resulting net-
work score is unbiased when data are missing at random, a pos-
itive sloping line that the observed score is too large, and a nega-
tive slope that the resulting score underestimates the true value. A 
bell-shaped shaded region implies that the uncertainty of  the esti-
mate increases with more missing data. 

3.2.1. Network centralization 
Figure 5 presents the mosaic bias plot for network centraliza-

tion. The first impression from this figure is of  one of  inconsis-
tency across scores and networks. Some clarity can be had by fo-
cusing on the 4 degree-based measures, then sorting by network 
size. Among the smallest networks (first 3 columns), you see large 
uncertainty and a smoothly increasing bias. Among the larger 
networks, bias tends toward zero, with fairly flat lines and nar-
row uncertainty bands. The exceptions are the out-degree central-
ization scores for the prosper network and the two high-school 
networks. These three all have a fixed-nomination design and 
are less robust to missing data. Note this bias is somewhat less 
when direction is ignored, consistent with Butts’ findings (Butts, 
2003). Fixed out-degree networks have larger bias because they 
have lower centralization (as degree is truncated) and degree cen-
tralization responds more strongly to missing data when central-
ization is low; here, degree centralization is not driven by the 
very high degree nodes, making it more susceptible to random 
removal of  nodes. We can see this clearly in Table 5, where de-
gree standard deviation is positively correlated with robustness to 
missing data, although this effect weakens at higher levels of  de-
gree standard deviation.

Bonacich centrality is a nice bridge between system and lo-
cal, and shows a marginally larger sensitivity to missingness, 
with slope coefficients larger across the networks than observed 
for the pure degree scores. The relation to missingness is smooth 
and monotonic, with the networks appearing more centralized as 
missingness increases. Again, larger, more centralized networks 
are less prone to bias under conditions of  missing data (with this 
effect weaker at higher levels of  centralization). For example, the 
Interlock network (small, with low degree standard deviation) 
yields an average bias above 0.5 with 32 percent of  the network 
missing, while the Colorado Springs network (larger, with higher 
degree standard deviation) yields an average bias of  0.5 with 77 
percent of  the network missing. See Table 4 for more details.     

The system centrality measures tell two stories. Closeness 
centralization is remarkably robust across networks. In most 
networks the relation centers on zero, suggesting that the close-
ness centralization score would be accurately measured even 
with significant levels of  random-missing data. Only the small-
est network, with 43 nodes, has a visible positive slope or gen-
erally large variability. Betweenness centrality, in contrast, is 

Figure 4. Dependence of  centrality sensitivity to missingness by in-degree centralization.   

16. This rate of  decrease slackens at high levels of  cohesiveness for the degree based measures and increases for betweenness centrality.
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widely variable across networks, with two general patterns. In 
nine of  the twelve test cases, betweenness centralization presents 
a smoothly decreasing bias with missingness levels. In the other 
three networks, we observe a rapidly increasing bias that quickly 
returns to zero. This is likely occurring due to the low starting 
values of  the betweenness scores. Small changes quickly increase 
the percent score, but when missingness is nearly complete, the 
centralization score tends toward zero and thus returns to the ob-
served value.17 We note that this effect also appears to be driven 
largely by the normalizing denominator for centralization, since 
the analogous figures for the standard deviation of  betweenness 
centrality is monotonic. 

Taken as a whole, the major predictors of  bias and variance 
for centralization are size and degree deviation (greater size and 
centralization are associated with less bias and variance), al-
though directed/undirected status and percent in the largest bi-
component is important for out-degree and betweenness. In both 
cases, directed, more cohesive networks are less robust to missing 
data and have larger variance. More cohesive networks are actu-
ally more robust to missingness when percent in the largest bicom-
ponent is smaller (between 0.5 and 0.6 for our data), but less ro-
bust at higher levels of  cohesiveness. 

3.2.2. Topology 
The mosaic plots in Figure 6 show analogous results for 6 

measures of  global network structure. Turning first to simple 

measures of  connectivity, we see that connectivity decreases with 
sample missingness. The proportion of  the population in the 
largest connected component tends toward a “rotated-J” shape, 
staying flat until about 30% of  the population is removed, then 
turning fairly steeply to smaller average component sizes. The 
variability around component size is quite narrow, and combined 
these indicate that basic connectivity is robust to random miss-
ingness. The pattern is not merely a reflection of  size; as the 6th 
grade friendship network (n = 147) and the two high-school net-
works (n = 556 and 619 respectively) have nearly flat response 
curves with extremely narrow bounds. On average, it is neces-
sary to remove 74 percent of  the network before the bias crosses 
the 0.5 level and 55 percent before the bias crosses the 0.25 level 
(see Table 6).

While component size gives the upper limit of  reachability, bi-
component size captures the extent of  the population that is re-
connected through multiple cycles. The proportion in the largest 
bicomponent tracks the component size results strongly, although 
with slightly steeper slopes in the smaller networks. The corre-
spondence of  these two curves suggests that estimates of  con-
nectivity will be fairly robust to random missingness, at least so 
long as 70–80% of  the sample is captured. The Biotech, Coau-
thorship and Colorado Springs networks are the exceptions to 
this rule, exhibiting more bias than the other networks. Tellingly, 
these three networks have low levels of  cohesion. Networks with 
low cohesion are subject to disconnection with missing data and 

Figure 5. Centralization score robustness, by network, centrality type and missingness level. Each subgraph plots the distribution of  the bias between 
the true centralization score and the score computed on the network with nodes removed at random. The dark line represents the mean, inner-quartile 
range with dark gray and 10th/90th percentiles with light gray.   is the regression coefficient of  bias regressed against percent missing (divided by 10), 
and thus represents the expected change in bias for each 10% decline in sample coverage. υ represents the average observed deviation (square-root of  
total sum of  squares divided by n) and R2 is the proportion of  the variance explainable with the linear regression term. Shaded columns indicate un-
directed networks.   

17. The correlation between the bias slopes and the true betweenness values is strongly negative; networks with smaller starting values are thus more 
likely to have initially positive slopes (which eventually return to zero).
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thus underestimate the size of  the largest bicomponent and com-
ponent. This is clear in Table 7, where percent in the largest bi-
component is positively correlated with robustness in the bicom-
ponent/component columns.     

We next turn our attention to the “small-world” statistics, fo-
cusing on mean closeness (normalized by log(sample size)) and 
the transitivity ratio (the proportion of  directed triads that are 
closed). Recall we capture the number of  steps between nodes 
with a closeness score (1/distance) so as the score trends nega-
tive, the average closeness is going down, and thus the distance 
is going up, though not dramatically. As missingness increases, 
we see over-estimates of  the distance between pairs; this, intui-
tively, must be due to the loss of  “bridging” nodes that lower 

path-lengths disproportionately. Such nodes are likely a minority, 
but the odds of  hitting one of  them increase with missingness, 
leading to an under-estimate of  path length. Over all of  the net-
works, it requires 63 percent of  the nodes to be removed before 
bias reaches 0.5 (see Table 6). The bias on mean distance is espe-
cially high when density is low: in sparse networks, the connec-
tions between nodes are more dependent on a given path, making 
distance harder to measure with high levels of  missing data. 

The transitivity ratio remains largely constant as the propor-
tion missing increases, showing a nearly flat line for all networks 
except the smallest (interlock). There appears to be a minor neg-
ative bias for the next two largest networks (Sorority and Prison), 
reaching mean bias of  about –25% when the network is missing 

Table 4. Maximum percent missing to remain under target bias: centralization.

Network   Target bias In-degree Out-degree Total degree Bonacich power Closeness Betweenness

Interlock 0.25 19 19 19 16 20 19 
 0.5 43 43 43 32 a 49

Prison 0.25 38 35 36 21 35 13 
 0.5 a a 68 40 a 29

Sorority 0.25 23 30 22 10 48 9 
 0.5 50 54 45 23 a 23

6th Graders 0.25 a 51 a 38 64 9 
 0.5 a a a 58 a 17

Coauthor 0.25 54 54 54 51 a 24 
 0.5 a a a a a 46

Prosper 0.25 60 9 70 21 a 23 
 0.5 a 18 a 43 a 44

Co-citation 0.25 a a a 43 a 25 
 0.5 a a a 67 a a

Elites 0.25 49 45 49 69 66 18 
 0.5 a a a a a 41

HS 13 0.25 a 9 a 39 a 11 
 0.5 a 17 a 63 a 21

BioTech 0.25 a a a 41 a 35 
 0.5 a a a a a 60

HS 24 0.25 a 9 58 38 a 8 
 0.5 a 18 a 58 a 12

CSprings 0.25 55 55 55 41 a 43 
 0.5 a a a a a 65

Mean (Std. Dev.) 0.25 54 (18.5) 38 (22.9) 53.6 (18.8) 35.7 (16.4) 60.3 (16.8) 19.8 (11.0)
 0.5 66.1 (9.3) 53.3 (23.1) 65.5 (10.1) 55.3 (16.6) 70 (0) 39.8 (19.4)

a. Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. The maximum percent missing 
was calculated based on a quadratic fit to the data.

Table 5. Correlation of  missingness robustness scores and network structure: centralization.

       In degree          Out degree       Degree     Bon power       Closeness   Betweenness
                                              Slope β    Var υ Slope β  Var υ Slope β  Var υ Slope β  Var υ Slope β  Var υ Slope β  Var υ

Size   0.38 –0.53+ –0.26   0.26   0.37 –0.52+   0.49 –0.46   0.16 –0.62* –0.11   0.26
Density, undirected –0.28   0.44   0.28 –0.27 –0.29   0.44 –0.59*   0.54+ –0.21   0.51+ –0.16 –0.01
Indegree Std. Dev.   0.41 –0.65*   0.36 –0.36   0.51+ –0.68*   0.77** –0.76**   0.34 –0.69*   0.33 –0.17
Outdegree Std. Dev.   0.39 –0.54+   0.38 –0.38   0.47 –0.56+   0.47 –0.53+   0.34 –0.64*   0.34 –0.2
Degree Std. Dev.   0.54+ –0.74**   0.2 –0.2   0.6* –0.76**   0.74** –0.74**   0.34 –0.78**   0.09   0.05
Mean of  true score   0.02 –0.2   0.66* –0.65*   0.16 –0.25   0.61* –0.51+   0.04 –0.2   0.43 –0.53+

Directed network   0.08   0.03 –0.51+   0.51+ –0.06   0.1 –0.28   0.29   0.01   0.1 –0.59*   0.43
Limited degree   0.47 –0.34 –0.61*   0.62*   0.38 –0.32   0.18 –0.2   0.17 –0.16 –0.62*   0.56+

% in largest bicomponent   0.29 –0.11 –0.6*   0.62*   0.15 –0.05 –0.28   0.22   0.07 –0.01 –0.63*   0.56+

Positive correlations mean that networks with higher values of  that measure (e.g. size) are more robust to measurement error. The direction of  the bias is 
ignored when calculating the correlations.

+ P ≤ 0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01.
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70% of  the cases. But for most networks, the transitivity ratio re-
mains unbiased in the face of  heavy randomly missing data. For 
all networks, the error variability increases with missingness, al-
though this is especially true in the smaller networks. 

The combined effect of  over-estimating the distance between 
nodes and a consistent transitivity estimate suggests that small-
world statistics will be under-estimated under conditions of  miss-
ing data; with the average path length being larger than it should 
be in the presence of  missing data while the clustering coefficients 
will remain largely stable. 

The final two measures capture indicators of  global network 
shape. In the first case, we use the distribution of  triads (relative 
to chance expectations) as an indicator of  overall network struc-
ture. The results for the tau statistic are very consistent: the tau 
statistic trends lower with increasing missingness (approaching 
zero), and we see a –50% bias at about 30% missing across all 
networks (the slope of  –0.12 is nearly the same across networks). 
The one exception is the smallest network, which has a slightly 
more negative slope and extreme variability. 

Finally, for the CONCOR partitions, the rand statistic de-
creases slightly relative to the true value, but the line is remarkably 

flat as more data is removed. This indicates that even in the face 
of  dramatically high missing data, one would likely classify pairs 
of  nodes similarly (those in the same position together, those in 
different partitions apart), and thus would likely draw similar sub-
stantive conclusions.18 Our blockmodel measure only deals with 
the partitioning of  nodes and ignores the larger macro picture en-
capsulated in an image matrix. We have thus run additional anal-
yses where the measure of  interest is based on the partitioning of  
nodes and the image matrix (see also Žnidaršič et al., 2005). The 
results are included in the Appendix and suggest, generally, that a 
measure based on the image matrix and node partitioning is less 
robust to missing data. On average, one can only have 40% miss-
ing data and still maintain a bias score under 0.5, as opposed to 
almost 70% in the case of  just the partitioning. 

Looking over all networks and all topology measures (see Ta-
ble 7), networks that are more cohesive are more robust to the re-
moval of  missing nodes. The variance results are more heteroge-
neous, with some measures exhibiting high levels of  variance, and 
others very little, but in general networks that are more central-
ized have less variable profiles. 

Figure 6. Topology score robustness, by network and missingness level. Each subgraph plots the distribution of  the bias between the true topology score 
and the score computed on the network with nodes removed at random. The dark line represents the mean, inner-quartile range with dark gray and 
10th/90th percentiles with light gray.   is the regression coefficient of  bias regressed against percent missing (divided by 10), and thus represents the ex-
pected change in bias for each 10% decline in sample coverage. υ represents the average observed deviation (square-root of  total sum of  squares divided 
by n) and R2 is the proportion of  the variance explainable with the linear regression term. Shaded columns indicate undirected networks.    

18. We have also included the results for the adjusted rand in the Appendix. The adjusted rand statistic has higher bias overall than the unadjusted rand, 
requiring much lower levels of  missing data to yield the same level of  bias. This suggests that the partitions under missing data mirror the true parti-
tions quite closely, but that some of  this matching can be explained by chance expectations (or would have happened anyway just by randomly pairing 
the non-missing people together).
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3.2.3. Homophily 
Figure 7 presents the results for structural and attribute ho-

mophily. If  the prior topology results are remarkable in their con-
sistency and robustness in the face of  missing data, the assorta-
tive mixing statistics tell just the opposite story, with dramatically 
inconsistent results and significant bias as missingness increases. 
Note first that to fit these figures we had to increase the length of  
the y-axis (so the range is now ±4), and even in the face of  this 
we often get out-of-range variability. In half  of  the networks we 
find almost no bias (slope near 0 and relatively narrow variability 
bands that cross the zero line), in two we have positive bias and in 
the remaining 4 negative bias.    

For both in and out degree mixing, the bias and variance 
scores correspond directly with the true degree–degree correla-
tions. Networks with negative but absolutely small correlations 

(Interlock and Prosper for in-degree and Interlock, Prosper and 
Sorority for out-degree) have strongly positive slopes and large 
variance. Here, the low initial starting points exaggerate the pro-
portional, or bias based, measure of  error. The slopes are posi-
tive as the missing data pushes the degree–degree correlations 
to higher values (by condensing the range of  the degree distribu-
tion). Conversely, networks with positive but small correlations 
have strongly negative slopes and large variances. This explains 
the results for the Sorority, Prosper and Co-citation network for 
in-degree, as well as the extreme plot for the Elite network for 
out-degree (where the true correlation is close to 0). 

The behavioral results appear largely consistent with the ear-
lier structural results, and are remarkably consistent in the face of  
high levels of  missingness. The “high behavioral” simulation asks 
what happens to the edgewise correlation score for an attribute 

Table 6. Maximum percent missing to remain under target bias: topology.

Network  Target bias Component size Bicomponent size Distance Transitivity Tau RC CONCOR

Interlock 0.25 34 19 31 29 4 a 

 0.5 58 40 62 39 13 a

Prison 0.25 45 23 20 40 12 a 

 0.5 63 42 50 60 31 a

Sorority 0.25 41 24 20 49 16 a 

 0.5 59 43 58 a 36 a

6th Graders 0.25 a a 67 a 17 a 

 0.5 a a a a 37 a

Coauthor 0.25 32 20 25 a 17 a 

 0.5 56 43 51 a 37 a

Prosper 0.25 53 39 23 65 17 a 

 0.5 69 55 47 a 37 a

Co-citation 0.25 55 49 54 a 16 a 

 0.5 a a a a 35 a

Elites 0.25 49 27 36 47 17 61 
 0.5 a 49 a a 35 a

HS 13 0.25 a 63 39 a 17 a 

 0.5 a a 57 a 37 a

BioTech 0.25 41 29 27 38 17 56 
 0.5 64 51 49 60 36 a

HS 24 0.25 a 59 38 a 17 a 

 0.5 a a 56 a 37 a

CSprings 0.25 38 24 25 a 17 a 

 0.5 60 45 46 a 37 a

Mean (Std. Dev.) 0.25 49.8 (14.0) 37.2 (18.4) 33.8 (14.4) 57.3 (15.6) 15.3 (3.8) 68.1 (4.6) 
 0.5 64.9 (5.5) 54 (12.5) 57.2 (9.1) 65.8 (9.3) 34 (6.8) 70 (0)

a. Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. The maximum percent missing 
was calculated based on a quadratic fit to the data.

Table 7. Correlation of  missingness robustness scores and network structure: topology.

  Component size  Bicomponent size   Distance            Transitivity              Tau RC          CONCOR
 Slope    Var υ Slope   Var υ Slope    Var υ     Slope   Var υ      Slope   Var υ      Slope   Var υ

Size 0.2 –0.32 0.18 –0.32 –0.56+   0.38   0.08 –0.32   0.25 –0.37 –0.15 –0.07
Density, undirected 0.1   0.07 0.15   0.04   0.64* –0.62*   0.05   0.2 –0.13   0.27   0.54+ –0.3
Indegree Std. Dev. 0.16 –0.31 0.28 –0.39   0.3 –0.34 –0.11 –0.39   0.01 –0.41 –0.06   0.03
Outdegree Std. Dev. 0.03 –0.15 0.23 –0.3   0.09 –0.25   0.06 –0.3   0.02 –0.29   0.17 –0.25
Degree Std. Dev. 0.44 –0.55+ 0.52+ –0.62*   0.39 –0.5+ –0.14 –0.53+   0.14 –0.54+   0.18 –0.19
Mean of  true score NA   NA 0.51+ –0.47   0.27 –0.26 –0.21 –0.4 –0.03 –0.01   NA   NA
Directed network 0.49 –0.4 0.25 –0.21   0.2 –0.24 –0.39 –0.35   0.42 –0.31   0.39 –0.34
Limited degree 0.74** –0.69* 0.54+ –0.55+   0.16 –0.22 –0.08 –0.32   0.25 –0.31   0.29 –0.28
% in largest bicomponent 0.72** –0.63* 0.51+ –0.47   0.24 –0.39 –0.17 –0.29   0.29 –0.25   0.63* –0.58*

Positive correlations mean that networks with higher values of  that measure (e.g. size) are more robust to measurement error. The direction of  the bias is 
ignored when calculating the correlations.
+ P ≤ 0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01
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Figure 7. Homophily score robustness, by network and missingness level. Each subgraph plots the distribution of  the bias between the true homophily 
score and the score computed on the network with nodes removed at random. The dark line represents the mean, inner-quartile range with dark gray and 
10th/90th percentiles with light gray.   is the regression coefficient of  bias regressed against percent missing (divided by 10), and thus represents the ex-
pected change in bias for each 10% decline in sample coverage. υ represents the average observed deviation (square-root of  total sum of  squares divided 
by n) and R2 is the proportion of  the variance explainable with the linear regression term. Shaded columns indicate undirected networks.   

Table 8. Maximum percent missing to remain under target bias: homophily.

Network Target bias Indegree Outdegree High behavioral Low behavioral

Interlock 0.25 1 1 38 25
 0.5 11 11 58 44
Prison 0.25 1 17 a 31
 0.5 1 33 a 61
Sorority 0.25 1 1 a 41
 0.5 1 1 a 68
6th Graders 0.25 24 20 a 61
 0.5 46 41 a a

Coauthor 0.25 37 37 a 37
 0.5 66 66 a a

Prosper 0.25 1 6 a 51
 0.5 1 20 a a

Co-citation 0.25 1 1 a 43
 0.5 8 8 a a

Elites 0.25 54 1 26 53
 0.5 a 1 a a

HS 13 0.25 20 50 a a

 0.5 40 a a a

BioTech 0.25 30 30 66 64
 0.5 56 56 a a

HS 24 0.25 46 55 a a

 0.5 a a a a

CSprings 0.25 41 41 a a

 0.5 a a a a

Mean (Std. Dev.) 0.25 21.4 (20.1) 21.7 (20.4) 63.3 (14.9) 51.3 (15.9)
 0.5 36.7 (30.1) 37.3 (28.4) 69 (3.5) 66.9 (7.7)

a. Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. The maximum percent missing 
was calculated based on a quadratic fit to the data.
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that is highly-correlated (0.7+) in the original network. The “low 
behavioral” analysis does the same for an attribute that correlates 
at 0.35 or better. When the homophily attribute is very strong, 
data missing-at-random has almost no effect in 9 of  the 12 net-
works, with only the smallest or most centralized networks having 
a strong difference. Thus the elite network tends to underestimate 
the correlation, as does the biotech network (both highly central-
ized), while the interlock network has the largest variability. 

The mean story is almost the same for the lower correlation 
score, but the variability is much higher, suggesting that as miss-
ingness increases we become systematically less likely to be able 
to draw an observation close to the mean line. Smaller and less 
centralized networks are less robust to missing data and also 
have higher levels of  variance (note that the effect of  centraliza-
tion weakens or even reverses at higher levels of  centralization). 
See Table 9. For the same level of  missing data, smaller networks 
have fewer dyads informing the homophily estimate and thus 
have higher bias and uncertainty.     

4. Conclusion 

This paper has explored the effect of  missing data on a variety 
of  network measures using a large number of  empirical networks. 
Following past work (Borgatti et al., 2006), we examined the ef-
fect of  missing data by removing nodes at random from a known 
network, calculating the statistics of  interest on the reduced net-
work and comparing those estimates to those from the true net-
work. We restricted the study to missing-at-random node removal 
as a means of  simplifying the presentation and discussion. We 
considered empirical networks of  varying size and features while 
examining network measures of  centrality, centralization, topol-
ogy and homophily. By including a large number of  networks and 
measures, we were able to fully describe how and, more impor-
tantly, when, missing data would lead to seriously flawed and un-
certain estimates. 

The results, on the whole, suggest that many network mea-
sures can be measured accurately even with high levels of  miss-
ing data. The exact relationship between bias and missing data 
varies, however, by the network of  interest. For example, larger, 
more centralized networks are generally more robust to missing 
data. Other results are more contingent, depending on both the 
network measure and the network type. Networks that are more 
cohesive are less robust for centrality measures but more so for 
measures of  topology. Similarly, directed networks are less robust 
than undirected networks for most centrality measures, but there 
are few systematic differences for the other network measures. 

The overall level of  bias is also clearly a function of  the network 
measure itself, as some measures are more susceptible to missing 
data than others – although, of  course, all measures are less ac-
curate as missingness increases. For example, all centrality mea-
sures have higher bias with more missing data, but degree based 
measures are more robust than closeness or betweenness central-
ity. This differs from some past studies that found little difference 
across centrality types (Borgatti et al., 2006). Our results may dif-
fer from past studies as they focused on Erdos random networks, 
which are considerably less clustered and hierarchical than the em-
pirical networks considered here. This also reiterates the impor-
tance of  examining missing data on networks with a wide variety 
of  features, including those typically found in observed social net-
works (Wang et al., 2012). The topology results suggest that struc-
tural measures can be captured well with high levels of  missing 
data, with transitivity and CONCOR particularly robust. Distance 
and the tau statistic are comparatively more prone to error as miss-
ingness increases. Finally, for the homophily measures, behavioral 
similarity shows almost no bias as missing data increases, while 
mixing by degree performs considerably poorer. 

What are the practical implications of  these results? First, the 
results suggest that different collection strategies are necessary 
for networks of  different sizes – at least as it pertains to dealing 
with the problem of  missing nodes. Larger networks are more 
robust to missing respondents but are also more prone to miss-
ing data in the first place. The onus is thus larger in smaller net-
works to find those last few respondents, but this should also be 
easier to accomplish. Alternatively, in larger networks, the cost 
of  finding specific respondents may be prohibitive: they may be 
harder to find while the gain in accuracy is small. Second, if  one 
is faced with large levels of  missing data, it may be necessary to 
use a network measure robust to missingness. For example, if  
one is interested in homophily but there are high levels of  miss-
ing data, it may be advantageous to focus on behavioral homoph-
ily, as opposed to degree–degree mixing. Or, for macro-structural 
measures, it may be more useful to examine blockmodeling so-
lutions than distance or bicomponent size. Finally, the results 
suggest that a researcher must be clear about their tolerance for 
bias. A researcher interested in a certain network type and net-
work measure would have to collect very different amounts of  
data to achieve different levels of  accuracy. Table 2, Table 4, Ta-
ble 6 and Table 8 offer a convenient means to asses target levels, 
but it is still necessary to know how much bias is acceptable to an-
swer the question at hand. 

This paper, while useful in its own right, has also laid the 
groundwork for future work on missing data in social networks. 

Table 9. Correlation of  missingness robustness scores and network structure: homophily.

 Indegree       Outdegree       High behavioral Low behavioral
 Slope   Var υ Slope   Var υ Slope   Var υ Slope   Var υ

Size   0.6* –0.42   0.19 –0.08   0.32 –0.32   0.53+ –0.6*

Density, undirected –0.45   0.28   0.16 –0.24 –0.02   0.04 –0.35   0.42
Indegree Std. Dev.   0.61* –0.51+ –0.23   0.29   0.11 –0.16   0.5 –0.41
Outdegree Std. Dev.   0.44 –0.37   0.31 –0.28   0.38 –0.36   0.38 –0.27
Degree Std. Dev.   0.65* –0.51+ –0.16   0.24   0.27 –0.31   0.64* –0.57+

Mean of  true score   0.06   0   0.05   0   0.4 –0.37   0.19 –0.23
Directed network –0.31   0.38 –0.21   0.26   0.16 –0.22   0.23 –0.31
Limited degree   0.03   0.17 –0.22   0.33   0.12 –0.15   0.43 –0.42
% largest bicomponent –0.29   0.36   0.06 –0.01   0.27 –0.31   0.27 –0.29

Positive correlations mean that networks with higher values of  that measure (e.g. size) are more robust to measurement error. The direction of  the bias is 
ignored when calculating the correlations.
+ P ≤ 0.1 ; * P ≤ 0.05 ; ** P ≤ 0.01
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The simplifying assumption of  missing-at-random will be 
dropped in Part II of  this study. Following the work of  Huisman 
(2009) we will examine how missing data affects the validity of  
network measures when missingness is correlated with centrality. 
The results will be based on two types of  centrality (degree and 
closeness) as well as 4 correlations between centrality and miss-
ingness (–0.75, –0.25, 0.25 and 0.75). In the final part of  the proj-
ect, we will consider practical options for dealing with missing 
data problems. We will consider different treatments of  the par-
tial information, while incorporating a small ego network sam-
ple into the estimation process. The hope, in the end, is to pro-
vide a practical, comprehensive guide for workers in the field: a 
researcher will know how biased their estimates are likely to be 
and how best to deal with such limitations.  
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Appendix: Alternative measures for CONCOR.  

This appendix describes the results from 2 supplemental 
CONCOR analyses. The CONCOR results in the main text use 
the rand statistic to measure the effect of  missing data. The rand 
statistic captures how many pairs of  people are correctly placed 
into the same/different blocks, compared to the true partition on 
the full network. As an alternative, this appendix provides the re-
sults for the adjusted rand statistic, which accounts for chance ex-
pectations (and only counts pairs placed into the same group). 
Specifically, the adjusted rand can be written as: 

AR =           #Pairs in Same Group – Expected # of  Pairs in Same Group 

                Max # of Possible Pairs in Same Group – Expected # of Pairs in Same Group

In addition to the adjusted rand statistic, we also provide re-
sults for a completely different type of  blockmodel measure – one 
that takes into account both node partitioning and the image ma-
trix. The rand statistic only captures the partitioning of  nodes 
into blocks but says little about the macro structure implied by 
the blockmodel. We have thus rerun the analysis using a measure 
dependent on the image matrix as well as the node partitioning. 
Specifically, we begin the analysis by computing the blockmodel 
on the network of  interest. We then use the densities (note not 0 s 
and 1 s) in the image matrix, as well as the block memberships, to 
create a predicted probability matrix. In this predicted probability 
matrix, the probability of  a tie between person i and j is the prob-
ability of  a tie between the blocks that i and j are in (i.e. the den-
sities in the image matrix). We then correlate the elements of  the 
true probability matrix with the elements of  the same matrix esti-
mated under conditions of  missing data (restricted to those cases 
who are sampled in that iteration). The measure thus incorpo-
rates both the image matrix, as those densities are used to fill in 

Table A.1. Maximum percent missing to remain under target bias: CONCOR results.

Network                       Target bias         CONCOR: unadjusted rand      CONCOR: adjusted rand CONCOR: predicted probability matrix

Interlock 0.25 a 2 3
 0.5 a 14 20
Prison 0.25 a 1 4
 0.5 a 16 24
Sorority 0.25 a 1 9
 0.5 a 17 34
6th Graders 0.25 a 9 23
 0.5 a 34 65
Coauthor 0.25 a 9 57
 0.5 a 28 a

Prosper 0.25 a 11 16
 0.5 a 32 45
Co-citation 0.25 a 9 22
 0.5 a 34 a

Elites 0.25 61 4 1
 0.5 a 21 13
HS 13 0.25 a 5 9
 0.5 a 26 39
BioTech 0.25 56 1 8
 0.5 a 9 27
HS 24 0.25 a 3 7
 0.5 a 22 30
CSprings 0.25 a 1 5
 0.5 a 14 25
Mean (Std. Dev.) 0.25 68.1 (4.6) 4.7 (3.8) 13.7 (15.4)
 0.5 70 (0) 22.2 (8.5) 38.5 (19.9)

a. Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. The maximum percent missing 
was calculated based on a quadratic fit to the data.
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the predicted probabilities, and the partitioning, as the partition-
ing determines which densities in the image matrix are selected 
for each i, j pair (see Table A.1). 
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