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ABSTRACT

We present the Koblenz Network Collection (KONECT), a
project to collect network datasets in the areas of web sci-
ence, network science and related areas, as well as provide
tools for their analysis. In the cited areas, a surprisingly
large number of very heterogeneous data can be modeled as
networks and consequently, a unified representation of net-
works can be used to gain insight into many kinds of prob-
lems. Due to the emergence of the World Wide Web in the
last decades many such datasets are now openly available.
The KONECT project thus has the goal of collecting many
diverse network datasets from the Web, and providing a way
for their systematic study. The main parts of KONECT
are (1) a collection of over 160 network datasets, consisting
of directed, undirected, unipartite, bipartite, weighted, un-
weighted, signed and temporal networks collected from the
Web, (2) a Matlab toolbox for network analysis and (3) a
website giving a compact overview the various computed
statistics and plots. In this paper, we describe KONECT’s
taxonomy of networks datasets, give an overview of the
datasets included, review the supported statistics and plots,
and briefly discuss KONECT’s role in the area of web science
and network science.
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H.4 [Information Systems Applications]: Miscellaneous

General Terms
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1. INTRODUCTION
Networks are everywhere. Whenever we look at the in-

teractions between things, a network is formed implicitly.
In the areas of data mining, machine learning, information
retrieval, etc., networks are modeled as graphs. Many, if
not most problem types can be applied to graphs: cluster-
ing, classification, prediction, pattern recognition, and oth-
ers. Networks arise in almost all areas of research, com-
merce and daily life in the form of social networks, road net-
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works, communication networks, trust networks, hyperlink
networks, chemical interaction networks, neural networks,
collaboration networks and lexical networks. The content of
text documents is routinely modeled as document–word net-
works, taste as person–item networks and trust as person–
person networks. In recent years, whole database systems
have appeared specializing in storing networks. In fact, a
majority of research projects in the areas of web mining,
web science and related areas uses datasets that can be un-
derstood as networks. Unfortunately, results from the lit-
erature can often not be compared easily because they use
different datasets. What is more, different network datasets
have slightly different properties, such as allowing multiple
or only single edges between two nodes. In order to provide
a unified view on such network datasets, and to allow the
application of network analysis methods across disciplines,
the KONECT project defines a comprehensive network tax-
onomy and provides a consistent access to network datasets.
To validate this approach on real-world data from the Web,
KONECT also provides a large number (>160) of network
datasets of different types and different application areas.

KONECT, the Koblenz Network Collection, contains 168
network datasets as of April 2013. In addition to these
datasets, KONECT consists of Matlab code to generate statis-
tics and plots about them, which are shown on the KONECT
website1. KONECT contains networks of all sizes, from
small classical datasets from the social sciences such as Ken-
neth Read’s Highland Tribes network with 16 vertices and
58 edges (HT), to the Twitter social network with 52 million
nodes and 1.9 billion edges (TF). Figure 1 shows a scatter
plot of all networks by the number of nodes and the average
degree in the network. Each network in KONECT is rep-
resented by a unique two- or three-character code which we
write in a sans-serif font, and is indicated in parentheses as
used previously in this paragraph. The full list of codes is
given online.2

This is a short overview paper of KONECT; the full doc-
umentation is given on the KONECT website3, as well as in
the upcoming KONECT handbook. This paper first presents
KONECT’s taxonomy of network datasets in Section 2, then
briefly reviews the mathematical background of graph the-
ory in Section 3, then presents a selection of supported net-
work statistics and plots in Sections 4 and 5, and finally
outlines the upcoming KONECT Matlab Toolbox in Sec-
tion 6, as well as the KONECT website in Section 7. We

1konect.uni-koblenz.de
2konect.uni-koblenz.de/networks
3konect.uni-koblenz.de/help
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Figure 1: All networks in KONECT arranged by the
size (the number of nodes) and the average number
of neighbors of all nodes. Each network is repre-
sented by a two- or three-character code. The color
of each code corresponds to the network category as
given in Table 2.

conclude in Section 8 with a short discussion on possible
contributions of or to KONECT in the context of the web
science community.

2. TAXONOMY OF NETWORKS
Datasets in KONECT represent networks, i.e., a set of

nodes connected by links. Networks can be classified by
their format (directed/undirected/bipartite), by their edge
weight types and multiplicities, by the presence of metadata
such as timestamps and node labels, and by the types of
objects represented by nodes and links.
The format of a network is always one of the following:

• In undirected networks (U), edges are undirected.
That is, there is no difference between the edge from
u to v and the edge from v to u; both are the edge
{u, v}. An example of an undirected network is the
social network of Facebook (Ow), in which there is no
difference between the statements “A is a friend of B”
and “B is a friend of A.”

• In a directed network (D), the links are directed.
That is, there is a difference between the edge (u, v)
and the edge (u, v). Directed networks are sometimes
also called digraphs (for directed graphs), and their
edges arcs. An example of a directed social network is
the follower network of Twitter (TF), in which the fact
the user A follows user B does not imply that user B
follows user A.

• Bipartite networks (B) include two types of nodes,
and all edges connect one node type with the other.
An example of a bipartite network is a rating graph,
consisting of the node types user and movie, and each
rating connects a user and a movie (M3). Bipartite
networks are always undirected in KONECT.

Table 1: The edge weight and multiplicity types al-
lowed in KONECT. Each network dataset is exactly
of one type.

Type Multiple Edge weights
edges

− Unweighted No 1
= Multiple unweighted Yes 1
+ Positive weights No > 0
± Signed No ≷ 0
∗ Rating No Interval scale

∗
∗ Multiple ratings Yes Interval scale

The edge weight and multiplicity types of networks are
represented by one of the following six types. The types of
edge weights and multiplicities are summarized in Table 1.

• An unweighted network (−) has edges that are un-
weighted, and only a single edge is allowed between
any two nodes.

• In a network with multiple edges (=), two nodes
can be connected by any number of edges, and all edges
are unweighted. This type of network is also called a
multigraph.

• In a positive network (+), edges are annotated with
positive weights, and only a single edge is allowed be-
tween any node pair.

• In a signed network (±), both positive and negative
edges are allowed. Positive and negative edges are rep-
resented by positive and negative edge weights. Many
networks of this type have only the weights ±1, but in
the general case we allow any nonzero weight.

• Rating networks (∗) have arbitrary real edge weights.
They differ from positive and signed networks in that
the edge weights are interpreted as an interval scale,
and thus the value zero has no special meaning. Adding
a constant to all edge weights does not change the se-
mantics of a rating network. Ratings can be discrete,
such as the one-to-five star ratings, or continuous, such
as a rating given in percent. This type of network al-
lows only a single edge between two nodes.

• Networks with multiple ratings (∗
∗) have edges

annotated with rating values, and allow multiple edges
between two nodes.

Metadata of networks are restricted to timestamps of edges
as of this writing, but other metadata of nodes or edges may
be added in the future.

• Temporal networks (U) include a timestamp for
each edge, and thus the network can be reconstructed
for any moment in the past.

Finally, the network categories classify networks by the
type of data they represent. An overview of the categories
is given in Table 2.

Affiliation networks are bipartite networks denoting the
membership of actors in groups. Groups can be defined
as narrowly as individual online communities in which
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Table 2: The network categories in KONECT. Each category is assigned a color, which is used in plots, for
instance in Figure 1. The property symbols are defined in Table 1. U = Undirected network, D = Directed
network, B = Bipartite network. The given dataset counts are current as of April 2013.

Category Vertices Edges Properties Count

� Affiliation Actors, groups Memberships B − = 8
� Authorship Authors, works Authorships B − = 18
� Co-occurrence Items Co-occurrences U D − 2
� Communication Persons Messages U D − = 8
� Contact Persons Interactions U D = 4
� Features Items, features Properties B − 5
� Folksonomy Users, tags, items Tag assignments B = 17
� Interaction Persons, items Interactions B − = 14
� Lexical Words Lexical relationships U D B − = 5
� Physical Various Physical connections U D − = 13
� Ratings Users, items Ratings B − ∗ ∗

∗ 11
� Reference Documents References D − = 28
� Semantic Entities Relationships D = 1
� Social Persons Ties U D − = + ± ∗ 29
� Text Documents, words Occurrences B = 5

users have been active (FG) or as broadly as countries
(CN). The actors are mainly persons, but can also be
other actors such as musical groups. Note that in all
affiliation networks we consider, each actor can be in
more than one group, as otherwise the network cannot
be connected.

Authorship networks are unweighted bipartite networks
consisting of links between authors and their works.
In some authorship networks such as that of scientific
literature (Pa), works have typically only few authors,
whereas works in other authorship networks may have
many authors, as in Wikipedia articles (en).

Co-occurrence networks represent the simultaneous ap-
pearance of items. Co-occurrence networks are unipar-
tite and unweighted. An example is the co-purchase
network of Amazon (AM) indicating which persons
have purchased the same articles. Note that in most
cases, such networks can be derived from another net-
work using a two-mode projection. For instance, a
user–user co-purchase network can be derived from a
user–item purchase network. In cases where the un-
derlying bipartite network is known, we do not include
the two-mode network, as its properties can be derived
from the corresponding properties of the original net-
work. As an example, the eigenvalues of the two-mode
network’s adjacency matrix are the squares of the sin-
gular values of the bipartite network’s biadjacency ma-
trix. Only when the underlying data is unknown as
for the Amazon dataset do we include a co-occurrence
network.

Communication networks contain edges that represent
individual messages between persons. Communication
networks are directed and allow multiple edges. Ex-
amples of communication networks are those of emails
(EN) and those of Facebook messages (Ow). Note that
in some instances, edge directions are not known and
KONECT can only provide an undirected network.

Contact networks consist of people and interactions be-
tween them. Contact networks are unipartite and al-

low multiple edges, i.e., there can always be multiple
interactions between the same two persons. They can
be both directed or undirected. Examples are people
that meet each other (RM), or scientists that write a
paper together (Pc).

Feature networks are bipartite, and denote any kind of
feature assigned to entities. Feature networks are un-
weighted and have edges that are not annotated with
edge creation times. Examples are songs and their
genres (GE).

Folksonomies consist of tag assignments connecting a user,
an item and a tag. For folksonomies, we follow the 3-
bipartite projection approach and consider the three
possible bipartite networks, i.e., the user–item, user–
tag and item–tag networks. This allows us to apply
methods for bipartite graphs to hypergraphs, which is
not possible otherwise. Items that are tagged in folk-
sonomies include bookmarks (Dui), scientific publica-
tions (Cui) and movies (Mui).

Interaction networks are bipartite networks consisting of
people and items, where each edge represents an inter-
action. In interaction networks, we always allow mul-
tiple edges between the same person–item pair. Exam-
ples are people writing in forums (UF), commenting on
movies (Fc) or listening to songs (Ls).

Lexical networks consist of words from natural languages
and their relationships. Relationships can be semantic
(i.e, related to the meaning of words) such as the syn-
onym relationship (WO), associative such as when two
words are associated with each other by people in ex-
periments (EA), or denote co-occurrence, i.e., the fact
that two words co-occur in text (SB). Note that lexical
co-occurrence networks are explicitly not included in
the broader Co-occurrence category.

Physical networks represent physically existing network
structures in the broadest sense. This category covers
such diverse data as physical computer networks (TO),
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transport networks (OF) and biological food networks
(FD).

Rating networks consist of assessments given to items by
users, weighted by a rating value. Rating networks are
bipartite. Networks in which users can rate other users
are not included here, but in the Social category in-
stead. If only a single type of rating is possible, for in-
stance the“favorite” relationship, then rating networks
are unweighted. Examples of items that are rated are
movies (M3), songs (YS), jokes (JE), and even sexual
escorts (SX).

Reference networks consist of citations or hyperlinks be-
tween various types of documents. Reference networks
are directed. Examples are hyperlinks between pages
on the World Wide Web (W3), citations between sci-
entific publications (CS), and citations among patents
(PC).

Semantic networks are generic networks of entities con-
nected by relationships. Our dataset collection con-
tains a single semantic network, DBpedia (DB), con-
taining data extracted from the English Wikipedia, in
which entities are individual lemmas and relationships
are inferred from infoboxes.

Social networks represent ties between persons. Certain
social networks allow negative edges, which denote en-
mity, distrust or dislike. Examples are Facebook friend-
ships (FSG), the Twitter follower relationship (TF),
and friends and foes on Slashdot (SZ). Note that some
social networks can be argued to be rating networks,
for instance the user–user rating network of a dating
site (LI). These networks are all included in the Social
category.

Text networks consist of text documents containing words.
They are bipartite and their nodes are documents and
words. Each edge represents the occurrence of a word
in a document. Document types are for instance news-
paper articles (TR) and Wikipedia articles (EX).

Note that the category system of KONECT is in flux. As
networks are added to the collection, large categories are
split into smaller ones.
We do not include certain kinds of networks that lack a

complex structure. This includes networks without a giant
connected component, in which most nodes are not reach-
able from each other, and trees, in which there is only a
single path between any two nodes. Note that bipartite re-
lationships extracted from n-to-1 relationships are therefore
excluded, as they lead to a disjoint network. For instance, a
bipartite person–city network containing was-born-in edges
would not be included, as each city would form its own com-
ponent disconnected from the rest of the network. On the
other hand, a band–country network where edges denote the
country of origin of individual band members is included, as
members of a single band can have different countries of
origin. In fact the Countries network (CN) is of this form.
Another example is a bipartite song–genre network, which
would only be included in KONECT when songs can have
multiple genres. As an example of the lack of complex struc-
ture when only a single genre is allowed, the degree distri-
bution in such a song–genre network is skewed because all

song nodes have degree one, the diameter cannot be com-
puted since the network is disconnected, and each connected
component trivially has a diameter of two or less.

3. MATHEMATICAL BACKGROUND
Structures as analysed in KONECT are networks. Thus,

individual datasets in KONECT are social networks, com-
munication networks, etc. A network contains nodes and
links. Nodes are for instance people or items; links are for
instance friendships or ratings. Mathematically, a network
is represented by a graph, and we may talk about graphs
containing vertices and edges, which correspond to networks
containing nodes and links. In most cases, we can use these
terms interchangeably, but to be precise, the terms net-
work/node/link refer to actually existing structures, whereas
graph/vertex/edge refer to mathematical objects.

3.1 Definitions
Graphs will be denoted as G = (V,E), in which V is the

set of vertices, and E is the set of edges [2]. Without loss of
generality, we can assume that the vertices V are consecutive
natural numbers, i.e.,

V = {1, 2, 3, . . . , |V |}.

Edges e ∈ E will be denoted as sets of two vertices, i.e.,
e = {u, v}. We say that two vertices are adjacent if they are
connected by an edge; this will be written as u ∼ v. We say
that an edge is incident to a vertex if the edge touches the
vertex. We also allow loops, i.e., edges of the form {u, u} =
{u}.

In directed networks, edges are pairs instead of sets, i.e.,
e = (u, v). In directed networks, edges are sometimes called
arcs; in KONECT, we use the term edge for them.

In bipartite graphs, we can partition the set of nodes V
into two disjoint sets V1 and V2, which we will call the left
and right set respectively. Although the assignment of a
bipartite network’s two node types to left and right sides
is mathematically arbitrary, it is chosen in KONECT such
that the left nodes are active and the right nodes are passive.
For instance, a rating graph with users and items will always
have users on the left since they are active in the sense that
it is they who give the ratings.

Networks with multiple edges will be written as G =
(V,E), where E is a multiset. The degree of nodes in such
networks takes into account multiple edges. Thus, the de-
gree does not equal the number of adjacent nodes but the
number of incident edges. When E is a multiset, it can con-
tain the edge {u, v} multiple times. Mathematically, we may
write {u, v}1, {u, v}2, etc. Note that we will be lax with this
notation. In expressions valid for all types of networks, we
will use sums such as

∑

{u,v}∈E and understand that the
sum is over all edges.

In positively weighted networks, we define w as the weight
function, returning the edge weight when given an edge. In
such networks, the weights are not taken into account when
computing the degree.

In a signed network, each edge is assigned a signed weight
such as +1 or −1. In such networks, we define w to be the
signed weight function. In the general case, we allow arbi-
trary nonzero real numbers, representing degrees of positive
and negative edges.

In rating networks, we define r to be the rating function,
returning the rating value when given an edge. Note that
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rating values are interpreted to be invariant under shifts,
i.e., adding a real constant to all ratings in the network
must not change the semantics of the network. Thus, we
will often make use of the mean rating defined as

µ =
1

|E|

∑

e∈E

r(e).

For consistency, we also define the edge weight function w
for unweighted and rating networks:

w(e) =

{

1 when G is unweighted
r(e)− µ when G is a rating network

We also define a weighting function for node pairs, also
denoted w. This function takes into account both the weight
of edges and edge multiplicities. It is defined as w(u, v) = 0
when the nodes u and v are not connected and if they are
connected as

w(u, v) =































1 when G is −
|{k | {u, v}k ∈ E}| when G is =
w({u, v}) when G is +
w({u, v}) when G is ±
r({u, v})− µ when G is ∗
∑

{u,v}k∈E
[r({u, v}k)− µ] when G is ∗

∗

In an unweighted graph G = (V,E), the degree of a vertex
is the number of neighbors of that node

d(u) = {v ∈ V | {u, v} ∈ E}.

In networks with multiple edges, the degree takes into ac-
count multiple edges, and thus to be precise, it equals the
number of incident edges and not the number of adjacent
vertices.

d(u) = {{u, v}k ∈ E | v ∈ V }

In directed graphs, the sum is over all of u’s neighbors, re-
gardless of the edge orientation. Note that the sum of the
degrees of all nodes always equals twice the number of edges,
i.e.,

∑

v∈V

d(u) = 2|E|.

We also define the weight of a node, also denoted by the
symbol w, as the sum of the absolute weights of incident
edges

w(u) =
∑

{u,v}∈E

|w({u, v})|.

The weight of a node coincides with the degree of a node in
unweighted networks and networks with multiple edges.

3.2 Characteristic Matrices
A very useful representation of graphs is using matrices.

In fact, a subfield of graph theory, algebraic graph theory,
is devoted to this representation [5]. An unweighted graph
G = (V,E) can be represented by a |V |-by-|V | matrix con-
taining the values 0 and 1, denoting whether a certain edge
between two nodes is present. This matrix is called the adja-
cency matrix of G and is denoted A. Remember that we as-
sume that the vertices are the natural numbers 1, 2, . . . , |V |.
Then, the entry Auv equals one when {u, v} ∈ E and zero
when not. This makes A square and symmetric for undi-
rected graphs, and generally asymmetric (but still square)
for directed graphs.

For a bipartite graph G = (V1 ∪ V2, E), the adjacency
matrix has the form

A =

[

B
BT

]

.

The matrix B is a |V1|-by-|V2| matrix, and thus generally
rectangular. B is called the biadjacency matrix.

In weighted networks, the adjacency matrix takes into ac-
count edge weights. In networks with multiple edges, the ad-
jacency matrix takes into account edge multiplicities. Thus,
the general definition of the adjacency matrix is given by

Auv = w(u, v).

The degree matrix D is a diagonal |V |-by-|V | matrix con-
taining the absolute weights of all nodes, i.e.,

Duu = |w(u)|.

Note that we define the degree matrix explicitly to contain
node weights instead of degrees, to be consistent with the
definition of A.

The normalized adjacency matrixN is a |V |-by-|V |matrix
given by

N = D−1/2AD−1/2.

Finally, the Laplacian matrix L is a |V |-by-|V | matrix
defined as

L = D−A.

The KONECT Matlab Toolbox also supports the com-
putation of other characteristic matrices, such as the nor-
malized Laplacian matrix Z = I −N = D−1/2LD−1/2, the
stochastic adjacency matrix P = D−1A, and other, more
exotic matrices.

4. NETWORK STATISTICS
A network statistic is a numerical value that characterizes

a network. KONECT supports the computation of many
common network statistics, and this section reviews a selec-
tion of these. All network statistics can be computed using
the KONECT toolbox, and their values are shown for the
KONECT datasets on the website4.

4.1 Basic Network Statistics
These statistics are simple to define and trivial to com-

pute, and they are reported universally in studies about
networks.

The size of a network is the number of nodes it contains.

n = |V |

In a bipartite graph, the size can be decomposed as n =
n1 + n2 with n1 = |V1| and n2 = |V2|.

The volume of a network equals the number of edges and
is defined as

e = |E|.

The average degree is defined as

d =
1

n

∑

u∈V

d(u) =
2e

n
.

4konect.uni-koblenz.de/statistics
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The average degree is sometimes called the density ; we avoid
that term as it is also used for the fill, as defined next.
The fill of a network is the proportion of edges to the total

number of possible edges.

f = 2e/[n(n+ 1)] when G is undirected

f = e/n2 when G is directed

f = e/(n1n2) when G is bipartite

In the undirected case, the expression is explained by the
fact that the total number of possible edges is n(n + 1)/2
including loops. The corresponding numbers for directed
and bipartite networks are n2 and n1n2.
The maximum degree equals the highest degree value

attained by any node.

dmax = max
u∈V

d(u)

4.2 Connectivity Statistics
Connectivity statistics measure to what extent a network

is connected. Two nodes are said to be connected when they
are either directly connected through an edge, or indirectly
through a path of several edges. A connected component is
a set of vertices all of which are connected, and unconnected
to the other nodes in the network. The largest connected
component in a network is usually very large and called the
giant connected component. When it contains all nodes, the
network is connected.
The size of the largest connected component is de-

noted as CC. In bipartite networks, the number of left and
right nodes in the largest connected components are denoted
CC1 and CC2, with CC1 +CC2 = CC.
The relative size of the largest connected compo-

nent equals the size of the largest connected component
divided by the size of the network

CCrel =
CC

n
.

In directed networks, we additionally define the size of
the largest strongly connected component CCs. A
strongly connected component is a set of vertices in a di-
rected graph such that any node is reachable from any other
node using a path following only directed edges in the for-
ward direction. We always have CCs ≤ CC.

4.3 Path Length Statistics
These statistics are based on the length of paths in the

network.
The diameter δ of a graph equals the longest shortest

path in the network. Given two vertices in a graph, their
distance is defined as the minimal number of edges needed
to reach one from the other. The largest distance attained
between two nodes is then the diameter. Note that the di-
ameter is undefined (or infinite) in unconnected networks,
and thus we consider always the diameter of the network’s
largest connected component. The diameter can be com-
puted exactly or estimated, in which case it is noted δ̃.
A related statistic is the 90-percentile effective diame-

ter δ0.9, which equals the number of edges needed on average
to reach 90% of all other nodes.
The median path length δM is the median length of

shortest paths in the network, and the mean path length
δm is the mean over the shortest path lengths for all node

pairs in the network. Both the median and mean path
lengths are computed taking into account node pairs of the
form (u, u).

4.4 Degree Distribution Statistics
The distribution of degree values d(u) over all nodes u is

often taken to characterize a network. Thus, a certain num-
ber of network statistics are based solely on this distribution,
regardless of overall network structure.

The power law exponent is a number that characterizes
the degrees of the nodes in the network. In many circum-
stances, networks are modeled to follow a degree distribution
power law, i.e., the number of nodes with degree n is taken
to be proportional to the power n−γ , for a constant γ larger
than one [1]. This constant γ is called the power law expo-
nent. Given a network, its degree distribution can be used
to estimate a value γ. There are multiple ways of estimating
γ, and thus a network does not have a single definite value
if it. In KONECT, we estimate γ using the robust method
given in [7, Eq. 5]

γ = 1 + n

(

∑

v∈V

ln
d(u)

dmin

)−1

,

in which dmin is the minimal degree.
The Gini coefficient is a measure of inequality from eco-

nomics, typically applied to distributions of wealth or in-
come. In KONECT, we apply it to the degree distribution,
as described in [6]. The Gini coefficient can either be defined
in terms of the Lorenz curve, a type of plot that visualizes
the inequality of a distribution, or using the following ex-
pression. Let d1 ≤ d2 ≤ · · · ≤ d|V | be the sorted list of
degrees in the network. Then, the Gini coefficient is defined
as

G =
2
∑n

i=1
idi

n
∑n

i=1
di

−
n+ 1

n
.

The Gini coefficient takes values between zero and one, with
zero denoting total equality between degrees, and one denot-
ing the dominance of a single node.

4.5 Algebraic Statistics
Algebraic statistics are based on the eigenvalues of a net-

work’s characteristic matrices. They are motivated by the
broader field of spectral graph theory, which characterizes
graphs using the spectra of these matrices [3]. In the follow-
ing we will denote by λk[X] the kth dominant eigenvalue of
the matrix X. For the adjacency matrix A, the dominant
eigenvalues are the largest absolute ones; for the Laplacian
L, they are the smallest ones. Also, the matrix L will only be
considered for the network’s largest connected component.

The spectral norm of a network equals the spectral norm
(i.e., the largest absolute eigenvalue) of the network’s adja-
cency matrix

|λ1[A]| = ‖A‖
2
.

The spectral norm can be understood as an alternative mea-
sure of the size of a network.

The algebraic connectivity equals the second smallest
nonzero eigenvalue of L [4]

a = λ2[L].
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(a) Edge weight distribution
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(b) Edge multiplicity distri-
bution

Figure 2: The distribution of (a) edge weights for
the MovieLens rating network (M2) and (b) edge
multiplicities for the English Wikipedia edit network
(en).

The algebraic connectivity is zero when the network is dis-
connected – this is one reason why we restrict the matrix
L to each network’s giant connected component. The alge-
braic connectivity is larger the better the network’s largest
connected component is connected.

4.6 Other Statistics
The clustering coefficient is a statistic of unipartite net-

works that measures to what extent two incident edges tend
to be completed by a third edge to form a triangle.

c =
|{u, v, w ∈ V | u ∼ v ∼ w ∼ u}|

|{u, v, w ∈ V | u ∼ v ∼ w}|

The clustering coefficient has values between zero and one,
with a value of one denoting that all possible triangles are
formed (i.e., the network consists of disconnected cliques),
and zero when it is triangle free. Note that the clustering
coefficient is trivially zero for bipartite graphs.

5. PLOTS
Plots are drawn to visualize a certain aspect of a dataset.

For instance, a large fraction of studies analysing networks
will show a plot of the degree distribution. This plot and
many others can be used to compare several network vi-
sually, or to illustrate the definition of a certain numeri-
cal statistic. In the following, we show a selection of plots
supported by KONECT, intended to illustrate the range of
supported plots. As a running example, we show the plots
for the Wikipedia elections network (EL). Plots for all net-
works (in which computation was feasible) are shown on the
KONECT website5. The KONECT Matlab toolbox con-
tains code for generating these plot types.

Edge Weight and Multiplicity Distribution.
The edge weight and multiplicity distribution plots show

the distribution of edge weights and of edge multiplicities for
positive/signed/rating networks and multiple networks re-
spectively. They are not generated for unweighted networks.
The X axis shows values of the edge weights or multiplicities,
and the Y axis shows frequencies. Edge multiplicity distri-
butions are plotted on doubly logarithmic scales. Examples
of both plots are given in Figure 2.

5konect.uni-koblenz.de/plots
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(a) Degree distribution (b) Cumulative degree distri-
bution

Figure 3: The degree distribution and cumulative
degree distribution for the Wikipedia election net-
work (EL).

Degree Distribution.
The distribution of degree values d(u) over all vertices u

characterizes the network as a whole, and is often used to
visualize a network. In particular, a power law is often as-
sumed, stating that the number of nodes with n neighbors is
proportional to n−γ , for a constant γ [1]. This assumption
can be inspected visually by plotting the degree distribution
on a doubly logarithmic scale, on which a power law renders
as a straight line. KONECT supports two different plots:
The degree distribution, and the cumulative degree distri-
bution. The degree distribution shows the number of nodes
with degree n, in function of n. The cumulative degree dis-
tribution shows the probability that the degree of a node
picked at random is larger than n, in function of n. Both
plots use a doubly logarithmic scale. Examples of both plots
are given in Figure 3.

Another visualization of the degree distribution supported
by KONECT is in the form of the Lorenz curve, a type of
plot to measure inequality originally used in economics (not
shown).

Spectral Plots.
The eigenvalues of a network’s characteristic matrices A,

N and L are often used to characterize the network as a
whole. KONECT supports computing and visualizing the
spectrum (i.e., the set of eigenvalues) of a network in multi-
ple ways. Two types of plots are supported: Those showing
the top-k eigenvalues computed exactly, and those showing
the overall distribution of eigenvalues, computed approxi-
mately. The eigenvalues of A are positive and negative re-
als, the eigenvalues of N are in the range [−1,+1], and the
eigenvalues of L are all nonnegative. For A and N, the
largest absolute eigenvalues are used, while for L the small-
est eigenvalues are used. Examples of the spectra of A and
N are shown in Figure 4.

Hop Plot.
Path length statistics can be visualized in the hop plot.

The hop plot shows, for each integer k, the number of node
pairs at distance k from each other, divided by the total
number of node pairs. The hop plot can be used to read off
the diameter, the median path length, and the 90-percentile
effective diameter (see Section 4.3). For temporal networks,
the hop plot can be shown over time. Examples are com-
puted in Figure 5.
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(a) Top-k eigenvalues of A (b) Cumulative eigenvalue
distribution of N

Figure 4: The top-k eigenvalues of A and the cumu-
lative spectral distribution of N for the Wikipedia
election network (EL). In the first plot (a), positive
eigenvalues are shown in green and negative ones in
red.

6. MATLAB TOOLBOX
The KONECT Matlab Toolbox6 is a set of functions for

the Matlab programming language7 containing implementa-
tions of statistics, plots and other network analysis methods.
The KONECT Matlab Toolbox was used to generate the nu-
merical statistics and plots in this paper as well as on the
KONECT website.

7. WEBSITE
The KONECT website, available at konect.uni-koblenz.de

contains information about all datasets, all numerical statis-
tics, plots, as well as downloads of all datasets for which it
is legal to do so. More than half of all datasets are avail-
able for download. The datasets are provided in a unified
and simple format (edge-wise tab-separated values) to allow
the easy analysis of networks in many programming lan-
guages and environments. The website also provides down-
loads of all datasets for which this is possible within legal
constraints, and the extraction code which was used to gen-
erate the datasets.

8. DISCUSSION
KONECT is a new entry in the field of network dataset

collections, and as such it competes, or rather complements,
collections such as Albert-László Barabási’s resources8, Tore
Opsahl’s collection9, the Pajek datasets10, Jure Leskovec’s
SNAP11 and many others. What sets KONECT apart from
these is (1) its large size (>160 datasets), (2) a compre-
hensive taxonomy of network datasets, (3) its broad scope
of 15+ categories, (4) an integrated Toolbox for computa-
tion of both statistics and plot, and (5) the integration of
statistics and plots into the website, for easy exploration of
the corpus. Rather than seeing these related collections as
competitors, we see them as collaborators, and in fact many
KONECT datasets are imported from them.
By disseminating KONECT as part of the Web Obser-

vatory Workshop, we hope to raise awareness for the effort

6konect.uni-koblenz.de/toolbox
7www.mathworks.com/products/matlab
8www3.nd.edu/∼networks/resources.htm
9toreopsahl.com/datasets

10vlado.fmf.uni-lj.si/pub/networks/data
11snap.stanford.edu

(a) Hop plot (b) Temporal hop plot

Figure 5: The hop plot and temporal hop plot for
the Wikipedia election network (EL).

this project represents, and in particular solicit the partici-
pation of practitioners in the acquisition of new datasets, in
the usage of KONECT datasets in studies, and in the shap-
ing of KONECT’s future. In particular, we want to receive
feedback and stimulate discussions about (1) the prominent
role of networks in the context of web science, (2) the im-
portance of using as many datasets as possible in studies,
and thus of the importance of dataset repositories such as
KONECT, (3) datasets and dataset types that researchers
want to use, (4) datasets and dataset types that researchers
can contribute, (5) which statistics and plots are most im-
portant to users and (6) which data formats would facilitate
adoption of KONECT. As an example for the last point,
we are currently experimenting with releasing datasets in a
Semantic Web-compatible way in RDF format.
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